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Abstract

Medical image segmentation plays an important role in many medical image
applications. This paper reviews some existing medical image segmenta-
tion algorithms including general segmentation algorithms and registration-
based segmentation algorithms, and some registration algorithms that are
frequently used in segmentation. Their pros and cons are analyzed. Two
possible research topics are proposed. Preliminary work is also presented
and the experimental results are discussed.
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Chapter 1

Introduction

1.1 Motivation

With the advancement of computer technologies, medical images are playing
increasingly important roles in many medical applications such as computer
aided diagnosis, image-guided intervention, minimally invasive surgeries, and
individual monitoring of response to drug treatment. Medical imaging bene-
fits the patients through more precise and rapid disease management, fewer
side effects, improved diagnosis, and more cost-effective treatment. As more
and more medical images are acquired in daily medical practice, computer
processing and analysis of medical images have become important parts in
today’s medical practice.

Medical image segmentation is one of the most important tasks in many
medical image applications, as well as one of the most difficult tasks. Medical
image segmentation aims at partitioning a medical image into its constituent
regions or objects [23], and isolating multiple anatomical parts of interest
in the image. The accuracy of segmentation often determines the final suc-
cess or failure of the entire application. For example, when doctors want to
reconstruct a 3D volumetric model of the heart, they need to segment the
regions of heart in a series of 2D images. If segmentation is done wrongly,
the reconstruction will be erroneous. Therefore, considerable care should be
taken to improve the reliability and accuracy of segmentation in medical im-
age analyzing and processing.

Figure 1.1 shows a simple example of medical image segmentation. The
cell image in Figure 1.1(a) is partitioned into two parts: cell regions and back-
ground, which is shown in Figure 1.1(b). In this case, segmentation is very
easy because the regions of interest in this image have homogeneous visual
features, i.e., the same color. However, in more general medical applications,
images are much more complex (Figure 1.2), and difficulties exist inevitably
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(a) (b)

Figure 1.1: Segmentation of a simple image. (a) Cell image with homoge-
neous visual features. (b) Segmentation result.

Figure 1.2: A sample complex medical image consisting of multiple anatom-
ical parts.
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Figure 1.3: A sample medical image with low contrast and noise.

in segmenting these images. The difficulties of medical image segmentation
mainly come from four aspects:

(a). Due to both the nature of the imaging technology and the human tissue,
pixel intensity is often not homogeneous within a tissue type (Figure
1.2). Intensity inhomogeneity will cause many segmentation methods
based on intensity homogeneity to fail.

(b). Even if medical imaging technologies are developing rapidly, many med-
ical images are still noisy and have low contrast (Figure 1.3). Dealing
with noise and low contrast without losing accuracy is a very challeng-
ing task for medical image segmentation.

(c). Medical images have many variable properties. For example, when a
patient is being scanned during different visits, his different postures
and positions will cause images of the same part to vary. A tumor or
other disease will cause an anatomical part to differ significantly from
a normal healthy case. The variability of anatomical parts makes the
representation of prior knowledge very hard.

(d). In some medical images, especially x-ray images, the anatomical parts
to be segmented overlap each other (Figure 1.4). Segmentation of the
overlapping anatomical parts is very difficult because of the complica-
tion of the overlapping regions.

More details of the difficulties of medical image processing are discussed in
[46].

Due to these difficulties, intelligent algorithms are needed to segment
multiple anatomical parts of medical images. One promising approach is
registration-based segmentation. A model of the anatomical parts of interest
is constructed (Figure 1.5(a)). The model is registered to the image of a
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Figure 1.4: A hip x-ray image. Some parts of the bones overlap each other.

(a) (b)

Figure 1.5: Registration-based segmentation. (a) Model with manually seg-
mented contours. (b) Image with three anatomical parts segmented (white
contours).

patient (Figure 1.5(b)). When registration is correctly performed, segmenta-
tion of the various anatomical parts is done. By representing prior knowledge
in the model, registration-based segmentation can handle complex segmen-
tation problems and produce accurate and complete results automatically.

1.2 Definitions of Related Problems

Registration-based segmentation uses registration method to perform seg-
mentation. However, registration is in general different from segmentation.
To clarify the differences, we define three related problems here, namely
segmentation, registration, and correspondence. The most general forms of
these definitions are given.
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Segmentation Given an image, partition it into several disjoint regions or
objects of interest. In the simple case, the regions or objects have homo-
geneous visual characteristics. In the complex case, the regions or objects
correspond to anatomical parts that may not have homogeneous visual char-
acteristics.

Registration Given two images, or a model and an image, of the same
anatomical parts, find a possibly non-rigid transformation to spatially align
their corresponding parts.

Correspondence Given two sets of points or other entities, such as edge
segments and surface patches, and a measure of the similarity between two
points or entities, find a mapping function from one set to the other that
maximizes the similarity of each pair of points or entities.

These three problems are different but related. Segmentation aims at iso-
lating the anatomical parts of interest from one given medical image, whereas
registration seeks to spatially align anatomical parts in two images, or one
model and one image. The objective of correspondence problem is to find
the mapping function between two sets of entities subject to some constraints
such as maximizing the similarity between the corresponding pairs of entities.
In many cases, registration can be used as a powerful method for solving seg-
mentation problem, i.e., registration-based segmentation. Registration is also
related to correspondence. If correspondence is known, registration can be
easily performed by computing the best transformation given the known cor-
responding points. If correspondence is not known a priori, the registration
algorithm needs to determine the best transformation and correspondence at
the same time. Automatic registration-based segmentation typically means
solving the problem of registration without known correspondence.

1.3 Organization of the Paper

Many existing methods have been developed for medical image segmentation.
These methods include general segmentation algorithms and registration-
based segmentation algorithms. General segmentation algorithms can solve
simple medical image segmentation problems, but are not sophisticated enough
to solve complex ones. On the other hand, registration-based segmenta-
tion can solve complex medical image segmentation problems. Section 2.1
discusses general segmentation algorithms, whereas Section 2.3 discusses
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registration-based segmentation algorithms. In addition, existing registra-
tion algorithms are discussed in Section 2.2. Based on the literature review
in Chapter 2, possible research topics are presented in Chapter 3. Prelimi-
nary work and experimental results, as a start of our research in this area,
are given in Chapter 4. Chapter 5 concludes this paper.
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Chapter 2

Existing Work

General non-registration-based segmentation algorithms are not sophisti-
cated enough to segment complex medical images into multiple inhomoge-
neous regions of anatomical parts. However, they can be used as parts of more
sophisticated algorithms such as registration-based segmentation algorithms.
Registration algorithms play important roles in registration-based segmenta-
tion algorithms. Therefore, we discuss general algorithms first, followed by
registration algorithms and registration-based segmentation algorithms.

2.1 General Segmentation Algorithms

General segmentation algorithms can be grouped into five categories [52]:
thresholding, region growing, morphological watersheds, classification and
clustering. Survey of general medical image segmentation algorithms is given
in [23, 46, 52].

