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Abstract

Patient-specific 3D models are necessary for many medical procedures. However, current

techniques require manual segmentation of organs from CT or MRI images. Such a method

is tedious, resulting in segmentation being done only on selected slices. Estimation of 3D

volumes from this data will result in coarse models. This will affect the accuracy of any

treatment or diagnosis that uses such models. A current challenge would be to develop au-

tomated or semi-automated segmentation techniques to replace this manual segmentation.

The main types of algorithm used in medical image segmentation are atlas-based algo-

rithms. This is because medical images are often very complex and noisy. The information

provided by the atlases increase the robustness of the algorithm. This produces more accu-

rate results. This thesis proposes an automated, non probabilistic segmentation algorithm

for the segmentation of the liver and other organs from abdominal CT slices. The algorithm

is designed as a multi-stage pipeline. After pre-processing of the CT image, the algorithm

registers the contours obtained from the atlas to the image via a global registration stage

and two local registration stages. This thesis also introduces a hybrid active contour known

as the Iterative Corresponding Snake. This is a combination of active contours and the It-

erative Corresponding Points algorithm proposed by [Ding et al., 2005]. It exhibits greater

robustness than the original active contour and is also more successful in converging to the

correct edges in the target image.

The algorithm was tested for convergence, accuracy and robustness with good results.

The final step would be to further enhance the robustness of the algorithm as well as extend

it to three dimensions in order to produce smoother and more accurate segmentation results.

iv



List of Figures

1.1 A man getting ready for a CT scan. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example of fluoroscopic imagery of spine. . . . . . . . . . . . . . . . . . . . 4

1.3 Diagram showing how a donor’s liver is cut for transplant. . . . . . . . . . . 5

1.4 Illustration of using a statistical model for model-based segmentation. On

the left is the model showing three different statistical shape variations. The

algorithm is initialized as per the middle diagram and the final result is on

the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Illustration and intensity histogram with dotted line showing the optimal place

to put the threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Illustration of the segmentation of objects in an image via an edge-based

segmentation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Sample CT image (left) and its corresponding edge map (right). Observe the

many gaps in the contours as well the cluttered edges in some areas. These

will confuse segmentation algorithms. . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Segmentation of the spine via region-growing. The image on the top-left shows

how the different parts of the body are clustered. The other three images show

the segmentation of the spine from three different angles. . . . . . . . . . . . 14

2.5 The left most image shows the initial image. The centre image is the topo-

graphical representation of the image, and the final image is the result with

the red lines depicting the segmented regions. . . . . . . . . . . . . . . . . . 16

2.6 Illustration of the gradient vectors around the edges of an object . . . . . . . 18

2.7 Comparison of the gradient vector field and the gvf field of an image . . . . . 20

2.8 Diagram showing the red contour being guided into a concave area by GVF . 20

2.9 Segmentation by a level set algorithm . . . . . . . . . . . . . . . . . . . . . . 23

v



2.10 Level set segmentation of brain tumours. . . . . . . . . . . . . . . . . . . . . 24

3.1 Diagram showing an atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 CT images from two different datasets, illustrating the amount of variation

between different individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 CT images from the same dataset, but at different slice . . . . . . . . . . . . 33

3.4 Diagram showing blood vessels in liver pointed out by the red arrows . . . . 34

3.5 A CT image and its edge map. Note the many areas in which the edges are

broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Flow Diagram detailing the algorithm used for the registration . . . . . . . . 38

4.2 Illustration of an intensity gradient direction vector of a point (marked in red)

in the atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Image of stomach showing the presence of an air pocket, which has the same

intensity as the background . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Abdominal CT image showing the scanner bed and the texture of the organs

which are to be removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 An example of a median filter at work. The window size used here is 3 by 3 . 43

4.6 Results of median filtering (right) applied to a CT image (left) . . . . . . . . 43

4.7 Sample images showing a cloud of points(left) and the resultant convex hull(right) 44

4.8 Results of applying convex hull to CT images without rejection of long edges.

Note how the convex hull include noise points outside of the body contour. . 45

4.9 Results showing body segmented from image using convex hull algorithm with

iterative rejection of long edges. Noise points are now excluded. . . . . . . . 46

4.10 Image sequence showing the global registration via ICP . . . . . . . . . . . . 47

4.11 Image showing the IDD vector from the atlas and its area of search in the

Iterative Corresponding Points algorithm . . . . . . . . . . . . . . . . . . . . 49

4.12 Illustration of how correspondence is found in the Iterative Corresponding

Point algorithm. The atlas IDD (red) searches along the length of the tar-

get IDD(yellow) for the point with the best match, and returns this as the

displacement for the current iteration . . . . . . . . . . . . . . . . . . . . . . 49

4.13 Image sequence showing the application of Iterative Corresponding Points on

the stomach contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



4.14 Image sequence showing the application of Iterative Corresponding Snakes on

the stomach contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.15 Diagram showing the number of crossings of a point inside a polygon. The

crossings are denoted by stars. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.16 Image showing the liver(green) and stomach(red) contours with the points in

collision denoted in blue and yellow respectively. . . . . . . . . . . . . . . . . 56

4.17 Final result after completion of collision resolution . . . . . . . . . . . . . . . 57

5.1 Target image used for plotting of graph to test for convergence, with the

results of segmentation shown . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Graph for the contour on the liver in one image showing that the contours

always converge to a minima at every stage. . . . . . . . . . . . . . . . . . . 61

5.3 Graph for the contour on the stomach in one image showing that the contours

always converge to a minima at every stage. . . . . . . . . . . . . . . . . . . 62

5.4 Target image used for plotting of graph to test for convergence to ground truth. 63

5.5 Ground truth for the target image in Figure 5.4. . . . . . . . . . . . . . . . 63

5.6 Graph for the contour on the liver in one image with the error between the

contour and the ground truth plotted against the iteration number. . . . . . 64

5.7 Graph for the contour on the stomach in one image with the error between

the contour and the ground truth plotted against the iteration number. . . 64

5.8 Illustration of the liver contour flowing into the inner body cavity wall due to

the non-distinct edges between the wall and the liver. . . . . . . . . . . . . 65

5.9 Plot of the degree of match of a registered contour of the liver with the ground

truth. The average error is 2.211 . . . . . . . . . . . . . . . . . . . . . . . . 65

5.10 Plot of the degree of match of a registered contour of the stomach with the

ground truth. The average error is 2.677 . . . . . . . . . . . . . . . . . . . . 66

5.11 Registration results for different data sets . . . . . . . . . . . . . . . . . . . 68

5.12 Failed registration results due to significant variation from the atlas . . . . . 69

5.13 Failed registration results due to failed segmentation of inner body cavity . 69

5.14 The new proposed algorithm(left) can capture the air pockets in the stomach

which is not always the case with previous work(right). . . . . . . . . . . . . 70

vii



5.15 Comparison between the proposed algorithm and previous work. Image num-

ber is 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.16 Comparison between the proposed algorithm and previous work. Image num-

ber is 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.17 Comparison between the proposed algorithm and previous work. Image num-

ber is 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.18 Comparison between the proposed algorithm and previous work. Image num-

ber is 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.19 Removing the air pocket detection technique improves the result as shown in

the image on the right. The image on the left shows the result with air pocket

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



Chapter 1

Introduction

In modern day hospitals, there is an increase in the use of computers and software solutions

to aid doctors in the analysis, diagnosis and treatment of various ailments and conditions.

Often, this aid comes in the form of digital imagery of various body parts (Figure 1.11).

Modalities include digital x-rays, CT images and MRI images. Using these images, doctors

can look inside the human body without having to operate on it.

These new imaging techniques are big improvements over the more conventional, non-

digital techniques used in the past. For example, digital x-rays can achieve image quality

that is comparable to analog methods, but are far less noisy and can be easily analyzed

by computers since they are in digital format. Furthermore, CT and MRI images provide

extremely detailed cross-sectional views of the human body, something which past methods

are incapable of. These mean that doctors can now obtain more accurate and precise infor-

mation about the nature of the ailments that the patients are suffering from.

1.1 Background

Uses of digital imagery come in many forms. First of all, they are used for diagnosis of ail-

ments by letting doctors see the actual problem on top of just basing diagnosis on symptoms

and other non-visual information. They are also used during treatment, especially in cases

1Image from http://www.medical.siemens.com
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Figure 1.1: A man getting ready for a CT scan.
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where surgical procedures are required. This use of computers for surgical treatment is gen-

erally known as computer-assisted surgery. Fluoroscopic imagery (Figure 1.22) gives doctors

a view of the inside of the human body without cutting open the entire area, resulting in

less invasive procedures, thereby hastening the recovery process. Virtual navigation systems

make use of digital images and three dimensional models reconstructed from such images to

determine the position and orientation of tools and human body parts, allowing doctors to

perform their tasks with a great amount of precision. However, probably the most extensive

use of digital imagery is during the pre-operation planning phase of the treatment. Images

are used in this phase for analysis of the seriousness of the problem by providing quantita-

tive information such as the location and size of the anomaly and its stage of development.

Reconstructed three dimensional models provide excellent visualization of the target area

and give doctors a better sense of the situation at hand. In conclusion, computer assisted

techniques make medical procedures more accurate and precise, reducing patient risk and

improving the time taken for treatment and recovery.

1.2 Motivation

The key technique required to render computer assisted techniques usable is segmentation.

The computer has to know where the region of interest is before it can perform any mea-

surements and provide any information. Needless to say the quality of the segmentation also

affects the accuracy of the information returned.

