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Abstract

Synthesizing new motion is a difficult problem. 8yesis through physical simulation produces
the best results but it suffers from the amountirn& needed and thus, it is not suitable for real
time use such as in a game. Therefore, an appfagynthesis using existing motion would be
more suited for real time application. However,atirlg new motion from existing ones is a
challenging task because of the motion data gdpdaalks structure and intuitive interpretation.
We have come out with a nhovel motion segmentatiodehbased on the dynamics of the motion
which enables us to modify the intensity and timgdgexisting motion. For example, we could
make a kick much more forceful, or change the domatf the kick. We believe our model could
be used for motion compression as well as helpdtian analysis in general because it encodes

temporal, spatial and intensity information.
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1.3.6 Computer Graphics Methodology and Techniques

1.3.7 Three-Dimensional Graphics and Realism
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Chapter 1

| ntr oduction
1.1 Motivation

Motion Synthesis is the creation of motion dataalh be done generally in 2 ways: either
through physical simulation or by creating new motfrom existing motion (Exemplar
Based). Motion Synthesis is usually done to cre&i® motions for animations, videos
games as well as virtual environment such ¥sL#e. Such applications do not only
require large amount of motions for the charactgesjety of motions is also very
important. In this thesis, when we talk about motgynthesis, we meant the exemplar

based approach and not the physical simulation way.

Such animations are normally done in 2 ways: reggiskilled animators who manually
hand animate 3D characters in software packagesMiya and 3DS Max or using
motion capture, where actors wearing special Sadted” out the required motion which
are then captured and stored. Manual animationinexjskilled animators and is very
time consuming while motion capture is expensivd Hre resultant motion might not

meet the requirements because of noise or simglguse the timing of the actor is off.

This is where motion synthesis comes in, it alldlws creation of new motions which
when done right, can satisfy the requirements efapplication. Furthermore, it allows
reuse of existing motion data, which would be wasi@ce normally they are used in an
application once and discarded because it is varg for another application to use it

without having to editing or modify it.

Motion synthesis is usually done by manipulating thotion data in its raw form. Figure
1 shows a plot of all the joint angles in a motagainst time. It is hard to decipher what

the motion is doing by only looking at the plots.
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Figure 1: Plot of all the joint angles against time. Note hdifficult it is so know what the motion is doing.

However, because the raw motion data itself is ruogired, it not trivial to get

information such as the swinging of the joints &o@v fast it is swinging.

Therefore, to derive meaning from motion data, wag would be to build a hierarchical
model to on top of the motion data. A hierarchioaldel is a way to derive meaning from
multimedia signals such as video, audio and inaase, motion data. Taking audio, in
particular speech as an example, we can analybeetik down speech into phonemes
and then combine phonemes into syllables and jir@mbine syllables into words. To
break down the audio signal into these compon&rgsieed to perform segmentation on
the audio signal to know the start and end of thenpmes. As far as we know, no one
has done this before for motion data. Similar tw hiois done for video and audio clips,
building a hierarchical model requires that segramt be done. To do this, we need a

segmentation model and this leads us to the obgeofithis thesis.

1.2 Thesis Objective and Contribution

The objective of this thesis is to develop a segatem model for motion data to model
the swings of the motion. For instance, when thme igr swinging forward during a run,
the humerus (the bone where the bicep and tricepisrswinging forward in a rather
geodesic manner. For example, in the picture betbe,right upper arm will swing

forward and back as the character runs
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Figure 2: The right arm will swing forward during a run.

This means, the bone is rotating around a fairlystant axis of rotation when swinging
forward. This applies to the other bones such asetton the legs as well. Thus, we will
have taken a step forward in the building of admenical model for motion data if we

can build this segmentation model.

Such swings can be segmented from the motion dataits analogy with respect to
video would be shots in shot detection.

Therefore, the main objective of this thesis isctone out with a segmentation model
which will be able to segment out these swingsvdfplayback just these swings instead
of the original motion data, we should get a gopdraximation of the original motion.

This would demonstrate that the model does indem#.w

With these swings segmented out, we can show tleatcan do use them to some
applications, namely:
» Afairly basic form of motion compression by jusbrsng these swings
* A way to index and search for motion in a motiortaase by using these the
segmentation result

» Simple motion editing by manipulating the propestid these swings

1.3 Thesis Organization

The rest of the thesis will be organized as suck. Wil talk about some Background

Knowledge about animating a skeleton with motiotadaecause this is a very basic
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requirement in dealing with motion data. Then weagoto Related Work where we
discuss some relevant works in the literature. rAfteat would be discussion on our
Motion Segmentation Model and how it is done. Rellg that would be on how we can
make use of the segmentation model and we endtetbonclusion.
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Chapter 2
Background Knowledge

2.1 Animating a Skeleton using Motion Data

2.1.1 The Skeleton Structure

The skeleton is a structure similar to our humaeletkn. It is made up of bones and
joints. The bones are typically named accordinthé&ir biological name. So for example,

the thigh bone is called the femur.

Figure 3: An example skeleton and the bone names. The Igh&lshe medical name for each bone.