2.1.1 Thresholding

The thresholding approach selects a threshold T based on the histogram of
the image to extract the objects from the background [23]. Pixels whose
intensities are larger than T are classified into one group. Pixels whose in-
tensities are less than or equal to T are classified into the other group. The
key step of thresholding algorithms is the selection of the threshold, which is
mainly based on the distribution of the pixel intensities of the image.

Based on the threshold selection criterion, thresholding algorithms can be
categorized into two types: global thresholding and local thresholding. If the
threshold T is a constant for all pixels in the image, the algorithm is a global
thresholding algorithm. Otherwise, if the threshold T depends on local prop-
erties of some regions, such as the average intensity of its neighborhood, it is
a local thresholding algorithm. An example of global thresholding is shown
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(a) (b) (c)

Figure 2.1: Global Thresholding. (a) Input image. (b) Intensity histogram
with threshold T . (c) Result of global thresholding.

in Figure 2.1.

For simple images in which different structures have contrasting intensi-
ties or other quantifiable features, thresholding is an effective and straight-
forward method to obtain a segmentation. However, thresholding has many
limitations. Although fully automated thresholding methods has been pro-
posed [54], most of the time, thresholding is performed interactively based on
the user’s experience. In addition, many medical images have low contrast
and lots of noise. In these cases, the intensity histogram is very complex,
and thresholding approach may fail. Moreover, Thresholding has the prob-
lem of over-segmentation, which occurs when the image is segmented into
an undesirably large number of regions. Variations on classical thresholding
have been proposed to overcome these limitations [33, 54].

2.1.2 Region Growing

As its name implies, region growing is a procedure that groups pixels or
subregions into larger regions based on predefined homogeneity criteria [23].
Region growing algorithm starts with a set of seed points. From these seed
points, region growing algorithm grows regions by appending to each seed its
neighboring pixels that have similar properties as the seed, where the simi-
larity is measured by the homogeneity criteria.

There are two crucial steps in region growing: the selection of seed points,
and the definition of homogeneity criteria. Seed points can be selected man-
ually by an operator, or provided by an automatic seeds finding procedure
[2, 24] which selects pixels that satisfy some typical features of the region.
Homogeneity criteria determine how to measure the similarity. In [2], the
difference between the pixel intensity and the mean intensity value of the
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(a) (b)

Figure 2.2: Region growing [30]. (a) Input MR image of head. (b) Regions
and boundaries segmented out from (a).

region is used as a homogeneity criterion. The weighted sum of the contrast
between the region and the pixel, and the gradient information have also
been used as homogeneity criteria in some applications [72]. In [30], Hoj-
jatoleslami and Kittler presented a method that uses average contrast and
peripheral contrast as homogeneity criteria (Figure 2.2). Peripheral contrast
is the gray-level difference outside the region. More region growing algo-
rithms are surveyed in [78].

Region growing algorithms are efficient and easy to implement. For sim-
ple regions that have homogeneous intensities, region growing can provide an
accurate segmentation result. For example, in [49], region growing is used as
a core step for the delineation of breast tumors. However, region growing has
some limitations. Firstly, if the homogeneity criteria are not properly defined
or cannot be adequately defined, the regions may leak out and merge with
other regions that belong to different anatomical parts. Moreover, It is not
easy to define the homogeneity criteria in medical images with low contrast.
Secondly, region growing is sensitive to noise, which may cause the segmented
regions to have holes or become disconnected, resulting in over-segmentation.

2.1.3 Morphological Watersheds

Watershed algorithm is a region-based technique that utilize image morphol-
ogy [23, 52, 61]. It visualizes an image in three dimensions where the height
of each point represents its gradient value. Initially, at least one marker in
each object of the image, including the background as a separate object, are
selected [52]. The markers can be selected manually by the user or automat-
ically by a procedure that takes into account application-specific knowledge
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(a) (b) (c) (d)

Figure 2.3: An application of watersheds algorithm to extract lymph nodes
in CT image [53]. (a) Input CT image of a lymph node. (b) Marker (black
dot) is placed by the user. (c) Binary image generated from (b). (d) Result
of applying watershed algorithm.

of anatomical parts [52]. Then, morphological operation is applied to grow
these markers, just like pouring water into punctures, which are represented
by the markers. When water from different punctures is beginning to mix, a
dam is built to stop the mixing. These dams are the boundaries of objects
in the image.

Figure 2.3 shows an application of watershed algorithm for extracting
lymph nodes in CT images [52, 53]. In this application, the user selects a
marker in the middle to represent the lymph node and a series of markers to
represent the background. By building dams to stop the mixing of water from
different markers (Figure 2.3(c)), the connected boundary of lymph node is
obtained (Figure 2.3(d)).

Morphological watershed algorithm is simple and intuitive, and can pro-
duce accurate segmentation results in many applications [23]. However, it has
its own drawbacks. As most general segmentation algorithms, it is sensitive
to noise. It may also cause over-segmentation if the image is too complex
(Figure 2.4). Therefore, application of watershed algorithm is usually fol-
lowed by a post-processing step to merge disjoint regions that belong to the
same anatomical part [60]. Moreover, it is poor at detecting thin structures
and structures with low signal-to-noise ratio [26].

2.1.4 Classification

Classification methods are pattern recognition techniques that aim at finding
a mapping function (classifier) f from images or image regions to discrete
class labels Ci. In classification problems, an image or region is represented
by a vector vi of features extracted from the image. The feature space derived
from the images or image regions is partitioned into classes. The mapping
function f determines the classes that the feature vectors belong to, i.e.,
f(vi) = Ci. In general, manually segmented and classified training samples
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(a) (b)

Figure 2.4: Over-segmentation of watershed algorithm [63]. (a) Input image.
(b) Over-segmented image.

are required to determine the parameters of classifier f using a training algo-
rithm [46]. In medical image segmentation, classification methods are usually
used to classify pixels or image patches in an medical image.

The selection and determination of classifier is the most important part in
a classification algorithm. A simple classifier is the nearest-neighbor classifier,
which classifies each pixel into the class with the closest intensity. A general-
ization of the nearest-neighbor classifier is the k-nearest-neighbor classifier,
which selects k nearest neighbors, and classifies the pixel into the same class
as the majority of the k-closest classes. k-nearest-neighbor classifier may re-
duce the effect of noise on the classification compared with nearest-neighbor
classifier. Parzen window is another classifier, in which the classification of
an unlabeled pixel is made by a weighted decision process within a prede-
fined range. This predefined range is centered at the unlabeled pixel. All
the training data within this range are taken into account when classifying
the unlabeled pixel [46]. There are many other parametric classifiers, such
as maximum-likelihood classifier, Bayes classifier and neural networks [13],
that are widely used in medical image applications. Detailed review of clas-
sification algorithms for medical image segmentation can be found in [46, 75].

