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Thesis Proposal ABSTRACT

Abstract

Medical image segmentation, as an application of image segmentation, is to extract

anatomical structures from medical images. In this thesis proposal, existing methods

for medical image segmentation are reviewed. According to the review, segmentation of

multiple bone structures in complex x-ray images is not well studied. This leads to the

proposed research topic: segmentation of bone structures in x-ray images. Atlas-based

segmentation is a promising approach for solving such a complex segmentation problem.

Preliminary work on atlas-based segmentation of CT and x-ray images suggests that this

approach can provide a robust and accurate method for automatic segmentation of x-ray

images.
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Chapter 1

Introduction

1.1 Motivation

There exist many types of x-ray images, such as normal x-ray images, angiograms, x-ray

microscopic images, mammography images and fluroscopic images, etc. Certain types

of x-ray images, such as angiograms, are obtained by inserting contrast agent into the

patient’s blood to enhance the contrast between the blood vessels and their neighboring

tissues. Normal x-ray images of the bone are the most commonly used imaging modality

for doctors to diagnose and treat bone diseases. Some examples of the use of x-ray images

are as follows:

• Fracture diagnosis and treatment. X-ray images are most frequently used in fracture

diagnosis because it is the fastest and easiest way for the doctors to study the injuries

of bones and joints. Doctors usually use x-ray images to determine whether a

fracture exists, and the location of the fracture. In the recovery process, doctors also

use x-ray images to determine whether the injured bones and joints have recovered.

• Evaluation of skeletal maturation. X-ray images are used to determine the physio-

logical age and growth potential, and to predict adult stature.

• Bone densitometry. Bone densitometry measures the calcium content in the bones.

In general, people with bone mineral densities significantly lower than the normal

level are more likely to break a bone. Bone densitometry does not indicate whether

bone fractures exist or not, but can predict the risk of fracture occurrence.

1
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Figure 1.1: Hip replacement. The patient’s right hip (on the left in the photograph) has
been replaced by a metal implant (http://en.wikipedia.org/wiki/Hip_replacement).

• Hip replacement. Hip replacement is a medical procedure in which the hip joint is

replaced with a metal implant, and the hip socket is replaced with a plastic or a

metal and plastic cup. Hip replacement surgery requires x-ray images of the hip.

In all the medical applications highlighted above, segmentation of bones in x-ray images

is an important step in computer-aided diagnosis, surgery and treatment.

There are three general approaches for medical image segmentation, namely, man-

ual segmentation, semi-automatic segmentation and automatic segmentation. They all

have their pros and cons. Manual segmentation by domain experts is the most accu-

rate but time-consuming. Semi-automatic segmentation requires the user to provide a

small amount of inputs to facilitate accurate segmentation. Automatic segmentation does

not require any user input and, thus, is much more difficult to obtain accurate results.

Nevertheless, in many applications that involve a large number of images, it is the only

practically feasible approach. Therefore, the main focus of this research is on automatic

segmentation.

2
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1.2 Organization of the Paper

The rest of this paper is organized as follows. Chapter 2 includes a literature review

covering some existing medical image segmentation algorithms and their strengths and

weaknesses. Based on the literature review, the research topic is proposed in Chapter 3.

Some preliminary research and the experimental results are described in Chapter 4 and

Chapter 5 concludes the paper.

3



Chapter 2

Literature Review

This review begins with general medical image segmentation methods (Section 2.1), which

usually cannot be used alone to segment complex medical images. Next, a more advanced

approach called the atlas-based approach that can incorporate domain knowledge is re-

viewed (Section 2.2). Finally, existing methods for the segmentation of x-ray images are

reviewed (Section 2.3).

2.1 General Medical Image Segmentation Methods

General medical image segmentation methods can be classified into the following cate-

gories [1, 2]: thresholding, edge-based, region-based, classification-based, graph-based and

deformable model.

2.1.1 Thresholding

Thresholding [3] is one of the basic segmentation techniques. Given an image I, thresh-

olding method tries to find a threshold t such that pixels with intensity values greater

than or equal to t are categorized into group 1, and the rest of the pixels into group 2.

Thresholding requires that the intensity of the image has a bimodal distribution. The

algorithm can perform well on simple images with bimodal intensity distribution (Figure

2.1). However, most of the medical images do not have bimodal distribution of inten-

sity. In this case, thresholding result cannot correctly partition the images into various

4
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Figure 2.1: Thresholding of image with bimodal intensity distribution, (A) Input image.
(B) Intensity histogram of (A). (C) Result of thresholding at t = 127. (D) Outlines of
the white cells after applying a 3 × 3 Laplacian to (C) (from [2]).

anatomical structures (Figure 2.2).

Uneven illumination is another factor that affects the performance of thresholding.

Adaptive thresholding [4] handles this problem by subdividing an image into multiple

sub-images, and applying different thresholds on the sub-images (Figure 2.3). The prob-

lem with adaptive thresholding is how to subdivide the image and how to estimate the

threshold for each sub-image.

In general, thresholding algorithms do not consider the spatial relationship between

pixels. Moreover, the segmentation result is quite sensitive to noise. Thresholding alone

is seldom used for medical image segmentation. Instead, it usually functions as an image

processing step as in [5].

5
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(a) (b) (c)

Figure 2.2: Thresholding of image with multi-modal intensity distribution. (a) Input
image. (b) Intensity histogram of (a). (c) Result of thresholding at t = 127.

(a) (b) (c)

Figure 2.3: Adaptive thresholding. (a) Input image with strong illumination gradient.
(b) Result of global thresholding at t = 80. (c) Adaptive thresholding using 140 × 140
window (from http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm).

2.1.2 Edge-based

Edge-based segmentation algorithms use edge detectors to find edges in the image. Tradi-

tional Sobel edge detector [4] uses a pair of 3-by-3 convolution kernels to compute the first

order derivatives (gradients) along the x- and y-directions of the 2-D image. Instead of

computing first order derivatives, the Laplacian computes the second order derivatives of

the image. Usually, the Laplacian is not applied directly on the image since it is sensitive

to noise. It is often combined with a Gaussian smoothing kernel, which is referred to as

the Laplacian of Gaussian function. Bomans et al. [6] used a 3-D extension of Laplacian

of Gaussian (LoG) for the segmentation of brain structures in 3-D MR images. Gosh-

tasby and Turner [5] used this operator to extract the ventricular endocardial boundary

in cardiac MR images.

6
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(a) (b)

Figure 2.4: Canny edge detection result. (a) Input image. (b) Edge map obtained by
Canny edge detector.

More advanced edge detectors have been proposed in the computer vision literature.

Canny edge detector [7] uses a double-thresholding technique. A higher threshold t1 is

used to detect edges with strict criterion, and a lower threshold t2 is used to generate a

map that helps to link the edges detected in the former step (Figure 2.4). Harris proposed

a combined corner and edge detector known as the Harris detector [8], which finds the

edges based on the eigenvalues of the Hessian matrix.

Edge-based image segmentation algorithms are sensitive to noise and tend to find

edges that are irrelevant to the real boundary of the object. Moreover, the edges extracted

by edge-based algorithms are disjoint and cannot completely represent the boundary of

an object. Additional processing is needed to connect them to form closed and connected

object regions.

2.1.3 Region-based

Typical region-based segmentation algorithms include region growing and watershed.

7
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A. Region Growing

Region growing algorithm begins with selecting n seed pixels. The seed pixel can be

selected either manually or by certain automatic procedures, e.g., converging square al-

gorithm [9] applied in [10]. Converging square algorithm recursively decomposes an n×n

square image into four (n−1)×(n−1) square images and chooses the one with maximum

intensity density. This procedure is repeated until a single point remains. Each seed pixel

i is regarded as a region Ai, i ∈ {1, 2, . . . , n}. The algorithm then adds neighboring pixels

to the regions with similar image features, thereby growing the regions. The choice of

homogeneity criterion is crucial for the success of the algorithm.

