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QE Term Paper ABSTRACT

Abstract

Medical image segmentation, as an application of image segmentation, is to extract some

anatomial structures from various medical image modalities. Some major medical image

modalities include CT (Computed Tomography), MRI (Magnetic Resonance Imaging)

and PET (Positron Emission Tomography). In this paper, we classify the existing medical

image segmentation techniques into several categories and give a thorough review of the

related literatures. Their pros and cons are analyzed. Some possible research topics

are dicussed. Some preliminary work is also presented and the experimental results are

discussed.
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Chapter 1

Introduction

1.1 Motivation

Medical Imaging technologies, such as CT, MRI and PET, have been widely applied to

various medical procedures. Compared to traditional medical diagnosis, they provide

non-invasive yet powerful means to investigate the internal structures and activities of

human bodies. With the help of such technologies, doctors can obtain multi-dimensional

information such as 2-D slices, 3-D volumetric images and videos of regions of interest

(ROI), which facilitates the performance of both qualitative and quantitative analysis.

This analysis provides invaluable information for diagnosis as well as surgical planning,

thus may relieve the pains for the patients to some extent. Some sample cross-sectional

abdominal CT images are shown in Figure 1.2 and 1.4.

Medical image segmentation is usually the first step of most analysis procedures men-

tioned above. It is also a crucial step that determines the final result of the entire appli-

cation, since the rest of the analysis fully relies on the data from this step. For example,

to build a 3-D volumetric model from a series of medical images, segmentation in 2-D im-

ages should be as accurate as possible; otherwise, the volume of the reconstructed model

will be wrong, and visualization of this model will be meaningless. Subsequent medical

processing and analysis steps may include quantification, registration, visualization and

computer aided diagnosis. Regions of interest may include brain, bone structures, vessels,

soft tissues, etc.

Medical image segmentation can be used in various applications. For example, in the
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application of cardiac diagnosis, given the segmentation of cardiac tissues in consecutive

slices, 3-D volumetric models of the heart and blood vessels can be reconstructed. By

modeling the blood flow inside, doctors can pinpoint the heart problem and assess the

risk quantitatively. 3-D visualization of heart can further aid doctors to make assessment.

1.1.1 Objective

The problem of image segmentation can be formulated as follows. Given image I = {pi},

a complete segmentation problem is to determine connected subset Ri (Ri ⊂ I), such

that
⋃

i

Ri = I, Ri ∩ Rj = ∅ (i 6= j). (1.1.1)

Segmentation is based on homogeneity of the image characteristics such as intensitiy,

color, texture, or the combination of all these information.

For medical image segmentation, the second condition mentioned above is not nec-

essarily met. For instance, in X-ray images, body structures are sometimes overlapped.

Figure 1.1 shows such an X-ray image that the contours of some hand bones are over-

lapped.

This is not the case for other medical image modalities such as CT images, which will

be focused on in this paper. Hereafter, we will discuss the medical image segmentation

problem in the context of CT images.

Broadly speaking, medical image segmentation has two sorts of objectives, either to

find out regions containing certain body structures or to extract the contours of body

structures. For the first objective, segmentation is conducted based on some regional

similarity criteria, such as intensity, gradient, texture and so on. ROIs are normally

treated as foreground regions Rf and the remainings are treated as background regions

Rb. The problem formulation under this objective is modified accordingly. The problem

is to find region Rf and Rb, such that

Rf ∪ Rb = I, Rf ∩ Rb = ∅. (1.1.2)

For the second objective, segmentation is conducted based on some discontinuity criteria,

such as edges. The problem is to find a set of points C = {ci}, which tightly enclose the

ROI.

2
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Figure 1.1: X-ray image. Some parts of the bones are overlapped.

1.1.2 Overview of Main Approaches

Existing medical image segmentation approaches can be roughly categorized into manual

segmentation, semi-automatic segmentation and automatic segmentation.

For the purpose of accuracy, medical image segmentation is traditionally done man-

ually, i.e., the ROIs are delineated by some exports such as experienced radiologists and

doctors. However, manual segmentation method has at least four disadvantages. Firstly,

it is quite time-consuming. Segmentation of a series of 1500-2000 transverse images of

512×512 pixels usually takes two to four hours [41]. Manual contouring of multiple axial

images is also laborious. Secondly, manual segmentation is subjective. Segmentation by

different experts may vary significantly. For example, a disagreement ratio of 14 ∼ 22%

by experts in brain tumor segmentation was reported in [23]. Thirdly, variability of the

same expert under different circumstances may also be large. Fourthly, the brightness

and contrast of the display screen will also affect the segmentation process and subsequent

analysis [6].

3
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As an alternative, automatic segmentation scheme can partially solve the problems

mentioned in manual segmentation. Firstly, it saves a lot of time of experts by by doing

segmentation automatically in computers. Secondly, it is less subjective in the sense that

given the same parameters, automatic segmentation scheme will obtain the same result

regardless of how many times it is executed. Thirdly, it will not be affected by the bright-

ness and contrast of the display screens. However, medical image segmentation, which

is usually effortless and swift for the human visual system, is a considerable challenge in

computer based automatic program [4]. The difficulties mainly come from four aspects.

Firstly, it is hard to represent domain knowledge in a computer system. The domain

knowledge in this case, is the knowledge of human anatomy, which is acquired by the

experts through years of systematic training.

Secondly, the shapes of soft tissues inside the human body are not only complex but

also highly variable, as shown in Figure 1.2(a) and 1.2(b). The shapes of the stomach in

different slices are different.

Thirdly, large variability in medical images may happen between two different people

as illustrated in Figure 1.3. We composite two CT images from two different people

together by adjusting the transparency of the image in the front.

