
National University of Singapore

School of Computing

Dept. of Computer Science

Graduate Research Paper

Segmentation of Vascular Structures from

Medical Images

by

Qi Yingyi

Supervisor: Dr. Leow Wee Kheng (Associate Professor)

July, 2006



Abstract

Medical image segmentation is applied to extract vascular

structures from various medical images, such as CT (Computed

Tomography), MRI (Magnetic Resonance Imaging). In this pa-

per, existing algorithms for vasculature segmentation are clas-

sified into several categories, and a thorough literature review

is given to discuss their main ideas, pros and cons. Based on

the review, some possible research topic is proposed. Some pre-

liminary work is also presented. And the experimental results

are discussed.
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Chapter 1

Introduction

1.1 Motivation

Vascular structures are objects in the human body that have tree structures
with lots of branches. Each branch often has a tubular shape. Vascular
structures include blood vessels, neurovascular structures, vascular struc-
tures in livers, coronary artery, airway tree (pulmonary tree), colon, and
nerve channels [38].

There are many diseases associated with the vascular structures listed
above. For example, cancer cannot progress without the formation of new
blood vessels to supply the malignant cells’ metabolic demand. In coronary
heart disease, inflamed fatty deposits in the blood vessel wall obstruct the
coronary arteries which supply blood to the heart. This leads to narrow-
ing of arteries called arterial stenosis. When the blockages become severe
enough, blood flow to the heart is restricted. Then, the portion of the heart
muscle supplied by the diseased arteries dies. If the affected area is large
enough, the patient will die. Bronchiectasis is a chronic inflammatory or
degenerative condition of one or more bronchi or bronchioles of the lungs,
which suffer from dilation and loss of elasticity of the walls. This results in
airflow obstruction and impaired clearance of secretions in the lungs.

Medical images, such as magnetic resonance (MR) images, computed
tomography (CT) images, and angiograms, play an important role in diag-
nosis and treatment of diseases related to vascular structures. For example,
blood vessels appear very clearly in x-ray angiograms and CT images (Fig-
ure 1.1) due to injected intravenous contrast agent. It is easy for doctors
to observe narrowing, dilation or obstruction of vessels, which will lead to
severe diseases.

Computer-aided diagnosis based on medical images is a very important
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(a)
(b)

(c)

Figure 1.1: Images of vascular structures. (a) A cardiac angiogram showing
cardiac blood vessels, (b) a CT image of the cross section of the cardiac
blood vessels, and (c) a retinal fundus image showing the blood vessels on
the retina.

technique that helps doctors detect diseases earlier. It can obtain the whole
tree structure of blood vessels. It can compare the data extracted from a
patient’s image data with a corresponding model to increase the recognition
accuracy of abnormalities of vascular structures.

Computer analysis of medical images can also be used for treatment. For
example, qualitative and quantitative comparisons between sets of images of
one patient at different time can provide evidence for the effects of medicine
or treatment.

Computer analysis of medical images requires various medical image
processing techniques. Among them, segmentation is usually the first step
in processing medical images. It is also a crucial step that affects the ac-
curacy of the final result in the application. For example, segmentation
of blood vessels from 2-D or 3-D images should be accurate enough. Oth-
erwise, subsequent steps based on the segmentation results, such as 3-D
reconstruction, visualization, and quantification of the vessels, become er-
ror prone. Segmentation of vascular structures is a difficult task because
vascular structures often have complex topological and geometric structures.
Moreover, high-intensity noise in the images may confuse the segmentation
algorithms.
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1.2 Definition of Segmentation Problem

In general, the goal of segmentation is to partition an image I into several
disjoint regions Ri such that each region is homogeneous with respect to
some properties:

I =
N⋃

i=1

Ri (1.1)

Ri ∩Rj = ∅ for i 6= j

P (Ri) ≈ 1 for i = 1, 2, ...N

P (Ri ∪Rj) ≈ 0 for i 6= j

(1.2)

where the function P (R) ∈ [0, 1] measures the homogeneity of the region.
P (R) = 1 means the region is homogeneous, and P (R) = 0 means the
region is inhomogeneous.

In particular, there are three variations to the vascular structure seg-
mentation problem:

• 2-D structure from single 2-D image:
Given a 2-D image, group its pixels into two groups, i.e., the vascular
structure and the background.

• 3-D structure from 3-D volumetric image:
3-D volumetric image consists of a set of consecutive 2-D slices. Sim-
ilar to the 2-D case, the problem is to group all its voxels into two
groups. Based on the segmentation result, a 3-D model of the vascular
structure can be obtained.

• 2-D structure from 2-D temporal sequence:
This variation is to segment the 2-D vascular structure from a 2-D
temporal sequence. Vascular structures move and change shape over
time due to physiological activities, such as breathing and bumping
of the heart. Some parts of the vessels may overlap others in some
image frames. In some cases, such as angiograms, blood vessels may
not be clearly visible in all image frames due to the flowing in and
out of contrast agent along with the blood (Figure 1.2). Therefore,
segmentation of all the blood vessels in all the image frame poses a
great difficulty.
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(a) (b)

(c) (d)

Figure 1.2: Example of 2-D temporal sequence of cardiac angiograms. Blood
vessels change position, shape and intensity over time.

1.3 Organization of the Paper

In Section 2, general algorithms and model-based algorithms for the segmen-
tation of medical images will be first discussed. Based on them, techniques
that are specifically designed for vascular structure segmentation are cov-
ered in Section 2.4. From the literature review related to vascular structure
segmentation, some possible research topics that deserve more emphases
and research are discussed in Chapter 3. Preliminary segmentation results
using existing algorithms are shown in Chapter 4. Finally, the paper con-
cludes in Chapter 5.