A homogeneity criterion proposed by Adams and Bischof [10] is the difference between

the pixel intensity and the mean intensity of the region. Yu et al. [11] proposed to use

the weighted sum of gradient information and the contrast between the region and the

pixel as the homogeneity criterion. Pohle and Toennies [12] proposed an adaptive region

growing algorithm that incorporated a homogeneity learning process instead of using a

fixed criterion.

Region growing algorithms are fast, but may produce undesired segments if the images

contain much noise (Figure 2.5). Furthermore, region-based algorithms will segment ob-

jects with inhomogeneous region into multiple sub-regions, resulting in over-segmentation.

B. Watershed

The watershed algorithm [13] is another region-based image segmentation approach orig-

inally proposed by Beucher and Lantuéjoul. It is a popular segmentation method coming

from the field of mathematical morphology. According to Serra [14], the watershed algo-

rithm can be intuitively thought of as a landscape or topographic relief that is flooded

by water. The height of the landscape at each point represents the pixel’s intensity.

Watersheds are the dividing lines of the catchment basins of rain falling over the regions

(Figure 2.6). The input of the watershed transform is the gradient of the image, so that

the catchment basin boundaries are located at high gradient points [15].

The watershed transform has good properties that make it useful for many image

segmentation applications. It is simple and intuitive. It can also be parallelized [15],

8
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(a) (b)

Figure 2.5: Seeded region growing segmentation. (a) A good kidney segmentation result.
(b) A bad segmentation result. Some regions are incorrectly merged together (from
http://www.via.cornell.edu/ece547/projects/g3/results.htm).

and always produces a complete division of the image. However, it has several major

drawbacks. It can result in over-segmentation (Figure 2.7) because each local minimum,

regardless of the size of the region, will form its own catchment basin. It is also sensi-

tivity to noise. Moreover, watershed algorithm is poor at detecting thin structures and

structures with low signal-to-noise ratio [16].

To improve the algorithm, Najman and Schmitt proposed to use morphological oper-

ations to reduce over-segmentation [17]. Grau et al. [16] encoded prior information into

the algorithm. Part of its cost function is changed from the gradient between two pix-

els to the difference of posterior probabilities of having an edge between two pixels given

their intensities as the prior information. Wegner et al. [18] proposed to perform a second

watershed transform on the mosaic image generated by the first watershed transform to

reduce over-segmentation.

2.1.4 Graph-based

Graph-based approach is relatively new in the area of image segmentation. The common

theme underlying this approach is the formation of a weighted graph, where each vertex

9
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(a) (b)

Figure 2.6: Model of the watershed algorithm. (a) The input image and (b) the topo-
logical illustration. Regions with low intensities in (a) correspond to the catchment
basins in (b), and the region with high intensity is the watershed line (from http:

//www.mathworks.com/company/newsletters/newsnotes/win02/watershed.html).

(a) (b)

Figure 2.7: Sample result of the watershed algorithm. Over-segmentation is clearly vis-
ible. (a) The input image. (b) The segmentation result (from http://www.itk.org/

HTML/WatershedSegmentationExample.html).

corresponds to an image pixel or region and each edge is weighted with respect to the

similarity between pixels or regions. A graph G = (V, E) can be partitioned into two

disjoint sets A and B, where A ∪ B = V and A ∩ B = ∅, by removing edges between

them. Graph-based algorithms try to minimize certain cost functions, such as a cut,

cut(A, B) =
∑

u∈A,v∈B

w(u, v) (2.1.1)

where w(u, v) is the edge weight between u and v.

Wu and Leahy proposed the minimum cut in [19]. A graph is partitioned into k

10
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sub-graphs such that the maximum cut across the subgroups is minimized. However,

based on this cutting criterion, their algorithm tends to cut the graph into small sets of

nodes because the value of Eqn. (2.1.1) is, to some extent, proportional to the size of the

sub-graphs. To avoid this bias, Shi and Malik [20] proposed the normalized cut with a

new cost function Ncut,

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
(2.1.2)

where assoc(X, V ) =
∑

u∈X,t∈V w(u, t) is the total connection from nodes in X to all

nodes in the graph. In [21], Wang and Siskind further improved the graph cut algorithm,

and proposed a new cost function for general image segmentation, namely Ratio Cut.

This scheme finds the minimal ratio of the corresponding sums of two different weights

associated with edges along the cut boundary in an undirected graph:

Rcut(A, B) =
c1(A, B)

c2(A, B)
(2.1.3)

where c1(A, B) is the first boundary cost that measures the homogeneity of A and B,

and c2(A, B) is the second boundary cost that measures the number of links between A

and B. A polynomial-time algorithm is also proposed.

Boykov and Jolly [22] used graph cuts for interactive organ segmentation, e.g., bone

removal from abdominal CT images. Their segmentation is initialized with some manual

“clicks” and “strokes” on object regions and backgrounds (Figure 2.8). These clicks and

strokes are regarded as seed points, which provide information such as hard constraints

for the segmentation, and intensity distributions for object and background. The infor-

mation is later integrated into the proposed graph cut cost function, and the cost function

is minimized when segmentation is done. Compared to region-based segmentation algo-

rithms, graph-based segmentation algorithms tend to find the global optimal solutions,

while region-based algorithms are based on greedy search. Since graph-based algorithms

try to find the global optimum, it is computationally expensive. Over-segmentation is

also one of the problems since it uses low-level features such as intensity and edges, which

are often corrupted by noise.

11
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Figure 2.8: Bone removal in a CT image using interactive graph cut [22]. The regions
marked by “O” and “B” are manually initialized as object and background respectively.
Bone segments are marked by horizontal lines.

2.1.5 Classification-based

Ren and Malik proposed to train a classifier to classify “good segmentation” and “bad

segmentation” [23]. The criteria used for the classification include texture similarity,

brightness similarity, contour energy, curvilinear continuity, etc. A preprocessing step

which groups pixels into “superpixels” is used to reduce the size of the image. This

step is actually done by applying the normalized cut algorithm [20]. Human segmented

natural images are used as positive examples, while negative examples are constructed

by randomly matching human segmentations and the images.

Fuzzy reasoning methods are proposed to detect the cardiac boundary automatically

[24, 25]. These methods begin with the application of the Laplacian-of-Gaussian to

obtain the zero-crossing areas of the image. High-level knowledge is usually represented in

linguistic form. For example, intensities are described as “dark”, “dim”, “medium bright”

or “bright”. Fuzzy sets are developed based on the fuzzy membership functions of these

linguistic categories (Figure 2.9). The fuzzy membership function is set empirically to

describe the range of possible intensity values. A rough boundary region is then obtained

12
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Figure 2.9: Fuzzy membership functions for linguistic descriptions dark, dim, medium-
bright and bright [25], c1–c4 are the intensity values at which the respective membership
function reaches its maximum.

from fuzzy reasoning, where a search operation is employed to obtain the final boundary.

Toulson and Boyce proposed to use a Back-Propagation neural network in image

segmentation [26]. The neural network is trained on the set of manually segmented

samples. Segmentation is performed pixel by pixel. The inputs to the neural network are

the class membership probabilities of the pixels from a neighborhood around the pixel

being classified. Therefore, contextual rules can be learned and spatial consistency of the

segmentation can be improved.

Classification-based segmentation algorithm requires training. The training param-

eters are usually set in a trial-and-error manner, which is subjective. The accuracy of

this algorithm largely depends on the selected training samples. Also, classification-based

segmentation algorithm is more tedious to use.

2.1.6 Deformable Model

Numerous deformable models have been proposed, and the most important ones are

discussed below.

13
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(a) (b)

Figure 2.10: Snake segmentation of bone [28]. (a) The initial contour (black curve). (b)
Segmentation result (black curve) (from http://www.cvc.uab.es/~petia/dmcourse.

htm).

A. Active Contour Models (Snake)

The snake model was first proposed by Kass et al. [27]. It is a controlled continuity spline

which can deform to match any shape under the influence of two kinds of forces. The

internal spline forces serve to impose a piecewise smoothness constraint. The external

forces (image features) attract the snake to the salient image features such as lines,

edges and terminations. The snake algorithm iteratively deforms the model and finds the

configuration with the minimum total energy, which hopefully corresponds to the best fit

of the snake to the object contour in the image (Figure 2.10).

