
PROCEDURAL MODELING AND CONSTRAINED
MORPHING OF LEAVES

SAURABH GARG
(B.Tech. (Hons.), Banaras Hindu University, India, 2002)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2011

Declaration

I hereby declare that this thesis is my original work and it has been written by
me in its entirety. I have duly acknowledged all the sources of information which
have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Saurabh Garg
May 2011

ii

Acknowledgements

Finishing the PhD thesis has been a long and hard journey. I have been fortunate
to met many people who have encouraged and helped me along the way. Here,
I would like to express my gratitude to the people who have helped made this
thesis a reality.

Working with my thesis advisor, Dr. Leow Wee Kheng, has been very enriching
experience. He taught me not only how to do research but also, more importantly,
how to think independently. He also taught me, through endless number of drafts,
how to write well. Though, I still have a lot to learn. I thank him for being so
patient, supportive, encouraging, and inspiring throughout the PhD.

I thank my thesis committee: Dr. Terence Sim, Dr. Low Kok Lim, and Dr. Alan
Cheng for reading this thesis and providing insightful comments to improve the
thesis. For the large part this thesis was supported by the research scholarship
by NUS, I thank them for the opportunity.

In the beginning, I had a chance to work with Dr. Ng Teck Khim. I thank him for
being so supportive and allowing me to explore interesting problems. It was al-
ways fun and informative to listen to his stories on life, management, and research.

I am thankful to have so many great labmates. Wang Rui Xuan was very sup-
portive and advised me in most difficult times. Li Hao was always available for
discussions and I learned a lot from him. Harish Katti supported me through
the last year of the thesis. Ehsan Rehman, Hanna Kurniawati, Piyush Kanti
Bhunre, and Raj were wonderful lunch companions and we had lots of interesting
discussions. Zhang Sheng, Lu HaiYun, Jean-Romain Dalle, Pradeep Kumar Atre,
and Ding Fong made computer vision lab a fun and stimulating place to work in.

I am grateful to have excellent friends who made my life easy and fun. Hemendra
Singh Negi helped me settle down when I first came to Singapore. Satish Kumar
Verma was fun to be with and I had blast watching all those movies with him.
Amit Bansal was very easy going and we had lots of interesting discussions late

iii

iv

into night. Ankit Goel has been a great friend and I thank him for all the help
and support he has provided over years and most importantly for introducing me
to my wife. Navendu Singh became like a brother to me and was a great mentor.
He was very patient and unconditionally supported me through the most difficult
time in his life. I wish he was here to see me finish.

Most importantly, I thank my wife for being so encouraging and supportive in
last couple of years. Without her unconditional love, support, and sacrifices,
I would not have been able to finish this thesis. I also thank my parents for
teaching me good values, making me independent, and being always there for
me. Lastly, my three year old son made me happy when I was most stressed and
taught me how to enjoy little things again.

Saurabh Garg
May 2011

Abstract

Leaf modeling is a very important and challenging problem because of the wide
variations in the shape, size, and structure of the leaves among different species
of plants. The main drawback of existing methods for synthesizing leaves is
that they are non-intuitive and tedious to use. With these methods, leaves of
different shapes are either reconstructed from images individually or defined by
different sets of complex rules. In this paper, we present a novel parametric leaf
model based on botanical considerations for generating the geometric shape of a
wide variety of leaves. The shape of the leaf is represented by a set of landmark
points on the leaf boundary and tangents to the boundary at these points. The
geometric shape of a leaf is generated by fitting quadratic B-spline curves to the
landmark points and tangents. The proposed leaf model is intuitive and can be
used to generate multiple instances of a leaf, each having the same overall shape
but differs slightly in detail. In addition, a leaf morphing method is proposed for
morphing leaf shapes in the parametric leaf space. Reference leaf shapes can be
easily specified by the user as soft constraints for leaf morphing. Given the source,
target, and reference shapes, a NURBS curve is fitted over them in the leaf space
to generate a smooth morphing path, which is then used to synthesize the specific
leaf shapes along the path. This method can produce smooth morphing of leaf
shapes for simulating leaf growth and for computer animation applications.