The fourth difficulty comes from the medical image itself due to the intrinsic properties

of the medical imaging systems. Low contrast and missing information can be seen in

Figure 1.4(a) and 1.4(b). The pixel intensities in the boundary region are quite similar. It

is hard to identify the edges even for humans. A traditional boundary finding algorithm

based on gradient information will fail in such cases. In addition, like most of the natural

images, noise exists in medical images inevitably. Filters can employed to remove the

noise. However, this is done at the cost of losing details of the image.

As a trade off between manual and automatic segmentation, semi-automatic segmen-

tation algorithms which require human interactions, have been proposed. Those inter-

actions include putting a seed in the center of the ROI [2], or roughly initialize a close

contour which contains the ROI [22], etc. Semi-automatic segmentation methods, to

certain extent, alleviate some labor of experts, and ROIs are directly selected in manual

interactions. However, it can not solve the problems in manual segmentation substan-

tially, since the interactions such as initialization may still be quite subjective, and the

4
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(a) (b)

Figure 1.2: Shape variability of the stomach. (a) and (b) are taken from the same patient.
White contours represent the stomach part in (a) and (b), respectively. The Shape of the
two contours are quite different. There is even a visible hole inside of the contour in (b).

Figure 1.3: Shape variability of soft tissues between different people. Two CT images are
composited together.

5
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(a) (b)

Figure 1.4: Two CT slices of one patient. The areas circled by white contours are of low
contrast, which makes automatic segmentation difficult.

interactions may still be affected by the brightness and contrast of the display screens.

1.2 Organization of the Paper

The rest of this paper is organized as follows. Chapter 2 includes a literature review cov-

ering some existing medical image segmentation algorithms and their limitations. Some

possible research topics are discussed in Chapter 3. Some preliminary research and the

experimental results are described in Chapter 4 and Chapter 5 concludes the paper.

6



Chapter 2

Literature Review

In this chapter, we review some generic segmentation algorithms as well as some existing

medical image segmentation algorithms.

2.1 Generic Segmentation Algorithms

Existing generic segmentation algorithms can be roughly classified into five categories

[32].

1. Thresholding

2. Region-Based Segmentation

3. Edge-Based Segmentation

4. Graph-Based Segmentation

5. Classification-Based Segmentation

These methods are described and their pros and cons are analyzed as follows.

2.1.1 Thresholding

Thresholding [36] is one of the basic segmentation techniques. It can roughly be catego-

rized into two, namely global thresholding and local (adaptive) thresholding, based on the

threshold selection criteria.

7
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(a) (b) (c)

Figure 2.1: Thresholding of image with bi-modal intensity distribution, (a) original Rab-
bit image, (b) histogram of Rabbit, and (c) Rabbit after thresholding at t = 127.

(a) (b) (c)

Figure 2.2: Thresholding of image with multi-modal intensity distribution, (a) original
Lena image, (b) histogram of Lena, and (c) Lena after thresholding at t = 127.

Given an image I, the global thresholding method tries to find a threshold t, such

that pixels with intensity value greater than or equal to t will be “classified” into group

1, and the rest of the pixels into group 2. Binary intensity value will be assigned to

pixels in group 1 and 2 accordingly. The computational complexity of this algorithm

is very low. However, global thresholding assumes that the intensity of the image has a

bi-modal distribution. This assumption does not hold for most of the natural images.

Examples are shown as follows. The algorithm can perform well on those images with

bimodal intensity distribution, as shown in Figure 2.1, while its performance may be poor

otherwise, which can be seen in Figure 2.2.

To overcome the shorting-coming mentioned above, several improvements based on

global thresholding have been proposed. Histogram shape based thresholding algorithms

[7] try to force the multi-modal intensity distributions into smoothed bi-modal distri-

bution. Entropy based thresholding algorithms [33] try to maximize the entropy in the

thresholded image.

8
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As an alternative to global thresholding, local thresholding [37] divides an image into

multiple sub-images, and select one threshold for each sub-image.

Apart from the bi-modal distribution assumption, thresholding has some other prob-

lems. For example, the segmented regions may not correspond to the objects in the

original image. The thresholding algorithms do not consider the spatial relationship

between pixels. The segmentation result is very sensitive to noise.

2.1.2 Region-based Segmentation

Region-based segmentation algorithms basically consist of split and merge algorithm [10],

region growing algorithm [2, 47] and watershed algorithm [5, 34, 31, 27, 18].

Split and Merge

In split and merge algorithm, the whole image is initially considered as one region. This

region will be split into four quadrants [39], if certain homogeneity criterion is not met.

The split process will be repeated recursively until each region contains only homogeneous

pixels, as shown in Figure 2.3(a). The algorithm then compares all the regions with their

neighboring regions and merge the regions that are similar according to some criteria, as

shown in Figure 2.3(b)1. The homogeneity criterion is normally based on the intensity

value of the pixels. Regions with standard deviation less than a threshold are considered

homogeneous. Split and merge algorithm is computationally fast. Its major drawback is

its insensitivity to the image semantics.

Region Growing

Region Growing is opposite to the split and merge approach. Traditionally, region growing

algorithm begins with selecting n seed pixels. Each seed pixel i is treated as a region

Ai, i ∈ {1, 2, ..., n}. The algorithm will then try to find some neighboring pixels to those

regions and add the pixels to the original regions with similar intensities, thereby growing

the regions. An example of region growing segmentation is shown in Figure 2.42. The

1From http://www.doc.ic.ac.uk/˜dfg/vision/v02.html
2From http://www.cse.iitd.ernet.in/˜anup/dip/assgn2/segmentation/

9
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(a)

(b)

Figure 2.3: Split and merge algorithm. (a) is the split process and (b) is the merge
process.