Figure 2.5 shows an example of applying classification algorithms for seg-
menting an MR image [55]. First, sample points from different tissues in the
MR image are selected manually by the user. After that, the membership
functions for the different tissues are computed using entropy minimization
principle. This step is called fuzzy classification, which produces a resultant
image with 6 gray levels (Figure 2.5(b)). This resultant image is used as an
input to the Self Organizing Map (SOM) neural network for finer classifica-
tion (Figure 2.5(c)). Finally, the artifacts are removed manually to obtain
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(a) (b) (c) (d)

Figure 2.5: An application of classification algorithms on an MR image [55].
(a) Input image. (b) Result of fuzzy classification. (c) Result of SOM clas-
sification. (d) Final result.

the contour of the bone region (Figure 2.5(d)).

If training data is sufficient to distinguish the classes, classification algo-
rithms can produce accurate result. With the training data, prior knowledge
can be incorporated into the segmentation algorithm. However, the require-
ment of manual work to obtain training data is time-consuming and labo-
rious. The use of the same training data for classifying a large number of
images, may lead to biased result [46]. In addition, if the objects of classi-
fication algorithm are not pixels but image patches, then, the boundaries of
the segmented regions become uncertain.

2.1.5 Clustering

Clustering methods seek to group similar pixels or image patches into the
same cluster. Clustering methods also represent pixels, image patches, and
clusters as feature vectors. They use a distance function to measure the dis-
tance between a given pixel or image patch and all the clusters, and group
the pixel or image patch into its nearest cluster.

Commonly used clustering algorithms are k-means algorithm [14] and
fuzzy c-means algorithm [9]. An application of k-means algorithm to MR
brain image segmentation is given in [46]. In [29], another clustering algo-
rithm, called quality threshold (QT) clustering algorithm, was proposed and
used for gene clustering. Survey of clustering algorithms for medical image
segmentation can be found in [46, 75].

Clustering methods are simple and general. The distance measure are dif-
ferent for different applications. The disadvantages of clustering methods lie
in their sensitivity to noise and intensity inhomogeneity. Pixels that belong
to the same anatomical part with inhomogeneous features may be grouped
into different clusters. Moreover, many clustering algorithms rely on a good
initialization to produce good result. Some improvements that reduce these
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(a) (b)

Figure 2.6: Segmentation of brain MR image by k-means algorithm [46], with
k = 3. (a) Input MR brain image. (b) Segmented image, representing (from
dark gray to white) cerebrospinal fluid, gray matter, and white matter.

disadvantages are presented in [31, 45, 50, 68].

2.1.6 Summary

The general algorithms discussed in this section are widely used in medical
image segmentation. They are efficient and accurate for simple medical im-
ages, especially when the regions to be segmented have homogeneous visual
features. A comparison of these general algorithms is illustrated in Table 2.1.
Thresholding algorithms work on the intensity of individual pixels. The per-
formance of thresholding algorithms depends on the intensity histogram of
the images. The crucial step of thresholding algorithms is the determination
of the threshold. Region growing and watershed algorithms are region-based
algorithms. They focus more on the relationship of the individual pixel and
its neighborhood. Seeds selection is needed for these two kinds of algorithms.
Region growing algorithms grow seeds based on predefined criteria, whereas
watershed algorithms grow seeds using morphological operations. Both of
them can produce continuous segmentation boundaries. Classification and
clustering algorithms are pattern recognition techniques. They extract fea-
tures from pixels or image patches and represent the features as feature vec-
tors. Classification methods aim at determining the class that the pixels or
regions belong to, whereas clustering seeks to group similar pixels or image
patches into the same cluster. Thresholding, region growing and watershed
are efficient compared with classification and clustering. Classification algo-
rithms require training data while the other algorithms do not.

13



Table 2.1: Comparison of general segmentation algorithms.

Information Computatio- Training Homogeneity
used nal cost requirement

Thresholding pixel low no high
Region growing image patch low no medium
Watersheds image patch low no medium
Classification feature vector high yes medium
Clustering feature vector medium no medium

All of these algorithms face the same difficulties: sensitivity to noise
and difficulty with segmenting images with low contrast and inhomogeneous
regions, especially the thresholding algorithms. Moreover, they all have over-
segmentation problem, which occurs when the image is segmented into an
undesirably large number of regions. All these difficulties make them not suit-
able for segmenting complex medical images. For complex medical images,
these general algorithms can only be used as parts of a more sophisticated
algorithm.

2.2 Non-Rigid Registration

Registration plays a crucial role in registration-based segmentation of medi-
cal images. Registration aims at transforming a model or a template image
to align it with a target image so that their corresponding parts are spatially
aligned. If the transformation is linear, such as rotation, scaling and trans-
lation, the registration is called rigid registration. If the transformation is
non-linear, such as shape change and warping, the registration is called non-
rigid registration. A simple illustration of non-rigid registration is shown in
Figure 2.7. In this paper, we focus mainly on non-rigid registration because
in most medical image applications, the transformation involved is non-linear.

Deformation which needs to be accounted for in non-rigid registration
is mainly caused by the following three factors [25]: (1) change within an
individual’s anatomical structures due to growth, surgery, or disease; (2) dif-
ferences between individuals; and (3) warping due to image distortion, such
as in echo-planar magnetic resonance imaging. Deformation caused by differ-
ent reasons may need different registration algorithms. Surveys of non-rigid
registration algorithms for medical images can be found in [35, 38, 39, 76].
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(a) (b)

Figure 2.7: Non-rigid registration. (a) Input A and target B. (b) Deformed
input.

2.2.1 General Parametric Non-rigid Registration

As discussed in Chapter 1, correspondence problem is related to registration
problem. Non-rigid registration with known correspondence is a well-posed
problem, and can be easily solved by general parametric algorithms, including
affine transformation, polynomial transformation and kernel-based transfor-
mation.

Affine Transformation

Affine transformation includes scaling, rotation, translation, reflection and
shearing. It is represented by a matrix: x′

y′

1

 =

 a11 a12 a13

a21 a22 a23

0 0 1

 x
y
1

 (2.1)

where (x, y) is a point in the model or template image, and (x′, y′) is the
corresponding point in the target image, and aij are the affine parameters to
be determined. Let A denote the affine transformation matrix. The aim of
the problem is to find the A that minimizes the error E [34]:

E =
n∑

i=1

‖ Api − p′
i ‖2 .

Polynomial Transformation

A polynomial function is another simple and generic representation of non-
rigid transformation. It can represent more deformation than affine transfor-
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mation. The polynomial transformation has the form:

x′i =
∑

p

∑
q

apqx
p
i y

q
i 0 ≤ p + q ≤ m, (2.2)

y′i =
∑

p

∑
q

bpqx
p
i y

q
i 0 ≤ p + q ≤ m. (2.3)

where m is the order of the polynomial function, apq and bpq are the param-
eters of the polynomial. The higher the order is, the more deformation the
function can represent. With known correspondence, the parameters can be
determined in the same manner as for the affine transformation.