Chapter 2

Existing Work

General segmentation algorithms can work well with simple biomedical im-
ages with homogeneous features (Section 2.1). However, by themselves, they
may fail to segment complex images with inhomogeneous features. More so-
phisticated model-based algorithms are developed for segmenting complex
images (Section 2.2). Specific algorithms for segmenting vascular structures
are discussed in Section 2.4.

2.1 General Segmentation Algorithms

General algorithms for medical image segmentation can be divided into
five categories: thresholding, region growing, watershed, classification and
clustering.

2.1.1 Thresholding

Thresholding is one of the basic segmentation techniques. It segments an
image by partitioning it into two parts depending on a threshold value that
is related to the image intensities or other image features. In the case
of multithresholding, more than one threshold can be used to segment an
image into more than two parts.

There are two kinds of thresholding techniques: global thresholding and
local thresholding. Global thresholding determines a single threshold based
on the intensity histogram or other features of the entire image [34, 49].
Then image is divided into two regions, one with feature values greater
than the threshold, and the other with feature values less than the threshold
(Figure 2.1).

5
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(a) (b)

Figure 2.1: Example of thresholding result. (a) The input image, (b) the
thresholding result.

In many applications, global thresholding cannot produce good segmen-
tation results for complex images whose background may not have a con-
stant intensity. One single threshold for an entire image might be inad-
equate. Therefore, local thresholding is often used. It determines local
thresholds by splitting the image into subimages and computing thresholds
for each subimage [12], or by examining the average image intensities or
other statistics in the neighborhood of each pixel [7, 15, 40].

Thresholding is a simple and efficient segmentation method when the
objects to be segmented have very contrasting intensities or features com-
pared to the background. Usually this kind of methods ignores the shape
features of an image, which makes thresholding techniques very sensitive to
noise. Moreover, it often results in over-segmentation, i.e., the segmentation
result contains many small regions, due to feature inhomogeneity.

2.1.2 Region Growing

Compared with thresholding, region growing is designed to look for groups
of pixels with similar properties with respect to some predefined criteria.
In the simplest form, it starts from one or more seed points that serve as
the initial regions. Then, it adds neighboring pixels one at a time into
the regions if they have similar intensities or other features based on some
predefined similarity measures (Figure 2.2) [19, 57, 62].
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Selections of seed points and similarity measure are the most important
issues in region growing. Seed points can be chosen by some automatic
procedures [57, 71, 79] or selected manually, especially for complex cases
[62]. In general, points that are most representative of the desired regions
are chosen as seed points. Different criteria are used according to different
applications, for example, points with smallest gradient length [57], points
located in a special position [79], and points with special texture information
[71].

Similarity measure of intensity or other features should be determined
carefully. If the similarity condition is too strict, it may result in over-
segmentation. Otherwise, it may cause insufficient segmentation.

The primary disadvantage of region growing is that its result may vary
according to the different seed points selected. Region growing can be very
sensitive to noise, resulting in over-segmentation or insufficient segmenta-
tion. On the other hand, due to the neighbor growing scheme, region grow-
ing always generates connected regions. By starting from multiple seed
points, it can group regions at different spatial locations with similar fea-
tures into one group.

2.1.3 Watershed

Watershed segmentation utilizes image morphology. A gray-scale image
is considered as a topographic surface with respect to intensity. In the
gray-level profile of the image, local minima define catchment basins and
local maxima define the watershed lines (Figure 2.3). Watershed algorithm
requires at least one starting point for each desired object to be segmented,
including the background as a separate object. These starting points are
usually provided by some automatic procedures (Section 2.1.2). Then, the
entire topographical surface is flooded as if water rises through the starting
points. When water in distinct catchment basins is about to merge, a dam
is built to prevent the merging. The flooding stops when only the tops of the
dams are visible above the water line. These dams correspond to watershed
lines [24].

Watershed algorithms always produce a complete division of the image.
However, sometimes they can result in over-segmentation (Figure 2.4(b))
because noise in the image may form a lot of local minima. Moreover, they
usually cannot be used to extract thin structures or structures with low
signal-to-noise ratio [25].

In order to overcome these drawbacks, watershed algorithms are mod-
ified according to the characteristics of the input images [46, 68], or they
are combined with other techniques, like region merging, to produce better
results (Figure 2.4(c)) [28, 69].
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Figure 2.2: Randomized region growing after seed point setting and visiting
9, 40, 100, 150, 200, 300, 400 and 475 pixels [57].

Figure 2.3: Catchment basin and watershed lines in watershed algorithms
[72].
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(a)

(b)

(c)

Figure 2.4: Image segmentation results using watershed and region merging
[28]. (a) Raw MR image, (b) initial over-segmentation (3058 regions), and
(c) improved segmentation result (40 regions).
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2.1.4 Classification

Classification method classifies pixels into known classes based on one or
more characteristics. It requires a training set of previously labeled pixels.
There are two common steps among all the classification methods. One is
to select some features according to the characteristics of the input image
to form a multi-dimensional feature space. Each pixel or patch of pixels to
be classified is represented as a feature vector in the feature space. Then,
the similarity or closeness between the feature vectors can be described
using some measures such as Euclidean distance. The other common step
is to mark a subset of vectors with known class labels. Usually this step
is performed manually. Finally for all the classification methods, the task
is to determine a mapping function from each vector to one of the known
classes using a training algorithm.

Various classifiers have been used to obtain the mapping function, e.g.,
linear classifiers [70], k-nearest-neighbor [16, 58], boosting [59], decision
trees [35], neural networks [3, 18, 32, 52], support vector machines [60, 80],
etc. For example, Kalinlin et al. segment different anatomical regions in
abdominal CT using decision tree [35]. The feature used is based on pixel-
wise Haralick co-occurrence texture features [27]. The classification result
is post-processed by a median filter to improve the segmentation (Figure
2.5).