v

Contents

List of Figures viii
List of Tables xi

1 Introduction 1
1.1 Research Motivation 1
1.2 Research Objectives 3
1.3 Thesis Organization 5

2 Botanical Background 7
2.1 Types of Leaves 7
2.2 Structure of Broad Leaves 7
2.3 Venation Patterns in Broad Leaves 13

2.3.1 Primary Veins 13
2.3.2 Secondary Veins 14
2.3.3 Higher-order Veins 15

3 Literature Review 20
3.1 Image-based Methods 20
3.2 Rule-based Methods 21
3.3 Summary 22

4 Overview of Computational Leaf Modeling 26
4.1 Types of Unilobed Leaves Modeled 26
4.2 Types of Multilobed Leaves Modeled 28

5 Modeling of Unilobed Leaves 34
5.1 Parametric Leaf Model 34
5.2 User Interface 36
5.3 Laminar Shape Generation Algorithm 38

5.3.1 B-spline Fitting 40
5.4 Analysis of Laminar Shape Generation Algorithm 44

5.4.1 Accuracy of Generated Leaf Shapes 47
5.5 Leaf Shape Generation Examples 50

6 Modeling of Multilobed Leaves 60
6.1 Parametric Leaf Model 60
6.2 User Interface 64

vi

Contents vii

6.3 Laminar Shape Generation Algorithm 66
6.4 Analysis of Laminar Shape Generation Algorithm 68
6.5 Leaf Shape Generation Examples 70

7 Constrained Leaf Morphing 75
7.1 Overview of Leaf Morphing 75
7.2 Unification of Leaf Spaces 76

7.2.1 Unilobed Leaves 76
7.2.2 Multilobed Leaves 77

7.3 Generation of Morphing Path 78
7.4 Visualizing Leaf Space 79
7.5 Leaf Morphing Examples 81

8 Future Work 92
8.1 Automatic Estimation of Model Parameters 92
8.2 Modeling Laminar Warping and Aging 92
8.3 Ornamentation 93
8.4 Compound and Narrow Leaves 93
8.5 Modeling Laminar Deformation 93

9 Conclusions 95

References 97

List of Figures

1.1 Diversity in the shapes of leaves 3
1.2 Various details in the leaf shapes 4

2.1 Types of leaves 8
2.2 Organization of broad leaves 9
2.3 Parts of a simple Leaf 10
2.4 The types of base shapes 10
2.5 The types of apex shapes 11
2.6 The types of leaves based on the position and the extent of the maximum width

of the lamina 11
2.7 Leaf shapes commonly discussed in botanical literature 12
2.8 The types of leaves based on marginal projections 12
2.9 The types of laminar asymmetries 13
2.10 Primary vein venation patterns 16
2.11 Major secondary venation patterns 17
2.12 Minor secondary venation patterns 18
2.13 Miscellaneous secondary venation patterns 18
2.14 Higher-order venation patterns 19

3.1 Instance of a unilobed leaf generated from 2Gmap L-system [PTMG08] 23
3.2 Instance of a multilobed leaf generated from 2Gmap L-system [PTMG08] 24

4.1 Laminar shapes omitted by the leaf model 27
4.2 Examples of various shapes of leaves with elliptic waist. 30
4.3 Examples of various shapes of leaves with Obovate waist. 31
4.4 Examples of various shapes of leaves with Ovate waist. 32
4.5 Example of leaves with linear and oblong waist. 32
4.6 Examples of various shapes of multilobed leaves 33