An example of the use of segmentation in medical procedures is the treatment of liver

ailments. One such ailment is liver failure, which requires a liver transplant for the patient.

In liver transplants, doctors have to determine the best way to cut the donor’s organ so as to

avoid cutting the major blood vessels (Figure 1.33). This is very important because cutting

these by mistake may result in severe loss of blood for the patient, possibly leading to death.

Moreover, doctors have to compute the volume of the different lobes of the liver in order to

determine the optimal amount to cut from the donor. Cutting too much is no good as it

2Image from http://www.overlakeimaging.com/Spine.asp
3Image from http://www.surgery.usc.edu/divisions/hep/livedonorlivertransplant.html

3



Figure 1.2: Example of fluoroscopic imagery of spine.

unnecessarily deprives the donor of a portion of his organ, thus affecting his health. Cutting

too little on the other hand may have serious consequences for the recipient of the organ,

who may have too little liver to function normally. Three dimensional imagery of the liver

can give doctors a more accurate picture of the layout of the blood vessels in and around it,

allowing doctors to pre-determine the regions to cut.

In order to create these three-dimensional models, segmentation of the organs from CT

images is required. Unfortunately, software systems for automatic segmentation and quan-

tification are not available commercially. In hospitals, doctors either perform the segmen-

tation of CT and MRI image slices manually or pay a specialized software company to do

the segmentation. Performing the segmentation in-house is very tedious, considering that

a set of CT or MRI images often contain more than a hundred images. Thus, in-house

manual segmentation is often performed only on a selected number of image slices, and a

crude volume is estimated from there. On the other hand, outsourcing the segmentation

and model building will produce a three dimensional model of better quality, but generally

4



Figure 1.3: Diagram showing how a donor’s liver is cut for transplant.

costs a sizeable amount of money and the results are only available after several days. For

time-critical procedures like liver transplant, where the patients’ lives are at stake, this wait-

ing time could only be harmful for the patient. Interviews with surgeons in the National

University Hospital (NUH) reveal that for the case of liver transplants, the error in volume

estimation may go as high as 20%. Such a large error means that there is a high chance that

the amount of liver cut from the donor will vary from the optimum amount by a wide margin.

Therefore, a current challenge would be to develop a system to aid doctors in perform-

ing in-house segmentation, quantification and visualization of organs in CT images. These

would not only ease the workload of doctors, but also reduce the cost and time taken for the

treatment of patients.
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1.3 Segmentation Techniques

There are many techniques which can be used to segment medical images, and these can be

generalized into two broad categories: atlas-based and non-atlas based methods. Non atlas-

based methods basically make use of only the information that can be directly obtained

from the image to perform segmentation. This information included edges, intensity and

texture. While such methods are easy to implement and have relatively faster run-times as

compared to atlas-based methods, they are less accurate since they do not make use of any

information of the shape and location of the target region. This means that the risk of having

the algorithm trapped in a local minimum is very high. This does not mean that the qual-

ity of segmentation of non atlas-based methods will be low, but to guarantee high precision

segmentation by just using non atlas-based approaches, a lot of human intervention is needed.

Atlas-based methods incorporate information about shape and location of the desired

organs into the segmentation algorithm. This requires the use of an atlas or model to store

the information. This improves the accuracy of the algorithm as the domain knowledge

provided by the atlas improves the robustness of the algorithm, enabling it to avoid more

false positives. Also, the use of atlases for segmentation allow for the creation of fully au-

tomatic algorithms since the atlases can be used to initialize the segmentation. This makes

atlas-based methods more desirable for medical image segmentation, where the segmentation

problem is non-trivial and the chance of human error is high.

There are two types of atlas-based segmentation. The first type makes use of statistical

or probabilistic models to find the best fitting match (Figure 1.44). These models typically

store statistical distributions of information obtained from a set of training images, such as

pixel intensity, object shape, size and location. The advantage of a statistical model is that

you can definitely converge to the correct solution given infinite time and a training set with

infinite samples. However, that is also the main disadvantage of a probabilistic approach

to segmentation. It is impossible to have an infinite training set, so an approximation of a

large training set size is needed. However, it cannot be determined if a training set is large

enough for the work it needs to perform, nor can there be any guarantees that the train-

4Image from http://www.zib.de/visual/projects/liverSurgery/liverSurgerylong.en.html
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Figure 1.4: Illustration of using a statistical model for model-based segmentation. On the left
is the model showing three different statistical shape variations. The algorithm is initialized
as per the middle diagram and the final result is on the right.

ing set will encompass the correct solution., in which case the algorithm will undoubtedly fail.

The second type of atlas-based segmentation is the non-probabilistic approach, where

only a single object is used as the atlas. This object is typically a set of features retrieved

from a single image, but can also include other external information as well. The main

advantage of a non-probabilistic approach over a probabilistic one is that there is no need

for a large training set, so it can be use even in situations where training data is scarce.

Also, a non-probabilistic approach is likely to be more robust when faced with a target that

differs greatly from the model, as it is not constrained to a certain range as with probabilistic

models. However, it is more prone to be trapped in local minima, so clever choices must be

made for the features used for segmentation.

More examples of the different approaches for segmentation will be given later in the

related works section.

1.4 Objective

The main objective of this thesis is to implement an automated atlas-based segmentation

algorithm for segmenting multiple organs from abdominal CT images. A non-probabilistic

7



approach is used due to the lack of large numbers of abdominal CT data sets. A secondary

objective is to make the algorithm robust so that it can handle significant variations in the

shape and location of the targets of interest. This is done by applying the same atlas across

different images within the same data set, as well as testing the atlas with different data sets.

This thesis proposes a segmentation framework capable of segmenting different body

parts by simply replacing the atlas. The abdominal region of the body is used in this thesis

due to availability of data and the challenge posed by the complicated nature of the anatomy.

This framework is robust and the results obtained are accurate.

1.5 Outline of paper

In Chapter 2, a review of the existing work done in the area of medical image segmentation

is performed. The focus is on the two main atlas based approaches as well as the underlying

techniques used to achieve the desired results. In Chapter 3, an analysis of characteristics

of human body tissue and CT images used as input to the algorithm is carried out. This is

to determine how these characteristics add to the complexity of the problem. In Chapter 4,

the techniques and methods used in the proposed algorithm are discussed in detail. Chapter

5 will describe the test setups and results. Finally, Chapter 6 will summarize on what has

been achieved and discuss any further research that can be done in this area.

8



Chapter 2

Related Works

The main focus of this thesis is a segmentation algorithm. As such, an in-depth study into

the techniques for segmentation available will help in the understanding of the problem.

First, the various basic segmentation methods usually incorporated into the atlas-based al-

gorithms are explored. This will be followed by a review on the two main types of atlas-based

segmentation: probabilistic and non-probabilistic atlas-based segmentation. This is because

atlas-based algorithms are the most common form of segmentation algorithm used in medical

image segmentation. Finally, as the liver is the focus of this thesis, a review of various work

done on liver segmentation is done.

2.1 Common Techniques used in Medical Image Seg-

mentation

While the emphasis in this thesis are atlas-based segmentation algorithms, it is nevertheless

important to review the underlying techniques which atlas-based algorithms are based upon.

Some of the more common ones are:

• Thresholding

• Edge-based Segmentation

• Region-based Segmentation

9



• Watershed Transform

• Active Contours

• Level Sets

Each of these techniques will be looked at in turn.

2.1.1 Thresholding

Thresholding or histogram clustering is a general technique for segmentation that relies

on intensity values to differentiate between separate regions 1. This is illustrated for two

dimensions by the following equation:

y =

 1 if Iij < ε

0 otherwise

Where Iij is a point in a two-dimensional image and ε is the threshold level.

The key is to find the optimum value to separate the regions into. The usual approach

to doing so is to plot a histogram of the intensities of the pixels in the image. The optimum

threshold value would then be the point that separates the two main peaks within the his-

togram. This is shown in Figure 2.1.

Thresholding is extremely easy to implement and works well for images that are uni-

modal, meaning there is only one main peak in the intensity histogram. However, most

natural images have multimodal intensities. This severely reduces the ability of thresholding

algorithms to effectively segment the images. Histogram clustering improves on standard

thresholding by clustering pixels into multiple bins, hence improving performance for multi-

modal images.

Despite the limited scope in which thresholding segmentation can be applied, people

nonetheless have tried to modify the original algorithm to handle multimodal images. For

1http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip.html
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Figure 2.1: Illustration and intensity histogram with dotted line showing the optimal place
to put the threshold

example, [Tobias and Seara, 2002] proposed a thresholding segmentation algorithm which

determines the optimum value to threshold via the use of fuzzy sets. [Arifin and Asano, 2006]

also introduces a similarity measure based on inter-class and intra-class variance to set good

threshold measures for segmentation. Mutual Information (MI) is another measure that can

be used to determine the clustering of the histogram bins. [Rigau et al., 2004] proposes a

two step algorithm in which the image is first segmented into homogeneous regions by max-

imising the MI gain of the channel from the histogram bins to the regions of the partitioned

image, and then followed by the clustering of the intensity bins via the minimizing the in-

formation loss of the reversed channel.

While thresholding techniques are usually simple to implement and can run rather quickly,

they have the disadvantage that it may be difficult to identify significant peaks in the image.

This is particularly true in the case of medical images like MR and CT, where multiple

objects can have similar intensities.