Classifiers can determine the classes of different regions in an image effec-
tively, as long as the extracted features are sufficient to distinguish different
classes. It may lead to biased results when a small set of training data is
used [4]. If the features are based on a single pixel, then, the boundaries
between segmented regions can be determined precisely. On the other hand,
if the features are extracted from a neighborhood of pixels, the locations
of the segmented region boundaries are uncertain. Another disadvantage
of classification method is the requirement of manual work to prepare the
training data, which is time-consuming and tedious.

2.1.5 Clustering

In clustering, a feature vector is extracted from each patch of pixels in
the input image. It corresponds to a vector in the feature space. Then,
clustering is performed to group the vectors of various patches into clusters
such that vectors in each cluster have similar characteristics according to
some predefined distance measure, and vectors in different clusters have
different characteristics.

Clustering can be hierarchical or partitional. Hierarchical clustering can
be agglomerative (bottom-up) or divisive (top-down). The former starts
with each vector as a separate cluster and then merges them into larger
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(a) (b) (c)

Figure 2.5: Segmentation by classification [35]. (a) Input CT image, (b)
segmented result using classification, and (c) post-processed result using
median filter.

clusters successively [33, 74], while the latter begins with the whole set of
vectors as a single cluster and divides it into smaller clusters successively.
Partitional algorithms includes k-means clustering [23] and its variations,
such as fuzzy c-means algorithm [13, 54] (Figure 2.6).

In [23], k-means clustering is used in spatio-temporal segmentation of
medical image sequence. In this approach segmentation is not done on
a simple frame-by-frame basis but utilizes multiple image frames. Thus
features, e.g. brightness and the Euclidean norm of the optical flow vector,
are extracted from the actual image that has to be segmented and from
neighboring image frames in the sequence. This scheme makes use of the
motion of desired objects.

Like classification, clustering result is dependent on feature extraction.
k-means clustering and its variations are sensitive to initialization. It is
important to choose initial clusters carefully. In general, clustering does
not take into account spatial information of the pixels or patches of pixels.

2.2 Model-based Approach

General segmentation algorithms typically require that the objects to be
segmented are homogeneous with respect to some features, usually intensity.
On the other hand model-based algorithms does not require the regions to be
homogeneous because they make use of domain-specific prior information.
There are mainly two kinds of models: deformable model and atlas.
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(a) (b)

(c)

Figure 2.6: Segmentation result using clustering algorithms [23]. (a) Input
MR image. (b) Segmented image. (c) Clusters and centers. Points with
the same mark belong to the same cluster. Cluster centers are indicated by
large boxes.

2.2.1 Deformable Models

Deformable models delineate region boundaries using curves or surfaces rep-
resented by explicit or implicit functions. Snake and level set are two widely
used deformable models for the segmentation of vasculatures. Active shape
is another well-known deformable model. But, it is not used for segmenting
vasculatures because their shapes are too complex to be described by active
shape model. So, it is ignored in this discussion.
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Snake

Snake, also called active contour models, was first proposed by Kass, Witkin,
and Terzopoulos [36]. Snake is a contour represented by connected points.
It behaves like a rubber band and can be deformed to match any shape
under the influence of internal force, image force and external force. These
three kinds of forces are defined so that the snake will conform to an object
boundary or other features in the image. The internal energy is associated
with elasticity and rigidity of the snake. The image energy specifies the
image feature, such as edges, used to attract the snake. The external energy
is not often used, and it can be spring energy, repulsion and so on. When the
sum of these three kinds of energy is minimized, the snake should approach
the desired image features.

Snake is a good model which can be used in many applications. Snake
will fit the contour of any shape as long as the forces are well designed
and balanced. It can connect disjoint edges by finding an optimal compro-
mise between different forces. Moreover, it guarantees a smooth and closed
boundary of the desired object. However, it has some intrinsic shortcom-
ings. For instance, it can be very sensitive to initialization and noise, and
it cannot fit well to concave features (Figure 2.7) [75].

To overcome these shortcomings, Xu and Prince proposed the gradient
vector flow (GVF) method [75]. GVF field is a vector field derived from the
diffusion of the gradient vectors of a gray-level or binary edge map computed
from the input image. GVF replaces the usual image forces, and it can
attract the snake to fit the concave part of the object in the image (Figure
2.7). Although GVF is less sensitive to initialization than traditional snake,
it still requires a good initialization. It can also be distracted by noise.

Another variation is the dual snakes [26]. In this case, two snakes are
used. One is an interior snake lying within the regions of the desired object.
The other is an exterior snake outside the desired regions. The two snakes
are coupled using spring energy that causes them to be attracted to each
other as well as the boundary of the desired object. Dual snake model incor-
porates the information from two snakes approaching the desired boundary
from both sides. It reduces sensitivity to initialization. It also provides
good performance in the case of non-convex shapes.

Yezzi et al. derived a new active contour model for edge detection and
segmentation of MRI, CT, and ultrasound medical images [78]. It amounts
to curve evolution together with a stopping term. The evolution follows the
gradient direction in which the curve shrinks as fast as possible. The active
contour will stop at the desired edges by minimizing the geometric energy
based on the gradient flow of the active contour (Figure 2.8).
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: Comparison between traditional snake and GVF. (a) Conver-
gence of a traditional snake, (b) traditional potential forces, (c) close-up of
the concave part, (d) Convergence of a GVF snake, (e) GVF external forces,
and (f) close-up of the concave part of GVF [76].

(a) (b) (c)

Figure 2.8: Contour extracted from MRI heart image via snake [78]. (a)
The initial contour, (b) the intermediate contour during evolution, and (c)
the final contour.
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(a)
(b)

Figure 2.9: (a) 2-D contours. (b) The level set surface (in red). The zero
level set (in blue) gives the 2-D contours.