Kernel-Based Transformation

Instead of using polynomials to represent the transformation function, kernel-
based transformation uses a set of basis functions hk(x, y), k = 1, . . . , K, to
represent the transformation function [34]:

x′i =
K∑

k=1

akhk(xi, yi) (2.4)

y′i =
K∑

k=1

bkhk(xi, yi) (2.5)

Usually, these basis functions are radially symmetric and have finite sup-
ports. Frequently used basis functions include Gaussian, B-spline, multi-
quadratic spline, Fourier descriptors, wavelets, etc. More details of kernel-
based transformation can be found in [34].

Compared to registration with known correspondence, registration with
unknown correspondence is an ill-posed problem. Therefore, it is more dif-
ficult to solve. In many cases, the general parametric non-rigid registration
algorithms discussed above can be used as parts of the algorithms for regis-
tration with unknown correspondence.

2.2.2 ICP and Dual-Bootstrap ICP

Iterative closest point (ICP) algorithm [8, 74] is based on an educated guess
of the correspondence function. Given a reference model or image M and a
target image I, the main steps of ICP include the following:

a. For each point pi ∈ M , regard its closest point p′i ∈ I as its correspond-
ing point.
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Figure 2.8: Misalignment produced by robust ICP (from [62]). (a) Initial
alignment based on a single landmark. The alignment around the initial cor-
respondence is accurate. (b) Small but noticeable misaligned after applying
robust ICP on the entire image. Misalignment can be seen everywhere in the
image.

b. Using the estimated correspondence, compute the transformation T
that minimize the average distance between the corresponding points.
T can be affine transformation, polynomial transformation, or more
complex transformations.

c. Iterate step a and b until convergence.

In many cases, ICP algorithm can give a coarse alignment but may not
provide sufficiently accurate result if the initial estimate is not good enough.
Figure 2.8, which is taken from [62], shows an example in which a robust
ICP algorithm [7, 12, 74] produces a poor result with small but noticeable
misalignment everywhere in the image.

An improvement of robust ICP, called dual-bootstrap ICP was proposed
in [62]. Dual-bootstrap ICP requires only one known correspondence (Figure
2.9(a)). It uses two basic ideas: (a) Start from a small region (bootstrap
region) which is aligned accurately. (b) Expand and refine bootstrap region
iteratively. Dual-bootstrap ICP can be described as follows:

1. Extract feature points and find the initial correspondence.

2. For each initial correspondence, starting from the lowest order trans-
formation, iterate the following steps until convergence:

– estimate transformation parameters using robust ICP;

17



Figure 2.9: The result of Dual-Bootstrap ICP applied to retinal images (from
[62]). Rectangular region is the bootstrap region. (a) Initial bootstrap region.
(b)∼(d) As the bootstrap region expands, higher order transformation is
employed for more accurate alignment. (e) Final registration result.
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– select appropriate transformation and estimate parameters using
statistical model selection techniques (more details in [62]);

– expand the bootstrap region based on the uncertainty of transfor-
mation estimated. Iteration is terminated when transformation is
accurate enough.

3. Terminate with failure if no more initial estimates are available.

An example of the application of dual-bootstrap ICP is shown in Figure
2.9. Initially, the alignment in the bootstrap region (the white box) is very
accurate (Figure 2.9(a)). In each iteration, the best transformation for the
bootstrap region is automatically selected and the region grows. Two images
can be aligned very well in the end (Figure 2.9(e)). In [70], Yang et al. gen-
eralized the dual-bootstrap ICP to the registration of general images under
varying lighting conditions.

2.2.3 Variational Approach

Variational approach is a class of non-parametric registration algorithms. It
represents the transformation function φ(x) of a template image T as the
displacement of each point x in T . That is, point x in T becomes x+φ(x) in
the deformed template. Given a template image T , a reference image R, a
regularizer S and a distance measure function D, variational approach aims
at finding φ(x) that minimizes the error E:

E = D(R, T ; φ) + αS(φ). (2.6)

where α is a regularization parameter and D(R, T ; φ) measures the distance
between the deformed version of image T and the reference image R. Af-
ter applying variational calculus, an iterative equation can be obtained to
compute the transformation φ(x) over iteration k [34]:

φ(k + 1) = (I + γαA)−1[φ(k)− γF (φ(k))]. (2.7)

where F (φ) is the force obtained from D(R, T ; φ) and A is derived from S.

There are many types of distance measure function D. Four commonly
used distance measures are [20, 34]: sum of squared differences, mutual in-
formation, cross correlation, and normalized gradient field. Among these
distance measures, sum of squared difference and mutual information are the
most widely used in medical image registration [5, 10, 11, 48, 51, 65, 67, 77].
A survey of mutual information-based registration methods can be found in
[47].
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(a) (b) (c)

Figure 2.10: Elastic registration result [40]. (a) Reference image. (b) Tem-
plate image. (c) Deformed template.

Depending on the regularizer S used and thus, the function A, variational
approach can be divided into four types [20]: elastic registration, fluid regis-
tration, diffusion registration, curvature registration.

Elastic Registration

Elastic registration is based on physical properties of elastic body [40]. The
smoothing function S(φ) used by elastic registration allow for stretching or
shrinking of objects, but not tearing. The equation derived from elastic
regularizer is [20, 40]:

A(φ) = µ∇2φ + (λ + µ)∇∇φ. (2.8)

An example of elastic registration is shown in Figure 2.10.

Elastic registration has been widely used in recent medical image appli-
cations since it is easy to understand and implement. In [44], elastic defor-
mation is used as a hard constrain for obtaining the mapping of boundary
structures in 2D/3D medical images. In [37], Long et al. used two-sided ex-
ponential filter to approximate the elastic filter. Elastic registration is also
applied to 3D ultrasound image registration applications [21].

Fluid Registration

Unlike elastic registration which focuses on spatial smoothing of displacement
field φ, fluid registration focuses on spatial smoothing of velocity field ∂φ/∂t.
The equation derived from fluid regularizer is given by [40]:

A(φ) = µ∇2v + (λ + µ)∇∇v, v =
∂φ

∂t
. (2.9)
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(a) (b)

Figure 2.11: Fluid registration result [40]. (a) Fluid registration only. (b)
Fluid registration with linear pre-registration. The reference and template
images are shown in Figure 2.10.

Fluid registration can deform more significantly than elastic registration since
there is less constrain on the shape. However, non-rigid registration without
linear pre-registration can cause wrong deformation even if the error is very
small [40]. Therefore, linear pre-registration is usually applied before fluid
registration. An example of fluid registration is shown in Figure 2.11. An
application using viscous fluid registration and mutual information for mul-
timodel non-rigid image registration can be found in [3].