2.1.2 Edge-based Segmentation

Edge-based techniques look for the contour along which there is a change in the differenti-

ating feature along the normal of the contour. This contour is known as the edge. Common
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Figure 2.2: Illustration of the segmentation of objects in an image via an edge-based seg-
mentation algorithm

features that are used include intensity, colour and texture. An example using intensity as

the differentiating feature is shown below in Figure 2.2.

[Brejl and Sonka, 1998] incorporated machine learning into an edge-based segmentation

method to segment medical ultrasound images. The results they obtained through their pro-

gram are comparable to manual segmentation done by experts. [Godbole and Amin, 1995]

proposed the use of mathematical morphology to perform edge and overlap detection in lung

images taken with a gamma ray camera. This main advantages of using mathematical mor-

phology are its flexibility and the ability to implement it in hardware to achieve real time

speeds.[Liu et al., 2007b] also proposed the use of morphological operations to implement a

robust edge detector for the detection of edges in ultrasound heart ventricular wall images.

Edge-based segmentation is very popular for use as a pre-processing step in the more

sophisticated segmentation algorithms like active contours, level sets and atlas-based seg-

mentation. Active contours and level sets will be discussed in Sections .

Edge-based segmentation techniques are good in many cases where the images are rela-

tively noise free and there is high contrast between objects in the images. However, medical
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Figure 2.3: Sample CT image (left) and its corresponding edge map (right). Observe the
many gaps in the contours as well the cluttered edges in some areas. These will confuse
segmentation algorithms.

images tend to be cluttered and noisy. Also, they often have poor contrast between two

organs. These result in broken edges and noise in the edge images (Figure 2.3). This

makes generic edge-based techniques less viable for medical segmentation. Even edge-based

techniques which segment based on changes in texture will not work well because of the

uniformity of the texture of soft tissue, as discussed in Sections 2.1.5 and 2.1.6

2.1.3 Region-based Segmentation

Region based segmentation techniques perform segmentation by grouping pixels or areas

based on some uniformity criterion of the region’s characteristics. This uniformity criterion

is usually based on intensity, colour, texture or a combination of them. This approach to

segmentation assumes that adjacent regions have different characteristics.

There are basically two types of region based approaches. The first is the region merging

approach. What this does is to place seeds throughout the input image. Next, the region

near to these seeds is checked to see if they satisfy the uniformity criterion. If they do, they

are added to the seed region. This is done iteratively, resulting in regions that grow until

no more neighbouring areas matching the criterion can be found. If two regions with the
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Figure 2.4: Segmentation of the spine via region-growing. The image on the top-left shows
how the different parts of the body are clustered. The other three images show the segmen-
tation of the spine from three different angles.
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same criterion meet, they will merge into a single region. One example of work using this

approach was proposed by [Mancas et al., 2005], who used a region growing technique to seg-

ment objects in medical images, with the uniformity criterion being intensity. The authors

incorporated the spatial distance of a point to the seed into the region-growing algorithm,

resulting in a map which clusters pixels based on their intensity similarity to that of the seed

as well as how far the pixel is from the seed. The results of the experiments by the author

show that their region-growing method can accurately segment objects from noisy medical

images. An example showing spinal cord segmentation is given in Figure 2.4.

Another example of an approach that uses region growing for medical image segmenta-

tion is proposed by [Pohle and Toennies, 2001], who developed an algorithm that learns its

homogeneity criterion from the characteristics of the target region. This reduces the proba-

bility of poor performance due to the selection of an unsatisfactory seed location.

The other approach is known as region splitting. The input image is defined as a single

region, which is then iteratively split into smaller regions until no more splits are possi-

ble. The resultant will be the segmented image. An improvement to the standard region

splitting approach is known as ”split and merge”. The additional feature of this approach

is that sometime in regular region spitting algorithms, over-segmentation may occur where

two neighboring regions that have the same region characteristics is split. The improved ap-

proach will try to merge these over-segmented regions. [Liu and Sclaroff, 2004] used a merge

and split algorithm to perform segmentation. His approach is also model-guided, which is

something that we will discuss in a later sub-section.

Region based techniques generally perform well for images where the regions in the im-

age satisfy the uniformity criterion and obeys the assumption. However in practice this is

seldom the case because natural images are usually noisy and the borders between objects

are not always clearly defined. Furthermore, region based approaches are highly dependent

on factors like the size of the seeds and the parameters of the uniformity criterion. A bad

placement of the seeds may leave some regions unsegmented, while choosing inappropriate

parameters for the uniformity criterion may result in separate regions which do not belong

together being grouped together or a single region being split by mistake.
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Figure 2.5: The left most image shows the initial image. The centre image is the topograph-
ical representation of the image, and the final image is the result with the red lines depicting
the segmented regions.

2.1.4 Watershed Transform

The watershed transform is a type of image segmentation algorithm which was derived from

the natural phenomenon of watersheds and catchment basins. Watershed transforms are

similar to region-based algorithms in that they split an image into areas. This splitting is

done based on the topology of the image, with the gray level of the image used to repre-

sent the height of a point. Flooding is then performed iteratively from marker points until

watersheds with adjacent catchment basins are constructed. Figure 2.52 gives a graphical

illustration of how a watershed algorithm works.

The watershed transform has the useful properties of being simple and intuitive, and it can

be parallelized, making it attractive for use in real-time applications. However, it is sensitive

to noise, and it is prone to over-segmentation in complicated images, such as medical images.

[Chen and Liu, 2005] is an example of the watershed transform being applied to medi-

cal image segmentation. [Grau et al., 2004] and [Straka et al., 2003a] improve on the basic

implementation of the watershed transform by the addition of prior information from an

2Images courtesy of http://cmm.ensmp.fr/ beucher/wtshed.html
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atlas to reduce the amount of over-segmentation. Also, [Haris et al., 1998] proposed a hy-

brid approach of using the watershed transform and region-merging to overcome the over-

segmentation issue.

2.1.5 Active Contours

Another common segmentation method used in medical segmentation is the active contour

model. This method was originally proposed by [Kass et al., 1987] in 1987, and was orig-

inally designed to perform contour extraction. Since then it has been used by many for

medical image segmentation.

The active contour model works by iteratively deforming an arbitrary contour until it

reaches the desired boundary, which is our object of interest in the image. It is formulated

as an energy-minimizing contour controlled by two types of energies:

1. Internal energy, Eint, which enforces smoothness constraint.

2. External energy, Eext, which guides the contour towards the configuration with the

least energy

Eint is formulated as Equation 2.1. α(s) controls the malleability of the contour by

restricting the allowed separation between neighbouring points. β(s) controls the flexibility

of the contour.

Eint =
1

2
(α(s)|v′(s)|2 + β(s)|v′′(s)|2) (2.1)

Eext is composed of the image forces that attract the snake. Generally, these are the

edges in the input images. The image forces, Eimage, are represented by gradient vectors

around the edges which guide nearby contours towards the edges. These are illustrated in

Figure 2.6 as the arrows pointing towards the edges.

Therefore, the total energy of the snake, Esnake is the integral of the sum of the internal

energy, Eint, and the external energy, which is represented by the image energy, Eimage
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Figure 2.6: Illustration of the gradient vectors around the edges of an object

Esnake =

∫ 1

0

Eint(v(s)) + Eimage(v(s)) ds (2.2)

The snake is iterated until Esnake is minimized. This configuration of minimum energy

represents the final configuration of the snake.

The advantages of using a snake is that Eint is a built-in regularization function for the

contour. This maintains the smoothness of the contour without an additional regularization

step. Also, it is easy to add prior information into the active contour by modifying Eint

or Eimage. This was demonstrated in [Chen et al., 2005] which added curvature constraints

to the active contour to control the shape of the contour. This improves the robustness of

the algorithm especially in the case of noisy images. Furthermore, the forces that guide the

contour can be derived from any form of correspondence simply by replacing the direction

vectors representing the image energy in Eimage with direction vectors obtained via the cor-

respondence function. This ease of incorporating prior information and the regularization

capability of active contours are the main reasons that active contours are extensively used
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in this proposal.

However, the snake can be easily trapped in local minima. This is because it only utilizes

edge information to perform its deformation. Since it is impossible for the algorithm to

differentiate between edges of different body parts, there is no way to guarantee that the

registration is correct. Another problem is that this version of snake cannot handle concave

edges well. This is because there are no forces in the empty space which will pull the snake

into the concave area. Therefore, the contour is largely influenced by its internal forces and

adopts the minimal energy position defined by the internal forces, which is a straight line.

In Figure 2.6, a point at the position marked by the red “X” would not move towards any

edge as there are no forces at its position to guide it. The Gradient Vector Flow method, or

GVF, is designed to mitigate this.

Gradient Vector Flow (GVF)

GVF [Xu and Prince, 1998] was created to overcome the problem of poor convergence to

concave edges. It does so by diffusing the gradient vectors into the surrounding space. This

results in contours being guided to the edges even if they were initialized far away. Figure

2.7 shows the difference between the gradient vector field and gvf field of the same edge map.

Note that in the gvf field, the forces are present throughout the spatial domain of the image,

unlike the gradient vector field where the forces are concentrated solely at the edge locations.

GVF replaces the gradient vector field as the image force in Equation 2.2. The poor

convergence to concave edges is addressed by GVF because the GVF forces pull the contour

into the concave areas. This is shown in Figure 2.8 in where the contour, represented by the

red lines is pulled into the concave area of the object.

The addition of GVF to the original active contour resulted in significant improvements

to the active contours ability to extract regions. This makes it more feasible to use active

contours for medical image segmentation, as a lot of concave edges are usually present in

these images.
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Figure 2.7: Comparison of the gradient vector field and the gvf field of an image

Figure 2.8: Diagram showing the red contour being guided into a concave area by GVF

20



Applications of active contours

A few examples of the applications and variants of active contours are briefly discussed here.