The skeleton structure is actually a tree withrib& joint as the root of the tree. So, the
child of the Ifemur is the ltibia. Each child wdtore the transformation information from

its parent to itself. The position of the skeletofrigure 2 is known as the bind-pose.
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2.1.2 Animating the Skeleton

How do we animate the skeletal structure? We dbysspecifying the rotation of each
individual bone with respect to the parent bonetsal coordinate frame. Different bones
have varying number of Degrees of Freedom (DOFs) ekample, the femur (thigh) can
rotate freely in the x, y and z axis while the ted{fore-arm) can only rotate in one axis.
Typically, depending on the motion capture equipimesed, we will know the order to

apply the x, y and z rotation for each bone/joint.

The root is the only bone with translation compdrtenrit and whose rotation component
is with respect to the world coordinate frame. Efiere, it has 6 DOFs. Any translation

of the skeleton in 3D is specified by the transkattomponent of the root.

The structure of the bones as well as the sequrenegles for each bones form what we

know as the motion data.

A collection of the angles for each bone specifigosefor the skeleton. We call such a
collection a frame. A sequence of frames would gigethe animation of the skeleton
performing whatever motion is captured. Motion captis usually captured at 120
frames per second and then down scaled to 60 fraeresecond. This is what is done
with the motion capture data from the CMU Graphicsh. Therefore, each frame
represents 1 / 60 of a second, and from the nuwibames in a motion, we can work

out the duration of the motion.

As mentioned, the pose in Figure 3 is known asbthd-pose and it is usually specified
by having all the DOF of each bone set to 0.
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2.1.3 Animation a 3D mesh

To drive a 3D mesh of a human using the skeletenhawve to perform a process known
as skinning. Given a 3D mesh and a skeleton,

Figure 4: 3D Mesh. A sample 3D human mesh. Figure5: A Skeleton.

A simple skinning method is to assign 1 bone tdheamtex. There is more sophisticated
method to do skinning but for our purposes, thispe method is enough to illustrate the
process. The purpose of assigning a bone to eatéxvis so that when the bone is
rotated as specified by the motion data, the westitfollow” it, thus creating an
animation.

Before we can assign a bone, we must positionkéketon “inside” the mesh so that the
when the bone rotates, the vertices that followl$ ada so correctly. The image below
shows the skeleton inside the mesh.

Figure 6: Skeleton positioned inside the meshFigure 7: Color coding the vertex assignment.

Once skinning is done, the character is said twigged” and is ready to be animated.
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2.2 Representing Rotations

There are a number of ways to represent rotatioB8®i
Below are some of them
* Euler Angle [refer to citation 18 for more details]
» Rotation Matrix [refer to citation 19 for more dish
* Quaternion [refer to citation 20 for more details]

* Exponential Map [refer to citation 17 for more disfa

Euler Angle representation is the most straighivbsd way where the rotation is

represented by a 3x1 vector corresponding to motatith respect to x, y and z axes
respectively. It is developed by Leonhard Euledéscribe the orientation of a rigid body
(a body in which the relative position of all itsipts is constant) in 3D Euclidean Space.
However, one well known problem with Euler Anglgmesentation is that it is plagued

by the gimbal lock problem.

Gimbal lock is the loss of one degree of freedoat ttcurs when the 1 of the 3 axes (in
a 3D space) becomes aligned with one of the remgiRiaxes. This results in a loss of
the degree of freedom for the particular axis. Rdfe [21] for a more in depth

explanation.

We can use the rotation matrix representation, /each rotation is encoded by a 3x3
matrix. This does not suffer from the gimbal Iqmoblem. However, a 3D rotation is
has only 3 degrees of freedom, namely the angtet&te for each principal axis but the
rotation matrix has 9 components. This is not slgtdor applications where memory

constraints apply.

There is also the quaternion representation wheoga#ion is represented compactly by a
4x1 vector. Rotation can be performed in quaterrspace and it does not suffer from
gimbal lock as well. However, quaternion have &stule to be of unit length, otherwise,

the 4x1 vector representing the quaternion woultl make any sense. This makes
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guaternion unsuitable for applications where iméafons and making small changes to
rotations are required because the quaternion ddse trenormalized each time it is

changed.

This is where exponential maps come in. Exponentegbs attempts to map a 3D rotation
to a vector in R space by having the®Rrector represent the axis of rotation and the
magnitude of the vector specifying the angle tateusing the Right Hand Rule. This is
not possible without the possibility of gimbal locklowever, the gimbal lock in
exponential map is avoidable and that makes iaBlétas a replacement for quaternion.

We can convert from Exponential Map to Quaternisistaown below.

ool = [{LIZ!'.[ZII._l]T and for v=0 g = [sin{‘T B)v, cos(i EJJ]T

where #=[v|] and V=v/|v|.

The onlv problem with this particular formulation is that calculating v =v / |v] as v
goes to zero becomes numerically unstable. However, by rearranging the above formula a
bit, we will be able to see that this exponential map can be computed robustly even in the

neighborhood of the origin.