Diffusion Registration

Whereas elastic and fluid registration are based on physical properties of
objects, diffusion registration is based on intensity gradient of the image.
Diffusion regularizer gives the equation [40]:

A(φ) = ∇2φ (2.10)

Diffusion registration can be regarded as an elastic registration without the
term (λ + µ)∇∇φ. Therefore, the extent of deformation permitted in dif-
fusion registration is small. Diffusion registration can also be extended to
a velocity-based method, which is more like fluid registration, so that the
deformation can be more significant.

Curvature Registration

Compared with elastic, fluid and diffusion registration, curvature registration
is less dependent on the initial configuration of the reference and template
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(a) (b) (c) (d)

Figure 2.12: Demons algorithm applied on MR head images [66]. (a) Ref-
erence image. (b) Deformed image. (c) Deformation corrected with demons
located at all pixels of the reference image. (d) Deformation corrected with
demons placed on the contours of anatomical parts only.

images. The equation derived from curvature regularizer is [40]:

A(φ) = ∇2∇2φ. (2.11)

Curvature registration aims at minimizing the curvature of the components
of the displacement vectors.

2.2.4 Demons Registration

Demons registration algorithm [66] is related to diffusion registration in varia-
tional approach. It places demons at certain locations in the reference image.
The template image is considered as a deformable grid of particles. Demons
placed in the reference image decide the diffusion of the particles by minimiz-
ing the difference between the reference and the template images. In demons
algorithm, optical flow method is used to compute the required displacement,
and low-pass filtering is commonly applied to produce smooth solution. An
example of applying demons algorithm to the registration of MR head images
is shown in Figure 2.12.

In different applications, demons may be placed at different locations in
the reference image. For example, they can be placed at all pixels of the
image (Figure 2.12(c)), or on the contours of anatomical parts only (Figure
2.12(d)).

Demons algorithm requires that the anatomical parts in the template
overlap with those in the reference image. Since it uses optical flow to com-
pute the displacement, it can only handle the case in which the displacement
between the two images is small. A standard way to extend the algorithm
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to the case with large displacement is to apply the algorithm top down in an
image pyramid.

2.2.5 Summary

The non-rigid registration algorithms discussed in this section are frequently
used in registration-based segmentation algorithms. Evaluation of the accu-
racy of registration algorithms is a non-trivial problem because it is hard to
distinguish between registration error and actual physical difference in the
image contents [76]. Therefore, special care should be taken when choosing
registration algorithms for medical image applications. Usually, different al-
gorithms are suited for different applications and different deformations.

General parametric algorithms can solve registration problems with known
correspondence, and are actually used as parts of other sophisticated algo-
rithms such as ICP and its variations. ICP, ICP’s variations, variational
approaches and demons algorithm can solve registration problems with un-
known correspondence. ICP and its variations need to extract feature points
while variational approaches use the intensity of each pixel instead of ex-
tracting feature points.

General parametric registration, ICP, and ICP’s variations are paramet-
ric algorithms. They try to estimate the parameters of transformation func-
tion to get the best match between the two images. Variational approaches
and demons algorithm are non-parametric algorithms. They represent the
transformation function as the displacement of every point. Thus, they per-
mit more flexible deformation than parametric algorithms. A regularizer or
smoothing function is required to constrain the deformation of the image.

2.3 Registration-Based Segmentation

In registration-based segmentation algorithms, a model is built to repre-
sent the prior knowledge, such as the shape, features or relative positions
of anatomical parts. After correctly registering the model to the target im-
age, the segmentation is also done. The model used here can be a general
deformable model or an atlas. In this section, general deformable model-
based segmentation approaches are discussed first, followed by atlas-based
approaches.

2.3.1 General Model-Based Approach

The model-based segmentation methods discussed in this section refer to
the registration-based segmentation methods that use general deformable
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Figure 2.13: Gradient Vector Flow [69]. (a) Deformation of the snake. (b)
GVF image force. (c) Close-up of the concave part of the boundary.

models. There are three popularly used deformable models, namely active
contour (snake), active shape (eigenshape) and level set.

Active Contour (Snake)

Active contour, also called snake, was first proposed in [32]. The snake model
represents a contour by a series of points. A snake can be deformed to match
any kind of shape under the constraints of three kinds of forces: internal
forces, image forces and external forces. Internal forces are constraints on
the stretching and bending of the snake. Image forces are given by image
features such as edges that attract the snake. External forces contain exter-
nal constraints on the snake such as spring force and repulsion. The aim of a
snake algorithm is to iteratively deform the snake by moving the snake points
to minimize the total energy so that the snake can fit the image features well.
The total energy is the weighted sum of the energy of internal forces, image
forces and external forces.

Traditional snake has two main drawbacks. Firstly, it is too sensitive to
initialization, and secondly, it cannot be attracted by concave parts of image
contour. Xu et al. [69] proposed a new image force, Gradient Vector Flow
(GVF), to solve these two problems. Gradient vector flow is derived from
the diffusion of gradient vectors of edge map. Compared with traditional
snake, GVF snake can snap onto concave parts of image contour and is less
sensitive to initialization (Figure 2.13).

The snake algorithm has proved to be very useful for many applications.
In [6], Atkins et al. used snake algorithm for brain segmentation in MR im-
ages. Snake has also been applied to the segmentation of liver [22, 71] and
heart [56] in CT images, and carpal bone in x-ray images (Figure 2.14).
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(a) (b)

Figure 2.14: Carpal bone segmentation using snake algorithm [36]. (a) Initial
contour. (b) Final result.

If the snake is well designed and the three forces are well balanced, the
snake can perfectly fit the boundaries of anatomical parts. However, if the
parameters are not set appropriately, snake can produce poor result. Even
with GVF, the snake algorithm is still sensitive to noise and requires good
initialization in general. Moreover, snake cannot handle topological changes
when it evolves over time.

Active Shape

Active shape model (ASM) [16, 17] is a statistical model generated from
a set of training samples. Corresponding landmark points on the bound-
aries of the training samples are identified manually. The coordinates of the
landmark points in each sample are represented in a vector. So, a sample
becomes a vector in a high-dimensional feature space called the eigenspace.
After normalizing the scale, rotation, and translation of each sample, Prin-
cipal Component Analysis (PCA) is performed to identify major dimensions
of the samples in the eigenspace. A sample shape can now be represented by
a linear combination of the eigenvectors. By changing the parameters of the
linear combination, new shapes can be synthesized for finding the optimal
solution.

ASM has been used in many applications. In [28], it was used to segment
tibia bone in ultrasound images. Ordas et al. [42] applied ASM to heart seg-
mentation in MR images. In [16], ASM was applied to abdomen MR image
segmentation (Figure 2.15). A variation of ASM is active appearance model
[15]. It is similar to active shape model and captures both the objects’ shapes
and gray-level values in the feature vectors.
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(a) (b)

Figure 2.15: ASM applied to abdomen MR image segmentation [16]. (a)
Initial model. (b) Result after 100 iterations.

(a) (b)

Figure 2.16: Level set function. (a) Two separate initial circles. (b) The two
circles have merged, yielding a single contour.