Level Set

Level set was proposed by Osher and Sethian [53]. It represents the interface
(2-D contour or 3-D surface) in one higher dimension.

Consider, for example, a 2-D contour Γ (Figure 2.9(a)). A level set
function φ(x, y, t) (the red surface in Figure 2.9(b)) is defined in 3-D. Typ-
ically, φ is the signed distance function to the contour. It keeps all possible
states of Γ. The intersection of φ(x, y, t) and the x-y plane gives the con-
tour Γ. Therefore, at any time t, Γ can be obtained by solving the equation
φ(x, y, t) = 0.

The level set function φ(x, y, t) moves up and down the φ-axis under
some predefined forces that give the propagation velocity of Γ. The initial
position of Γ is given by the initial contour of φ(x, y, t = 0). Numerical
schemes are applied to approximate the equations of motion to compute
φ(x, y, t + ∆t) = 0 given φ(x, y, t) = 0. The evolution will iterate until the
level set function φ(x, y, t) converges.

Level set is used in many applications [45, 61, 66]. A simple 2-D example
is shown in Figure 2.10 [66]. Starting from a small circle within the vessel,
the contour expands to fit the boundaries of the blood vessels. The idea
of level set can be easily extended to 3-D cases to extract surfaces of the
desired objects [39, 44, 51].

The primary advantage of level set method is that the level set function
remains a single function even when the zero level set changes topology,
breaks, merges, or forms sharp corners when it evolves over time. There-
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(a) (b) (c) (d)

Figure 2.10: The evolution of the zero level set curve [66]. (a) The initial
contour, (b, c) intermediate contours during evolution, and (d) the final
contour of the blood vessel.

fore, level set is useful for segmenting objects with complex topology such
as blood vessels. However, traditional level set method does not contain
geometrical constraints. So, the zero level set may leak into some undesired
regions.

In general, the φ value of every pixel has to be computed at each iter-
ation. Efficient algorithms such as narrow band [1] and fast marching [67]
are developed to improve the efficiency of level set method. In narrow band
method, the φ values are computed for the pixels within a narrow region
around the propagating contour only because the pixels far away from the
contour do not affect its propagation. Fast marching is applicable when the
contour always propagates in the same direction.

2.2.2 Atlas-based Approach

Atlas-based approach is powerful and widely used when a standard tem-
plate called the atlas is available. It exploits prior anatomical knowledge
in segmentation. Usually these algorithms solve the segmentation problem
using registration technique to align the atlas and the image.

As shown in Figure 2.11(a), the atlas contains contours of the desired
objects. The first step is to place the atlas near to the desired objects by
global transformation including scaling, translation and rotation (Figure
2.11(b)). Then, each atlas contour is deformed to fit the boundary of the
desired objects. Once the deformation of each contour is completed, the
image is segmented into several parts, and each one corresponds to one part
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(a) (b) (c)

Figure 2.11: Atlas-based segmentation example [17]. (a) Atlas contours
(white curves) superimposed on the reference CT image. (b) Atlas regis-
tered onto a target image after global transformation. (c) Final segmenta-
tion result.

in the atlas.
Atlas-based algorithms do not suffer from over-segmentation because of

the one-to-one correspondence between the atlas regions and the segmented
regions. Due to the strong shape constraints from the atlas, they have
less leakage problems than deformable model without shape constraints.
Furthermore, it can provide a good initialization for snake and level set.
However, building an appropriate atlas can be quite difficult. If atlas is
constructed from a single image, it may not be representative of the desired
object. On the other hands, constructing an atlas from a set of images
requires more work.

2.3 Comparison of Segmentation Methods

Based on the discussion given in Sections 2.1 and 2.2, the strengths and
weakness of the various segmentation methods are summarized as follows
(Table 2.1). Atlas-based approach is the least sensitive to noise. The other
algorithms are all sensitive to noise with thresholding being the most sen-
sitive.

Thresholding, classification and atlas-based approach do not need any
initialization except for setting some parameters and training sets. Level
set is less sensitive to initialization than snake. Snake, region growing and
watershed are very sensitive to initialization.
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Table 2.1: Comparisons of segmentation methods

Algorithms Sensitivity
to noise

Sensitivity
to initializa-
tion

Severity
of over-
segmentation

Complexity
of image
solvable

Thresholding Very high No Very high Very low
Region
growing

High High High Low

Watershed High High High Low
Classification Moderate No Moderate Moderate
Clustering High Moderate High Moderate
Snake High High No High
Level set High Low Low High
Atlas-based Low No No High

Snake and atlas-based approach will not over-segment the input im-
ages. Level set has low probability of over-segmentation. Classification,
clustering, region growing, watershed and thresholding suffer from severe
over-segmentation.

Atlas-based approach, snake and level set can segment very complex im-
ages. Classification, clustering, region growing, watershed and thresholding
only can handle simple images by themselves.

2.4 Vascular Structure Segmentation Algo-

rithms

The following is a discussion of specific algorithms for the segmentation of
vascular structures in medical images. These algorithms can be divided
into seven categories, namely centerline detection, region growing, matched
filter, classification, deformable model-based, geometric parametric model-
based and stochastic approach.

2.4.1 Centerline Detection

The main idea of the centerline detection approach is to find the centerlines
of the entire vascular structure. One type of centerline detection approach
is the ridge-based algorithm [8, 21]. It treats a gray-scale image as a 3-
D elevation map where intensity ridges approximate the skeleton of the
vasculature. Ridge points, which are local peaks in the direction of maximal
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Figure 2.12: Tracked centerlines of retinal blood vessels [8].

surface gradient, are first detected. Then, the whole vascular structure is
extracted by connecting neighboring ridge points.