10
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(a) (b)

Figure 2.4: Seeded region growing segmentation. (a) is the source image and (b) is the
segmented image.

choice of homogeneity criterion is crucial for the success of this algorithm. A homogeneity

criterion proposed by Adams et al. [2] is the difference between the pixel intensity value

and the mean intensity value of the region,

δ(x) = |g(x) − mean[g(y)]|, y ∈ Ai (2.1.1)

where g(x) is the gray value of the image point x, and x is an unallocated pixel which

is adjacent to region Ai. Yu et al. proposed another homogeneity criterion in [47]. The

idea is to consider the weighted sum of the contrast between the region and the pixel,

and the gradient information.

The seed pixel can be selected either manually or by certain automatic procedures.

Converging Square algorithm [28] was proposed in [2] to automatically find the seed.

Converging Square algorithm, as shown in Figure 2.5, divides a square image of size

n × n into four (n − 1) × (n − 1) square images, and choose the square image with the

maximum intensity density for the next division cycle. This process continues recursively

until a seed point is found.

Region growing algorithms are fast, but may produce undesired “segments” if the

images contain much noise. It is also inappropriate for highly textured images.

Watershed

The watershed algorithm [5] is another region-based image segmentation approach. It was

originally proposed by Beucher et al. It is a popular segmentation method coming from

11
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S1 S2

S3 S4

S1   S2

S3   S4

Figure 2.5: Converging Square. Each square of width k is divided into 4 overlapping
squares of width k − 1.

(a) (b)

Figure 2.6: Watershed algorithm model. (a) is the source image and (b) is the topological
illustration. Regions with low intensities in (a) correspond to the catchment basins in
(b), and the region between is the watershed line.

the field of mathematical morphology. According to Serra [34], the watershed algorithm

can be intuitively thought as a landscape or topographic relief which is flooded by water,

and watersheds are the dividing lines of the domains of attraction of rain falling over the

region. The height of each point represents its intensity value, as can be seen in Figure

2.63. The input of the the watershed transform, generally, is the gradient of the original

image, so that the catchment basin boundaries are located at high gradient points [31].

The watershed transform has good properties that make it useful for many different

image segmentation applications: it is simple and intuitive. It can also be parallelized

[31], and always produces a complete division of the image. However, it has several major

drawbacks. It can result in over-segmentation, i.e., the segmentation result contains

3From http://www.mathworks.com/company/newsletters/news notes/win02/watershed.html

12
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(a) (b)

Figure 2.7: Over-segmentation of watershed algorithm, (a) source image and (b) over-
segmented image.

many small regions. The effect of over-segmentation can be seen in Figure 2.74. It is also

sensitivity to noise. Moreover, watershed algorithm is poor at detecting thin structures

and structures with low signal-to-noise ratio [18].

To improve the algorithm, Najman et al. proposed to use morphological operations

to reduce over-segmentation [27]. Grau et al. [18] encoded prior information into the

algorithm. Part of its cost function is changed from the gradient between two pixels

to the difference of posterior probabilities of two pixels given their intensity as prior

information. The authors assume normal distributions for the objects in the image, so

that Markov Random Fields (MRF) model can be deployed.

2.1.3 Edge-based Segmentation

Edge-based segmentation algorithms use edge detectors to find edges in the image.

Traditional Sobel edge detector [17] contains a pair of 3 by 3 convolution kernels, as

shown in Figure 2.8. It calculates the first order derivatives (gradient) along x and y

directions of the original 2-D image. The magnitude of the resulting edge is the gradient

of the original image.

Instead of computing first order derivatives, the Laplacian computes the second order

derivatives of the image. Usually, the Laplacian is not used directly on the original image,

since it is sensitive to noise. It is often combined with a Gaussian smoothing kernel, which

4From http://www.icaen.uiowa.edu/˜dip/LECTURE/Segmentation3.html

13
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(a) (b)

Figure 2.8: Sobel kernel pair, (a) kernel x and (b) kernel y.

(a) (b)

Figure 2.9: Canny edge detection result, (a) source image and (b) edge map obtained by
Canny edge detector.

is referred to as the Laplacian of Gaussian function.

However, edges found by these operators are normally disjoint, and cannot completely

represent the boundary of an object. Canny edge detector [8] uses a double-thresholding

technique. A higher threshold t1 is used to detect edges with strict criterion, and a lower

threshold t2 is to generate a map which can help to link the edges detected in the former

step. An example of Canny edge detection result is shown in Figure 2.9.

Edge-based image segmentation algorithms are usually with low computational com-

plexity, but they tend to find edges which are irrelevant to the object, and the contours

of the object are often disjointed, i.e. closed and connected regions are less likely to be

obtained by edge-based algorithms.

14
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2.1.4 Graph-based Segmentation

Graph-based approach is relatively new in the area of image segmentation. The common

theme underlying this approach is the formation of a weighted graph, where each vertex

corresponds to an image pixel or region and each edge is weighted with respect to some

measure. A graph G = (V,E) can be partitioned into two disjoint sets, namely A and

B, where A ∪ B = V and A ∩ B = ∅. Graph-based algorithms try to minimize certain

cost functions, such as a cut,

cut(A, B) =
∑

u∈A,v∈B

w(u, v). (2.1.2)

Wu et al. proposed the minimum cut in their workspace [45]. A graph is partitioned

into k sub-graphs such that the maximum cut across the subgroups is minimized. How-

ever, based on this cutting criterion, their algorithm tend to cut small sets of isolated

nodes in the graph, since the value of Eqn. 2.1.2 is, to some extent, proportional to the

size of the sub-graph. To avoid this bias, Shi et al. [38] proposed the normalized cut with

a new cost function Ncut,

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
(2.1.3)

where assoc(X, V ) =
∑

u∈X,t∈V w(u, t) is the total connection from nodes in X to all

nodes in the graph. In [43], Wang et al. further improved the graph cut algorithm, and

proposed a new cost function for general image segmentation, namely Ratio Cut. This

scheme is to find the minimal ratio of the corresponding sums of two different weights

associated with edges along the cut boundary in an undirected graph.