Atkins and Mackiewich [28] used the active contour for brain segmentation. The input

image is first smoothed. Then, an initial mask that determines the brain boundary is

obtained by thresholding. Finally, segmentation is performed by the snake model.

Snake is a good model for many applications, including edge detection, shape model-

ing, segmentation and motion tracking, since it forms a smooth contour that corresponds

to the region boundary. However, it has some intrinsic problems. Firstly, the result of the

snake algorithm is sensitive to the initial configuration of the snake. Secondly, it cannot

converge well to concave parts of the regions.

14
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Figure 2.11: Gradient vector flow [29]. Left: deformation of snake with GVF forces.
Middle: GVF external forces. Right: close-up within the boundary concavity.

An analysis of the snake model shows that its image force, usually composed of image

intensity gradient, exists in a narrow region near the convex part of the object boundary.

A snake that falls in a region without image forces cannot be pulled towards the object

boundary. Snake with Gradient Vector Flow (GVF), proposed by Xu and Prince [29],

partially solved this problem by pre-computing the diffusion of the gradient vectors (gra-

dient vector flow) on the edge map (Figure 2.11). As a result, image forces exist even

near concave regions, which can pull the snake toward the desired object boundary. GVF

is less sensitive to the initial configuration of the contour than the original snake model.

However, it still requires a good initialization and can still be attracted to undesired

locations by noise.

B. Level Set

Snake-based deformable model cannot handle evolving object contours that require topo-

logical changes. For example, when two evolving contours merge into one contour (Figure

2.12), an algorithm that represents the contours by connected points needs to remove the

points inside the merged region. This is computationally expensive, especially for the

3-D case.

Sethian proposed a level set [30] approach to solve the above problem by embedding

the contour in a higher dimensional surface called the level set function. The contour is
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(a) (b)

Figure 2.12: Merging of contours [31]. (a) Two initially separate contours. (b) Two
contours are merged together.

exactly the intersection between the level set function and the x-y plane, and corresponds

to the boundary of the object to be segmented. For 2-D contour, the level set function

z = φ(x, y, t = 0) is represented as a 3-D surface, of which the height is the signed

distance from a point (x, y) to the contour in the x-y plane. This constructs an initial

configuration of the level set function φ. The contour is the zero level set of the level set

function, i.e., φ(x, y, t = 0) = 0.

The evolution of the contour is propelled by some force F . F may depend on many

factors, such as local geometric information and global properties of the contour. Once

the level set function is constructed, the evolution of the interface can be easily computed.

The level set function actually represents all possible states of the evolution of the contour,

which cannot be constructed in advance. To solve this chicken-and-egg problem, instead

of constructing the whole level set function directly, the evolving zero level set is computed

iteratively based on the force F .

The iterative algorithm needs to update only the level set function values near the

current object boundary. This leads to the narrow band method [30]. If the contour

propagates only in one direction, the fast marching algorithm [30] can be used.

The major advantage of the level set approach is that the level set function remains a

single function while the zero level set may change topology, break, merge and form sharp

corners [32]. However, it generally cannot maintain shape information, and is sensitive

to noise.

16



Thesis Proposal CHAPTER 2.

(a) (b) (c)

Figure 2.13: Level set segmentation of heart image [34]. (a) Initial contour (blue curve).
(b) Evolving contour. (c) Final contour.

Level set is quite popular in the literature of medical image segmentation, and quite

a number of improvements have been proposed. To deal with the noise problem, Droske

et al. proposed to incorporate curvature terms in the velocity function [33]. They also

proposed an adaptive grid to speed up the fast marching algorithm. To restrict the

evolution of the zero level set, Yang et al. proposed a Level Set Distribution model

(LSDM) [34], which is similar to the Point Distribution Model described in the next

section. The segmentation process is shown in Figure 2.13.

C. Active Shape/Appearance Model

Many objects in medical images, such as organs, cells, and other biological structures,

have a tendency towards some average shape. When a collection of shapes of the same

organ is available, standard statistical analysis can be applied. The active shape model

(ASM) [35] and the active appearance model (AAM) [36], proposed by Cootes et al., are

widely used when a set of training samples are available.

In ASM, a training shape is usually represented by a 2n-dimensional vector (x1, y1, x2,

y2, . . . , xn, yn) containing coordinates of points on the shape. The shape vector corre-

sponds to a point in a high-dimensional (2n-D) space called the eigen space. Thus,

ASM is also known as Point Distribution Model (PDM). Therefore, all the training sam-

ples form a point cloud in the eigen space. ASM applies Principal Component Analysis
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(a) (b)

Figure 2.14: Segmentation of cartilage by active shape model [38]. (a) Initial contour
(white curve). (b) Resultant contour after 14 iterations.

(PCA) on this point cloud to identify the eigenvectors (eigenshapes) that describe the

point cloud. An arbitrary shape can be represented by the linear combination of these

eigenshapes with different coefficients. A model can be deformed by changing these co-

efficients. An initial guess can be randomly generated as proposed by Hill [37]. Then, an

optimization algorithm such as genetic algorithm or direct searching in the eigen space

can be used to find the optimal solution. Segmentation of cartilage on MR images are

shown in Figure 2.14. In comparison, AAM incorporates not only shape information but

also gray level information, and improves the robustness of ASM.

Based on Cootes’ model, Wang and Staib [39] applied smoothness covariance matrix

to make the neighboring points on the shape correlated, i.e. the neighboring points on

the shape are more likely to move together. To bias the search process in a certain range,

a Bayesian formulation based on prior knowledge is proposed. The prior of shape and

pose parameters is modeled as a zero-mean Gaussian distribution. Similar work was done

by Gleason et al. [40] in detecting kidney disease in CT images.

The advantage of ASM and AAM is that the shape can be deformed in a more

controllable way compared to snake and level set method. One of the disadvantages of

these algorithms is that they require a lot of training samples to build a point distribution

in the high-dimensional eigen space. An eigen space with a small number of eigenshapes

may not be able to generate the desired shape, while an eigen space with a large number
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of eigenshapes may incur high complexity in finding the optimal solution.

2.1.7 Summary

General medical image segmentation algorithms can be evaluated according to the in-

formation used, performance, computational complexity, sensitivity to noise, manual

initialization, and training requirement. Thresholding algorithm uses the information

based on single pixel and does not take spatial information into account, whereas other

algorithms mainly use information based on a local patch or global information. The

segmentation result of thresholding algorithm highly depends on the intensity distribu-

tion of the images. Edge-based algorithm tend to produce disjoint edges. Region-based

algorithms require that the target objects to be segmented have homogeneous features.

Thresholding, region-based and graph-based algorithms generally have over-segmentation

tendency.

The computational complexities of thresholding, region-based and edge-based algo-

rithms are roughly linear, while those of the other two algorithms are higher, especially

for algorithms based on deformable models. Quite a number of numerical algorithms

have been proposed to speed up the deformable models, such as narrow band method

and fast marching method for level set.

All the algorithms are sensitive to noise, but deformable models include constraints

that make them less sensitive to noise. Region-based algorithm and deformable models

usually require manual initialization. Classification-based algorithm and active shape

and appearance models require training samples.

In general, thresholding, region/edge-based, graph-based and classification-based al-

gorithms can solve simple medical image segmentation problems. The target image is

usually noise free and of high contrast, and features of the target structures are quite

homogeneous. For complex medical image segmentation problems, deformable models

have more potentials.
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2.2 Atlas-based Segmentation Methods

An atlas is a model that contains domain information of anatomical parts. In practice,

an atlas is usually obtained by manually segmenting and labeling one or a set of n-

dimensional images containing the same anatomical parts. The basic idea of atlas-based

segmentation is to register the atlas to the input images and label the input images

according to the atlas.

Broadly speaking, existing methods use either a non-probabilistic atlas [41, 42, 43,

44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] or a probabilistic atlas

[16, 61, 62, 63, 64, 65, 66, 67]. In the probabilistic case, the probability of a voxel belonging

to certain tissue type [16, 64] or probabilistic shape in active shape model are used. The

representations of probability are often Gaussian [16, 64].