In general, active shape model is suitable for applications in which the
objects’ shape variation can be modeled by not too many parameters. Oth-
erwise, it may be too difficult to synthesizing the desired shape. In addition,
many training samples are needed to accurately compute the statistical dis-
tribution of the possible shapes in the eigenspace. Preparing these training
samples can be a laborious task.

Level Set

Snake and active shape can handle changes of shape when the object contour
evolves over time but cannot handle changes of topology. In [57, 58], Sethian
proposed level set methods to handle changes in topology elegantly by doing
it in one higher dimension. The main ideas of level set methods are as follows.

Let Γ denote a closed curve in 2D. Then, define a 3D function φ(x, y, t)
called the level set function. φ(x, y, t) is the distance d of the point (x, y)
from Γ at time t. Distance d is positive if (x, y) is outside Γ, zero if (x, y) is
on Γ, and negative inside. An example of 3D level set function is given in
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(a) (b) (c) (d) (e) (f)

Figure 2.17: Recovering boundary contours of arteries using level set method
[57]. (a) Initial curve. (b)∼(e) The propagation of the curve. (f) Final
segmentation result.

Figure 2.16. As shown in the figure, the level set function is a 3D surface.
It can move up or down the vertical φ-axis over time. At any time t, the
intersection of the surface and the x-y plane gives the curve Γ, called the
zero level set. So, level set function represents possible states of the curve Γ.
By solving the equation φ(x, y, t) = 0, the desired curve at time t is obtained.

In practice, it is not necessary to construct the whole level set function
φ at the beginning of the algorithm, which is an impossible task because
φ represents all the possible states of the curve Γ. Instead, the algorithm
begins with an initial curve φ(x, y, t = 0) = 0 and a force F initialized by
the user. The force F represents the speed of propagation of Γ in its normal
direction. The change of φ over time t, φt, is then given by the equations
[34]:

φt + F |∇φ| = 0, (2.12)

φ(x, y, t = 0) = given. (2.13)

where |∇φ| is (φ2
x + φ2

y)
1
2 . In this way, φ(x, y, t) can be computed iteratively

from φ(x, y, t− δt).

The major advantage of level set method is that, even if the propagating
contour may change topology, break, merge and form sharp corners, the level
set function φ(x, y, t) remains a single function. Some efficient algorithms,
such as narrow band method [57, 58] and fast matching method [58], are
also used to implement level set methods efficiently. Narrow band method
updates only the values at a narrow region around the propagating surface
in each iteration. Fast marching method assumes that the surface is propa-
gating in one direction at a particular speed, and is very efficient if this is the
case. One disadvantage of level set algorithm is the lack of preservation of
the shape information. Moreover, level set method may have leakage prob-
lem because of its flexibility and lack of geometric constrains.

Level set method has been used to recover boundary contours of arteries
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in DSA images (Figure 2.17), segment brain regions in MR images [64],
extract pulmonary vessels from CT images [73], and leukocyte extraction in
CT images [41]. Since the level set algorithm can handle topology changes,
multiple regions can be extracted with a single initial contour.

2.3.2 Atlas-Based Approach

Atlas-based approach has become a standard paradigm for exploiting prior
knowledge in medical image segmentation [19]. In atlas-based segmentation,
manual or semi-automatic segmentation is performed once on a sample image
to construct a spatial map called the atlas. Given a target image, the atlas
is deformed non-rigidly and registered to the target image. Various non-rigid
registration methods can be used in the registration process. The registered
atlas gives the segmentation result.

In general, the atlas-based approach first aligns the atlas to the target
image by some global transformation. Then, local refinement of each part of
the atlas is performed to accurately extract the contours of the anatomical
parts of interest. In [18], Ding et al. applied a robust and automated method
of registering 2D atlas to 2D CT abdominal images (Figure 2.18). They used
ICP algorithm first to perform a global alignment. Then, the distribution of
gradient is used to guide the refinement of the contours of each anatomical
part. Finally, a snake with gradient vector flow is applied to obtain the final
object boundaries. Atlas-based approach has also been applied for segmen-
tation of brain CT images [4], brain MR images [1, 59] and abdominal CT
images [43].

Constructing atlas based on a single sample may have some problems.
Firstly, the selected single sample may not be a typical one. Secondly, the
atlas based on a single sample cannot contain any information of variability.
So, it cannot determine whether a deformed shape is an acceptable shape.
Probabilistic atlas was proposed to solve these problems [1, 27]. The prob-
abilistic atlas is constructed by a set of training samples. It represents the
spatial distribution of probability that a pixel belongs to a particular organ
[27]. The active shape model discussed in Section 2.3.1 can be used in a
probabilistic atlas.

By exploiting prior knowledge properly, atlas-based approach can solve
the initialization problem of most deformable model approaches. It can also
handle medical images with low contrast and inhomogeneous visual features
since it knows the desired shapes of the anatomical parts. Therefore, atlas-
based approach has the potential of solving very complex medical image
segmentation problem. The difficulty of using atlas-based approach lies on
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(a) (b)

(c) (d)

Figure 2.18: An example of atlas-based approach [18]. (a) Atlas contours
(white curves). (b) Atlas registered onto the target image after global trans-
formation. (c) The result of local refinement. (d) Final result after applying
snake algorithm.
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Table 2.2: Comparison of model-based segmentation methods.

Snake Active Shape Level Set Atlas-based
Topological no possible yes possible
change
Training no yes no sometimes
Shape possible yes no yes
preservation
Sensitivity yes no yes no
to noise
Over- no no yes no
segmentation
Prior min implicit min rich
knowledge

the construction of an appropriate atlas.

2.3.3 Summary

Unlike general segmentation algorithms, which are based on pixels or regions,
the registration-based algorithms discussed in this section are mostly based
on contours or surfaces. They have the ability to extract contours of anatom-
ical parts that have low-contrast inhomogeneous visual features. Therefore,
they are suitable for complex medical image segmentation problems. Usu-
ally, these registration-based algorithms need to incorporate some general
segmentation algorithms. For example, in [63], the watershed algorithm is
used with a probabilistic atlas to segment CT images.

A comparison of model-based segmentation methods is given in Table
2.2. Snake do not handle topological changes as the model contour evolves
over time, while level set is designed to handle topological changes. Training
samples are needed for active shape and probabilistic atlas-based methods.
Getting training samples may be a tedious work, but makes these methods
relatively less sensitive to noise. Unlike other methods, level set does not
preserve shape information and has over-segmentation problem. Atlas-based
approach uses a lot of prior knowledge. Active shape uses prior knowledge
implicitly through the modeling of probability distribution. Snake and level
set use a bit of prior knowledge such as bending strength (snake) and prop-
agation speed (level set).