Let

T

sin(1 &)

2 &

q=¢" = sin{%ﬁ]g, cas(%ﬁ]l = V. ms{éﬁjl

All we have done is reorganize the problematic tearthat instead of computing |v|
(i.,e. v/I8), we computein®26 / 6. This is becaussin(¥29)/68 =%2sinc(¥#), and sinc is a
function that is known to be computable and comtusuat and around zero. Assured that
the functionis computable, we still need a formula for computitigsince sinc is not
included in standard math libraries. Using the ®afxpansion of sine function, we get:
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From this we see that the tersywell defined, and that evaluating the entire iriéni
series would give us the exact value. BuBas 0, each successive term is smaller than
the last, and terms are alternately added and asubtt, so if we approximate the true
value by the firsh terms, the error will be no greater than the mamgeitof the j+1)"

term.

The principal advantage of quaternion over Eulglers their freedom from gimbal lock.
We already know that the exponential map must sufiem gimbal lock too, so if it is
to be useful, we must know how and where gimbak loccurs and show how they can

be avoided at a cost that is outweighed by its fitsne

The problems with exponential map shows up on fie®s (in B of radius2nz (for
n=1,2,3,...). This makes sense, since a rotationzohlutany axis is equivalent to no
rotation at all — the entire shell of points @istant from the origin (andz4 and so on)
collapses to the identity in SO(3) . So if we castrict our parameterization to the inside
of the ball of radius 2 we will avoid the gimbal lock. Fortunately, eatember of SO(3)
(except the rotation of zero radians) has two ssepresentations within this ball: as a

rotation ofg radians about, and as a rotation ofr2 @ radians aboutv.

By moving through time in small steps (making snwilénges to the rotation, keeping
the change to %), we can easily keep orientations inside the Ipaltloing this: at each
time step when the rotation is queried for its ealwve examinev|, and if it is close tar,
we replacev by (1-217 |v|)v, which is an equivalent rotation. Suotparameterization
could be done to the Euler Angles as well, butsitsimpler when performed on

Exponential Maps since it involves just scalingxd $ector since the magnitude of the

10
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vector represents the angle of rotation. For E#lagle, a series of trigonometric
functions are involved to do this and obviously nere computationally intensive

compared to doing the same thing for ExponentigbMa

One disadvantage of Exponential Map when compareguaternion is that there is no
simple way to combine rotations. We have to contretExponential Map to quaternion,

perform quaternion multiplication, and then tramsfdhe result back to Exponential Map.

Therefore, in our segmentation model, we make @i&xponential Map to represent the
rotations because we need to perform interpolatiwataging and smoothing on
sequence of rotations. It is easier to computeguSikponential Map compared to

Quaternion.

11
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Chapter 3
Related Works

3.1 Motion Segmentation

There are actually very few works on motion dagnsentation. Of those that are around,
most of them either require manual tagging (fornegle, by tagging frames where the
feet are supposed to be on the ground) or theislaagmented by finding start and end
of a motion. This method is tedious and error proke far as we know, there is no
segmentation done to find out where the swings mio#ion are. Extraction of such low
level features has not been done and we belieadnilth the extraction of such swings

might be more useful then determining start andarrdotion.

For videos, there are shot detection to detect wdesmot starts and ends. A shot is
defined as the time when the shoot button is pdeseehe recorder to the time when the
stop button is pressed. There are many literatanethis and when comparing motion
data with video, this is the closest analogy.

In audio, in particular speech processing, speseahddel by phonemes and syllabuses,
before these are combined into words, phrasesVééc believed, that this can be by
extracting swings from motion data, we can do sbigtsimilar to speech processing,

by combining swings into actions such as kick, pueic.

12
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3.2 Motion Synthesis

There are actually a number of ways to synthesiodiom. One way uses physical
simulation to simulation the physics of the reqgdiraotion so as to come out with new
ones. Note that physical simulation need not useeamsting motion to generate new
motions. The other is to use existing motion. Wentl it Exemplar-based techniques.
We could store all the motions in a database aneérgée or synthesize new motions by

finding suitable example in the database. Thigmleesis through multiple examples.

In both ways, synthesis is done through a directipudation/handling of the motion data

itself.

Physical Simulation, as the name suggests, trigget®rate motion by simulating the
physics of what would happened given the requireadtions. For example, we can
specify that a character needs to kick a certajpobbn space, and given a physically

correct model, we can run a simulation to prodhieedesired motion.

However, Physical Simulation often involves somerf@f optimization and therefore, it
is very slow and is not very suitable for real-timgage such as in games or virtual
environment. We will focus on Exemplar-based sysithetechniques instead as

mentioned earlier in the'chapter of this thesis.

Exemplar-based techniques fall into several categoYery broadly, these are:
» Concatenation approach
» Time Warping approach
» Signal Processing approach

For Exemplar-based techniques, we can synthesizanwions from many examples, or
from a single example. The concatenation approaaally uses many examples to
synthesize new ones while the Time Warping and é&ignocessing are mainly dealing
with 1 motion. We can also say that the 2 approseine more like Motion Editing rather

13
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than Motion Synthesis. However, | would still laileem as Motion Synthesis because

the generated motion is “new”; it is not producedmotion capturing.

Note that what the techniques above only syntheszemotion data by dealing with the
motion data itself. However we will see that thex®ne example of editing the skeleton

structure and generating new motion data for the steucture.

Our approach falls only in the editing motion dattegory. We do not modify the
skeleton structure at all.