Chandrinos’s algorithm [8] detects ridge points based on the gradient
of Gaussian smoothed image. Then, the centerlines are obtained by con-
necting nearest ridge points (Figure 2.12). The algorithm of Florin et al.
[21] determines a ridge point by examining the intensity value, peak shape
and distance to the heart wall. Ridge points are then linked by a minimum
spanning tree algorithm.

Through centerline extraction, topological information of the vascular
structure is obtained. It does not require special initialization. But, due to
sensitivity to noise, it is difficult for centerline detection methods to extract
all the small vessels.

2.4.2 Region Growing

As discussed in Section 2.1.2, region growing approach is designed to search
for similar pixels (voxels) according to some predefined criteria of similar-
ity. Region growing is very sensitive to the selection of seed points and
susceptible to noise corruption. Sometimes, it is combined with threshold-
ing technique to restrict the candidate seed points [2, 30, 65].

An ordered region growing algorithm [79] has been developed to produce
an acyclic graph representation of the MRA image (Figure 2.13). It requires
users to specify seed points. Directed edges are established from each seed
point to its neighbor points. The directed graph describes the connectivities
between all voxels in the image. So based on it, vessel paths and branching
patterns of vascular tree can be tracked starting from the points at the ends
of vessel branches.
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Traditional region growing segmentation frequently fails due to its sen-
sitivity to noise in the images taken with low-dose contrast agent injected.
Tschirren uses a multi-seeded region growing method based on fuzzy con-
nectivity [73]. Fuzzy connectivity expresses the similarity of two adjacent
voxels as a fuzzy membership value between 0 and 1 according to the dif-
ference between their intensities. If two voxels are not directly adjacent,
their similarity is determined by looking at all possible chains that connect
these two voxels. A chain is a sequence of adjacent voxels. The strength of
a chain is defined by the lowest similarity of the adjacent voxels along the
chain. The strength of the strongest chain is chosen to represent the similar-
ity of two indirectly adjacent voxels. Tschirren’s algorithm sets more than
one seed point, and grows two regions of foreground and background simul-
taneously, letting them compete for voxels according to fuzzy connectivity
(Figure 2.14).

2.4.3 Matched Filter

Matched filter extracts vascular structure by convolving the image with pre-
defined filters that characterize the features of vascular structures [9, 10, 11,
31, 47]. Various filters have been applied. In [9], a Gaussian-shaped curve is
used to approximate the profile of the cross section of a blood vessel. Based
on it, a set of filters are constructed to search for vessel along all possible
directions. A half-elliptic cylinder-shaped filter (Figure 2.15(b)) is applied
in [22]. Matched filters of various orientations and sizes are convolved with
the digital subtraction angiogram (DSA). At each position, the filter with
the highest match value is returned as the result (Figure 2.15(c)). In [64],
a multi-scale 3-D line enhancement filter based on Hessian matrix is used
to discriminate line structure of vessels from background. Matched filter
based on Gabor Filter [14] is used to detect X-junctions and T-junctions
[10, 11].

Matched filter algorithm is immune to the usually high noise level in
angiograms. It returns a high value only when both intensity and spatial
properties of the structures match the filter well. The size of the filter affects
the computation complexity of the algorithm.

2.4.4 Deformable Model-based Approaches

Deformable model-based approach can deform the model to any shape de-
pending on predefined forces. Therefore, it is useful for vascular structure
segmentation because vasculature often has complex 3-D structure. There
are two kinds of deformable models that are widely used in the extraction
of vascular structures: snake [41, 50, 63] and level set [44, 51, 77].
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(a)

(b) (c)

Figure 2.13: Acyclic graph representation of input image [79]. (a) Adjacent
points are added to a seed point to form the connectivity graph. (b) An
input image. (c) The acyclic graph representation. Lines represent the
connectivity between pixels, and arrows indicate the starting points for
tracking vessel branches.

In [50], a cubic B-spline snake is used to extract the catheter from biplane
angiograms. Initialization is provided by the user. In [63], an adaptive snake
is evolved using a stochastic relaxation technique called simulated annealing
[37] to find a global energy minimum in noisy MR images (Figure 2.16).

Level set is another deformable model-based algorithm [44, 51, 77]. As
discussed in Section 2.2.1, level set method often has leakage problems. To
overcome it, a level set model with a soft shape prior, called shape driven
flow, is applied to segment 2-D/3-D vessels [51] (Figure 2.17). Moreover, by
including both intensity and shape information, this algorithm can overcome
leakages near the areas where image information is ambiguous.
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Figure 2.14: Segmentation result of intrathoracic airway trees from low-dose
CT scan.

2.4.5 Geometric Parametric Model-based Approach

Vasculatures are tube-like objects. Consequently, the cross-section of each
vessel can be approximated by an ellipse. Geometric parametric mode-based
approach aligns a parametric elliptic model with vessel cross-section in every
2-D slice of a 3-D volumetric image to obtain a best fit [6, 20, 56]. Each
branch of the blood vessel is represented by a medial axis curve together
with an elliptical surface that represents the vessel surface (Figure 2.18(a)).
The location of the axis and the parameters of the ellipse are determined
to match the model with the input image.

In [20], a two-stage deformation is applied to match the image. The first
stage called axis deformation determines the position of each elliptic model
for each vessel according to the medial axis (Figure 2.18(c)). The second
stage performs a surface deformation to determine the parameters of the
elliptic model, such as semidiameter and orientation (Figure 2.18(d, e)).

Geometric parametric model-based approach is applicable to the seg-
mentation of healthy vasculature. It does not have leakage problem be-
cause it always preserve the shape of each cross-section of the vasculature.
However, it has some intrinsic problems. Cross-section of vasculature might
not have an elliptic shape when it is unhealthy. Under such circumstances,
geometric parametric model may not be appropriate.
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(a)

(b)

(c)

Figure 2.15: Matched filter used by Franz [22]. (a) Input DSA, (b) matched
vessel filter, and (c) matched filter result.
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Figure 2.16: Segmentation results of the ascending aorta from consecutive
frames using adaptive snake [63]. The result of each frame is used as the
initialization for segmentation for next frame.