5.1 Coordinate system of the leaf model 35
5.2 Parameters of the leaf model for unilobed leaves 36
5.3 User specification of laminar shape of unilobed leaves without basal extension 37
5.4 User specification of laminar shape of unilobed leaves with basal extension 38
5.5 Specifying the position of the apex for a leaf with drip tip 38
5.6 Effect of varying the degree of B-spline curves on leaf shapes 40
5.7 Effect of changing the value of αi on the leaf shape 44

viii

List of Figures ix

5.8 Effect of varying the parameter values in leaves with no basal extension 45
5.9 Effect of varying the parameter values in leaves with basal extension 46
5.10 Numerical stability of the laminar shape generation algorithm for leaves without

basal extension 47
5.11 Numerical stability of the laminar shape generation algorithm for leaves with

basal extension 48
5.12 Real leaves used for evaluating the accuracy of laminar shape generation algorithm. 49
5.13 Boxplots of the Euclidean distance between the corresponding points in real and

generated laminar shapes 50
5.14 Comparison of the generated and the real laminar shapes with maximum error

greater than 0.03 in Figure 5.13 51
5.15 Laminar shapes generated for leaves with elliptic waist illustrated in Figure 4.2 53
5.16 Laminar shapes generated for leaves with Obovate waist illustrated in Figure 4.3 54
5.17 Laminar shapes generated for leaves with Ovate waist illustrated in Figure 4.4 55
5.18 Generated instances for oblong and linear leaves illustrated in Figure 4.5 55
5.19 Examples of leaf shapes commonly discussed in botanical literature 56
5.20 Generated instances of asymmetric leaves shapes 56
5.21 Laminar shapes generated for complex shapes 57
5.22 Generated instance of a lotus leaf 57
5.23 Generated instance of a leaf with curved primary vein 57
5.24 Leaf instances generated for elliptic, cordate, and asymmetric leaves 58
5.25 Effect of perturbation in leaf shapes 58
5.26 Examples of non-leaf shapes 59

6.1 Venation model for multilobed leaves 61
6.2 Parameters of the venation pattern for multilobed leaves 62
6.3 The parameters for specifying the valley position and shape in multilobed leaves 64
6.4 Specifying the parameters of a multilobed leaf using interactive GUI 65
6.5 Laminar shape generation algorithm 67
6.6 Effect of varying the initial spacing s0 and the rate of change of spacing ∆s in

multilobed leaves 68
6.7 Effect of varying the tangent angle θb at the base to the margin of the first lobe

in multilobed leaves 69
6.8 Effect of varying the waist of the lobes in a multilobed leaf 70
6.9 Effect of varying the tangent angle θv at the valley to the margin in multilobed

leaves 70
6.10 Effect of varying the valley orientation φ in multilobed leaves 71
6.11 Effect of varying the valley distance m in multilobed leaves 71
6.12 Laminar shapes generated for various multilobed leaves 72
6.13 Leaf instances generated for a palmately lobed leaf 73

List of Figures x

6.14 Leaf instances generated for a pinnately lobed leaf 74

7.1 Mapping a unilobed leaf to a multilobed leaf 78
7.2 Examples of non-real leaf shapes generated for visualizing leaf space 80
7.3 3D subspaces of the leaf space with constant tangent angle at the base 83
7.4 Fuzzy boundary between real and non-real leaf shapes 85
7.5 Comparison of linear morphing with proposed nonlinear morphing 85
7.6 Constrained leaf morphing 86
7.7 Leaf morphing from unilobed leaf shapes to a multilobed leaf shapes 87
7.8 Constrained leaf morphing from a multilobed leaf with three lobes to a multilobed

leaf with seven lobes 88
7.9 Leaf morphing without constraint from a multilobed leaf with three lobes to a

multilobed leaf with seven lobes 89
7.10 Morphing asymmetric leaves 90
7.11 Modeling leaf growth using constrained leaf morphing 91

List of Tables

2.1 Palmate venation patterns of the primary veins 14
2.2 Venation patterns of the major secondaries 15

3.1 The production rules of the 2Gmap L-system used to generate Figure 3.1 23
3.2 The production rules of the 2Gmap L-system used to generate Figure 3.2 24
3.3 Comparison of leaf generation methods 25

4.1 Characteristics of unilobed leaves 27
4.2 Laminar shapes modeled by the leaf model 28
4.3 Shape characteristics of common leaf shapes illustrated in Figure 2.7 29

xi

Chapter 1
Introduction

1.1 Research Motivation

Leaf modeling is a very important problem in botany, horticulture, agriculture, forestry, and
ecology [RHP96, BAF`03, VEBS`09]. Leaf model can be used to simulate various plant
functions and interaction of plants with the environment. These simulations can help us
increase the production of plants by optimizing the use of available resources and produce
healthy plants with more effective pest management. The simulation of plant functions
also enables us to conduct virtual experiments that are impractical otherwise, for example
calculating the percentage of available sunlight intercepted by plants.