We must mention that for all Exemplar-based mosgnthesis, there is almost always
post processing being performed after the motiogeiserated. One common problem is
the foot skate problem where the foot “slides” gldhe ground. However, we can use
motion generated from Exemplar-based methods astatifig point” for animators
working on computer games as well as computer ggeeimovies. It would definitely be

faster than having the animator create an animétoon scratch.

14
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3.2.1 Concatenation Approach

In this approach, the main idea for synthesizing neotion is to take example motion
and concatenate them together. The hard part danfinthe right place to join different
motion sequences together so that the resultanbmistcorrect.

One method of doing this is to use a Motion Graphere are actually a number of
papers published on the topic of Motion Graph. ElotGraph (Kovar, Gleicher, Pighin,
2002), Interactive Motion Generation from ExampheiKan, Forsyth, 2003) all talks
about motion graphs.

The general idea about motion graphs is that tlgedre all motion clips while the
nodes are the transition points. Consider Figuteeldbw which shows a very simple

motion graph made of 2 different motion clips.

@ — e e o |
—
O —— @ m— @ m— g

Figure 8: Picture showing example of motion graph.

The 2 horizontal lines on the left are 2 differamdtion clips. The motion starts on the left
and plays to the right. On the right, the greenatuat line represents the transition point.
So if we start at the top motion, and we play thenation, when we reach the frame at
the green dot, we can either choose to continugrgahe original motion, or move to

the bottom motion and continue the animation frberé. Therefore, any walks from the

motion graph will be a new sequence of motion.

The challenge then is to locate the transition {goifio do this, there need to be a way to
compare the between 2 different poses to deterthigie similarity. Once we have this,
we can then come out with a similarity image betw2alifferent motions. It is generated
by comparing each frame in one motion with eveayrie in the other. The images below

15
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show example of such similarity images. A high $miy will show up as white in the
image while low similarity with be darker.

Figure9: Similarity image between 2 walk motion, note thpeating patterns due to the cyclic nature of
walking.

Figure 10: Similarity image for a motion against itself. Nab& white diagonal. This is due to comparing
the pose in a frame against itself.

Once the similarity images are generated, the itranspoints can be determined by
finding the pair of frames where similarity is highowever, because there is no way we
can have perfect matches of poses between 2 diffenetions, some form of blending
must be performed during the transition from onioroto the next.

16
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3.2.2 Time War ping Approach

Time warping is one technique which allows userathust the timing of animated
characters without affecting their poses. For edampe can adjust a punching motion

such that a punch takes longer to execute.

The importance of timing in animation is highligtiten John Lasseter’s “Principles of
Traditional Animation Applied to 3D Computer Anin@at” and he notes how even the
slightest timing difference can greatly affect fherception of the animation. However,

the time warping too requires great skill and patesin order to achieve good result.

Linear time warping is usually used because itasiex to perform. However, recent

works have used non-linear time warping which cartpce better results.

In the paper, “Guided Time warping for Motion Eddf, the author is able to change the

timing of a motion by doing non-linear time warping

Input Motion

fli‘!. Jé Ji Fm é‘- % ﬁ 'J! dkl"

o v vowom g Ny
FLILXEY BAR LRV MEARRY \)
Linear Warp

Warp ‘;‘;" Speed i‘
— X
/'

o=fie
ine
L
g

Guided Warp
w.arpf,.f" Spead |

i = ¥,
/ A -f-l 3
I

Figure 11: Difference between linear and non-linear time wagplmage taken from the paper
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The method generates a retimed output motion based motions, an input motion
which is to be retimed, and a reference motion Wwhiontrols affects how the input
motion is retimed. The output will be similar teetinput while matching the “speed” of

the reference.

17
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3.2.3 Signal Processing Approach

In this approach, the motion data is treated agtomsignal. The sequence of angles for
each DOF of each joint becomes the signal. Theatigan then be converted to the
frequency domain and the motion can be editedltgrifig out unwanted frequencies and

converting the signal back to the time domain.

In the paper “Motion Signal Processing”, this isavthe authors did. They found out that
the main movements in a motion, such as the swinginthe thighs and arms during
walking were mainly composed of the lower frequenoynponents. The high frequency

components were either noise, or details such aswgaf hands.

In the recent SIGGRAPH paper, “Cartoon Animatiolelfi, the authors came out with a
filter that could easily add anticipation, follolwrbugh and squash-and-stretch to a

motion.

Laplacian of Gaussian

TN

Gaussian
G set

automaticall
>
User set
This lobe amplitude .
creates follow-through This lobe

v : creates anticipation

Figure 12: The plot of the cartoon animation filter. Imagegakrom the paper

The filter is actually a very simple one. It istj@h inverted Laplacian of Gaussian. The
new motion is obtained by adding a filtered verswdrthe motion signal to itself. The
result is quite elegant in that one filter is diat is needed, and there is only one
parameter for the user to control. The others @addiermined automatically. Therefore,
this method can provide a quick and easy way qaarke out with new motions from

existing ones.

18
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3.2.4 Skeleton Structure M odifying Approach

Modifying the skeleton structure to synthesis newation seems rather counter intuitive
at first. Why modify the skeleton? The skeletodrisen by the motion data so we should
focus on manipulating the motion data instead.