2.4.6 Classification

The basic idea and pros and cons of classification-based segmentation have
been discussed in Section 2.1.4. Nekovei and Sun [52] developed a neural-
network classifier for extracting blood vessels in angiograms. The multilayer
feed-forward network learns to classify pixels according to their intensities
using back-propagation learning algorithm. Soare et al. [70] developed a
method for automated segmentation of the vasculature in retinal images us-
ing a Bayesian classifier. Features are extracted through 2-D Morlet wavelet
transform in the green channel of the input images.

Hassouna and Farag [29] used classification algorithm to classify voxels
into two classes, namely background and vessels, according to the intensity
distribution of the images is characterized. The background intensities are
modeled by a finite mixture of a Rayleigh [55] and two normal distributions,
while blood vessels are modeled by normal distribution. Whether a voxel
belongs to the vessel class is determined according to maximum a posteriori
(MAP) classification.
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(a)

(b)

(c) (d) (e)

Figure 2.17: 2-D and 3-D segmentation results using shape driven flow [51].
(a) 2-D result without shape prior level set. Contour leaks into several
non-vessel regions. (b) 2-D result with shape prior has a less severe leakage
problem. (c) 3-D results without shape prior. The leakage connects with
the vessel to the background. (d) 3-D result with shape prior has no leakage
problem. (e) Final segmentation result from a different viewpoint.
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(a)

(b) (c)

(d) (e)

Figure 2.18: Deformation procedure of a pair of vessel cross-sections [20].
(a) Medial axis of a branch and its elliptic circumference. (b) The initial
contours of vessel cross-sections. (c) Contours after one iteration of axis
deformation. (c) Contours after one iteration of surface deformation. (d)
Final contours after axis and surface deformation.
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(a) (b) (c)

Figure 2.19: Segmentation result of a retinal image using classification al-
gorithm [70]. (a) The inverted green channel of retinal image. (b) Segmen-
tation result produced by the algorithm. (c) Manual segmentation result.

2.4.7 Stochastic Approach

Stochastic approach segments images of vascular structures using stochastic
processes [42]. The vascular structure is represented as a set of segments.
Each segment is modeled by a set of random variances that describe its
position, orientation, length, etc. Geometric constraints, such as continuity
of segment network and local curvature, are incorporated as the probability
of the connection between two segments.

The algorithm iteratively seeks the configuration of random variables
that maximizes the probability of constructing the entire vessel tree (Figure
2.20(b)). It starts from an initial random configuration. It updates the
configuration using algorithms such as simulated annealing until an optimal
solution is found.

Stochastic approach integrates geometric constraints into the segmenta-
tion process. It can obtain the topology of vascular structure. It is immune
to noise and does not suffer from over-segmentation. On the other hand,
the complexity of stochastic algorithm is usually very high.

2.4.8 Summary

Based on the discussion in the previous sections, comparisons between the
algorithms are summarized as follows (Table 2.2). All the algorithms are
sensitive to noise except for geometric parametric model and stochastic
approach that incorporates geometric constraints.
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(a) (b)

Figure 2.20: Coronary tree extraction in [42]. (a) A 2D x-ray angiographic
image. (b) Coronary extraction result.

Centerline detection, matched filter, classification and geometric para-
metric approach do not require any initialization. Level set and stochastic
approach are less sensitive to initialization than region growing and snake.

Snake and geometric parametric approach do not suffer from over-segmentation.
Level set, stochastic approach, and centerline detection has a low probabil-
ity of over-segmenting an input image. Matched filter, classification, and
region growing can result in over-segmentation.

All the algorithms except snake can be applied to segment and obtain
complex vessel tree of vasculature from input images. Snake is used for
segmenting the simple contours of cross-section of vasculature from each
slice of CT/MR images.



2.4. VASCULAR STRUCTURE SEGMENTATION ALGORITHMS 29

Table 2.2: Comparisons of vascular segmentation algorithms.

Algorithms Sensitivity
to noise

Sensitivity
to initial-
ization

Severity
of over-
segmentation

Vessel tree

Centerline
detection

High No Low Yes

Region
growing

High High High Possible

Matched fil-
ters

Moderate No Moderate Possible

Classification Moderate No Moderate Possible
Snake High High No No
Level set High Low Low Yes
Geometric
parametric
model

Low No No Possible

Stochastic
Approach

Low Low Low Yes





Chapter 3

Possible Research Topics

Based on the literature review in Chapter 2, some possible research topics
about 3-D vascular structure segmentation from temporal sequences and
segmentation and annotation of multiple parts of 3-D cardiac blood vessels
are presented as below.

3.1 Segmentation of Blood Vessels from Tem-

poral Sequence of Angiograms

Blood vessels change intensity, location and shape over time, and they do
not always appear clearly visible in the temporal sequence of angiograms due
to the pumping of the heart and the flowing of contrast agent along with
the blood (Figure 3.1). And in angiograms, the blood vessel boundaries
sometimes become blur. Therefore, a single 2-D image is not enough to
segment angiograms correctly. But existing algorithms discussed in Section
2.4 are mainly designed for single 2-D, and may not work well with unclear
boundaries.

To achieve a complete and correct segmentation of blood vessels in an-
giograms, a temporal sequence is required. The primary problem lies in
how to finding the appropriate relationship between different slices taken
at different time. And the relationship is useful to track the positions and
shapes of blood vessels in each frame of the temporal sequence.
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(a) (b)

(c) (d)

Figure 3.1: Example of 2-D temporal sequence of cardiac angiograms. Blood
vessels change position, shape and intensity over time.