Rcut(A, B) =
c1(A, B)

c2(A, B)
(2.1.4)

where c1(A, B) is the first boundary cost that stands for the homogeneity of A and B,

c2(A, B) is the second boundary cost that stands for the number of edges between A and

B. A polynomial-time algorithm is also proposed.

Compared to region-based segmentation algorithms, graph-based segmentation algo-

rithms tend to find the global optimal solutions, while region-based algorithms are based

on greedy search. Since graph-based algorithms try to find the global optimum, it is

computationally expensive. The Over segmentation is also one of the problems.

15
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2.1.5 Classification-based Segmentation

Ren et al. proposed to train a classifier to classify “good segmentation” and “bad segmen-

tation” [30]. The criteria used for the classification include texture similarity, brightness

similarity, contour energy, curvilinear continuity, etc. A preprocessing step which groups

pixels into “superpixels” is used to reduce the dimension of the image. This step is

actually done by applying the normalized cut algorithm [38]. Human segmented nat-

ural images are used as positive examples, while negative examples are constructed by

randomly matching human segmentations and images.

Fuzzy reasoning methods are proposed to detect the cardiac boundary automatically

[14, 6]. The Laplacian-of-Gaussian approach is employed to obtain the zero-crossing

area of the original image. From those zero-crossing areas, fuzzy set is used to describe

the direction and transition of intensity values. Fuzzy rules come from global knowledge

presented by medical experts. A rough boundary region is obtained after fuzzy reasoning,

where a search operation is followed to get the boundary.

Toulson et al. proposed to use a Back Propagation neural network in image seg-

mentation [42]. The neural network is trained on the set of manual segmented samples.

Therefore, contextual rules can be learned and spatial consistency of the segmentation

can be improved. Also, expert knowledge can be incorporated into the segmentation

where boundaries may not be justifiable based on intensity information.

Classification-based segmentation algorithm requires training. The learning parame-

ters are usually set in a trail and error way, which is subjective. The accuracy of this

algorithm largely depends on the selected training samples. Also, classification-based

segmentation algorithm is more tedious to use.

2.1.6 Comparison

A comparison of generic segmentation algorithms mentioned above is made according

to the information used, performance, computational complexity, whether they are sen-

sitive to noise, whether manual initialization is required, whether training is required

and whether they are easy to use. The results are shown in Table 2.1. Thresholding

algorithm uses the information based on single pixel, while other algorithms mainly use

16
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Table 2.1: Comparison of generic segmentation algorithms.

Thresholding Region- Edge- Graph- Classification-
based based based based

Information pixel patch patch patch patch
Performance depend on over disjoint over depend on

intensity segmentation edges segmentation training
distribution set

Complexity O(n) O(n) O(n) O(n logn) O(n)
Manual Init no yes no no no
Training no no no no yes
Easy to Use yes yes yes yes no

information based on a local pixel patch. The performance of thresholding algorithm is

depend on the intensity distribution of images. Edge-based algorithm tend to produce

disjoint edges. In addition, all the algorithms have over-segmentation tendency. The

computational complexities of thresholding, region-based and edge-based algorithms are

roughly linear, while those of the other two algorithms are higher. All the algorithms

are sensitive to noise. Region-based algorithm usually requires manual initialization.

Classification-based algorithm requires training. Most of the algorithms are easy to use

except classification-based algorithm.

The boundaries found by generic segmentation algorithms such as edge detectors

do not necessarily correspond to the boundaries of objects. The limitations of edge

detectors are due to their reliance on the information coming from a local neighborhood of

pixels in the original image. This ignores both model-based information and higher order

organization of the image. However, Using models tends to result in a more consistent

solution overall.

2.2 Widely Used Segmentation Algorithms for Med-

ical Images

In this section, we review some specific segmentation algorithms that are widely used for

medical images, including the active contour model, level set, active shape model, other

free-form deformable model and atlas-based segmentation algorithm.
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2.2.1 Active Contour Models

The Snake [22] model was first proposed by Kass et al.. The basic snake model represents

a contour v parametrically as v = v(s) = (x(s), y(s)), s ∈ [0, 1]. It is a controlled

continuity spline which can deform to match any shape, under the influence of image

forces and external constraint forces. The internal spline forces serve to impose a piecewise

smoothness constraint. The image features attract the snake to the salient image features

such as lines, edges and terminations. The total energy of the snake can be written as

E∗

snake =

∫

1

0

Esnake(v(s)) =

∫

1

0

[Eint(v(s)) + Eimage(v(s)) + Econ(v(s))] ds (2.2.1)

where Eint represents the internal energy of the spline, Eimage represents the image forces,

and Econ represents the external constraint forces. The internal energy can be written as

Eint = (α(s)|vs(s)|
2 + β(s)|vsss|

2)/2 (2.2.2)

The first order term represents the stretching force of the snake while the second order

term represents its bending force. The image energy can be written as

Eimage = wlineEline + wedgeEedge + wtermEterm (2.2.3)

The external constraint energy Econ has many forms, such as spring energy and repulsion

force.

The snake algorithm will iteratively deform the model and try to find the configuration

with minimum total energy E∗

snake, which hopefully corresponds to the best fit.

Atkins et al. [3] used the active contour for brain segmentation. The input images

are first smoothed, and an initial mask that determines the brain boundary. Final seg-

mentation is then performed by the snake model.