Most of the general deformable model-based approaches are sensitive to
initialization because they do not have the prior knowledge of the anatomi-
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cal structures. Atlas-based approach can solve the initialization problem by
constructing an atlas from proper prior knowledge. Registration methods,
including deformable model approaches, can be used as part of atlas-based
approach to accurately locate the contours of the objects of interest in the
target image. The difficulty of using atlas-based approach lies on the con-
struction of the proper atlas. A simple atlas is easy to build but may have
limitations in segmenting complex medical image. On the other hand, build-
ing a complex atlas that contains a rich amount of prior knowledge is tedious.
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Chapter 3

Possible Research Topics

Based on the literature review in Chapter 2, some possible research topics
on registration-based segmentation of medical images are presented.

3.1 Segmentation of Overlapping Anatomical

Parts in X-ray Images

Atlas-based approach can handle many difficulties in medical image segmen-
tation such as noise, low contrast, inhomogeneous visual features and sig-
nificant deformation. However, it is not easy to build an appropriate atlas
to exploit prior knowledge in x-ray images because the images of different
anatomical parts can overlap. Since the overlapping regions can belong to
two or more anatomical parts (Figure 3.1), different anatomical parts may
contribute to the intensity of a pixel in these regions, resulting in blurring of
the regions or very complicated and noisy visual features.

Segmentation of overlapping anatomical parts in x-ray images is impor-
tant in many applications such as computer-aided diagnosis and surgery, 3D
model building of the overlapping anatomical part, etc. In many medical
applications, these overlapping anatomical parts are segmented manually by
some experienced experts. Therefore, segmentation of overlapping anatomi-
cal parts automatically is a promising research topic.

3.2 Framework for Segmenting CT/MR Im-

ages

Existing algorithms can handle segmentation of most CT/MR images given
appropriate atlases. However, images of different slices have different fea-
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Figure 3.1: A hip x-ray image. Overlapping regions (black circle) have com-
plicated visual features.

tures, so different algorithms have been developed for segmenting different
slices. Currently, there is no algorithm that can segment all CT/MR images
of the human body even when appropriate atlases are available. A possible
research topic is to develop a framework in which the segmentation algorithm
can adapt to different CT/MR images given appropriate atlases. To achieve
this goal, it is necessary to first identify the key characteristics of successful
atlas-based algorithms, and then build a framework that encompasses these
key characteristics. In addition, the framework must be adaptable to dif-
ferent CT/MR images and capture in the atlas the features that are most
suitable for segmenting the images.
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Chapter 4

Preliminary Work

This chapter describes some preliminary work done on atlas-based segmenta-
tion of anatomical structures in 2D CT images of the head and neck (Figure
4.1). An atlas is constructed for a different part of the head and the neck
from a normal CT image, and the target images to be segmented are de-
formed CT images due to the presence of tumors.

At first glance, it may seem easy to segment the white bones using a
thresholding method. However, thresholding produces disjoint regions (Fig-
ure 4.1) that must be connected or grouped together to form the anatomical
parts. Moreover, some regions that belong to different anatomical parts have
the same intensity. So, thresholding algorithm cannot distinguish them. Our
objective is to automatically segment and recognize anatomical parts of in-
terest and extract the contours of these anatomical parts.

4.1 Problem Formulation

The inputs of the problem include the following:

• Let M denote a 2D template image, which is a 2D CT image of normal
head or neck.

• Let C = {Ci} denote a set of contours of the anatomical parts in the
template image (Figure 4.2(a)). The atlas consists of C and intensity
information in M .

• Let A denote the target 2D CT image to be segmented. A may be
deformed CT images due to the presence of tumors (Figure 4.2(b)).

• Let S denote the set of edge points of A (Figure 4.2(c)).

The outputs of this problem are the contours of the anatomical parts of in-
terest in the target image.
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(a) (b)

Figure 4.1: Segmentation by thresholding. (a) Input CT image. (b) Thresh-
olding result. The input image is segmented into white, gray and black
regions using two thresholds: T1 = 220 and T2 = 60.

Some functions are defined as follows:

• Let D = {Di} denote a set of deformation functions, i.e., Di moves a
point pt ∈ Ci to a new location Di(pt).

• Let f be a correspondence function from Ci (model contour) to S (tar-
get edge points), that is, f(pt) ∈ S.

• Let T denote a 2D affine transformation of C.

• Let v(p) denote the visual features, e.g. intensity, gradient, at a point
p.

The segmentation problem can be defined as follows:

Find the affine transformation T , correspondence f , deformation Di

for each model contour Ci that minimize the edge point error Ep:

Ep =
∑

i

∑
pt∈Ci

‖ D(T (pt))− f(pt) ‖ (4.1)

subject to the constraint that Ev is small:

Ev =
∑

i

∑
pt∈Ci

‖ v(pt)− v(f(pt)) ‖2 . (4.2)

The constraint is used to ensure that the corresponding points between the
model and the image have similar visual features.
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Performance Measure

Let Bi denote the actual contours and Ci denote the extracted contours. The
performance measure can be defined as:

E =
1

n|Bi|
∑

i

∑
qt∈Bi

‖ qt − f ′(qt) ‖ (4.3)

where f ′(qt) is the closest point in Ci to qt ∈ Bi, and n is the number of
contours in the atlas.

4.2 Algorithm

The objective of the algorithm is to deform the model contours in the at-
las and register them as closely as possible to the actual contours in the
target image. The atlas consists of contours of anatomical parts and inten-
sity information from the reference image. The contours are obtained using
GVFSnake1 [69] with manual initialization. The algorithm contains three
stages, namely global alignment, finding correspondence and local contour
extraction.

4.2.1 Global Alignment

Like many atlas-base methods, global alignment is needed to roughly align
the position, orientation, and scale of the atlas to the target image. In this
stage, the outer boundary of the head or neck is used as a reference (the
yellow contour in Figure 4.2(a)) for applying global alignment.

First, the boundary of the target object is needed. Since the pixels outside
the object are all black, it is easy to get the boundary of the object automat-
ically. Using a rectangle that includes the whole object as an initialization,
GVFSnake is applied to the target image. The output of the GVFSnake is
accurately fitted to the outer boundary contour of the whole object.

Next, ICP [8, 74] is applied to estimate the global affine transformation
(Section 2.2.2). This algorithm uses points on the contours as inputs and
iterates between finding closest points as possible correspondence and esti-
mating the transformation until convergence. The output of ICP is an affine
transformation. This affine transformation is used as the global transforma-
tion that transforms each contour in the atlas to the target image. The result
of this step is a rough alignment of the model contour of each anatomical

1The toolkit of GVFSnake we used is provided by Chengyang Xu and downloaded from:
http://iacl.ece.jhu.edu/projects/gvf/.

36



(a) (b)

(c)

Figure 4.2: Inputs of the problem. (a) 2D CT image of normal head and
contours of anatomical structures of interest shown in different colors. The
atlas consists of these contours and intensity information. (b) Target 2D
CT image of the head with tumors. (c) Edge points detected by Sobel edge
detector.
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(a) (b)

Figure 4.3: Global alignment. (a) Atlas model. (b) Model contours aligned
to the target image after global transformation.

part (Figure 4.3).