3.2 Segmentation and Annotation of Multi-

ple Parts of 3-D Cardiac Vasculature

Some of the algorithms discussed in Section 2.4 can be used to perform 3-D
segmentation of cardiac vasculature. They will produce a 3-D structure of
cardiac vasculature as a whole. For practical use, it is necessary to separate
the 3-D structure into various anatomical parts such as ascending aorta,
descending aorta, aortic arch and veins.

To segment and annotate multiple parts of 3-D cardiac vasculature, a 3-
D atlas that describes the various parts of the cardiac structure is required.
There are some main difficulties in separating the various parts. The 3-D
structure of the cardiac vasculature is very complex. Main arteries are close
to each other (Figure 3.2). The boundaries between them are, in many
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Figure 3.2: 3-D structure of the main cardiac vasculature.

cases, ambiguous in the CT/MR images. And relative positions and shapes
of the cross-sections are not the same in different slices. Therefore, it is
difficult to construct an effective 3-D atlas to describe the entire structure
with separate parts. In addition, the atlas is also hard to be used to perform
the segmentation.





Chapter 4

Preliminary Work

4.1 Characteristics of Input Images

The input images are a 3-D volume of thoracic CT slices of cardiac blood
vessel (Figure 4.1). x- and y-axis are horizontal and vertical axes in each
slice. z-axis is the slice number. The resolutions of x- and y-axes are usually
the same. And the resolution of z-axis is usually different from those of the
x- and y-axes.

As seen in Figure 4.1, the blood vessels appear brighter than the back-
ground and other tissues. The edges between vessels and the background
are distinctive, but the edges between the blood vessels and other tissues
are sometimes not distinctive.

4.2 Problem Description

The task is to segment the cardiac vasculature of a 3-D volumetric image
of thoracic CT (Figure 4.1). The main vessels, such as ascending aorta,
descending aorta, aortic arch, veins, and pulmonary aorta, are required to
be segmented as automatically as possible, and then the 3-D structure of
vessels should be visualized.

The problem with automatic segmentation of 3-D blood vessels can be
considered as finding a appropriate deformation to an initial surface so that
it can separate the blood vessels from other parts of the images.
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(a)

(b) (c)

Figure 4.1: A 3-D model of heart and two sample CT slices of the heart
with the main vessels highlighted.
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4.3 Algorithm

The algorithm can be divided into three main stages: preprocessing, level
set evolution, and visualization.

4.3.1 Preprocessing

There are two steps in preprocessing: linear interpolation and filtering.

Linear Interpolation

As discussed in Section 4.1, the resolution of z-axis is usually different from
those of the x- and y- axes. Therefore linear interpolation is performed
along z- axis to normalize the resolutions. Then, each pixel in 2-D slices is
represented as a cubic voxel in a 3-D coordinate system.

Filtering

As discussed in Section 2.2.1, the level set method is often confused by
the ambiguous boundaries between vessels. As seen in Figure 4.2(a), the
gray regions separate vessel A, B and the background. In some regions,
the intensity gradients of voxels on the boundaries between vessels and gray
regions are more or less the same or even less than those of the voxels on the
boundaries between gray regions and background. So it is easy to confuse
the level set method that is mainly based on intensity gradients.

Therefore the main objective of this step is to remove these gray regions
in CT slices.

To achieve this objective,a filtering process is applied as follows:

IT (v) =

{
I(v) if g(I(v)) > T
0 if g(I(v)) ≤ T

g(I(v)) =
1

n

∑
v′∈N(v)

I(v′) (4.1)

where n denotes the number of neighboring voxels, N(v) represents the set
of neighboring voxels, and T is a threshold.

Before filtering, the threshold value T is determined as follows. First,
extract gray and white regions from a set of slices to construct an intensity
histogram (Figure 4.2(c)). Next, k-means clustering (k = 2) is applied to
cluster the sample data into two clusters according to intensities. The initial
cluster centers are set to 0 and 255 respectively. After k-means clustering
the average between the two cluster centers is computed and used as the
threshold T .
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(a) (b)

(c)

Figure 4.2: (a) Blood vessels A and B are separated by a gray region, (b)
the image after filtering, (c) intensity histogram of training data.
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4.3.2 Level Set Evolution

Level set algorithm is used to evolve an initial surface. Three aspects of
this method are discussed, namely initialization, evolution equations and
stopping criteria.

Initialization

Region growing technique is run on the filtered image to search for a white
connected component starting from any white voxels. Next, a small sphere
located inside the white connected component is generated as the initial
surface of level set algorithm. The size of the sphere does not matter.

Level Set Evolution Equations

The level set algorithm is governed by the following equations [45]:

∂φ

∂t
= c(v)(εκ + V0)|∇φ|+ β∇P · ∇φ (4.2)

P (v) = |∇(Gσ ∗ IT (v))| (4.3)

c(v) =
1

1 + P (v)
(4.4)

where ε, V0, β are constants. IT (v) denotes the filtered 3-D image and it is
Gaussian smoothed to obtain P (v) to reduce noise. ∇P · ∇φ denotes the
projection of a force vector on the surface normal. It attracts the zero level
set to the edges in the image. It can also help to smooth the surface. c(v) is
a stopping term. It becomes smaller when the level set surface approaches
the edges in the image.

Stopping criteria

Let R and R′ denote the point sets on the zero level sets of two consecutive
iterations respectively. Define the difference between these two sets as:

d(R,R′) =
1

|R|
∑
v∈R

min
v′∈R′

‖ v − v′ ‖ . (4.5)

When d(R,R′) is smaller than a predefined constant ε′, the zero level set
does not change significantly between the two iterations. Therefore, the
algorithm can stop.
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4.3.3 Visualization

The segmentation results obtained by level set algorithm is represented as a
signed distance function. Voxels within blood vessels have negative distance
to the level set surface, and background voxels have positive distance. How-
ever, most of the 3-D model viewers only accept vertex-and-mesh model as
input. Therefore, marching cubes algorithm [43] is utilized to convert the
result to 3-D model represented by vertices and triangle meshes.