On closer examination, we could modify the skeletbncture to generate come up with
physically impossible motion is a rather novel idéhe most prominent example is the
paper “Rubber-like Exaggeration for Character Artiord, which breaks each bone in
the skeleton into smaller ones so as to be aldertalate the “rubbery” effect in cartoons.
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Figure 13: Example of rubber like motion. Note the stretchirighe limbs of the character. Image taken
from the paper.

Each bone is broken down into several small bome®gring the whole length of the
original ones as show in Figure 13. For squashstmetich effects, the length of the bones
can be “lengthen” during the stretching portion tbe animation. Such motion is
impossible to be performed by a human being bectdugsbuman bone can lengthened or

shorten at will.

& @ : Original joint
| ® : Sub-joint
A

o%_.&____’.-'.

Figure 14: Breaking down of a bone into several smaller o@&ange represents the original joint while
the green ones are the smaller joints used tosept¢he original ones. Image taken from the paper

19
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Chapter 3

M otion Segmentation

4.1 The Motion Segmentation M odel

In this section, we will be discussing the detafi®ur segmentation model as well as the

some applications where it could be used.

Before that, let us recall that for each bone/jana skeleton, it is driven by a series of
rotations applied to it. Each rotation can be dbsdrby a rotation matrix. The rotation
matrix has only 3 degrees of freedom, which isahgle to rotate in the x, y and z axis
respectively. Therefore, the skeleton has a seguehmtation matrix for each bone/joint

describing its pose at a particular frame.

The main idea behind our Segmentation Model is fibrahighly dynamic motions such
as running, kicking or any sports motion, the quaeid forceful swinging of the limbs
can be parameterized and/or approximated by aiontakis and a start and end angle.
The “rest” period between 2 consecutive swingsuatelly quite stationary. There might
be some movement about but, for most parts, dwuimighly dynamic movement, the

rest period is pretty stationary.

The reason we can do this is that for such forcgfuihgs, the bone/joint going through

the motion follows a nearly geodesic path that wexgrly rotates around a fixed axis. We
can visualize it imaging the centre of rotationttod bone as the center of a sphere with
radius equals to the length of the bone. The tiphefbone will then trace a path on the

surface of the sphere as it rotates.

20
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Figure 15: 2 geodesic paths on the surface of a surface. atheghows what a bone might trace through if
it were to go through one a perfect geodesic swing.

The image above shows 2 geodesic paths on theceusfaa sphere. In highly dynamic
motions, the path each limb traces through is Figiglodesic. It would not be perfectly
geodesic, but it is very close. Our method trieBrtd out where all these swings are and
therefore, by locating all these highly geodesiing® in the motion of every bone/joint,

we can segment the motion data by these swings.

Therefore, for each bone/joint, a segment is ddfibg as the time of the start of a
geodesic swing to the time when it ends. Each segmi encode the approximate axis

of rotation as well as the start and end angletate.

To show that the segmentation is a good approxanati the original motion, all we
have to do is to playback the segmented resulifahthe resulting animation is a good
representation of the motion, then we will havecseced.

21
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4.2 Motion Segmentation Algorithm

The rotations of the bones are stored relativehto hone’s parent; therefore, all the
rotations are local rotations. Using local rotasionstead of world rotations makes sense
because we are looking for swings for each joirti¢ is local to each bone). Using

world rotation might would not give us consisteesults because a swing might no be

detected as a swing when using world rotation.

Let R be the local rotation matrix of joiptat timet. The local rotation matrix for each

joint at a particular frame can be obtained froen Huler angles stored in the motion data.

We then obtain the angular velocity of jojrdt timet from the local rotation matrix. The
intuition of velocity is the difference of rotaticat timet and timet+1. Let Q;; be the
angular velocity for joinj at timet. With respect to rotation, this will be the diteice in

rotation computed as shown below:

R *R_ . t<#offrames

Q = R xR bt =#of f
L TRy, = #of frames

It

The reason for obtaining the angular velocity isaduse we need to find a way to isolate
the individual swings out from the motion data. frthe angular velocity, we then obtain
an Exponential Map representation. The reason dorguExponential Map is detailed in

Chap 2: Background Knowledge.

In simple terms, Exponential Map is a 3 by 1 veetdh represents the rotation axis and
the magnitude of the vector represents the angtetafion around the axis. We choose
Exponential Map over quaternion representation ised is more stable then quaternion
when doing convolution on a sequence of such vimsadind because its representation is
rather simple, the computation is faster compaedjuaternion. LeEXP;; be the

exponential map representation for jgiatt timet.
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We then smooth the velocity curve by convolving theonential map representation
with a box filter of with a maximum size of 20 fras This is to reduce the noise in the

original velocity curve and to aid in isolating theodesic swing.

Through empirical experimentation, we found thatstn®wings have lengths of around
15 to 25 frames. Therefore, the size of the kefmresmoothing the velocity curve is set

to be 20 so that the smoothing does not smoothmecessary details

Let EXPcj: be the smoothed velocity curve witlandt having the same meaning. The
next step would be to determine the error of a esegel of 20 frames centered on every
frame in the motion data from a perfect geodesingwith the centered frame’s axis of

rotation as the axis of rotation for the perfecbdgsic swing. Again here, we chose 20

frames because the length of a typical swing isr@idhis number.