Atlas-based segmentation methods consist of two major stages, namely global align-

ment and local refinement. These two stages are discussed in more detail in the following

sections.

2.2.1 Global Alignment

The purpose of global alignment is to align the position, scale and rotation of the atlas

to the input image. “Global” means that each part of the atlas undergoes exactly the

same transformation, which includes scaling, rotation and translation.

Several transformation types, such as similarity transformation and affine transforma-

tion, are frequently applied. Affine transformation [42, 46, 47, 49, 50, 53, 54, 60, 62, 63]

has the highest Degrees of Freedom (DoF). It captures rotation, scaling, translation

and shearing. Similarity transformation [44, 48, 52, 68] includes rotation, scaling and

translation. These transformations are all linear transformations and have very low com-

putational complexity. Non-linear transformations (usually low-order polynomial) may

also be used [50], since they can capture more variation of the atlas, thus making the

global alignment more accurate. At the same time, their computational complexity is

relatively low. Rigid transformation is seldom used since it only captures rotation and

translation.

The transformation can be performed either manually or automatically. Semi-automatic
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methods are also proposed. Gansor et al. applied a manual approach which manipulates a

grid to match the atlas and input images [51]. Semi-automatic schemes normally include

a common procedure, which is manually selecting landmark points, and thus, establishing

correspondence between the atlas and the input images. The rest of this section reviews

the automatic methods.

Aboutanos et al. [41] applied morphological operations to segment the surface of

brains. Their algorithm erodes an initial model with a 2-D circular disk, which has 11

pixels in diameter. The algorithm is claimed to guarantee the placement of the model

inside the cortical area. However, this algorithm assumes that the organ in the atlas and

in the target image are very similar in position. It is very specific and cannot be easily

generalized. Especially when the initial model and the organ in the target image are

quite different, this algorithm will fail inevitably.

For the rest of the automatic methods, we further classify them into two groups.

One group actively searches for correspondence, and the other group does not search for

correspondence explicitly.

Iterative Closest Point (ICP) and optical flow-based algorithms belong to the first

group. When performing registration, for each (sampled) point on the atlas, ICP iter-

atively searches for the nearest point on the target as a possible correspondence, solves

a transformation matrix, and updates, i.e., transforms the atlas, until the sum-squared

difference between the atlas and the target is minimized. ICP can be regarded as a

geometric method. Optical flow-based algorithm, on the other hand, is a photometric

method. It borrows the idea from tracking, and treats the atlas and target image as

neighboring frames in a temporal motion sequence. In each iteration, the algorithm uses

optical flow to search for the correspondence between the atlas image and the target

image, and computes the displacement of each point in the image. A Gaussian filtering

step is often applied to smooth the displacements.

Optimization-based algorithms belong to the second group. The main framework

of optimization-based algorithms is to formulate a similarity or dissimilarity function

between the atlas and the target, and apply optimization algorithm to maximize or

minimize that function. The similarity or dissimilarity functions proposed can be sum of

squared differences between the intensities of corresponding voxels [44, 60, 68], chamfer
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Figure 2.15: Iterative corresponding point [49]. The white contours iteratively converge
to the actual boundary of the soft tissues. In each iteration, the algorithm searches for
corresponding points with most similar features.

distance [46, 47], correlation ratio [42, 54], or mutual information [48, 50, 52, 53, 62,

63]. The optimization algorithms applied include gradient descent, Levenberg-Marquardt,

simulated annealing, etc.

2.2.2 Local Refinement

The purpose of the local refinement is to align the atlas and the target as accurately as

possible. “Local” means that different parts of the atlas may undergo different transfor-

mations. Since accuracy is the main objective, the methods used in this stage have to

focus on the details of the atlas and the target image. Therefore, they are highly complex.

Local deformation and pixel classification are two major approaches used for the local

refinement stage.
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A. Local Deformation

Local deformation deforms the atlas locally and fits it to the target image accurately. A

number of methods have been proposed to solve the local deformation problem. Some

methods actively search for or guess the corresponding points in the target image. Thirion

[69] named such methods as attraction models, since the model is attracted by image

features and deformed to match the target image.

Ding et al. proposed an Iterative Corresponding Point algorithm [49], which belongs

to the attraction model. The proposed method is similar to the original ICP. Apart from

that, it uses intensity difference distribution (IDD) along the contour to find possible

correspondence. It computes IDD of each point along the contours in the atlas, and

searches for corresponding point in a small neighborhood in the target image that has

the most similar IDD. Once the correspondence is established, an affine transformation

matrix is computed to transform the atlas contours. The process discussed above is

repeated until convergence (Figure 2.15). Finally, the GVF snake is applied to extract

accurate object boundaries.

Diffusion-based algorithms such as demons algorithm [69] is very popular, and it is

used in [16, 42, 44, 46, 47, 48, 52, 68]. In the demons algorithm, the deformable model or

image diffuses through the fixed target image by the action of the effectors called demons

located on the object boundaries in the target image. Demons act locally to pull the

deformable models towards the target image.

Figure 2.16 shows a comparison between the attraction method and the diffusion

method during a registration process. For the attraction method, the points located on

the model contour are attracted by the closest points on the target contour. On the other

hand, for the diffusion method, the model is pulled into the target by the action of the

demons located on the target contour.

Demons algorithm has several variations based on the selection of the demons’ po-

sitions, the types of deformations, and the forces of the demons. In the most popular

variation, all pixels in the target image are selected as the demons. For each demon, a

displacement is computed by the optical flow algorithm. A Gaussian filter is then ap-

plied to obtain a smooth displacement field. The above process is iterated until the final

displacement field is obtained, which represents the deformation of the model.
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(a) (b)

Figure 2.16: Attraction vs. diffusion methods. The model is represented by a white disk,
and the target by a gray disk. (a) In the attraction method, the point (black dot) on the
model contour is attracted by the closest point on the target contour. (b) In the diffusion
method, the demon (black dot) on the target contour pulls the model towards itself.

PASHA [70] proposed by Cachier et al. is used in [54]. PASHA algorithm incorporates

both geometric features and intensity features. The energy function of PASHA contains

three components: intensity similarity, geometric distance, and a regularization term.

The intensity similarity term measures the local correlation between the points in the

source image and those in the target image. The geometric distance measures the dis-

agreement between the estimated point correspondence and the computed deformation.

The regularization term imposes smoothness constraints. A gradient descent algorithm

is used to optimize the energy function and, in the process, estimate the point corre-

spondence, and compute the deformation. Large displacement vectors are not favored.

A comparison between the results of demons algorithm and PASHA is shown in Figure

2.17. The displacement field produced by PASHA is smoother than that produced by the

demons algorithm.

Some local deformation methods are based on the standard optimization algorithm.

Aboutanos et al. [41] proposed a cost function that combines intensity, morphology, gra-

dient, deviation from previous contour and smoothness. They used an optimization

algorithm to minimize the cost function and transform the initial contour to fit the brain.

Standard deformable models are also used in the local refinement stage such as snake

and its modified versions [49, 56, 61], level set [50, 60]. For example, Ding et al. [49]
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(a) (b) (c) (d)

Figure 2.17: PASHA vs. demons algorithm [54]. (a) Deformable template. (b) Fixed
target image. (c) Displacement field produced by demons algorithm on a grid. (d) Dis-
placement field produced by PASHA on a grid. The results suggest that the displacement
field produced by PASHA is smoother than that produced by the demons algorithm.

(a) (b) (c)

Figure 2.18: Level set algorithm applied to neck axial slice [50]. (a) Initial contour (white
curves). (b) Intermediate deformation step. (c) Segmentation result.

applied snake with GVF algorithm for final contour refinement. Duay et al. [50] applied

level set algorithm to perform local deformation after global alignment (Figure 2.18).

B. Pixel Classification

Pixel classification method separates the pixels into several groups, and each corresponds

to an anatomical part. It is usually performed in probabilistic atlas-based segmentation.