The values of α and β in the original snake model are chosen subjectively. Gao et

al. [15] proposed a solution to specify their values in automatic extraction of the liver

boundary, several preprocessing steps are first performed on the original images. The

preprocessing steps include i) thresholding to discard pixels whose gray levels are out of

the range for the liver; ii) remove the texture and noise; iii) extract and link the edges by

some edge linker; iv) segmentation using a modified version of split-and-merge; v) guess

the initial liver contour. After the preprocessing, the liver boundary is refined by snake
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Figure 2.10: Gradient vector flow [46]. Left: deformation of snake with GVF forces.
Middle: GVF external forces. Right: close-up within the boundary concavity.

algorithm. In the internal energy term Eint, the value of α is proportional to the distance

of adjacent control points, while βi is inversely proportional to the curvature value.

Snake is a good model for many applications, including edge detection, shape model-

ing, segmentation and motion tracking. However, it has some intrinsic problems. Firstly,

the result of snake algorithm is sensitive to the initial configuration of the contour. Sec-

ondly, it cannot converge well to concave features. To solve theses two problems, a new

external force, gradient vector flow (GVF), was proposed by Xu et al. [46]. Define

v(x, y) = [u(x, y), v(x, y)], and the energy function in GVF is

ε =

∫∫

µ(u2

x + u2

y + v2

x + v2

y) + |∇f |2|v −∇f |2 dx dy (2.2.4)

where ∇f is the gradient of the edge map f(x, y), which is derived from the original

image. µ is a regularization parameter governing the trade-off between the first term and

the second term. When |∇f | is small, the energy is dominated by the first term, yielding

a slowly varying field. When |∇f | is large the second term dominates the equation, which

is minimized by setting v = ∇f . As shown in Figure 2.10, at point A, there is no edge

value. The original snake algorithm cannot “pull” the contour into the concavity of the

U-shape. GVF can propagate the edge forces outward, and at point A, there is still some

external forces that can “pull” the contour into the concavity.

GVF is less sensitive to the initial position of the contour than the original snake

model. However, it is still requires a “good” initialization. In addition, it is also sensitive

to noise, which may attract the snake to undesired locations.
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2.2.2 Level Set

Snake-based deformable model cannot handle applications which require topology changes.

Sethian proposed a level set [35] approach to deal with this problem in one higher di-

mensional space. Let Γ be an initial closed curve in 2-D. Define a 3-D level set function

φ(x(t), t), where x(t) is the path of a point on the propagating front.

Γ = φ(x(0), 0) (2.2.5)

An example 3-D level set function is shown in Figure 2.11. Moving φ along t can yield

2-D contour at different time t, and the solution of equation φ = 0 is the desired contour..

The change of φ over time t is derived as follows.

Based on the chain rule,

φt +

N
∑

i=1

φxi
xit = 0 (2.2.6)

where xi is the ith component of x. The summation term is

N
∑

i=1

φxi
xit = (φx1

, φx2
, . . . , φxN

)·(x1t
, x2t

, . . . , xNt
) = |∇φ||x(t)|cos(∇̂φ,x(t)) = F (x(t))|∇φ|

(2.2.7)

So, a Hamilton-Jacobi “type” equation

φt + F |∇φ| = 0 (2.2.8)

can be obtained, where F is the force which gives the speed of Γ in its normal direction.

The major advantage of the level set approach is that the level set function φ remains

a function while the hyper-surface may change topology, break, merge and form sharp

corners [24]. However, it generally cannot maintain shape information.

2.2.3 Active Shape Model (ASM)

The objects in medical images, such as organs, cells, and other biological structures, are

expected to have a tendency towards some average shape with a continuum of possibilities

near that average shape. This tendency can be taken advantage of by its expression in

an appropriately designed shape model [40].
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(a) (b)

Figure 2.11: Level set. (a) Two separate initial fronts (b) The interface topology has
changed, yielding a single curve as the zero level set.

Cootes et al. [12] proposed to use Active Shape Models, a statistical model, to locate

structures in medical images. Given the training images, a covariance matrix is computed

first. The algorithm then applies Principal Component Analysis (PCA) to identify the

eigen-shapes. An arbitrary shape can be represented by the linear combination of these

shapes with different coefficients. Therefore, the model can be deformed by changing

these coefficients. An initial guess can be obtained by Hill’s algorithm [20]. Then an

optimization algorithm such as gradient descent can be used to find the optimal solution.

Based on Cootes’ model, Wang et al. [44] proposed to use smoothness covariance ma-

trix, instead of the original covariance matrix to remove part of the dependency between

points. Thus the shape can vary more freely. A Bayesian formulation based on prior

knowledge and the edge information of the input image is employed to bias the searching

process in a certain range for the object boundary. Similar work was done by Gleason et

al. [16] in detecting polycystic kidney disease in CT images.

One of the disadvantages of this algorithm is that it require a lot of training samples.

Also, eigen space with small number of eigen shapes may not generate the desired shape,

while eigen space with large number of eigen shapes may incur high complexity in finding

the optimal solution.

2.2.4 Other Free-form Deformable Models

Some other free-form deformable models are also proposed in the literature, which can

be categorized into parametric models [40, 21, 25] and non-parametric models [19].
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Parametric models have the advantage of capturing the overall shape in a small num-

ber of parameters. Therefore the optimization of a match measure between data and

model can occur in a low dimensional space.

Staib et al. [40] proposed a parametric model based on elliptic Fourier decomposition

to enhance the segmentation of natural objects found in biomedical images. The boundary

template is obtained by manual segmentation of a set of exemplar images. An object

function which is a measure of fit between the boundary model and object boundary is

maximized using maximum a posteriori method.

Mattes et al. [25] proposed to use B-splines in the local deformation because of their

computational efficiency. Metaxas et al. [26] proposed elastically adaptive deformable

models based on superellipsoid.

However, parametric models may not have enough parameters to represent the details

of the shape such as high curvature part.