We define the erroE;; as follows:

+10 EXP... » EXP..
E = 2 [ 08 ey ]
20550 NEXR,, IMIEXR, 1T | [L1+((i-1)/20)°]

The search for the swings can then be performathubie error that we calculated. We
will adopt a greedy approach when searching; we with the frame which has the least
error. This is because the swings tend to be cemhtey the frame with the least error as

given above.

Let its frame number bk This frame will be the starting point of the sdgafor a swing
and the convolved angular velocifgXPcj+ , at this frame is used as the reference when
determining whether to include other frames as pérthe swing. We compute the
difference of the angular velocity to the left amght of the starting frame, given by the
following formula. Let n be the frame number of thhame of either the left or right

frame:

23



Motion Segmentation Based on Joint Swings

EXP. . +EXP. |
Ajgn=-17( = =
HEXP ¢ in II*ITEXP ¢ ¢ I

-1)

We are basically just computing the cosine of thglebetween the rotation axis between
the 2 frames. Since the cosine function range ftaim -1, and when 2 frames are on the
same axis, the angle between them is 0 and theecdsil, we scale the error function
accordingly so that the error range from 0O to 2ereh0 indicates perfect match while 2
means the worst match. We add the left or righh&do the original frame depending on

which has the smallest error. After that, we averthg error in the included frames.

The left or right frame is added into the swingilutite average error of the swing
exceeds a threshold that we set by ourselves.tfit@shold controls the quality of swings
detected. We call it thAcceptable Swing Error. A higher threshold gives us longer
swings but they may not be accurate. A smallerstiokel gives us shorter swings but they
are more accurate. So the threshold could be useal lzevel of Detail parameter to
control the accuracy of swings extracted. More itfet@bout theAcceptable Swing

Error we used can be found under the results section.

Once we have determined the start and end of agswia swing is labeled and attributes
such as the axis of rotation, duration, start amlangle. The axis of rotation is obtained
by averaging the axis of rotation for each framdhea swing. The search for the next

swing will then proceed until all frames have beencessed.

For all those frames in between, we will reprednthe duration (start and end time)

and mean position.

In our work, we only perform this segmentation de tmajor bone/joint. We exclude
bone/joint such as fingers and toes. The reasothfsris that the movements of these
joints are often too small and may not be enoughetsegmented. We tried segmenting
them but the results we obtained were not veryratelat all. The motion data on these
joints are often very noisy due to the limited tafion of the motion capture equipment
used and because of their limited range of movenfdab, we are concentrating on big,
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major movement of joints such as the swinging ohsarand legs which are mainly

responsible for the motion instead of those offithgers and toes.
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4.3 Results

An example of the segmentation result is showrafounning motion below. Therefore,

we can say that this result represents one stegeahe raw motion data.

A 4
lIfoot = - - - E
ltibia o = o - | —
Ifemur = = P —— [E—
root = = - - - i - -
rfemur - | — L — | —
rtibia - - — - -
rfoot - - —
root L - - - - - - -
lowerback | —r e - - -
upperback - | — - e
thorax | - — — i -
lowerneck — |- - -
upperneck |- - £
Iradius E 3 = 3 1 T —— E—
lThumerus - | —r — 1 —
thorax — T— — - -
rhumerus - - o | —
rradius L — L TT—

Figure 16: Example of our segmentation result. The red liegsasent the segments for each bone.

Figure 16 shows the segments for each bone whersetymentation is performed. The
horizontal axis is the time axis. The red linesvghidhere the segments/swings are in time.
Therefore, the length of the segments gives usdtiration of each swing and their
position tells us the order in which they occurtime. What is not shown on is the
magnitude of the swing (how wide an angle the svgogs through and the starting and

end angle) as well as the axis of rotation of thimg.
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Figure 17: Snapshot of run sequence from playing back the satgd result in Figure 15. Note how the
walk maotion is preserved.

From the above result, we can see that our segtm@mtaodel clearly is able to extract
out the segments as defined earlier since playak bhe segments yields something
close to the original run motion. Recall in the kground knowledge in Chapter 2 that
animating a skeleton basically means setting tha&tioms for each bone from a given
motion data file as time goes on. With each segnweathave information on the axis of
rotation, start and end angle of rotation and ihee tthey occur. Therefore, we can
“playback” these segments easily by calculating ribtation for each bone from the
segments depending on the current time.

To give a quantitative value to the quality of fegmented motion, we did a frame by
frame comparison between each frame from a moteyed back from the segments and
from the original.

Each frame as we have discussed, is a set of atgbesibing the rotations for each joint
in the skeleton for a particular time. We can thafikt as am-dimensional vector where
n is the number of angles for each frame. For #e cf our motion data which is
available one the CMU Graphics Lab site, n is 68 #me angles are represented in
degrees instead of radian. So to do a comparistwveba 2 frames, we just use a simple

Euclidean distance between the 2 vectors. The Haige distance, the more different
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from each other they are. So for a motion with frf@@nes, we find the distance between
each corresponding frame and average this distsince it is meaningless to compare
absolute distance for a motion due to the differeriengths of motion. We call this the
Segmentation Error.