Classification is based on maximizing a posterior probability of a pixel belonging to a

particular anatomical part. The features used in pixel classification is usually intensity
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(a) (b)

(c) (d)

Figure 2.19: Pixel classification [64]. (a) One slice of CT image. (b) Atlas information.
(c) Segmentation result without atlas information. (d) Segmentation result with atlas
information.

and position information of the pixel. Park et al. [64] proposed to classify pixels using a

Bayesian framework. Pixels are classified into 5 groups: liver, right kidney, left kidney,

spinal cord and “none of the above”. The atlas is constructed from manually segmented

organs from 32 registered CT slices. The intensity value of each pixel in the atlas image

corresponds to the probability that it belongs to certain organ. The cost function to

be maximized contains a Maximum A Posteriori (MAP) formulation that estimates the

classes of the pixels that best explain the given input image. It also includes a Markov

Random Field (MRF) regularization term, which penalizes dissimilar adjacent labels

(Figure 2.19).
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Figure 2.20: Heart intensity distribution [63]. A heart MR image showing sample regions
of the blood pool of the left ventricle (LV), right ventricle (RV), myocardium, and the
corresponding histogram of the intensity distribution of the image.

Lorenzo et al. [53, 62, 63] proposed a classification algorithm to segment heart images.

The intensity distribution of each class that corresponds to an organ is modeled by

a Gaussian distribution. The mean and variance of the distribution are computed by

Expectation Maximization (EM) algorithm based on the training samples. Figure 2.20

shows an example intensity distribution corresponding to different tissues in a heart MR

image. The classification is also followed by a MRF regularization process similar to [64].

Prastawa et al. [65] used Minimum Covariance Determinants (MCD) [71] to generate

robust mean and variance of unimodal intensity distribution, and then classified pixels

in a Bayesian framework. The MCD estimator computes the mean and covariance that

have the smallest determinant of covariance.

2.2.3 Summary

Atlas-based segmentation algorithms often consist of two major stages, global alignment

and local refinement. In the global alignment stage, the atlas is transformed to roughly

align with the input image. In the local refinement stage, different parts of the atlas may

undergo different refinement. Attraction-based algorithms can easily transform the model

even if the distance between the model and the target is large. But it may be trapped in

local minimum if the initial configuration is not good. Diffusion-based algorithms such

as demons and its variations usually cannot perform well when the displacement between

the model and the target is large. The standard method for solving this problem is to
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(a) (b) (c) (d)

Figure 2.21: Region-based wrist x-ray image segmentation [72]. (a) Input image. (b)
Result obtained by region growing. (c) Result obtained by region merging. (d) Final
result.

apply the algorithm in an image pyramid.

Snake model is good in the sense that it is a connected contour and is quite flexible

for representing a region boundary. However, it is sensitive to noise in the image and

its initial configuration. Moreover, its parameters need to be set in a trial-and-error

manner. Level set has the ability to handle topology changes of contours, and efficient

numerical algorithms have been proposed. However, it is sensitive to image noise. Pixel

classification can utilize domain knowledge encapsulated in the probability distribution,

but it requires training. The features used are usually intensity and position of the pixel,

which are not so reliable in the x-ray images. Moreover, the boundaries of the target

organs produced by pixel classification are usually not precise.

Atlas-based segmentation methods use prior knowledge to guide the segmentation

process. It is ideal for segmenting complex medical images, which cannot be handled

robustly by general segmentation methods.

2.3 Segmentation of X-ray Images

In comparison to the segmentation of images in other modalities, less research has been

performed on the segmentation of ordinary x-ray images. Existing algorithms for the

segmentation of x-ray images often rely on some general medical image segmentation

methods.
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Figure 2.22: Thresholding based on fuzzy index measure [73]. The white part is bone,
the gray part is skin and the black part is background. The region of bones are disjoint.

2.3.1 Region-based

Manos et al. applied a region-based algorithm [72] to segment hand and wrist bones.

The algorithm starts with a region growing stage. Region growing will produce an over-

segmented image (Figure 2.21(b)). This is followed by a region merging stage, which

incorporates region similarity, size, connectivity and edge information (Figure 2.21(c)).

The final segmentation result (Figure 2.21(d)) is obtained by region labeling according

to some heuristic rules based on gray-level information.

2.3.2 Classification-based

El-Feghi et al. [73] applied a fuzzy set algorithm to segment lateral skull images. Three

crisp subsets, namely background, skin and bones are determined by minimizing a fuzzy

index function. The fuzzy index function decreases as the similarity between two pixels

increases. As no spatial information is considered, the segmented bone regions are disjoint

(Figure 2.22).

McNitt-Gray et al. [74] proposed to segment chest radiographs into anatomical regions

using neural networks. 59 features including the gray level information, local difference

measures and local texture measures are used as the input of the neural network. Spatial

information is also used to correct mis-classified pixels.
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Figure 2.23: Initialization of tooth contour extraction [78].

Classification-based algorithms are generally not effective for x-ray image segmenta-

tion due to the intrinsic properties of x-ray images, i.e., images of different body parts

overlap.

2.3.3 Deformable Model

Most of the x-ray image segmentation work is based on deformable models, especially

active contour model. In order to locate the rib border in chest radiographs, Yue et

al. [75] first determined the thoracic cage boundary to restrict the search space. Hough

transform was then used to find approximate rib borders. The snake model was finally

applied to refine the rib borders.

Jiang et al. used geodesic active contour [76] to segment forearm bones [77]. Geodesic

active contour is based on the traditional snake model, and evolves over time according

to geometric measures (curvatures) of the image. The initial snake contour is manually

segmented from the x-ray image of the patient at the initial visit to the hospital.

Chen and Jain [78] applied snake model to extract the contours of teeth. To get the

initial configuration of the snake model, they detected the gap between upper and lower

teeth and the gap between neighboring teeth (Figure 2.23).
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Figure 2.24: Segmentation result of femur [79].

Chen et al. proposed an incremental approach to segment femur bones [79] (Figure

2.24). Salient features in the x-ray images including parallel lines in the shaft area, circles

in the femoral heads are first detected. Then, a 2-D femur model is fitted onto the input

x-ray images to match the features. The final femur contours are refined by a snake

algorithm with curvature constraints. To achieve this, a spring force which describes

the difference between the actual curvature of the snake and the reference curvature of

the model is introduced. Chen’s work only considered femur bones in the x-ray image

without exploiting the spatial relationship between pelvis and femur bones.

Similar work (femur segmentation) has been done by Behiels et al. [80]. The proposed

algorithm is based on active shape model. The major contribution is that a regularization

term representing the smoothness of shape change in each iteration is incorporated.

In [81], Ballerini and Bocchi added an internal energy term to the snake framework to

model the spatial relationships between adjacent bones to segment the hand bones. This

energy term is represented by an elastic force that connects appropriate points of adjacent

snakes. The snake model is represented in polar coordinates. The polar representation
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has the advantage that it introduces ordering of the contour points and prevents the snake

elements from crossing each other during evolution. However, it may run into problem

when representing a concave shape. In snake optimization stage, the snake configuration

is coded into chromosomes, and genetic algorithm (GA) is applied to minimize the energy

of the snake. This may alleviate the sensitivity to the initial contour placement, which is

chosen randomly.

A semi-automatic approach was proposed by Bernard et al. [82], which incorporated

an articulated model to segment the cervical spine. Articulated structures normally ex-

hibit two kinds of shape variations, i.e., variations in shapes of individual parts and

variations in spatial relationships between the parts. A hierarchical PCA was proposed

to deal with this problem. The hierarchical PCA consists of a topological PCA describing

topological variations of an articulated structure, i.e., the spatial organization of anatom-

ical structures, and a shape PCA describing the shape and pose variations of individual

structures.

2.3.4 Geometric Model

In [83], Vinhais and Campilho created a geometrical model of lungs (Figure 2.25) by

computing a mean shape from the training images. They applied a Laplacian of Gaus-

sian (LoG) filter with high standard deviation on the image to extract some anatomical

landmarks (Figure 2.26(a)) for an initial rough registration. They used genetic algorithm

(GA) to find the coefficients of the geometric model in the free-form deformation stage.