One of the important applications of leaf modeling is to simulate the interception of sunlight
by leaves [BAF`03, Loc04, VEBS`09]. The total amount of sunlight available determines
how many plants can grow at the same time within a given area of land. If there are too
few plants, then sunlight is not fully utilized. If there are too many plants, then there is
not enough sunlight for all the plants. The simulation of light interception by leaves can be
used to determine the optimal population and position of plants for maximizing the use of
available sunlight. This can help to increase plant production for a given area of land.

Another important application of leaf modeling is in pest management [RHP96, BAF`03,
VEBS`09]. A popular method of protecting plants from weeds, insects and other pathogens
is by spraying a liquid pesticide over plants. The pesticide cover the surface of leaves and a
leaf is protected as long as it is covered with the pesticide. With current spraying techniques,
majority of the pesticide fails to land on the leaves [RHNB00, HRY03]. Simulating the inter-
action of spraying of pesticide with leaf canopy can help us understand and develop better
spraying techniques. It can also help us understand if pesticides can penetrate the plant
canopy and reach the inner parts of the plant. Additionally, simulating the motion of pesticide
droplets on the surface of a leaf can help us determine the optimal amount of pesticide to
be sprayed. If too much pesticide is sprayed, it will drip from a leaf to lower leaves and fi-
nally to the ground. This method not only wastes pesticide but also pollutes the environment.

1

Chapter 1. Introduction 2

Leaf modeling can be used to develop preventive cures for some diseases spread by rainfall
splash. When a rain drop hits the surface of a leaf, it splashes and spreads pathogens
present on the leaves or in the rain drops. Simulation of rainfall splash on the surfaces of
leaves can help us understand how such diseases spread and develop preventive measures for
them [SML04].

The level of details of leaf shapes required for simulating the interaction of plants with
the environment depends on the scale of the experiment. Statistical models such as turbid
medium [MML`95, KKM`98] which model leaf area per unit area of soil (leaf area index)
are sufficient for simulating at the canopy level. However, at the organ level (leaf, fruits,
flowers etc.), statistical models are not accurate enough and surface model of leaves are
required [CCS`07, BLEG`11]. Existing methods in botanical literature for simulating
interaction of plants with the environment uses simple geometric primitives such as right
angled triangle [Ski04] or a small number of polygons to approximate leaf shape [CEC`07].

Leaf modeling is a very difficult and challenging problem because of the wide variations in
the shape, size, and structure of the leaves among different species of plants (Figure 1.1).
Even in the same plant, no two leaves are identical. The challenge is to design a model
of leaf that can intuitively represent a wide variety of leaves using as few parameters as
possible. For some applications, it is necessary to model the deformation of leaf surface due
to interaction with the environment. Thus, it is important that the leaf model can include
physical properties for physically accurate deformation.

Few methods have been developed for generating the geometric shapes of leaves. Among them,
image-based methods attempt to reconstruct the surface of leaves from 2D images [QTZ`06,
MZL`08]. These methods work well for digitizing an existing plant for visualization in
architectural walk-through or virtual reality. However, they are not suitable for biological
simulations because it is too tedious and time-consuming to capture and process data from
real plants of all possible shapes and sizes. On the other hand, rule-based methods define a set
of rules for generating leaf shapes [HPW92, RLFS02, PTMG08]. By including the relevant
rules, these methods can potentially generate a wide variety of leaf shapes. Unfortunately,
existing methods model leaves using either implicit functions [HPW92] or complex rules
containing conditional and recursive statements [RLFS02, PTMG08] (Figures 3.1 and 3.2).
So, they are not intuitive to use as it is very difficult to imagine what the shape looks like by
reading the rules. Moreover, there is no standard procedure to follow for creating the rules
that generate the required shape of a given leaf. It can be very tedious and time-consuming
to specify the rules.