Non-parametric models use all the pixels on the contour, which can model arbitrary

shapes. Grzeszczuk et al. [19] proposed some stochastical deformation algorithms, namely

“Raindrop” and “Bike Trail”, which can deform the contour stochastically. For each

configuration of the contour, its energy is computed. To find the global minimum energy

of the contour, simulated annealing is introduced. However, the search space for optimal

solution is incredibly large.

2.2.5 Atlas-Based Segmentation

Atlas-based segmentation has become a standard paradigm for exploiting prior knowledge

in medical image segmentation [13]. The idea is to construct an atlas based on some prior

information, and use this atlas to aid the segmentation of other similar structures in the

low contrast medical images. The prior information can be the contour or surface of an

object [11, 1, 29] or some density map [41]. Generally, the process of atlas-based segmen-

tation is that the atlas is first placed near to the desired contour by linear or non-linear

global transformation, and then registered to the input images by local transformation

according to some measure of fit.

Broadly speaking, the construction of the atlas is based on two kinds of prior infor-
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mation, either a single object or multiple objects.

For atlas construction based on a single object, the object itself is treated as the atlas.

However, such atlas may have several problems. Firstly, the selection of a single object

as the atlas is arbitrary, and the selected object may not be a typical one. Secondly, the

use of atlas based on a single object does not contain any information of variability, so it

is impossible to determine whether a transformed shape is an acceptable shape.

To solve these problems, probabilistic atlas is proposed in [11, 1, 29], which is the

spatial distribution of probabilities that a pixel belongs to one organ [29]. The distribution

of probabilities can be obtained from a set of sample images as the prior information. The

active shape model [12], is actually a probabilistic atlas. The disadvantage of probabilistic

atlas is that it requires a lot of training samples to model the probability. Moreover, the

probabilistic atlas can be either a uni-model or multi-model. The uni-model has the

limitation to model complex probability distribution; while the multi-model itself is very

complicated.

2.2.6 Comparison

As shown in Table 2.2, a comparison of different medical image segmentation algorithms is

also conducted similar to that in Section 2.1.6. Most of the algorithms are based on curve

information, while atlas-based algorithms also employ global image information. The

computational complexity of all the algorithms are high. Apart from level set algorithm,

they can not handle topology change generally. They are all sensitive to noise, while

ASM and atlas-based algorithms may be affected less by noise. They are all sensitive

to the initial configuration of the contours. Generally, all the algorithms require manual

initialization, while atlas-based segmentation algorithm requires less manual initialization

work. ASM and atlas-based algorithms also require training.

2.3 Evaluation

To evaluate medical image segmentation algorithms, the only information available is

boundaries outlined by multiple expert observers, the average of which is used as the

ground truth data.
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Table 2.2: Comparison between specific segmentation algorithms for medical images.

Snake GVF Level ASM Other Free-form Atlas
Set Parametric Non-parametric

Information Curve Global
Handle
Topology no no yes no no no no
Change
Sensitive yes yes yes relatively yes yes relatively
to Noise low low
Training no no no yes no no yes

Similarity Index is first proposed by Zijdenbos et al. [48]. The similarity of two

segmentations A1 and A2 can be represented by

S = 2
|A1 ∩ A2|

|A1| + |A2|
(2.3.1)

This similarity index is sensitive to both size and location of the segmentations.

Chalana et al. [9] proposed a methodology to evaluate medical image segmentation

algorithms against the ground truth. Error metric used in Chalana’s methodology is the

Distance to the Closest Point (DCP). Let A = {a1, a2, ..., am} and B = {b1, b2, ..., bm}

represent two curves, where ai and bi are ordered pair of x and y coordinates of a point

on the curve. DCP for ai to the curve B is

d(ai, B) = min
j

‖ bj − ai ‖ (2.3.2)
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Chapter 3

Possible Research Topics

Based on the literature review in Chapter 2, atlas-based approach is the most prosperous

one in medical image segmentation. Two possible research topics on atlas-based approach

are proposed here.

3.1 New Form of Atlas-based Segmentation

Atlas-based algorithm, especially probabilistic atlas, is a powerful approach in medical

image segmentation. It can not only provide an average model given the training sample,

but also provide the distribution of the model, which can limit the program in a certain

range to find the optimal solution. However, it is such limitation that will constrain atlas-

based algorithm itself. Therefore atlas-based algorithm generally can not handle large

shape changes of the body parts caused by some diseases, which are not be represented

by the training sample. So one possible research topic is to combine the probabilistic

approach with other approaches such as snake and level set, etc., which yield more flexible

deformation while still under the guidance of the atlas.

3.2 Atlas Building

Atlas-based algorithm is based on the deformation of the atlas. The quality of atlas will

definitely affect the performance of the algorithm. So a good atlas is required. Most

existing literatures put their weight on explaining how the atlas can be used, rather than
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how to build an atlas. This can be a problem when multiple prior training samples are

available. There are some papers which propose to calculate the mean and the covariance

of the training samples as the atlas. However, if the training samples themselves contain

complex topology and large variances, how to find a mathematically “sound” mean is a big

problem. Also, the atlas is generally obtained by manual segmentation of large number

of sample images, which has all the disadvantages of manual segmentation mentioned in

Chapter 1, such as quite time-consuming, subjective, inter- and intra-expert variability,

etc. So, the second possible research topic is to find an good learning approach to build

the atlas from a set of training samples, and with less manual work.
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Chapter 4

Preliminary Work

In this chapter, we describe some preliminary work which has been done using atlas-

based segmentation. The objective is to implement a robust and automated method of

registering 2D deformable models to the 2D CT images of human body parts. The body

parts included in this work are liver, stomach, spleen and thoracic aorta.

4.1 Problem Definition

The problem of automatic segmentation of the soft tissues in CT images can be formu-

lated as a problem to deform the reference model contour and register it to the edges of

corresponding soft tissues in the target CT images.