Each chromosome of GA contains an ordered list of the control points of a free-form

deformation grid [84]. Segmentation result is shown in Figure 2.26(c).

The major problem of this algorithm is that the anatomical landmarks may not be

reliably extracted because LoG filter is easily affected by noise. This will cause the free-

form deformation to fail. Moreover, GA usually takes a large amount of computation

time to produce a reasonable solution.
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(a) (b) (c)

Figure 2.25: Geometrical model [83]. (a) Chest x-ray image. (b) Geometrical model. (c)
Deformation of (b) using free-form deformation grid.

2.3.5 Atlas-based Method

Boukala et al. [85] applied atlas-based segmentation method to segment pelvis and femur

images. First, an atlas is built from a set of 24 manually landmarked training images.

The landmarks consist of 20 easily located anatomical features along the boundary of

the bones (Figure 2.27(a)). To increase the number of points, boundaries between these

landmarks are subdivided regularly. The femurs are rotated around the femoral head

center to make all the angles in different training images the same (Figure 2.27(b)). Next,

corresponding points between the training images are obtained. Active shape models are

constructed based on these corresponding points for the femurs and the pelvis separately.

In the global alignment stage, the pelvis and the femur are registered independently.

The average model shape is first registered to the input image. To do this, the shape

context descriptor [86] is used to find the correspondence between the points on the

model contour and those on the edges in the input image. For each point on both the

model contour and the edges in the image, the shape context computes the distribution

of neighboring points located in a log-polar coordinate system (Figure 2.28). This gives a

histogram-like descriptor for each point. For each model point, correspondence is found

by searching for the edge point with the most similar shape context descriptor. Due to

the presence of noise in the image, shape context method is not robust enough to find

the correct correspondence.

In the local refinement stage, active shape model is used to search for the boundaries
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(a) (b) (c)

Figure 2.26: Geometric model-based lung segmentation [83]. (a) Extracted landmarks.
(b) Displaced grid and corresponding deformed model. (c) Segmentation result.

of the bones. The boundaries of the femurs and the pelvis are extracted independently

using different active shape models (ASM). The shortcoming of ASM is that the extracted

boundaries may not be accurate because a large number of sample points is required to

represent a complex shape. As shown in Figure 3.2, the pelvis has a very complex shape.

Although articulations are used in constructing the atlas, they are not employed explicitly

in the segmentation process. The segmentation results of this algorithm are not clearly

presented in [85].

2.3.6 Summary

The computational complexities of region-based and classification-based segmentation

algorithms for x-ray images are low. However, region-based algorithms are easily affected

by noise. They are prone to over-segment the images. Classification-based algorithms are

not suitable for segmenting x-ray images because images of different tissues may overlap.

The other algorithms are more promising for x-ray image segmentation.

Among the existing methods for segmenting x-ray images, those presented in [79,

80, 83, 85] are most related to the proposed research topic. [79] and [80] focus on the

segmentation of a single femur bone. Chen et al. [79] use domain knowledge of the

femur, such as the width of the shaft and the radius of the femoral head, to aid in the
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(a) (b)

Figure 2.27: Active shape model-based segmentation of hip images [85]. (a) 20 expert-
labeled landmarks. (b) The femur is rotated around the femoral head center to adjust
the angle between the drawn lines.

segmentation. Behiels et al. [80] apply the snake algorithm to segment femur bones.

In [83], genetic algorithm (GA) is used to obtain an optimal deformation of the free-

form grid, but it has a high computational complexity. The anatomical landmarks used

to initialize GA are extracted by LoG filter. But, LoG filter is not immune to noise.

Therefore, the anatomical landmarks obtained using this method may not be reliable.

In [85], segmentation of pelvis and femurs is performed using atlas-based method.

Articulation is used in atlas construction to remove the difference in the orientations of

the femurs in different images. But, it is not used directly in the segmentation algorithm.

Shape context descriptors are used to search for correspondence between the points on

the atlas contour and the edge points in the input image. Shape descriptor is affected

by noise in the image, which incurs error in global alignment. Active shape models are

used in the local refinement stage to extract the boundaries of the femurs and the pelvis

separately. As discussed in the previous section, the boundaries extracted may not be

accurate.

In conclusion, the problem of segmentation of bone structures in x-ray images is not

well studied, and there is a lot of room for significant improvements.

35



Thesis Proposal CHAPTER 2.

���������

��������	


���

(a)

(b)

Figure 2.28: Shape context. (a) Log-polar histogram of point distribution counts the
number of points inside each bin. (b) Shape context descriptor (from http://www.eecs.

berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html).
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Chapter 3

Proposed Research Topic

Segmentation of bones in x-ray images is an important step in medical diagnosis, surgery,

and treatment. The review in Chapter 2 shows that this problem has not been well

studied. Algorithms for segmentation of a single bone in x-ray images may not be robust

enough, and the quantitative segmentation results are seldom reported. This leads to the

proposed research topic: segmentation of bone structures in x-ray images.

3.1 Problem Analysis

In order to study the problem of bone segmentation in x-ray images, some characteristics

of this problem are analyzed.

• Unlike other medical imaging modalities, bone regions in x-ray images often overlap

with other organs, such as flesh, soft tissues and other bones (Figure 3.1). Pelvis

region in x-ray images can also be “corrupted” by gas inside the ascending and

descending colons or bowel (Figure 3.1).

• Bones are connected with other bones by joints. When the entire bone structure is

being segmented, articulation of the bones needs to be considered.

• Bones are 3-D in nature. A simple 2-D closed curve may not be accurate enough

to represent the boundaries of bones in x-ray images. For example, the pelvis bone

may need to be represented by its outer boundaries as well as inner contours (Figure

3.2).

37



Thesis Proposal CHAPTER 3.

(a) (b)

Figure 3.1: Characteristics of x-ray images. (a) Bone regions in x-ray images often
overlap with other organs, such as flesh, soft tissues and other bones. (b) Pelvis region
is corrupted by gas in the ascending and descending colons.

Segmentation of bone structures in x-ray images is both intrinsically and extrinsically

difficult. Intrinsic difficulties refer to those caused by the intrinsic properties of x-ray

imaging systems:

• Noise. Noise in x-ray images has a number of origins, but the most fundamental

is from the x-ray source itself. This type of noise is called “quantum noise”, in

reference to the discrete nature of the x-ray photons producing it (http://www.

lxi.leeds.ac.uk/learning/iq/noise/).

• Overlapping. As discussed in the characteristics of the problem.

Extrinsic difficulties are usually due to the patients:

• Ambiguity. Neighboring tissues inside human body may have similar x-ray absorp-

tion rates. As a result, the boundaries of the organs may be ambiguous. That is,

in the image, there is sometimes no clear edge between two neighboring organs.

• Bone density variability. Different patients may have different bone densities, which

result in significantly different intensities in the bone regions between their x-ray

images. A normal patient usually has dense bones and the x-ray image of bones

are bright, whereas a patient who suffers from osteoporosis has low-density bones,
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(a) (b)

Figure 3.2: Representation of the pelvis bone. (a) 3-D pelvis bone (from http://www.

bartleby.com/107/illus241.html). (b) 2-D contour representation of the left pelvis
bone.

which results in much darker bone images. Moreover, other body tissues may also

affect the intensities of bone images.

• Inter-patient shape variability. The shapes of the bones of different patients can

differ quite significantly. In particular, the shape of the pelvis bone of a female

patient is quite different from that of a male patient. This is due to the fact that

females usually have much wider pelvis bones (Figure 3.3).

• Imaging pose variability. The bones may be located in different parts of different

images due to different imaging pose (Figure 3.3).

3.2 Problem Formulation

The problem of automatic segmentation of bone structures in x-ray image can be formu-

lated as non-rigid registration of the atlas to the target x-ray image.