4.2.2 Finding Correspondence

The objective of this stage is to determine the edges in the image that cor-
respond to the contours in the atlas. Since there are many edges that can
possibly match the atlas contours, the algorithm in this stage collects candi-
date edge segments and then identifies the best matching candidates of each
atlas contour.

First, edges in the image are extracted by applying Sobel edge detector
on the image. Connected edges are grouped into edge segments. Then, each
atlas contour Ci is transformed by the global affine transformation (obtained
in the global alignment stage) to the image, and the difference dj between
Ci and edge segment Zj is computed:

dj =
1

|Zj|
∑

pt∈Zj

‖ pt − g(pt) ‖ (4.4)

where g(pt) is the closest point in T (Ci) to pt. The segments with small dif-
ferences are selected as candidate edge segments of the corresponding atlas
contours.

The next step is to identify among the candidate edge segments those that
correctly correspond to various parts of the atlas contours. This is achieved
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(a) (b)

Figure 4.4: Finding corresponding edge segments. (a) Globally aligned model
contours. (b) Corresponding edge segments of the atlas contours are shown
in color.

by comparing the intensity distribution around a point on the candidate edge
segment with the intensity distribution of a point on the possibly correspond-
ing atlas of a contour. This difference is computed based on Equation 4.2.
The candidate edge segments with small differences are chosen as the correct
corresponding edge segments.

In Figure 4.4(b), every contour’s corresponding edge segments can fit the
boundaries of the target anatomical parts well, except for the spine part
(denoted in purple). The reason is that, the deformation of the spine is
too significant, and not all edge points of the target spine are close to the
transformed contour. The solution is to apply an adjustment before finding
the corresponding edge segments (Figure 4.5). The adjustment is applied
by GVFSnake with the globally aligned model contour as the initial snake.
This adjustment cannot fit the model contours to the anatomical parts well
because of noise. But, the adjusted model contours are now closer to the
boundaries of anatomical parts.

4.2.3 Local Contour Extraction

The final stage of this algorithm is to extract the contours of the anatomi-
cal parts in the target image using the edge segments found in the previous
stage. The algorithm can be summarized as follows:
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(a) (b)

Figure 4.5: Finding corresponding edge segments with adjustment. (a) Ad-
justment of the spine contour using GVFSnake. (b) Corresponding edge
segments with adjustment. The spine part fits better than that without
adjustment (Figure 4.4(b)).

For each atlas contour:

1. Create an image that contains only the corresponding edge segments
of this contour (Figure 4.6(a)). Run GVFSnake on this image to
extract a connected contour that match the edge segments. The
smallest bounding box that contains the edge segments is used as the
initial contour of the GVFSnake. The result of running the
GVFSnake is shown in Figure 4.6(b).

2. Using the contour obtained in Step 1 as the initial snake, run
GVFSnake on the target image to extract the final result (Figure
4.7(b)).

4.3 Tests and Discussion

The above algorithm was tested on 3 different slices of CT images using their
corresponding atlases. The test results are shown in Figure 4.7 to 4.9. Test
results show that the algorithm works very well. Given corresponding atlas,
the algorithm can segment 3 different CT slices: cross-sections at nose, jaw
and neck. The segmented anatomical parts include bones which are white in
the image, cavities which are black, and blood vessels which are gray. These
anatomical parts have different shapes and inhomogeneous visual features.
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(a) (b)

Figure 4.6: Local contour extraction. (a) An image containing the corre-
sponding edge segments of a single atlas contour. (b) Result after the first
run of GVFSnake.

(a) (b)

Figure 4.7: Final segmentation result. (a) The atlas model. (b) Final result
after running GVFSnake.
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Quantitative evaluation of the algorithm was performed on the slice in
Figure 4.7. First, the anatomical parts of interest were manually segmented.
Then, the algorithm’s segmented error was measured according to Equation
4.3 using the manually segmented contours as the ground truth. The Ep in
this case is 0.0048 pixel, which means that the segmented contours are very
close to the actual contours. Since quantitative evaluation is time-consuming,
it has not been applied to the other two slices.

By using edge segments instead of individual edge points, the algorithm
has the advantage of retaining the integrity of the contour. Intensity distri-
bution of the anatomical structure is also employed as a constraint in case
the edge image is too noisy. The algorithm can also cope with significant de-
formation by applying adjustment before selecting edge segments, as shown
in Figure 4.5.

Test results show that different CT images of the head and the neck
can be segmented by the same algorithm using appropriate atlases, which
is a good start for developing a framework for segmenting different CT/MR
images given appropriate atlases.
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(a) (b)

(c) (d)

(e)

Figure 4.8: Segmentation result. (a) Target. (b) Atlas. (c) Global alignment.
(d) Corresponding edge segments. (e) Final segmentation result.
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(a) (b)

(c) (d)

(e)

Figure 4.9: Segmentation result. (a) Target. (b) Atlas. (c) Global alignment.
(d) Corresponding edge segments. (e) Final segmentation result.

44



Chapter 5

Conclusion

This paper introduced the importance and main difficulties of medical image
segmentation, and reviewed existing general image segmentation algorithms,
non-rigid registration algorithms and registration-based segmentation algo-
rithms. General segmentation methods are categorized into five categories:
thresholding, region growing, morphological watershed, classifier and cluster-
ing. Generally, they are simple and efficient, and appropriate for segmenting
medical images with homogeneous visual features. For complex medical im-
age segmentation, they can be used as parts of more sophisticated algorithms.

Non-rigid registration algorithms are powerful tools for medical image seg-
mentation. General parametric registration algorithms such as affine trans-
formation, polynomial transformation and kernel-based transformation can
solve registration problems with known correspondence. Sophisticated algo-
rithms such as ICP, dual-bootstrap ICP, variational approaches and demons
algorithm can solve registration problems with unknown correspondence.

Registration-based segmentation methods include general deformable model-
based methods (snake, active shape and level set) and atlas-based methods.
These methods can segment complex medical images with inhomogeneous
visual features and low contrast. They are less sensitive to noise compared
to general segmentation algorithms. Therefore, registration-based segmenta-
tion methods are widely used in complex medical image segmentation appli-
cations.

Two possible research topics were proposed in Chapter 3. The first one
is on the segmentation of overlapping anatomical parts in x-ray images,
which cannot be solved satisfactorily by existing algorithms. The second
one is about developing a framework for segmenting anatomical parts in
any CT/MR images of the human body given appropriate atlases. These
algorithms can significantly improve the development of medical image seg-
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mentation.

A preliminary work was presented in Chapter 4. It used an atlas-based
method to segment anatomical structures in deformed 2D CT images due to
the presence of tumors. Test results show that the algorithm can segment
different CT images using the corresponding atlases. Therefore, this algo-
rithm can contribute to the development of the framework for segmenting
any CT/MR images.
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