From a set of around 50 motions which consists aions such as running and jumping,
we did this comparison between the motion playeck hasing the segments generated

and original motion.

The highest Segmentation Error is 40.65° whilelthreest Segmentation Error is 20.23°,
The average Segmentation Error among these 50 msoi$025.50°. Therefore, we see
that our segmentation produces motions that diffe¢mmuch from the original motion.

Take note that these numbers mean that on avdrageit of all the differences between
corresponding angles in a frame from the segmemeiion and the original motion is
25.50°. Since each frame has 62 bones, the avdisigece between each angle is 25.50
/62 =0.411".

The Acceptable Swing Error we used for generating the results above is (hé.value
for this can range from 0 to 2, becauseAlteeptable Swing Error is the average error
of the calculated swing from a perfectly geodesitng. The reason for is that the error
between each frame from a perfectly geodesic swirtge cosine of the angle between
them. If theAcceptable Swing Error is set to 0, it means only perfectly geodesic swing
will be accepted. On the other hand, if it is ee2tthen the whole motion can be label as

a swing.

Since we have no mathematical method to show wieatoptimal Acceptable Swing
Error is, we resort to empirical means by plottiaggraph of the average Sum of

Differences for the 50 motions against theceptable Swing Error.
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Figure 18: Plot of Average Sum of Differences for the 50 mo$§ against the Acceptable Swing Error
used.

We can see that at 0.4, the Average Sum of Diffarens the least. Therefore, we chose
0.4 as our threshold value. For value of O for Aweeptable Swing Error, the high
Average Sum of Differences might be due to the faetsegmentation finds no swings
and hence the result when compared to the orignadion is very different.
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4.4 Limitation

However, our segmentation model is not the beradl end all. Even though we could
extract the segments quite nicely, there are siising information to be filled in
between each segment which we did not handle. Wileatdo now is to perform
interpolation from one segment to the next forghpes in between each segment. We do
this because the spaces in between are usuallyomsotvhere the joint is almost
stationary with not much movement. Therefore, piéating from the end of one
segment to the beginning of the next will give ugoad approximation of these “blank”
spaces.

Also, our method does not work very well for joihat are slow moving or is quite
stationary during a motion. For it to work, thenbmust go through a huge movement.
As a result, in one motion, some joints might natreate properly through the segmented

result.

However, this is only the first step towards builglia good segmentation model for
motion data but already with this there are a cewplapplications which we can use this
model for as detailed in Chapter 5.
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Chapter 5
Applications

The segmentation result from our model can be usadhumber of applications such as
motion data compression, motion data indexing atdeval and motion editing. There
may be more applications for this then we can tlwhkow but the segmentation result
can definitely be used to further build a hieracehimodel for motion data since it

represents a higher level representation for thennation data below.

5.1 Motion Data Compression

In typical Motion Data compression, the objectigetda compress the data to a smaller

size as in any other forms of compression.

Using the segmented result from the segmentatiodeimave already have a good
representation of the original motion in a compacin. By just saving the segmented
results directly, we can typically achieve a fileesof around % of the original motion
data. Furthermore, this is a lossy compressiongthee, we cannot expect full recovery

of original motion data just from the segmentatiesults.
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Figure 19: Segmentation result of a running motion.

From the segmentation result in Figure 19, we kaerhost part of the motion is made up
of the horizontal red lines which represent thengwiin the motion. Since these swings
are replaced by a more compact representation,atheunt of data to be store is

significantly reduced. Furthermore, the animatioalgy is not significantly affected.

Figure 20: Original motion (left), compressed motion (right)the same frame for a running motion.
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The above image shows the comparison between tgmairand compressed motion.
They only differ slightly in the pose but generalllge original motion is retained in the
compressed version.

Here are more comparisons between original and cesapd motion.

Figure 21: Original motion (left), compressed motion (right)the same frame for a golf swing motion.
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Figure 22: Original motion (left), compressed motion (right}lae same frame for a forward jump motion.

The compressed version could be used in a realdppication such as computer games
where characters have different level of detail®is). Normally, the different level of
details has different 3D meshes of different nunmdigrolygons as well as different level
of texture details. We can also have different llesfedetails for animations of such
characters as well with our technique. The memaguirement when loaded into
memory for the compressed version is smaller thanoriginal motion data and this is
crucial for games where memory is often limited.

We tested the compression on around 100 motiormuircollection of motion and the

compression level is always around ¥ of the origsize.

This might not be earth shattering and we consilisrto be just a by product of the
motion segmentation model. This compression iseaghi by just segmenting the motion
data. It is simple and easy to implement, compévesther compression methods which
might take more time to analyze the motion datateetompressing.
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In our tests, a typical motion when representetijyshe result of segmentation, can be
compressed to around Y4 its original size. The cesgon is a direct result of replacing a
sequence of motion data representing a swing withr@presentation. Note that this is a
lossy compression; we can't get back the exactanatiata back from the compressed
version. Compared to other motion data compressiethods [10], our way might not

seem much, but note that this compression feaagierto perform.