• The inputs of the problem:

Let M = {mi} represent the whole reference bone structure in the atlas, mi =
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(a) (b)

Figure 3.3: Sample pelvis x-ray images. The shape of the pelvis of (a) a male patient
differs from that of (b) a female patient mainly because the female has a wider pelvis
than the male.

{pij} represent the individual bones in the whole structure connected by joints, pij

represent the control points located on bone mi. 2-D joint angle between bone mu

and bone mv is represented by ωuv. S is the shape (e.g., curvature) information of

pij. C = {qj} denotes the set of edge points in the image, which include edge points

along the contour of the bones and other noise points, such as edge points along the

contours of other body tissues and noise edges, etc. Some points on the contour of

the bone structure may not be in C because they are not prominent edge points in

the image.

• The output of the problem:

M ′ = {m′

i} is the extracted contour of bone structure in the target image, which is

represented by a deformed version of M . m′

i = {p′ij} represents the control points

on the deformed contours.

We assume that the input x-ray images always contain the full frontal view of of the

pelvis. The imaging positions for different patients may be different, but the femur bones

are shown in the input images.

Let T denote similarity transformation, A denote articulation that can rotate mu with

respect to the joint connected to mv, D denote a deformation function that can move pi
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to a new position, and f denote a correspondence function from M to C. The aim is to

find T , A, D and f such that the total error E is minimized:

E = (1 − α)
∑

pi

||D(A(T (pi))) − f(pi)||
2 + α

∑

pi

||S(D(A(T (pi)))) − S(pi)||
2 (3.2.1)

where α ∈ [0, 1] is a parameter. The error E balances the registration error Ep and shape

difference Es to ensure that the deformation D does not severely distort the shape of the

bones:

Ep =
∑

i

||D(A(T (pi))) − f(pi)||
2 (3.2.2)

Es =
∑

i

||S(D(A(T (pi)))) − S(pi)||
2 (3.2.3)

3.3 Research Plan

The complex problem of segmenting bone structures in x-ray images can be decomposed

into several sub-problems as follows.

1. Feature Selection In this step, stable features should be selected to obtain correct

correspondence between the points in the atlas and the points in the target image.

This is an important first step that will affect the result of the following steps.

2. Global Alignment Based on the features found in the above step, global alignment

is to determine a rough alignment between the atlas and the image in terms of

scaling, rotation and translation. This step is performed with respect to the whole

bone structure. In addition, articulations between connected bones should be taken

into account.

3. Local Refinement Local refinement is to accurately register the atlas contours to

the boundaries of the bones. It needs to take into account the articulation and

shapes of the bones.

The research plan is to solve each of these sub-problems and then integrate the algorithms

into a complete solution.
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Chapter 4

Preliminary Work

Two pieces of related preliminary work have been done, i.e., segmentation of soft tissues

in abdominal CT images [49] and global alignment of bone structures in pelvis x-ray

images. Although the former has different target organs and imaging modality, the main

ideas underneath are similar.

4.1 Segmentation of Soft Tissues in Abdominal CT

Images

Automatic segmentation of soft tissues in abdominal CT images is carried out by non-

rigid registration of 2-D atlas to target images. The atlas consists of a set of closed

contours of the human body, liver, stomach, and spleen, which are manually segmented

from a reference CT image given in [87]. As shown in Figure 4.1, the reference image

is significantly different from the target image in terms of shapes and intensities of the

body parts. Such differences are common in practical applications.

The segmentation algorithm consists of three stages: (1) Global alignment, (2) itera-

tive local deformation, and (3) local refinement.

4.1.1 Global Alignment

This stage performs registration of the atlas to the target input image with unknown

correspondence. First, the outer body contour of the target image (target contour) is
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(a) (b)

Figure 4.1: (a) Atlas contours (white curves) superimposed on the reference CT image
taken from [87]. (b) Atlas registered onto a target image after global transformation.

extracted by straightforward contour tracing. Next, the outer body contour of the atlas

(reference contour) is registered under affine transformation to the target contour using

Iterative Closest Point algorithm. After registration, the correspondence between the

reference and target contour points is known. Then, the affine transformation matrix

between the reference and target contours is easily computed from the known corre-

spondence by solving a system of over-constrained linear equations. This transformation

matrix is then applied to the entire atlas to map the contours of the inner body parts to

the target image.

4.1.2 Iterative Local Deformation

This stage iteratively applies local transformations to the individual body parts to bring

their reference contours closer to the target contours. The idea is to search the local

neighborhoods of reference contour points to find possible corresponding target contour

points. To achieve this goal, it is necessary to use features that are invariant to image

intensity because the reference and target images can have different intensities (as shown

in Figure 4.1).
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Let N(p) denote the normal to the reference contour at point p, and L(p) denote

an ordered list of points {pi}, i = −n, . . . , 0, . . . , n, lying on N(p), with p0 = p. Let

I(pi) denote the intensity of point pi. Then, the ordered list D(p) = {I(pi) − I(pi+1)},

i = −n, . . . , n − 1, is the intensity difference distribution (IDD) at p along N(p). IDD

depends only on the local intensity difference, which does not differ as much as intensity

across images. Thus, IDD is better than intensity for determining corresponding points

between the images. In the same way, we can compute the IDD D′(p′) of an image point

p′ along a normal N(p) of the reference contour and with respect to the target image

intensities I ′(p′i). In the current implementation, n = 5, i.e., the length of IDD is 10.

The local search for possible corresponding points is performed as follows. After

coarse registration of the atlas and the reference image to the target image by global

alignment. For each reference contour point p, a search is performed within a small

neighborhood U(p) centered at p and along the normal N(p) for a target image point

p′ whose IDD D′(p′) is most similar to D(p). The difference between D(p) and D′(p′)

is measured in terms of the Euclidean distance between them. The neighborhood U(p)

decreases quadratically over time so that the search process will converge. In the current

implementation, the width of the search neighborhood is 100 at the first iteration.

After finding the best matching target image point p′ of a reference contour point p, a

verification procedure is performed. Shoot a ray from the centroid of the closed reference

contour of p to p′. If the number of “white” pixels or “black” pixels along the ray in the

target image exceeds a predefined threshold, then the point p′ is discarded because the

intensity of the desired body parts are gray. Otherwise, p′ is regarded as a corresponding

point of p.

Given the reference contour points pi whose corresponding points p′

i are found, com-

pute the affine transformation matrix that maps pi to p′i. Then, the matrix is applied to

all reference contour points, including those whose corresponding points are not found.

The above local deformation is repeated iteratively for each closed contour of the body

parts individually until the reference contours converge. Therefore, the reference contours

of different body parts can be mapped to the corresponding target image contours through

different affine transformation matrices that are appropriate for them.
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(a) (b)

Figure 4.2: Iterative local transformation. (a) The white reference contours are iteratively
transformed. (b) The result of iterative local transformation after convergence.

4.1.3 Local Refinement

The last stage performs local refinement of the atlas contour using active contour, i.e.,

snake algorithm [88] with Gradient Vector Flow (GVF) [29]. The original snake algorithm

has the shortcoming of not being able to move into concave parts of the objects to be

segmented. This is because there is no image forces outside the concave parts to attract

the snake. GVF diffuses the gradient vectors of the edges outward, and uses the gradient

vectors as the image forces to attract the snake into concave parts. Sample results are

shown in Figure 4.3.

4.1.4 Experiments and Discussion

40 abdominal CT images (from slice 41 to 80) of 1mm thickness of a patient were used

in the test. The accuracy of the segmentation result was measured in terms of the

area of intersection between the target body part (that was obtained manually) and the

segmented regions. This performance measure, called similarity index S, was proposed
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(a) (b)

Figure 4.3: Sample results after refinement. (a) Good result. (b) Result affected by the
air pocket inside the stomach.

by Zijdenbos et al. [89]:

S = 2
|A ∩ B|

|A| + |B|
(4.1.1)

where A is the set of pixels of the body part in the target image and B that of the

segmented region. When the segmented region coincide exactly with the target body

part, S = 1.

Detailed segmentation performance of the algorithm is shown in Figure 4.4. The liver

is well segmented and the algorithm’s performance on liver is very stable (Figure 4.4(a)).