Chapter 1. Introduction 3

Figure 1.1: Diversity in the shapes of leaves (Sources: 1, 4: [Bro10]; 2, 3: [Cum10];
5–22: [HGL92]).

1.2 Research Objectives

The main drawback of existing methods for synthesizing leaves is that they are non-intuitive
and tedious to use. With these methods, leaves of different shapes are either reconstructed
from images individually or defined by different sets of complex rules.

The first goal of this research is to develop a leaf model for generating the geometric shape
of a wide variety of leaves. Theoretically, a leaf model which can generate very detailed leaf
shapes would be most accurate and can be used for simulations at very fine scale. However,
due to the complex nature of simulations, such a leaf model would be computationally
infeasible. Therefore, the proposed leaf model generates the overall shape of leaves but ignore
ornamentations such as teeth (jagged edges along the leaf boundary), drip-tips (very sharp

Chapter 1. Introduction 4

(a) (b) (c) (d)

Figure 1.2: Various details in the leaf shapes. (a) 2D leaf without any details, (b) leaf with
jagged edges (teeth), (c) leaf with very sharp tip (drip-tip), and (d) leaf warped in 3D space.

leaf tips) and warping of leaf shape in 3D (Figure 1.2). As a leaf ages, it changes color and
starts to wrinkle slowly due to decreasing moisture content. This wrinkling effect can be
considered as a type of leaf warping. In order to keep the leaf model simple, aging is not
considered in this thesis.

For the leaf model to be useful in a wide variety of applications, it should have the following
properties:

• General: The leaf model should be able to generate the geometric shape of a wide
variety of leaves. There are two main types of leaves: narrow leaves and broad
leaves [Bre10]. In this thesis, narrow leaves are not modeled because in comparison to
broad leaves, in which leaf surface have negligible thickness, narrow leaves have 3D
structure. Thus, narrow leaves would need a different kind of model. Since about 85%
of the plant species on the Earth have broad leaves, modeling them will cover majority
of leaves.

• Intuitive: The leaf model should be intuitive so that it is possible to specify exactly
which kind of leaf shape will be generated. This is an important property because each
plant has a specific kind of leaves. For plant simulation, it is necessary to generate the
correct leaf shapes of a particular plant.

• Concise: The leaf model should be able to represent the shapes of a wide variety of
leaves using as few parameters as possible. This is to ensure that the leaf model is
simple and as general as possible while still being intuitive.

• Generative: Since no two leaves are identical even in a single plant, the leaf model
should be able to generate many instances of the same kind of leaf. The instances of a
leaf have the same overall shape but differ in size and shape details.

• Numerically Stable: The leaf shape generation algorithm should be numerically
stable. A small change in the parameters should produce a small change in the leaf

Chapter 1. Introduction 5

shape. This ensures that modifying the parameter values produce predictable change
in the generated shape.

The second goal of this thesis is to develop a morphing method for leaf shapes. Leaf morphing
is useful for modeling leaf growth for plants in which young and adult leaves are of different
shapes and sizes, and for computer animation applications. For leaf morphing to be useful
in these applications, it should have the following properties:

• General: It should be possible to morph between any two leaf shapes modeled by
their leaf models.

• Automatic: Leaf morphing should be automatic and should not rely on the user to
establish correspondence between the two leaf shapes.

• Soft constraints: To produce the correct morphing sequence for modeling growth of
a particular species of leaves, shape change has to be constrained. Computer animation
applications also require control over the intermediate leaf shapes. Thus, leaf morphing
should be constrained by reference leaf shapes that are provided as soft constraints.

The contributions of this thesis are as follows:

• Design of a leaf model for intuitively specifying the geometric shapes of a wide variety
of leaves. A leaf shape is represented by a set of parameters specifying important
geometric features of the leaf shape.

• Development of an efficient algorithm for creating instances of various kinds of leaves.
The algorithm is numerically stable so that small change in parameter values produce
predictable change in the generated shape.

• Development of an algorithm for unifying leaf spaces of different kinds of leaves. This
is to allow for morphing between any two leaf shapes modeled by the leaf models.