As mentioned above, [Chen et al., 2005] proposed adding a curvature constraint to active

contours through the use of an atlas to limit the amount of shape variation the contour is al-

low to have. This was applied to femur x-rays with good results. [Atkins and Mackiewich, 1996]

used active contours to detect the intracranial boundary, using a mask that was created via

anisotropic diffusion and thresholding as a seed. Another method proposed by [Boscolo et al., 2002]

used a priori knowledge of the anatomical structure in question to guide the evolution

of the active contour . This statistical information is then incorporated into the energy

function of the active contour to constrain the ways that it can deform. This active con-

tour was then applied to several different types of medical images. [Liu et al., 2007a],

[Chen et al., 2008], [Slabaugh et al., 2006] and [Cremers et al., 2001] also propose segmenta-

tion algorithms based on active contours which makes use of statistical information to guide

the contour. These improve the performance of the segmentation by providing higher order

information about the objects of interest, making the algorithm more robust to noise and

variation.

Another study by [Ballerini and Bocchi, 2003] made used of multiple active contours

that were bounded together to segment the finger bones in a human hand. These active

contours made use of a genetic algorithm to determine the final contour. The strength

of this approach is that the problem of being trapped in local minima is avoided by the

use of the genetic algorithm. Other work incorporating the use of multiple active con-

tours to improve segmentation include [Abe and Matsuzawa, 2000], [Kim and Hong, 2008],

[Silveira and Marques, 2006] and [Elmoataz and Bloyet, 2000]

Active contours can also be easily extended to three dimensions. These three-dimensional

active contours, otherwise known as active surfaces, can improve the quality of segmentation

of three-dimensional objects as their regularization forces act in all directions. This is unlike

the conventional active contours where the regularization forces usually only work in slices.
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[Sandor and Leahy, 1997], [Zhang and Braun, 1997], [Mille et al., 2007], [Yushkevich et al., 2006]

and [Yezzi and Tannenbaum, 2002] proposed using three-dimensional active contour imple-

mentations to segment various anatomical structures.

2.1.6 Level Sets

Level sets are another commonly used approach in medical image segmentation. A level set

segmentation approach can be visualized as an expanding contour which can change topol-

ogy. One way to think of it is a circle placed on the image. This circle expands in a constant

rate and can be stopped by edges in the image. It can branch off in separate directions and

when two edges meet, they will merge into one and proceed. This ability to split and merge

allows level set methods to segment objects with high genus. An example of this is shown

below in Figure 2.9.

The level set is implemented as follows: At any time t, we have a closed curve Γ. A

distance function d is defined such that for any point (x, y) on the image plane,

1. d is positive if (x, y) is outside Γ.

2. d is zero if (x, y) is on Γ.

3. d is negative if (x, y) is inside Γ.

Over all time, the set of curves will form a surface, R. This surface is known as the level

set function. By moving the image plane up and down with respect to this surface, the

resultant shape-changing curve that is the intersection of the image plane and R will be the

contour that was described above.

Level set methods, being able to change topology, are very effective for segmentation of

soft tissue since it can handle any of the cavities, splitting or merging normally found in such

tissue. Examples of such objects are veins, arteries and brains. However, they require that

the edges of the objects be unbroken. Due to the nature of level set techniques, the contour

will just leak out of the gaps, resulting in an incorrect segmentation of the desired object.

This is unlike active contours which will be restrained by its internal forces. Furthermore,
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Figure 2.9: Segmentation by a level set algorithm
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Figure 2.10: Level set segmentation of brain tumours.

the initial placing of the original contour is very important. A wrong placing may result in

too little of the desired object being segmented or additional objects being segmented.

Level sets have been applied to segment various parts of the human body. For example,

[Droske et al., 2001] used level sets to segment brain tumours in MR image slices. The re-

sults of his experiments are very close to what an expert in the field can obtain, as shown

below in Figure 2.10. The top images are evaluated by an experienced neurosurgeon while

the bottom ones are segmented by the level set algorithm.

[Yang et al., 2008] incorporates statistical region information into the basic level set

model to improve the robustness of the segmentation of medical images. This improve the ac-

curacy of segmentation for images with weak or fuzzy edges. Similarly, [Chen and Tseng, 2008]

makes use of statistical information in the form of Bayesian risk hypotheses to perform seg-

mentation on noisy or low-contrast images. A review of level set implementations which

incorporate statistical information was performed by [Cremers et al., 2007]. While more ro-
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bust than the basic form of level set, these implementations suffer from the need to extract

information from training samples. It may be difficult to obtain training sets of sufficient

size and variation to extract meaningful statistical data.

2.2 Atlas-based Segmentation Methods

After looking at the common techniques used for segmentation, the next step would be

to review the two main types of atlas-based segmentation. Atlas-based segmentation is a

more sophisticated category of segmentation techniques which makes use of prior domain

knowledge and additional information about the data to improve the accuracy of the seg-

mentation. These can include shape and intensity data as well as spatial information of

the relative locations of various objects in images. The use of such data can improve the

accuracy of segmentation by reducing the number of false positives. It can also potentially

reduce computation time by making the algorithm converge to the solution faster.

As mentioned previously in Chapter 1, atlas-based segmentation methods can be broadly

separated into two broad categories. These are the probabilistic and non-probabilistic ap-

proaches. A probabilistic approach can be defined to be an approach which incorporates

statistical data derived from a set of training samples to drive the segmentation process. On

the other hand, a non-probabilistic approach makes use of information derived from a single

image. Each approach has its own merits and disadvantages, which will be looked into in

the subsequent sections.

2.2.1 Probabilistic Atlas-based Segmentation Methods

Probabilistic atlas-based segmentation methods make use of statistical information derived

from training samples to guide the algorithm towards the global minima. This statistical

information is derived from various features of the training data, including shape, inten-

sity, edge locations as well as other information derived from these features. The statistical

information is then incorporated into an optimization function which will make use of the
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information to guide the segmentation. Also, the statistical information can be used to clus-

ter pixels into groups representing separate objects. This is done by comparing the features

of a target pixel with the information gathered from the training samples.

The advantages of using probabilistic atlas-based segmentation techniques is that they

can be very robust and can definitely find the global minima if the global minima is lo-

cated within the range spanned by the training samples. However, it is very difficult to

determine if the training set includes all possible variations of the objects of interest. In-

creasing the number of training samples would help resolve this problem, but determining

the amount of training samples required is also none trivial. Also, in many cases, it may

also be difficult to obtain enough training samples to effectively use a probabilistic approach.

Nevertheless, probabilistic atlas-based segmentation methods are widely used in medical

image analysis applications.One method of segmentation is through the use of Active Shape

Models (ASMs). ASMs are a parametric deformable model which uses a point distribution

model (PDM) to fit a model to a target 3. A PDM is a statistical model built from a set of

training samples via Principle Components Analysis (PCA). The features used are usually

the edges which define the areas of interest, or control points which define the shape of the

objects. Similar to ASMs are the Active Appearance Models (AAMs) which are a general-

ization of ASMs. AAMs make use of all the information in the image regions, unlike ASMs

which only use information near the defined points4.

ASMs and AAMs have been used segmenting a wide range of body parts. A lot of work

has been done on the brain, heart, liver, kidney and bone. [Cootes et al., 1994] published a

review of ASM and AAM techniques used in brain segmentation. [Wang and Staib, 2000],

[Lötjönen et al., 2004] and [Keleman et al., 1998] proposed algorithms for medical image seg-

mentation using ASMs, while [Mitchell et al., 2001] used a hybrid AAM/ASM deformation

algorithm to segment the left and right ventricles of the heart.

Another approach which makes use of statistical models for segmentation is to use the

3http://www2.imm.dtu.dk/ aam/downloads/asmprops/asm.html
4http://bagpuss.smb.man.ac.uk/ bim/Models/aam.html
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knowledge acquired from the training samples to perform classification of the pixels in the

target. This classification can be for all pixels in the target, or just those near a deformable

contour. In the former case, the end result of the algorithm would be similar to that of a

region-growing algorithm where pixels belonging to the same object are classified together.

In the later case, the classification of the pixels would drive the deformation of the contours.

[Prastawa et al., 2005], [Park et al., 2003], [Xue et al., 2001], [Sluimer et al., 2005] and

[Straka et al., 2003b] proposed algorithms which perform segmentation by classifying the pix-

els in the target images, while [Prastawa et al., 2003], [Al-Zubi et al., 2002], [Bosc et al., 2003]

and [Shen and Davatzikos, 2000] used tissue classification to deform a contour.

2.2.2 Non-probabilistic Atlas-based Segmentation Methods

Non-probabilistic methods usually only make use of a single image as the atlas, as compared

to probabilistic approaches which often require multiple image sets to create the atlas. Data

is extracted from the image, and used to pre-process, initialise and guide the algorithm to-

wards the global minimum.