The similarity indices are greater than 0.95 for slices 41 to 76 (Figure 4.4a). From slice

77 onward, the liver is split into two lobes, which is greatly different from that in the

atlas image.

Figure 4.4(b) illustrates the average performance of the algorithm on segmenting the

liver, spleen, and stomach. The similarity index is above 0.9 for slices 43 to 76. That is,

with a single 2D atlas, the algorithm can successfully and accurately segment 34 slices of

the abdominal CT volume.
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Figure 4.4: Test results. (a) Similarity indices of liver, spleen, and stomach. (b) Average
similarity index.

4.2 Global Alignment of Bone Structures in Pelvis

X-ray Images

In this preliminary work, the objective is to globally align an atlas of bone structure to

pelvis x-ray images (Figure 4.5). The atlas image is randomly selected from a set of x-ray

pelvis images. The contours of the bone structure, which consists of a pelvis bone and

two femur bones, are manually delineated (white curves in Figure 4.5(a)).

The main idea of the algorithm is to locate the two femur bones first because they are

often much clearer than the pelvis bone in the image, thus more likely to be detected.

The pelvis bone is then translated, scaled and rotated according to the positions of the

two femoral heads. The details of the algorithm are described below.

4.2.1 Segmentation Algorithm

The algorithm begins with a histogram equalization operation on the target images.

Histogram equalization extends the gray levels of the image and boosts its contrast. This

pre-processing step partially eliminates the intensity variations between images.

Next, the algorithm extracts low-level features in the equalized image. The low-level

features used include edges, gradients and gradient directions because intensity alone is
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(a) (b)

Figure 4.5: Pelvis x-ray images. (a) Atlas x-ray image. The model contours are shown
in white. (b) Target image.

not reliable as discussed in Chapter 3. The edge information is obtained by a combination

of the Canny edge detector [7] and the Sobel edge operator. The Canny edge detector

can produce edges with single pixel width. These edges are then filtered by the edge map

produced by the Sobel edge operator so that weak edges are removed (Figure 4.6). From

the resulting edge map (Figure 4.6(d)), a list of edge segments ei are obtained by a simple

edge tracing algorithm.

A normal global alignment technique is to transform the atlas contours to fit the

edges in the target edge image. However, in this case, there exist many noise edges in

the edge image. Registration of atlas contours to the target edge image is bound to be

corrupted by the noise edges. The proposed algorithm performs the registration in the

other direction, i.e., register the edge segments in the edge image to the atlas contours.

This is based on the assumption that at least one edge segment in the edge map is very

close to the the ideal boundary of the target femur. The assumption is reasonable due

to the fact that the ideal boundaries of femurs, especially the shafts, are always clearly

visible in the input image. Thus, they can be detected by an edge detection algorithm.

Each edge segment ei is registered to a part of the atlas contour of the femur bone. The

registration is performed using Iterative Closest Point (ICP) algorithm (Figure 4.7(b)).

The distance function used in ICP incorporates both geometrical distance and gradient
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(a) (b)

(c) (d)

Figure 4.6: Edge extraction. (a) Input image. (b) Edges obtained by Canny edge detec-
tor. (c) Edges obtained by Sobel edge detector. (d) Edges in (b) filtered by (c) according
to the edge strength.

direction information. The transformation used is rigid, which is to ensure that the

scale of ei remains fixed. After ICP, a rigid transformation Ti is obtained for each ei.

The atlas contour is then registered to the edge segment ei based on the inverse of

the transformation Ti, i.e., T−1

i (Figure 4.7(c), 4.8). After registration to all the edge

segments, a set of candidate transformations T−1

i is obtained. Among these candidates,

the optimal transformation To is selected based on minimizing a cost function describing

the closest distance between the transformed atlas contour and the edge points in the

Sobel edge map.
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(a) (b) (c)

Figure 4.7: Global alignment algorithm. (a) The atlas contour (dashed line) and the
target edge segments (solid line). The edge segments represented in dot line correspond
to the boundary of the femur in the image. The black edge segments (solid line) are
noise. (b) Each edge segment (thick solid line) is registered to the atlas contour. (c) The
atlas contour is transformed back to register to the edge segments.

After determining the optimal transformations of both the left and right femur bones,

the locations of the two femoral heads are found. The pelvis bone is connected to the

femurs at the femoral heads. Therefore, based on the positions of the femoral heads, the

pelvis can be properly scaled, rotated and translated.

4.2.2 Experiments and Discussion

A test was performed on 45 pelvis x-ray images of size 534× 440 pixels. Results of global

alignment are inspected visually. Among all the 45 test images, 37 images have relatively
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good results (Figure 4.9). The remaining 8 images have poorer results, in which the worst

cases are shown in Figure 4.10. The poorer results may be due to the noise edges in the

image that corrupt the computation of the optimal transformation To.
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Figure 4.8: Registration of atlas contour to different edge segments in an input image.
Atlas contours are marked in green. Edges in the image are marked in blue. Transformed
atlas contours are marked in red.
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Figure 4.9: Sample good results of global alignment. Registered atlas contours are shown
in red.
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Figure 4.10: Sample poorer results of global alignment. Registered atlas contours are
shown in red.
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Chapter 5

Conclusions

In this thesis proposal, a thorough review of the general medical image segmentation

algorithms, particularly atlas-based medical image segmentation algorithms and x-ray

image segmentation algorithms, is presented. General segmentation algorithms are cat-

egorized into six classes, namely thresholding, region-based, edge-based, graph-based,

classification-based and deformable models. Apart from deformable models, they usually

work on either individual pixels or local image patches, and are very sensitive to noise.

In comparison, deformable models perform segmentation by fitting a connected contour

to the features (usually edges) in the image. Therefore, they are less sensitive to noise.

Atlas-based segmentation algorithms consist of two major steps, namely global align-

ment and local refinement. Global alignment globally registers the atlas to the target

image to determine an approximation of the position, scale and orientation of the atlas.

Local refinement registers the atlas contours to the object boundaries in the target image

as accurately as possible. Since the atlas contains domain knowledge, it is more promising

for solving the complex problem of segmenting bone structures in x-ray images.

Currently, most x-ray image segmentation methods rely on general algorithms. Atlas-

based segmentation of x-ray images is proposed in [85]. However, their global alignment

algorithm using shape context as the feature is not robust against noise. The use of

active shape model for local refinement may not extract the bone boundaries accurately.

In addition, articulation is not considered explicitly in the segmentation process. In

conclusion, segmentation of bone structures in x-ray images is not well studied.

The research plan decomposes the complex segmentation problem into three parts:
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feature selection, global alignment and local refinement. Two pieces of preliminary work

have been accomplished: segmentation of soft tissues in CT images and global alignment

of bone structures in x-ray images. According to the preliminary work, the feature se-

lection part is almost completed. The global alignment results show that the algorithm

is promising but needs to be improved so that it can perform reliably on all test images.

Moreover, articulation of bones needs to be incorporated into the global alignment pro-

cess. Local refinement remains to be done. The algorithm proposed for segmenting soft

tissues in CT images is promising, and can provide ideas for local refinement.

56



Bibliography

[1] D. L. Pham, C. Xu, and J. L. Prince, “A survey of current methods in medical

image segmentation,” Department of Electrical and Computer Engineering, The

Johns Hopkins University, Tech. Rep., 1998.

[2] J. Rogowska, “Overview and fundamentals of medical image segmentation,” in Hand-

book of Medical Imaging, Processing and Analysis, I. N. Bankman, Ed. Academic

Press, 2000, ch. 5, pp. 69–85.

[3] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quanti-

tative performance evaluation,” Journal of Electronic Imaging, vol. 13, no. 1, pp.

146–165, January 2004.

[4] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice Hall, 2001.

[5] A. Goshtasby and D. A. Turner, “Segmentation of cardiac cine MR images for extrac-

tion of right and left ventricular chambers,” IEEE Transactions on Medical Imaging,

vol. 14, no. 1, pp. 56–64, March 1995.
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