5.2 Motion Data Indexing and Retrieval

The objective of motion data indexing and retrieigaio be able to some how compare 2
motions with each other to know how similar theg.&8ince our segmented result gives
us the swings of each bone with the time they qcemis of rotation and other
information, this could be used to compare 2 matidghwe have this ability, then give a

motion, we can query a database of motion andrfindon similar to the given motion.

The segmentation result from our model gives usther unique signature for each
motion. Moreover, the result is similar for similamotions as shown in the result for 2

running motions below.

lfoot =

=

Itibia - | — - - | —
Ifemur = -

root = - E 3

rfemur - L — | — =
reibia E - = 3 |

rfoot -— = -

root - = - -
lowerback =
upperback —

thorax | — —
lowerneck _—

upperneck = = ES
Iradius =S E 1
lhumerus = — S

thorax - T — - 2
rhumerus - _— — | —

rradius — r—

Figure 23: A running motion.
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Figure24: Another running motion.

Therefore, the segmentation result could be useoh &asdex when storing motion data in
a database. It can be used for querying the daaoassimilar motions when given a
reference motion. We did preliminary work on thystkeating the segmentation result as
a graph and doing a brute force graph comparisaugjin our collection of motion data
and ranking search result based on the simildfity.difference in timing of motion, we
overcame that by comparing the segmentation re$utie reference motion in a sliding

windows fashion against other motions.

In the database of motion that we had, we hav@®&stpf motions, namely:

Running

e Jumping

» Golf swings

» Stylized walk/run

» Ball kicking
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» Basketball motion
* Baseball throwing
* Punching
For each type we have 20 motions each for a téth6® motions.

Some results of the querying by using the segmentagsult:

09_02.amec

Figure 26: Top 6 matches from our motion database collection.
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Figure 27: The next 6 matches.

Notice that in the later results, there are walkimgfions in which the character is slightly
leaning to one side, and hence it is less simdahe first 6 motions which are running
upright. Therefore, the proof of concept of usihg segmentation result for indexing and
retrieving motion in a database is workable.

However, because of the brute force nature of thg we compared 2 motions, a better

way to simplify the comparison and searching isdeee

One thing we can be sure is that the segmentaggitris a very good representation of a
motion data clip and it definitely is viable to useas a base for building a hierarchical

model for motion data.
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5.3 Motion Editing

For motion editing the main aim is to be able td adjiven motion. As mentioned in the
earlier chapters in this thesis, most motion sysitiiediting deals directly with the

motion data itself.

However, because our segmentation result repreiatsnderlying motion in terms of
the swings, we have a higher level representatioth® motion and we can try to

modifying these swings to edit a motion instead.

Below is the segmentation result of a motion widohsists of a short run before a jump.

it [T [T | | v
lfoot | |- - - W - | -]
ltibia | — | | —
lfemur | — - - = E -
root = - | E - - -
rfemur - " v | — - - ]
rtibia - - | — — == e
rfoot = L — - | = - -
root E 3 3 |- - = E -
I( ’\\'Crl)ﬂck |- o | B = | - - | - | E 3
upperback S— = | — | — - - - -
thorax — - |—— - | - | - -
lowerneck -— - - - - | — - -
upperneck S— | r—— | — | -
Iradius | — | r— E | —
lhumerus | — | p—— -
thorax - - | — - - - -
rhumerus - - - - - - -
rradius - E | p— | — | — -

Figure 28: Segments of a short run and jump motion.
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Figure 29: One segment of the rfemur lengthen as highlightethé blue ellipse.

By lengthening the segments belonging to the légheoskeletons, the motion becomes

more stretched out at the legs.

Below is a comparison between the original andeedibotion at the point in time where

the edited segment is.

Figure 30: Left (before editing) Right (after editing).
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Here are some more examples,

Figure 31: Left (before editing) Right (after editing).

In Figure 31, the one of the segment for the swahthe right leg is edited such that the

angle of rotation is decreased, resulting in ahdliygshorter kick.

Figure 32: Left (before editing) Right (after editing).
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In Figure 32, the segments for the swing of bothsaare edited to reduce the angle that

they swing through, thus we can see that the arms@w “lower” then the one before

editing.

Note that the results might not be good enougltpfoduction level editing because our
segmentation model does not represent the motibn However, this proof of concept
shows that if we can refine and improve the modelher, a more intuitive way of

editing/synthesizing motion might be feasible.

42



Motion Segmentation Based on Joint Swings

Chapter 6

Conclusion

6.1 Contributions
The main contributions of this project can be sumzea as follows:

* We came out with a novel segmentation model witiclvian represent a given
motion at a higher level than the raw motion datsddl on the swings of the limbs

during a motion

* By just playing back the segmentation result andiobng a rather high quality
version of the original motion, it shows that tlegmentation model is well
formed and we have achieved the main aim of tl@sigh We can think of the
segmentation result as a lossy compression ofrigamal motion data while

retaining the main characteristics of the origimaiion.

* Motion Indexing and Retrieval can be done usingsmgmentation model for
motion data. Our result shows that a search giveguneay motion into a collection

of motion yields pretty good results.

* From the segmentation result, simple motion editiaxy be done at a more
intuitive level then simply manipulating the raw tiom data itself. Although the
method could be refined by combining with physjaperties such as the mass
of joints and hence the center of mass to calctifeevhether the balance of the

character when the motion is edited.
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