Non-probabilistic segmentation methods function in a similar way as probabilistic meth-

ods. The main difference is in the type of atlas and how they are incorporated into op-

timization functions. The main advantage of using a non-probabilistic approach would be

that only a single image is required to perform the segmentation. In many cases, it can be

difficult to obtain data sets of sufficient size to do probabilistic segmentation. On the other

hand, one disadvantage of a non-probabilistic approach would be that it is not as robust

as a probabilistic approach. This is because the amount of domain knowledge that can be

extracted from a single image is definitely less than what can be extracted from a set of im-

ages. The end result is that there are fewer constraint’s on the deformation, increasing the

chance of the algorithm getting stuck in a local minima. However, not all problems require

the level of robustness given by a statistical model. Also, robustness can also be built into

the optimization function itself rather than the atlas.
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[Chen et al., 2003], [Bondiau et al., 2005], [Dawant et al., 1999], [Hartmann et al., 1999],

[Cuadra et al., 2001], [Cuadra et al., 2003] and [Cuadra et al., 2004] proposed non-probabilistic

segmentation algorithms which utilize the Demons algorithm to register the atlas contour to

the target. The Demons algorithm uses the concept of optical flow commonly used in track-

ing algorithms to compute forces between the atlas and the target5. These forces are then

used for generating a deformation field. Assumptions made when using algorithms based on

optical flow is that the images should be of the same modality and have similar intensity

distributions.

[Shen et al., 2001], [Shen et al., 2004] and [Ding et al., 2005] employ active contours in

their algorithms to guide the deformable contours to their final configuration. One advan-

tage of using active contours is that they have an implicit regularization function unlike the

Demons algorithm. Level set based algorithms are similar to active contours in the sense

that Level sets can be used to guide a deformable contour. The main difference would be

that level set algorithms can allow for changes in topology which is not so easily achievable

with a normal active contour implementation. Level sets and active contours will be dis-

cussed in greater detail in subsequent sections. [Vemuri et al., 2003], [Duay et al., 2005] and

[Baillard et al., 2001] are examples of proposals which make use of Level sets for deformation

of the contours.

2.3 Segmentation of the Liver

Medical image segmentation has been applied to many parts of the human anatomy. The

algorithm in this paper is able to segment most parts of the body as long as the appropriate

atlas is supplied. However for a start, the liver and abdomen were chosen based on availability

of data and the importance of segmentation for the treatment of liver ailments.

Much work has been done in the area of segmentation of the liver. Some examples of al-

gorithms developed for liver segmentation include [Massoptier and Casciaro, 2007] who pro-

posed a graph-cut method for automatic segmentation of the liver, and [Martin et al., 2004]

who developed a semi-automated framework for the segmentation of the liver as well as tu-

5http://www.itk.org/pipermail/insight-users/2004-July/009384.html
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mours and blood vessels in the liver. [Chen et al., 2009], [Lee et al., 2007], [Liu et al., 2005]

and [Okada et al., 2007] are other examples of algorithms for the segmentation of the liver.
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Chapter 3

Problem Formulation

As mentioned in the motivation, there is a need to create a system that allows the hospital

to perform in-house segmentation, quantification and visualization of organs in CT images.

The basis of such a system is the accurate segmentation of the organs in CT images along

with their sub-components and the blood vessels running through and around them. Once

that is done, an accurate three dimensional model of the organ can be reconstructed. Quan-

tification and visualization can then be done based on the model.

In order to better understand the requirements of the project, a proper problem formu-

lation is required. This includes detailed and in-depth analysis of the required inputs and

the desired outputs.

3.1 Input Analysis

In any atlas-based segmentation algorithm, the main inputs would be the atlas as well as

the data samples for segmentation. Good knowledge of the input and the information that

is provided by it is an essential step in obtaining a good understanding of the complexity of

the problem. There are two components for input analysis: the model characteristics and

the input data characteristics.
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Figure 3.1: Diagram showing an atlas

3.1.1 Model Characteristics

The model used in this project is a single CT image in which the major areas of interest have

been clearly delineated. Currently, these areas are the stomach and the liver. As can be seen

from Figure 3.1, the contours of the areas have been drawn out, and these will be deformed

to fit their respective areas in the target CT images. More details on what information is

extracted from this model to be used in the algorithm is present in Chapter 4.

3.1.2 Input Data Characteristics

The input data for this project are abdominal CT images. This modality is widely used in

medical treatment for abdominal ailments. Furthermore, there are several properties of us-

ing such images that make using such data for segmentation both interesting and challenging.

One advantage of using CT data as opposed to other forms of medical imagery is that

all body parts are shown clearly in the images and there is no overlapping of any two body

parts. This is unlike other modalities such as X-ray imaging, where the overlapping of tissue
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Figure 3.2: CT images from two different datasets, illustrating the amount of variation
between different individuals

is always present. As such, using CT images simplify the segmentation task due to the

reduced amount of inherent fuzzy regions.

However, there are still many challenging aspects to the use of CT images for segmenta-

tion. These help to define the requirements the project must fulfill in order to perform its

task of segmentation well.

Shape Variation of body and body parts

The shape of a healthy human is approximately the same across different specimens, except

for some differences in the shape and size. This means that while the shape of the abdomen

of two individuals may be similar, there will likely be some obvious differences. Not only

will the external body shape be different, the shapes of their internal body parts are likely

to exhibit some differences as well. These variations will be reflected in the CT data. This

is shown in Figure 3.2 which features a comparison of the differences in shape of the liver

from two different datasets. As such, any segmentation algorithm must be able to handle

such variations in shape.

Furthermore, this project aims to create a robust segmentation technique that can make

use of data from a single 2D atlas to segment multiple slices of CT images. As such, the
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Figure 3.3: CT images from the same dataset, but at different slice

shape variation of the regions of interest at in different slices of the same dataset is also an

important factor to consider. As can be seen from the livers in Figure 3.3, this variation can

be very significant.

Intensity Variations

Intensity variations between different CT datasets occur due to the use of different scanners

as well as the time of data acquisition. Various contrast enhancements which are used to

make certain features more prominent are yet another contributor to the intensity variations

across images. Figure 3.2is an example whereby the image on the right is relatively brighter

than the image on the left. Furthermore, the stomach contents show up very brightly in

the image on the right, whereas it is much darker in the image on the left. A segmentation

algorithm must be robust to such variations.

Texture and Artifacts

This project seeks to segment various body parts in the abdomen. One thing that compli-

cates this is the presence of other body tissue within the target regions. An example of this
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Figure 3.4: Diagram showing blood vessels in liver pointed out by the red arrows

is the blood vessels within the liver, pointed out by the red arrows in Figure 3.4. The pres-

ence of these noise features will add to the complexity by adding false positives to the results.

Another source of noise features are the artifacts created in CT images due to phe-

nomenon like partial volume effects and beam hardening. These phenomena generate false

features in CT images which may even fool experienced practitioners. Therefore the algo-

rithm must be robust enough to handle the presence of such features, or a method must be

found to remove them.

Poorly Defined Edges

While there are no overlaps in CT imagery, there are still problems with poorly defined edges

in the images. This is mainly caused by the similarity of the tissue intensity within the CT

image. As such, there may be a lot of broken edges as well as spurious edges resulting from

noise. This is illustrated in Figure 3.5 in which the contours around organs in the edge

maps are often not closed loops. These poorly defined edges adds to the complexity of the

problem since without edges, the algorithm may be led to a wrong edge, resulting in poor

segmentation.
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Figure 3.5: A CT image and its edge map. Note the many areas in which the edges are
broken

3.2 Desired Output

The desired output of the project are the contours of the various body parts in the abdomen.

These contours must accurately segment the various body parts in question and not overlap

each other.

3.3 Problem Definition

The solution to the segmentation problem proposed in this thesis can be described in math-

ematical notation in order to improve the understanding of the requirements.

Inputs:

• Let B = {ek} be the set of edge points in the Image. B contains the edges of the body

parts we want, edges of other body parts as well as noise. Some edges of the regions

of interest are not contained in B.

• Let C be a set of contours Ci = {pi,j} which are the deformable models of the body

parts we are interested in.

• Let S(pi,j) be a function related to shape information.
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Output:

• The deformed C, which we call C’, which represents the extracted contour of the body

parts we want.

Problem Definition:

Define f as a correspondence function from C to B, that is,

f(pi) ∈ B

Let D(C) denote a deformation function of C by moving the points pi ∈ Cto new locations

p′
i = D(pi)

Then, the problem is to find the D and f that minimizes the total error E,

E = Ep + αEs (3.1)

where α is a weight.

Ep =
∑

i

||D(pi)− f(pi)||2 (3.2)

Es =
∑

i

||S(D(pi)− S(pi))||2 (3.3)

with the constraints that all contours must lie within the contour of the body cavity and

no contours must overlap each other. In mathematical terms,

Let C0 be the contour of the inner body cavity

Then

∀ci ∈ C, i 6= 0, ci
⋂

c0 = ci (3.4)

and

∀ci, cj ∈ C, i 6= 0, ci
⋂

cj = ∅ (3.5)
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Chapter 4

Algorithm

The algorithm used in this thesis is an atlas-based registration algorithm which is designed

as a multistage pipeline. The atlas provides spatial knowledge of the shape and location of

the targeted body parts. It also provides other information which helps improve the quality

of the registration. Details on the construction and contents of the atlas are explained in

Section 4.1.

The algorithm pipeline consists of five main components. These are:

• Image Preprocessing

• Body Contour Extraction

• Global Registration

• Local Registration

• Collision Management

The collision management component is integrated into the two registration components

and serves to constrain those body parts which are near each other. Figure 4.1 illustrates

the flow of the algorithm and how the atlas and the collision resolution component interacts

with the main pipeline. The atlas is used to initialise the position of the contours and pro-

vide feature information that is used for registration of the contours to the image. Collision

resolution is run after global and local registration steps in the pipeline, as well as at the

end of the algorithm. Further clarification on each component of the algorithm is given in
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Figure 4.1: Flow Diagram detailing the algorithm used for the registration
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Sections 4.3 - 4.6.