• The inputs of the problem: M = {pi} is the control points located on the reference

model contour, S is the intensity difference distribution along the normal of contour

represented by pi in the reference image, S ′ is the intensity difference distribution

along the normal of the deformed model contour represented by M ′ = {p′i}, C =

{qj} denotes the set of edge points in the image, which include edge points along

the contour of the soft tissue and possibly other noise points, such as edge points

along the contour of other soft tissues, noise edges, etc. Also, some points on the

soft tissue contour in the image may not be in C because they are not prominent

edge points.

• The output of the problem: M ′ = {p′i} is the extracted contour on the target image,
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which is represented by a deformed version of M .

We assume that the input CT images always contain the full view of cross section image

of the abdomen, and the anatomical structures between different CT images do not differ

too much. We also assume that the background of the input CT images (outside the

body contour) is mainly black.

The objective of the registration problem is to find the deformation D : R2 → R2,

affine transformation T : R2 → R2 and correspondence function f : R2 → R2 such that

the total error E can be minimized.

E =
1

|m|

[

∑

pi∈m

||D(T (pi)) − f(pi)||
2 + α

∑

pi∈m

||S(pi) − S ′(D(T (pi)))||
2

]

(4.1.1)

m ⊆ M s.t. ||D(T (pi))− f(pi)|| < Γ, for an appropriate predefined threshold Γ, and α is

a constant.

4.2 Algorithm

The main idea is to transform the model contours and make them close to the real

contours in the input CT images. These initial contours are then treated as an input to

the standard GVF snake program and refined by the program.

The transformation is taken in two steps, namely global transformation and local

transformation.

4.2.1 Global Transformation

In global transformation, we use a contour tracing algorithm to get the outer body contour

in the target image, which is part of M . We perform 2D-2D registration with unknown

correspondence between reference body contour and input body contour using Iterative

Closest Point algorithm. After the registration, its transformation matrix can be obtained

by solving a set of over-constrained linear equations. This transformation matrix is

then applied to the contours of inner body parts. The contours obtained after global

transformation are M1 = {M11, M12, M13, M14}, where M11, M12, M13, and M14 are
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(a) (b)

Figure 4.1: Global transformation. (a) The model image. (b) The target image. The
white contour is the model contour after global transformation.

corresponding to the contours of liver, stomach, spleen and thoracic aorta, respectively.

The results of global transformation are shown in Figure 4.1.

Global transformation, however, can only help to roughly place those contours, which

is normally far from the desired contours. A further step, local transformation, is used

to solve this problem.

4.2.2 Local Transformation

Compared to the global transformation mentioned above, local transformation is to trans-

form the body parts individually. In this work. we categorized the four body parts into

two groups based on their sizes and conduct different local transformation strategies

accordingly.

The first group includes liver, stomach and spleen, which are relatively large objects

in the input images. For these objects, we assume that the centroid of the contour after

global transformation is inside of the real body parts in the input images. For this group,

the idea is to iteratively transform the model contours and make them closer and closer

to the real body parts contours in the input images. To achieve this, several steps are
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(a)

(I0-I1)

(I5-I6)

(I4-I5)

(I3-I4)

(I2-I3)

(I1-I2)

(b)

Figure 4.2: Intensity difference distribution. (a) I0, I1, I2, I3, I4, I5 and I6 are intensity
values along the normal of the contour. (b) The intensity difference distribution is given
by substraction of the intensity values of neighboring pixels.

employed.

1. Move the model contour points M1i = {pij}(i = 1, 2, 3, 4) along the normal of the

contour within some search range to find a list of candidate edge points Lij in the

edge map of the input image.

2. Compute the intensity difference of the neighboring pixels along the normal of the

model contour in the reference image with the contour point pij at the center. The

intensity difference of the pixels gives intensity difference distribution (IDD). A

sample IDD with length 6 is shown in Figure 4.2.

3. For each point in Lij, compute IDD along the contour with the corresponding point

of pi in the input image at the center.

4. Compute the Euclidean distance between the IDD in the image and the IDD in

the input image of each candidate points in Lij, and select the point qij with the

minimum distance in Lij.

5. A verification step is also carried out by shooting rays from the centroid to the
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selected points qij. If the number of “black” or “white” points along the path

exceeds some threshold, the points are then discarded (the color of the body parts

is typically “gray” in CT images).

6. With the model contour points pij and their correspondence points qij selected

in the previous steps, a transformation matrix can be obtained by solving a set

of over-constrained linear equations. This matrix is used to transform the model

contour.

7. The square of Euclidean distances between transformed model contour points and

their correspondence points are computed and summed up as the error ei.

ei =
∑

j

||pij − qij||
2 (4.2.1)

8. Iteratively perform the previous steps until the error ei is small enough.

The second group includes thoracic aorta, which is significantly smaller then the body

parts in the first group. Therefore, the assumption we made for the first group does not

hold for it, which can be easily seen in Figure 4.3. Since the shapes of the thoracic aorta

in the different CT images are roughly circular with similar size, a circle with similar size

is used as the model contour. The center of the model circle is placed at the centroid

of the model thoracic aorta contour obtained after global transformation. The circle is

moved in a search window in the edge map and the Euclidean distance error between

model circle and edge points in the input images is computed. The position with the

minimum error is selected to place the circle.

The model contours after local transformation are shown in Figure 4.3.

4.2.3 GVF Snake

After all the transformations are done, the transformed model contours are fed into the

standard GVF snake program. The snake model is run to iteratively deform the model

to refine the model contour to better capture the input object contour.
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(a) (b)

Figure 4.3: Local transformation. (a) The white contours are iteratively transformed.
The white crosses are selected corresponding points in each iteration. (b) The result-
ing contours of local transformation, which will be fed to GVF snake program for the
refinement.