• Development of an algorithm for constrained morphing of leaf shapes in the unified
parametric leaf space. The constraints are reference leaf shapes specified by the user.

1.3 Thesis Organization

This thesis presents a novel parametric approach for modeling, generating, and morphing leaf
shapes. In order to understand the variations in the shapes of natural leaves, it is necessary
to first discuss the botanical classification of the types of leaves and their characteristics
(Chapter 2). Next, existing leaf modeling methods are reviewed in Chapter 3. For ease of
computational modeling and application, the botanical characteristics discussed in Chapter 2
are used to enumerate and characterize the leaf shapes that are modeled by the leaf model in

Chapter 1. Introduction 6

Chapter 4. This thesis categorizes leaves into two broad categories: unilobed and multilobed
leaves. The proposed leaf model is based on unilobed leaves. Chapter 5 presents the leaf
model and the leaf shape generation algorithm for unilobed leaves. Then, in Chapter 6 the
leaf model for unilobed leaves is extended to multilobed leaves. Constrained leaf morphing
using soft constraints is discussed in Chapter 7. The limitations of the leaf model and
morphing and possible future work are discussed in Chapter 8. Finally, Chapter 9 concludes
this thesis.

Chapter 2
Botanical Background

The overall goal of this research is to develop a leaf model for generating a wide variety of
leaves. To achieve this goal, the types of leaves that can be modeled must be characterized
(Section 2.1) and the structure of these leaves should be understood (Section 2.2).

2.1 Types of Leaves

There are over 300,000 species of plants on the Earth consisting of leaves having huge
variations in the shape, size, and structure. Plants can be broadly classified into four
divisions [Arm10, cma10]: bryophytes (mosses, liverworts, and hornworts), pteridophytes
(club-moss, horsetails, and ferns), gymnosperms (conifers, cycads, and gingko), and an-
giosperms (monocots, and dicots). Of these, bryophytes, pteridophytes, and gymnosperms
typically have narrow leaves. Leaves from these plants have adapted to conserve water
and are needle-like, awl-like or scale-like (Figure 2.1a). On the other hand, angiosperms
(flowering plants) have broad leaves with negligible thickness compared to the leaf surface
area (Figure 2.1b). This thesis considers only broad leaves because narrow leaves have 3D
structure and cannot be modeled using same method as broad leaves.

2.2 Structure of Broad Leaves

A typical broad leaf is made up of two parts [EDH`09]: (1) petiole, where the leaf is attached
to the branch and (2) blade or lamina, which is the main part of the leaf. A leaf with a
single continuous blade is called a simple leaf (Figure 2.2a) and a leaf with a blade that is
divided into a number of smaller parts (leaflets) is called a compound leaf. If the leaflets are
attached to the apex of the petiole, it is called palmately compound leaf (Figure 2.2b). If the
leaflets are arranged along the rachis which is an extension of petiole, it is called pinnately
compound leaf (Figures 2.2c to 2.2e).

The lamina of a simple leaf has four main parts: base, apex, margin, and veins (Figure 2.3).

7

Chapter 2. Botanical Background 8

(a) (b)

Figure 2.1: Types of leaves. (a) Narrow leaves found in bryophytes, pteridophytes, and
gymnosperms are slender (Sources: 1, 4: [Bro10]; 2, 3: [Cum10]). (b) Broad leaves found
in angiosperms are wide and their thickness is negligible compared to the surface area
(Source: [HGL92]).

The base is the proximal (closest to the petiole) 25% of the lamina. The apex is the distal
(farthest from the petiole) 25% of the lamina. The margin forms the boundary of a leaf.
The veins are embedded in the lamina and are used for transporting water and other nutrients.

Based on curvature of the margin, the shape of the base is categorized into six types [EDH`09]:
straight, concave, convex, concavo-convex, complex, and cordate (Figure 2.4). In a cordate
base, the lamina extends below the base to form the basal extension. Similarly, based on
curvature of the margin, the shape of the apex is categorized into four types [EDH`09]:
straight, convex, acuminate (concave or concavo-convex), and emarginate (Figure 2.5). In
an emarginate apex, the lamina extends above the apex to form the apical extension.