4.1 Atlas

There are 3 components to the atlas. They are the:

• Body part contours

• Intensity gradient directions at each point of the contours

• Boolean value to represent the presence of empty space between a point on a body

part contour and the centroid of a body part

The body part contours are the principal components of the atlas. They provide the

shape and location information of the individual body parts. This helps with both the ini-

tialization of the contours on the target images, and the finding of correspondences during

the registration phases.

The intensity gradient direction vectors of each point on each contour provides informa-

tion on the area surrounding the contours. This robust intensity-invariant feature, called an

IDD, is a one-dimensional vector running normal to the contour at each contour point. Each

element in the IDD stores the direction of the difference in intensity between the current

point and the previous point. This information is the primary method of finding the corre-

spondence between each point on the contours and the target image. A pictorial illustration

of one intensity gradient direction vector is shown in Figure 4.2. Section 4.13 will give more

details on how correspondence is found using this vector.

The last item in the atlas is used mainly to fix the problem of empty spaces within body

parts, namely the stomach and liver. These body parts contain dark areas which are mainly

body fluids or air pockets. This is illustrated in Figure 4.3, which shows the air pocket in

the stomach having the same intensity as the background. Furthermore empty spaces such

as this introduce distinct edges into the image which will complicate the registration pro-

cess. By adding the boolean value to the atlas for every point, the algorithm receives early
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Figure 4.2: Illustration of an intensity gradient direction vector of a point (marked in red)
in the atlas

Figure 4.3: Image of stomach showing the presence of an air pocket, which has the same
intensity as the background
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warning that such spaces exist in that vicinity and will hence include that in the contours

should they come across one.

In the implementation, the boolean value is set to “0” for those points where there is a

possibility of an empty space occurring between it’s position and the position of the centroid

for the body part. Otherwise it is set to “1”.

4.2 Image Preprocessing

The first step would be to perform some pre-processing on the target images to remove some

objects which appear outside of the body. In general, the main cause of such objects is the

bed of the CT machine, which shows up when the CT image is taken. Image preprocessing is

also performed to smooth the image. This will improve the quality of the edge detection later.

The reason for performing the image preprocessing step is to extract the outer body

contour from the image as those objects lying outside of the body contour will interfere with

the algorithm. Smoothing the image will also remove much unwanted information from the

CT images, such as the texture of the organs as well as minor blood vessels. These will show

up during edge detection and add more false positives later during segmentation.

Two issues can be solved in the image preprocessing phase using a single solution. Notice

in Figure 4.4 that the bed of the CT machine shows up as two curves in the CT images, as

designated by the red arrows. Being thin lines, they can be easily removed by using a median

filter. This is the same for the fine blood vessels and texture patterns inside the body. Me-

dian filtering has an advantage over other filters in that it maintains the position of the edges,

while the others will add a degree of fuzziness to the position of the edge. Having the posi-

tion of the edge intact is very important since the goal of this thesis is to segment the organs.
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Figure 4.4: Abdominal CT image showing the scanner bed and the texture of the organs
which are to be removed

4.2.1 Median Filtering

Filtering is a common technique used as a preprocessing step in image processing to remove

noise and other artifacts in images. In filtering, a window is usually taken around a pixel of

interest and an intensity value for that pixel is that calculated based on the intensities of the

pixels in the window. Of the many types of filtering, mean and median filtering are among

the more common techniques used. Mean filters assign the mean value of the intensities

within the window to the target pixel, while median filters will choose the median value as

the value for the pixel.Another type of filter which is commonly used is the gaussian filter,

which calculates the target pixel intensity as the weighted average of the intensities within

the window, with the weightages given by a gaussian function. For these various types of

image filters, the median filter(Figure 4.5) was deemed the most suitable.

The main reason why median filtering was chosen for the preprocessing step of this algo-

rithm is because median filters have the useful property of retaining edge information within

an image. Mean filters and gaussian filters tend to blur the edges in an image. This is because

the median filter does not create new unrealistic pixel values when the window lies over an

edge, while the other filters will do so. Since the focus of this thesis is to segment the contours

of various organs in a medical image, the preservation of edges in the images is of utmost im-
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Figure 4.5: An example of a median filter at work. The window size used here is 3 by 3

portance. Figure 4.6 shows the result of applying median filtering to a CT image. The noise

and texture were removed while the shapes and edges of the target body parts were retained.

Figure 4.6: Results of median filtering (right) applied to a CT image (left)

4.3 Body Contour Extraction

The outer body contour is needed to align the model and the target image into the same

coordinate space. This problem is solved by finding the convex hull of the body in both

the model and the target image. This is because the outer body contour is almost entirely

convex, and thus, finding the convex hull will give a good approximation of the outer body

contour. In fact, it was observed via empirical experimentation that even if two objects are

not entirely or mostly convex, as long as they are of similar shape, their convex hulls would
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Figure 4.7: Sample images showing a cloud of points(left) and the resultant convex hull(right)

work as well for the purpose of global alignment.

4.3.1 Convex Hulls

The convex hull is a very useful tool as it captures the rough shape and extent of the data

set. The convex hull C of a set of points S is the smallest convex polygon that contains all

the points of S. This is illustrated in Figure 4.7. It can also be defined as intersection of all

convex sets containing S.

Mathematically, it can be given by the expression:

C = {
N∑

j=1

λjpj : λj ≥ 0 for all j ∈ N,
N∑

j=1

λj = 1} (4.1)

The convex hull function in MATLAB uses the Quick Hull algorithm [Barber et al., 1996]

to determine the convex hull of the body in the CT image. This algorithm is included as

parted of the Qhull package1. The Quick Hull algorithm uses a divide-and-conquer method

which is based on the observation that the points in the dataset can be split into two sets

recursively, with the algorithm working on one set while temporarily ignoring the other. In a

balanced dataset, where all the points are spread across the space, Quick Hull requires only

O(NlogN) time.

1http://www.qhull.org
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Additional computation is done to prevent the inclusion of the CT machine bed in the

convex hull. This is done by rejecting edges in the convex hull found that are too long.

Observation shows that the body contour is approximately elliptical and hence any edges in

the convex hull should be short. Rejecting these long edges improves the accuracy of the

body contour extraction.

Figure 4.8 shows the result of naively applying the convex hull algorithm to the CT im-

ages. It is clear that the noise and spurious edges in the images resulted in an inaccurate

segmentation of the outer body contour. After refinement, the segmentation is much more

accurate, as can be see from Figure 4.9.

Figure 4.8: Results of applying convex hull to CT images without rejection of long edges.
Note how the convex hull include noise points outside of the body contour.

4.4 Global Registration

After segmenting the body contour from the CT image, the atlas is brought into the co-

ordinate space of the target in the global registration step. Using this as the first level of

initialization, the possibility of the algorithm being trapped in a local minimum is reduced.

The Iterative Closest Point algorithm(ICP) is used to register the two objects. This is

performed on the outer body contours of the atlas and the target.
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Figure 4.9: Results showing body segmented from image using convex hull algorithm with
iterative rejection of long edges. Noise points are now excluded.

4.4.1 Iterative Closest Point

ICP was introduced in 1992 by [Besl and Mckay, 1992] as a means of registering two sets

of data points. This is accomplished via the computation of a transformation matrix using

the displacements of each point in the model set to it’s closest corresponding point in the

reference set. ICP is easy to implement and will generally provide good results. However, it

requires a good initialization as it can be trapped in local minima.

The implementation of ICP used in this project is coded entirely in MATLAB. It com-

prises of three main components:

1. determining the correspondence between the atlas and the target

2. calculating the transformation matrix based on the correspondence
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Figure 4.10: Image sequence showing the global registration via ICP

3. transforming the atlas to its new configuration

The algorithm was based on mathematical formulae from lecture notes by Dr Leow Wee

Kheng of the National University of Singapore2. It also included a K-D tree implementation

written by Guy Shechter3 which was used for determining the closest point correspondence

efficiently. The distance measure used is Euclidean distance.

Figure 4.10 shows an atlas contour being registered to the outer body contour of a target

image. As can be seen, the registration is very fast and takes about four to six iterations on

average. This is mainly due to the simplicity of the objects being registered.

2http://www.comp.nus.edu.sg/c̃s6240
3http://mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4586&objectType=file
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4.5 Local Registration

After the global registration step, a local alignment step is still necessary to bring the con-

tours in the atlas as close as possible to the desired areas in the target image. This is because

the variations across patients in terms of organ size, shape and location can be rather sig-

nificant, making it unlikely for the algorithm to get close to the desired solution with just

the global registration step.

The local registration is done in two steps: A local affine registration of the contours to

shift them into position, and an iterative deformation to bring the contours as close to the

desired edges as possible.

4.5.1 1st step Local Registration

The first step in the Local Registration stage is to shift the contours closer to the target

body parts. This is a similarity transformation where the general shape of the contours is

retained. The purpose of doing this is to reduce the possibility of the subsequent deforma-

tion stages being attracted to the wrong edges.For this local registration stage, the Iterative

Corresponding Points technique proposed by [Ding et al., 2005] is used.

Iterative Corresponding Points

This technique is an iterative optimization process which uses IDDs to determine the corre-

spondence between the model contour and the edge image. As mentioned before in Section

4.1, an IDD is created for every edge point in the atlas. Similarly, in the Iterative Corre-

sponding Point stage, IDDs are calculated for every point in the registered contours. These

target image IDDs are much larger than the ones in the atlas. This is because correspondence

is determined by comparing each point of the target image IDD with the atlas IDD. The

point with the best match is deemed the corresponding point in the image for the atlas point.