4.4 Experiments

Experiment was conducted on a set of thoracic CT slices to test the algo-
rithm described in Section 4.3. Qualitative and quantitative evaluations of
the performance of the segmentation algorithm were carried out.

The test images are 87 thoracic CT slices of a patient. The thickness
between two consecutive slices is 1 mm, and the pixel spacing in every slice
is 0.66 mm.

In preprocessing, resolution of the 3-D volumetric image was changed
to 0.66 mm × 0.66 mm × 0.66 mm through interpolation. Then, gray
and white regions were extracted manually from 30 slices. Next, k-means
clustering with k = 2 was applied to obtain the threshold T = 147. All the
slices were filtered according to Equation 4.1 with T = 147.

In the next stage, the level set algorithms implemented by Mitchell [48]
was used to segment the filtered images. The initial surface of level set was
obtained by region growing as discussed in Section 4.3.2. The parameters of
level set evolution (Equation 4.2) were set as follows: ε = 0.025, V0 = 0.5,
β = 1 and σ = 3.25.

Finally, the implicit surface produced by level set was transformed to
mesh model using Public Domain Polygonizer [5] that was an implementa-
tion of marching cubes algorithm.

3-D mesh mode of segmentation result is visualized by quick3D viewer
(Figure 4.3). Main vessels, such as ascending aorta, descending aorta, pul-
monary aorta and superior vena cava, are extracted from the volumetric
image.

Both qualitative and quantitative evaluation were conducted to evaluate
the performance of the algorithm.

Qualitative Evaluation

The effect of filtering in the pre-processing stage was compared. Level
set algorithm was run on the images without filtering and with filtering
separately. Without filtering, the level set surface could not stop at the
boundaries of vessels (Figure 4.4(a)), because the intensity gradients of the
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Figure 4.3: Final 3-D segmentation result from different views.

voxels on the boundaries between the blood vessels and the gray regions
were small. The surface leaks into the gray regions (Figure 4.4(a)). After
filtering, most of the gray regions were removed. The intensity gradients of
the voxels on the boundaries between the blood vessels and black regions
are large enough to stop the evolution of the level set surface at the vessel
boundaries (Figure 4.4(b)).

In some slices, neighboring blood vessels are incorrectly merged (Figure
4.5). This is mostly likely because the regions between them are similar to
the blood vessels in intensity, and the level set surfaces leak out and merge
into each other. In this algorithm, only the intensity and the gradient
of the intensity were used to constrain surface evolution. Geometric and
topological information could be used to prevent such merger.

Quantitative Evaluation

The error of the segmentation results was computed by measuring the differ-
ences between the results and ground truth. First, contours were extracted
manually from 18 test slices, and they were taken as the ground truth.
Let G = {pi} denote the set of points on the contours provided by the
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(a) (b)

Figure 4.4: Effect of filtering. (a) Intermediate segmentation result without
filtering. The level set surface leaks into gray regions. (b) Segmentation
result with filtering. Red lines denote the contours obtained by the algo-
rithm.

ground truth, and R = {qj} denote the set of points on the contours in the
segmented results. The distance function (Equation 4.5) was used as the
error measure. If the average distance between the result and correspond-
ing ground truth is small, it means the contour obtained by the algorithm
is close to the ground truth. That is to say the segmentation algorithm
performs well.

Figure 4.6 shows the errors of the 18 slices. Compared with the two
consecutive slices, the great difference highlighted probably lead to the poor
segmentation result, because the large intensity difference in z-axis enlarges
the gradient that makes level set surface stop at the wrong place. The
segmentation result on the right is much better with correct contours at
most of the actual boundaries. In a word, the results show that algorithm
is quite stable, and it produce to provide acceptable segmentation of cardiac
blood vessels most of the time expect for some special cases discussed above.
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Figure 4.5: Results with merged regions.

Figure 4.6: Segmentation errors of some CT slices. (a) The result with
largest error. (b) The previous slice of (a). The great difference between (a)
and (b) is highlighted in blue circle. (c) The result with smallest error. Red
lines represent the segmented result of program, and green lines describe
the ground truth.





Chapter 5

Conclusion

A thorough literature review of existing segmentation algorithms for medical
images, especially vascular structures, is presented in this paper. General
segmentation algorithms are categorized into five classes, namely thresh-
olding, region growing, watershed, classification and clustering General seg-
mentation algorithms are simple and easy to use. However, they cannot
handle complex medical images.

There are two kinds of model-based segmentation algorithms, namely
deformable model-based approach and atlas-based approach. Both of them
can handle more complex images than do the general algorithms. Snake
and level set are two widely used deformable model-based algorithms.

Specific algorithms for the segmentation of vascular structures are cat-
egorized into seven categories, namely centerline detection, region growing,
matched filter, classification, deformable model-based, geometric paramet-
ric model-based and stochastic approach.

Based on the literature reviews, two possible research topics are pro-
posed. One is segmentation of blood vessels from temporal sequence of
angiograms, and the other is segmentation and annotation of multiple parts
of 3-D cardiac vasculature.

Preliminary work is performed on segmenting 3-D structure of main car-
diac blood vessels from thoracic CT images. Level set method was applied to
segment the 3-D volumetric data. In segmentation results, correct contours
of main cardiac blood vessels are obtained. By comparing the segmentation
results and ground truth of several slices, it shows that the algorithm could
provide acceptable segmentation results most of time.
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