4.3 Results and Discussion

The final segmentation results are shown in Figure 4.4. More segmentation results are

shown in Figure 4.5. As a comparison, segmentation result without local transformation

is shown in Figure 4.6. The final contours are more or less attracted to the wrong places,

which are not desired.

A quantitative evaluation is also conducted. For the five input images given, the four

body parts in each images are manually segmented as the “ground truth” data. They

are compared with the results generated by the segmentation algorithm. Similarity Index

proposed by Zijdenbos et al. [48] is used to evaluate the algorithm’s performance. The

results are shown in Table 4.1.

As we may observe, the similarity indices of stomach in the input images are relatively

low. The reason is that the proposed algorithm excludes the hollow in the stomach, which

is included in the manually segmented stomach. The similarity indices of thoracic aorta

in the input images are also lower than liver and spleen, while perceptually, thoracic aorta
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Figure 4.4: Final result of input image 2. The liver, stomach spleen and thoracic aorta
are enclosed in white contours.

Table 4.1: Segmentation similarity index.

Liver Stomach Spleen Thoracic Aorta
Target Image 0 0.973 0.907 0.923 0.896
Target Image 1 0.968 0.874 0.921 0.888
Target Image 2 0.973 0.864 0.935 0.908
Target Image 3 0.962 0.839 0.946 0.886
Target Image 4 0.968 0.868 0.923 0.907

is well segmented. This may be due to the intrinsic property, which favors large objects

instead of small objects.

Some future improvement can be done by incorporating shape constraints or using

a better model (atlas). Shape constraint can prevent the contour being attracted to

some undesired edge. A better model which is similar to the input images requires less

initialization work and can attain better segmentation accuracy.
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(a) (b)

(c) (d)

Figure 4.5: More results of different input CT images. (a), (b), (c) and (d) are results
for input image 0, 1, 3 and 4, respectively. Livers, stomachs, spleens and thoracic aortae
are enclosed in white contours.
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Figure 4.6: Final result without local transformation. The red contour is supposed to
enclose the liver part. The yellow contour is supposed to enclose the stomach part. The
blue contour is supposed to enclose the spleen part. The green contour is supposed to
enclose the thoracic aorta part. But they are more or less attracted to the wrong edges.
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Chapter 5

Conclusions

In this paper, a thorough review of generic image segmentation approaches and the

approaches employed for medical image segmentation is presented.

The generic segmentation algorithms are categorized into five classes, namely thresh-

olding approaches[36, 7, 33, 37], region-based approaches [2, 10, 39, 47, 5, 31, 18, 27],

edge-based approaches [17, 8], graph-based approaches [45, 38, 43] and classification-

based approaches [6, 30, 14]. Their algorithms are analyzed. A comparison shows that

generic segmentation algorithms are based on either pixel information or local patch in-

formation. Their computational complexities are relatively low. They are usually easy

to use. However, they are all sensitive to noise. They tend to over segment the images.

Moreover, the segmentation results may not correspond to the desired object.

The medical segmentation approaches are categorized into two classes, namely de-

formable model approaches and atlas-based approaches. The deformable model ap-

proaches contain numerous models such as active contour model (snake) [22, 3, 15], gra-

dient vector flow [46], level set [35, 24], active shape model [20, 12, 44, 16] and other free-

form models [40, 21, 25, 19, 26]. The deformable models are the most popular approaches

currently used in medical image segmentation. Atlas-based approaches [11, 13, 29, 41, 1]

are prosperous for its ability to incorporate prior information. These medical image seg-

mentation approaches have the advantage of generating continuous contours. However,

they are usually computationally expensive. They are also sensitive to noise. Snake-based

algorithms are easily fooled by the edges produced by noise. In addition, most of them

are sensitive to the initial configurations of the contours.
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The review shows that each of the existing methods, by itself, cannot solve the seg-

mentation problem defined in Chapter 1. They must be combined together to form a

reasonable solution. Even within each approach itself, it also incorporates some other

approaches. For instance, the atlas-based approaches incorporate deformable models to

deform the atlas, the deformable model approaches use the edge/region information in

the images etc.

The review shows atlas-based segmentation algorithm is prosperous. Besides the

advantages of other medical segmentation approaches, it can also provide rough initial

configurations of the contours. It can also incorporate probability distribution of the

contours based on a series of training data. However, atlas-based approach has the

assumption that the model image and input images should be similar. Some possible

research topics on atlas-based segmentation are proposed, either to improve the approach

itself, or to find some ways to build a “good” model.

A preliminary work is presented in this paper, which is mainly based on atlas-based

segmentation. The proposed algorithm tries to initialize the atlas contours by global

transformation and local transformation, and feeds the transformed contours into the

standard GVF snake program to refine the contour. The results show that atlas-based

segmentation approach has at least the potential to solve the segmentation problem given

that the model image and input image are similar.
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Gröller, and Dominik Fleischmann. 3d watershed transform combined with a prob-

abilistic atlas for medical image segmentation. In MIT 2003, pages

[42] D. L. Toulson and J. F. Boyce. Segmentation of MR image using neural nets. In

Image and Vision Computing, volume 10, pages 324–328, 1992.

[43] Song Wang and Jeffrey Mark Siskind. Image segmentation with ratio cut. IEEE

Transcations on Pattern Analysis and Machine Intelligence, 25(6):675–690, June

2003.

[44] Yongmei Wang and Lawrence H. Staib. Boundary finding with correspondence using

statistical shape models. In Computer Vision and Pattern Recognition, pages 338–

345, June 1998.

[45] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data clus-

tering: Thoery and its application to image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 15(11):1101–1113, November 1993.

[46] Chenyang Xu and Jerry L. Prince. Snakes, shapes, and gradient vector flow. IEEE

Transaction on Image Processing, 7(3), March 1998.
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