Figure 4.11 shows the IDD vector for a single point on the liver contour, and the area it

searches for its closest match. Figure 4.12 presents a graphical representation of how corre-
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Figure 4.11: Image showing the IDD vector from the atlas and its area of search in the
Iterative Corresponding Points algorithm

Figure 4.12: Illustration of how correspondence is found in the Iterative Corresponding Point
algorithm. The atlas IDD (red) searches along the length of the target IDD(yellow) for the
point with the best match, and returns this as the displacement for the current iteration
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spondence is found. The method for determining the similarity is Euclidean Distance. After

the correspondence is determined, the data is used to calculate a similarity transform which

will bring the model closer to the target.

Figure 4.13 shows the registration of a stomach contour to its target in the image. This

process is very fast and the algorithm takes approximately 10-12 iterations to converge.

4.5.2 2nd step Local Deformation

After roughly aligning the atlas to the target image, the contours of the various components

of the atlas are deformed to the shape of the objects of interest in the target image. This

is to bring the contours as close as possible to the desired edge before the final refinement step.

The method used to deform the contours is derived from active contours, a commonly

used algorithm for tracking in videos and segmentation of objects in images. The original

active contour, while adequate for final refinement of the contour, is ill-equipped to perform

the second step local deformation. This is because the atlas contours are still relatively

far from their desired configurations, so that possibility of the snake being trapped in a

local minima is still very high. Active contours make use of the edge energy in images to

determine the direction the contour is to move. Furthermore, a method know as Gradient

Vector Flow helps active contours move towards concave contours. However, active contours

deform based purely on edge information from the images, hence there is a chance for them

to adhere to the wrong edges. A summarization of active contours and its well-known GVF

variant is given in Sections 2.1.5 and 2.1.5.

Active contours with GVF is used as the final step in the segmentation of the body parts

to refine the results and make the contours smoother. Despite the fact that snakes are easily

attracted to the edges of other body parts, it is safe to use it at this stage as the local

deformation, which will be detailed in the next sub section, has already brought the contour

extremely close to the desired edges.
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Figure 4.13: Image sequence showing the application of Iterative Corresponding Points on
the stomach contour
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Iterative Corresponding Snakes

While GVF solves the problem of the snake algorithm not deforming into concave regions,

there is still a need to solve the algorithm’s tendency to attract to the wrong edges. This

issue is primarily the result of the snake algorithm not using all the information that is avail-

able from the atlas. The snake only uses the edge information to perform it’s deformation.

A lot of other information such as shape of the body part and the intensity gradient at each

point on the contour is ignored. In order to incorporate such information into the snake, a

hybrid of Ding’s Iterative Corresponding Points and the snake algorithm is created. This

algorithm makes full use of the information in the atlas via the IDD vectors, and retains the

internal energy term of the snake as a regularization force. This hybrid method, henceforth

known as Iterative Corresponding Snakes, can locate the body part of interest in the midst

of all the other edges from other body parts.

In order to understand how the hybridization was achieved, it is necessary to revisit the

GVF snake. It was mentioned in Section 2.1.5 that the GVF force directly replaces the

gradient vector field of the original snake as the external deformation force. In the Itera-

tive Corresponding Snakes algorithm, the same approach is taken. The IDD correspondence

algorithm finds a matching point in the target image for each point on the contour. The

direction vector is then weighted and taken as the external force acting on that point. This

is then put into the snake algorithm which calculates the deformation of the contour. Fig-

ure 4.14 shows an image sequence of the stomach contour with the Iterative Corresponding

Snakes algorithm running.

In addition to using Iterative Corresponding Snakes to control the deformation of the

inner body cavity contour, an additional curvature constraint was added to control the

shape of the body cavity contour. This is because the edge of the body cavity is very poorly

defined due to many organs being located very close to it. Having the shape constraint will

help prevent the contour from snapping to the wrong edges. This curvature constraint was

adapted from the one used in [Chen et al., 2005]. Further details on how this algorithm

works can be found there.
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Figure 4.14: Image sequence showing the application of Iterative Corresponding Snakes on
the stomach contour
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4.6 Collision Management

When the atlas only contains a single contour, the steps up till Section 4.5.2 is sufficient to

obtain a fairly accurate registration. However, if more than one contour is present, there is a

need to ensure that no two contours overlap. This is a real problem when performing regis-

tration with multiple contours. Collision management is required to constrain the contours

from overlapping, and a look at the target data reaffirms this need.

The organs in the human body are situated very close to each other. This is especially

true for the liver and the stomach, which share a very long common edge. Since the contours

for these organs are registered to their targets independently, there is a high risk of the

contours overlapping each other. This is unacceptable since in reality, these body parts are

separate. Therefore, a collision detection and resolution algorithm is employed to ensure the

contours do not overlap. It also serves to guide the contours to their correct positions.

Collision detection and resolution is used throughout the various stages of the registra-

tion. However, it is used most intensively in the final refinement stage. This is because

the initial stages of the algorithm are primarily for bringing the contours close to the ob-

jects of interest. It would not be wise to alter the shapes of the contours too much at

these stages as that might result in loss of spatial information and affect the accuracy of

the result. However, at the final refinement stages, the contours have already been placed,

and the shape information have already played their parts. Therefore collision resolution can

be used in conjunction with the refinement process to improve the quality of the registration.

In this thesis, two contours are defined to be overlapping if there is at least one point in

one contour which lies within the contour of the other contour. It is however alright if they

lie on exactly the same point.

Collision Detection

The detection of collision between 2 contours is done by casting the 2 contours as polygons

and performing a point-in-polygon check. In this check, the points in one contour are checked
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Figure 4.15: Diagram showing the number of crossings of a point inside a polygon. The
crossings are denoted by stars.

to see if they lie in the other contour. This is done via the Crossing Number algorithm. This

algorithm is based on the observation that a point in within a polygon if a straight line

passing through the point crosses the boundaries of the polygon an odd number of times.

This is illustrated in the Figure 4.15.

The only exception to this is when the line touches the polygon at one of its apexes. This

exception is handled by having the algorithm double count all vertices whose edges lie on

the same side of the line.

Figure 4.16 shows the detection of collision points by the collision detection algorithm.

Using this information, the collision resolution step can then shift those points until the

collision is resolved.

Collision Resolution

Upon detection of a collision, the overlap is resolved by having the points in collision pull

away from the other contour. This is done by having the points move a small amount along

their normals towards the centre of their own contours. The magnitude of move is weighted

by the area encompassed by the contours, so that contours surrounding a smaller area will
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Figure 4.16: Image showing the liver(green) and stomach(red) contours with the points in
collision denoted in blue and yellow respectively.
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Figure 4.17: Final result after completion of collision resolution

deform less.

Figure 4.17 shows the final end state after the completion of the collision management

algorithm. It can be observed that overlap no longer exists, which the two contours just

touching at the most.
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Chapter 5

Testing and Evaluation

In order to verify the correctness of the algorithm, it is subjected to a series of tests with

various data sets and parameters to verify its accuracy and robustness.

Three tests were conducted. The first test was a test of convergence to show that the

algorithm will converge to the correct objects. The second test verifies the accuracy of the

algorithm by comparing the results with a manually obtained ground truth. Finally, the

third test determines the robustness of the algorithm by applying it to multiple datasets.

The algorithm is also compared to results achieved by [Ding et al., 2005], whose work is

based on the same dataset as this thesis.

5.1 Test Setup

All implementation and tests were conducted on a PC running Windows XP SP2. The CPU

is an AMD64 3000+ and the graphics cards is an NVidia 7600GS. The code was implemented

in MATLAB and all graphs were generated using Microsoft Excel.

All CT datasets were obtained courtesy of the Department of Radiology of the National

University of Singapore Hospital (NUH). These come with varying degrees of resolution and

slice thickness. The datasets also come with different intensity weights, so intensity of the
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various body parts are non-uniform across the various datasets. The main dataset used in

the implementation and initial testing of the algorithm consists of 200 finely sliced CT im-

ages of which 31 were used as those were in the region of the atlas. Also another 8 datasets

were used for testing of algorithm robustness. These datasets are more coarsely sliced, hence

only a few images from each set were usable.

In these tests, only the liver and stomach are considered, as opposed to the work done

by [Ding et al., 2005] where the spleen was included as well. This is because the spleen is

generally separate from the rest of the body parts and hence not as interesting as the liver

and stomach which share a common border in the CT images. The focus is hence put on the

stomach and liver in order to emphasize on the multi-contour aspects of the segmentation

algorithm

5.2 Convergence

To test for the convergence of the algorithm, one arbitrary target image was selected and

the amount of change of the contours was measured and plotted. This is to determine if

the algorithm finds a minima and stops the deformation, hence proving that it does indeed

converge. Figure 5.1 shows the target image used for this test.

Figures 5.2 and 5.3 plot the amount of change of the contour versus the iteration step.

It should be noted that there are several sharp increases in the amount of change along

the graphs, and these are associated to the different registration stages in the algorithm.

These stages make use of different types of registration, contour information and features,

and hence there is always a lot of movement as the algorithm incorporates these new data

to improve the registration result. Nevertheless, the amount of change always tends to zero

at the end of each stage, showing that the contours will always converge to a stable minima.

This is true for both the stomach and liver contours.

Another method of illustrating converge is to plot the degree of match between the con-

tours and the outline of the ground truth. By showing that the error function decreases as
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Figure 5.1: Target image used for plotting of graph to test for convergence, with the results
of segmentation shown

the contours register to their target, the ability of the algorithm to find the global minima

can be deduced. Figure 5.4 shows the target image used in this test and figure 5.5 is the

ground truth.

From figures 5.6 and 5.7, it can be seen that both the liver and stomach contours do

converge towards the ground truth. The error function used is RMS Euclidean distance.

In the graph for the liver contour (Figure 5.6 ), there is actually an increase in the error

from iteration steps 50 to 160. This coincides with the local deformation step and is the

result of one of the issues with CT images, which is the non-distinct edges between body

parts. The edge between the liver and the wall of the body cavity is very unclear, and often,

there is no edge between them. Hence there are no edges for the deformation algorithm

to register to. This results in the contour overstepping the boundaries of the liver. Figure

5.8 illustrates this, with the red arrows pointing to the areas where the non-distinct edges

between cavity wall and liver causes an error in the deformation. This issue is resolved by

having an algorithm determining the inner cavity wall and constraining the liver to never

cross this boundary via collision management.
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Figure 5.2: Graph for the contour on the liver in one image showing that the contours always
converge to a minima at every stage.

5.3 Accuracy

In order to measure the accuracy of the algorithm, the ground truth of a set of CT images

was obtained by manually segmenting the various organs from a set of CT images. This work

was performed by colleagues working in the faculty. Figure 5.5 is an example of a ground

truth contour. By measuring the degree of match between the final registered contour and

the edges in the ground truth, the accuracy of the algorithm can be determined. The con-

verged contours are compared to the ground truth using RMS distance to the closest point

in the ground truth.

Figures 5.9 and 5.10 show the graphs comparing the registered contours of the liver and

stomach respectively to their ground truth contours. This is done for an entire dataset. The

values for the liver contours are consistently low, with an mean value of 2.211. The mean

value for the stomach is higher at 2.677. This is partly due to the complexity of the stomach

as compared to the liver, and also partly due to the diversity in shape of the stomach. This is

particularly true in the first few images, in which the stomach does not have a significant air
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Figure 5.3: Graph for the contour on the stomach in one image showing that the contours
always converge to a minima at every stage.

pocket and are of very different shape from the atlas. This results in rather poor accuracy in

those images. The accuracy gradually improves as the shape of the stomach slowly changes

into something closer to the shape used as an atlas.

5.4 Robustness

In order to test the robustness of the algorithm, datasets from different subjects were ob-

tained and the algorithm was used to find the objects of interest.

The results in Figure 5.11 show that the algorithm is more reliable for extraction of the

liver contour than the stomach contour. This is largely due to the liver having a more con-

sistent shape. Therefore, the deviation of the target shape from that in the atlas is generally

small. On the other hand, the shape of the stomach varies greatly between each dataset.

This is a common problem with soft tissue. The result of this is that it makes it difficult for

the algorithm to reliably segment the stomach contour. In this case, a statistical model may

62



Figure 5.4: Target image used for plotting of graph to test for convergence to ground truth.

Figure 5.5: Ground truth for the target image in Figure 5.4.
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Figure 5.6: Graph for the contour on the liver in one image with the error between the
contour and the ground truth plotted against the iteration number.

Figure 5.7: Graph for the contour on the stomach in one image with the error between the
contour and the ground truth plotted against the iteration number.

64



Figure 5.8: Illustration of the liver contour flowing into the inner body cavity wall due to
the non-distinct edges between the wall and the liver.

Figure 5.9: Plot of the degree of match of a registered contour of the liver with the ground
truth. The average error is 2.211
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Figure 5.10: Plot of the degree of match of a registered contour of the stomach with the
ground truth. The average error is 2.677

be more appropriate, though the challenges in obtaining reliable training data may prohibit

such an approach. Nevertheless, the algorithm is still able to successfully register to some

stomach contours. This is largely due to the use of intensity gradients in addition to shape

and location information. The intensity gradients are largely similar despite the variations

in shape, so the registration algorithm is still able to converge the correct region in the CT

image, albeit with a reduced accuracy of the contour.

Furthermore, due to the significant variation in the shapes of objects in these new datasets

as compared to the atlas, there were cases where the algorithm fails altogether. There are

two main reasons for this. The first reason has to do with the use of an atlas with is very

different from the dataset, and hence can be easily fixed by using a slice from the dataset as

the atlas. The second reason is the robustness of the inner cavity extraction. As the inner

cavity wall can be very poorly defined in some cases, the algorithm may fail to segment the

inner cavity properly. This in turn falsely constrains the contours for the organs, resulting

in a wrong segmentation. Figures 5.12 and 5.13 show some examples of failed segmentations
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5.5 Comparison with previous work

The results shown in Ding et al’s paper included some images of good fits and some of ill fits.

In this comparison, the same CT images were used as the targets for the proposed algorithm.

This makes it easier to compare the differences between the two algorithms. The image used

as the atlas for Ding et al.’s work and this thesis is the same. The contours segmented from

this image were done manually, so while they are largely similar, some differences are bound

to be present.

Figures 5.14 to 5.18 show the results of registration using the algorithm proposed in this

thesis compared with results produced by Ding et al. From observations of all the compar-

isons, the proposed algorithm performs at least as well as Ding’s algorithm, with several

instances of the proposed algorithm out-performing the previous work. This is especially

true in the case of the stomach contours, where the proposed algorithm is able to consis-

tently capture the air pocket in the stomach (Figure 5.14).

However, the technique used to locate the air pocket in the stomach has its pitfalls as

well. The top left image in Figure 5.15 shows the stomach contour wrongly including some

empty space. This issue is mainly due to the appearance of the stomach in the atlas image

being significantly different from the target. Removing the technique improves the accuracy

of the registration, as shown in figure 5.19. However it would be better to have a different

atlas which more closely resembles the stomach in the target image.

5.6 Summary

The tests performed on the algorithm seek to prove its correctness, accuracy and robustness.

This was achieved with acceptable results. In comparison with previous work done on the

same topic, the proposed algorithm shows a significant improvement in the ability to detect

the correct contours as well as the ability to factor in the presence of air pockets in the

stomach during segmentation.
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Figure 5.11: Registration results for different data sets
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Figure 5.12: Failed registration results due to significant variation from the atlas

Figure 5.13: Failed registration results due to failed segmentation of inner body cavity
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Figure 5.14: The new proposed algorithm(left) can capture the air pockets in the stomach
which is not always the case with previous work(right).

Figure 5.15: Comparison between the proposed algorithm and previous work. Image number
is 40

Figure 5.16: Comparison between the proposed algorithm and previous work. Image number
is 77
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Figure 5.17: Comparison between the proposed algorithm and previous work. Image number
is 49

Figure 5.18: Comparison between the proposed algorithm and previous work. Image number
is 73

Figure 5.19: Removing the air pocket detection technique improves the result as shown in
the image on the right. The image on the left shows the result with air pocket detection
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Chapter 6

Conclusion

With the increase in usage of Computer Assisted Surgery in modern day medicine, medi-

cal image segmentation is gaining in importance as a tool to assist with treatment. It is

extensively used in pre-operational planning, visualization during procedures and even dur-

ing post-operational monitoring. Therefore, algorithms used in medical image segmentation

must be robust, accurate and precise. It should also be as automated as possible to reduce

the amount of human error.

This thesis proposes a segmentation framework capable of segmenting different body

parts by simply replacing the atlas. The abdominal region of the body is used in this thesis

due to availability of data and the challenge posed by the complicated nature of the anatomy.

This framework is robust and the results obtained are accurate.

The atlas-based segmentation algorithm proposed uses a non-probabilistic atlas and a

multi-stage pipeline approach to automatically register the atlas contours to the target image.

The algorithm includes one stage of global registration via ICP and two local deformation

stages . The first local deformation stage is the Iterative Corresponding Points algorithm,

following by Iterative Corresponding Snakes for the second local deformation stage. Collision

detection and resolution are also incorporated into the algorithm to ensure that the various

contours in the atlas do not overlap after registration.

The algorithm was shown to be about to accurately segmented the liver and stomach

from a set of data. The same atlas was used for 30 slices of CT image with good results.
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Also, the atlas was applied to CT images from different datasets. The ability to be able to

handle the various variations in shape and location of the organs in the CT images show the

robustness of the algorithm. The results obtained were also accurate except for a few cases

where the shape variations were too large for the atlas to handle. A change of atlas would

be able to resolve these issues.

6.1 Future Work

While the proposed algorithm is able to accurately segment the liver and stomach from CT

images, there are still areas which can be improved upon, in order to further enhance the

robustness and accuracy of the algorithm.

Firstly, it was observed that the body cavity segmentation fails quite often, especially in

cases where the shape variation defers from the atlas by a significant amount. This results

in inaccurate matches as the organ contours will be falsely constrained by the body cavity

contour. Improving the robustness of the body cavity segmentation will further improve the

results achievable by this algorithm.

Secondly, the segmentation done in this proposal is on a slice by slice basis. While the

results are reasonable, there is a possibility that the three-dimensional shape will not be

correct as there was no inter-slice constraints placed on the algorithm to ensure smooth

changes in shape from slice to slice. One future work would be to introduce some inter-slice

constraints to the algorithm so that smooth and accurate three-dimensional models of the

segmented objects can be produced.

Finally, so far only the abdomen has been used with the algorithm. Other body regions

and other image modalities should be tested to determine if the algorithm can be extended

to other uses.
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