A simple leaf can be categorized into five types based on the position and the extent of
the maximum width of the lamina [EDH`09]: elliptic, obovate, ovate, oblong, and linear
(Figure 2.6). In elliptic, obovate and ovate leaves, the widest part of the lamina is in the
middle one fifth, distal two fifth and proximal two fifth, respectively. In oblong leaves, the
opposite sides of the lamina are parallel for at least the middle one third. The leaves with
linear shape are very thin. Their widths are less then one tenth of the lengths of the lamina.
Some of the common leaf shapes have been given specific names by botanists [HGL92]. These
leaf shapes are illustrated in Figure 2.7.

A simple leaf can be categorized into three types based on the marginal projections1 [EDH`09]
(Figure 2.8). If the margin of a leaf is smooth (no projection), it is called entire. If it has
small teeth-like projections, it is called toothed. If it has large projections, resulting in
distinguishable lobes, it is called lobed. Leaves in which the lobes start radially from the
base are called palmately-lobed and leaves in which the lobes start along the primary vein

1In botany, marginal projection is the term used for protrusions of the lamina along the leaf margin.

Chapter 2. Botanical Background 9

Petiole Lamina

(a)

PetioleLeaflet

(b)

Leaflets Petiole

Rachis

(c)

(d) (e)

Figure 2.2: Organization of broad leaves. (a) A simple leaf has a single lamina. (b–e) A
compound leaf has a lamina that splits into a number of small leaflets. (b) In a palmately
compound leaf, the leaflets are attached to the apex of the petiole. (c–e) In a pinnately
compound leaf, the leaflets are arranged along the rachis. A pinnately compound leaf can be
(c) once pinnate, (d) bipinnate, or (e) tripinnate (Source: [EDH`09]).

are called pinnately-lobed. Lobed leaves can also have toothed margins.

The shape of the lamina on the two sides of the primary vein can be asymmetric. There are
two types of asymmetries in simple leaves: asymmetric maximum width and asymmetric
base. Asymmetric maximum width occurs when the positions and the extents of the
maximum width of the lamina are different on the two sides of the primary vein (Figure 2.9a).
Asymmetric base is further divided into two types: (1) the shape of the basal extensions are
different on the two side of the primary vein (Figure 2.9b) and (2) only one side of the leaf
has basal extension (Figure 2.9c).

Chapter 2. Botanical Background 10

Base

Higher-order veins

Margin

Secondary veins

Primary vein

Petiole

Apex

Figure 2.3: Parts of a simple Leaf. A simple leaf has a single blade (lamina) consisting of
base, apex, margin and veins. The veins are categorized into primary veins, secondary veins,
and higher-order veins depending on their course and thickness (Source: [EDH`09]).

(a) (b) (c)

(d) (e) (f)

Figure 2.4: The types of base shapes. (a) Straight: the margin is straight. (b) Concave:
the margin curves towards the primary vein. (c) Convex: the margin curves away from the
primary vein. (d) Concavo-convex: the margin is concave proximally and convex distally. (e)
Complex: the margin has more then one point of inflection. (f) Cordate: the margin extends
below the base (Source: [EDH`09]).

Chapter 2. Botanical Background 11

(a) (b)

(c) (d)

Figure 2.5: The types of apex shapes. (a) Straight: the margin is straight. (b) Convex: the
margin curves away from the primary vein. (c) Acuminate: the margin is concave proximally
and convex distally or concave only. (d) Emarginate: the margin extends above the apex
(Source: [EDH`09]).

(a) (b) (c) (d) (e)

Figure 2.6: The types of leaves based on the position and the extent of the maximum
width of the lamina. (a) Elliptic: the widest part of the lamina is in the middle one fifth of
the leaf. (b) Obovate: the widest part of the lamina is in the distal two fifth. (c) Ovate:
the widest part of the lamina is in the proximal two fifth. (d) Oblong: the opposite sides of
lamina are parallel for at least the middle one third. (e) Linear: the widest part of the leaf
is very small (less then one tenth) compared to the length of the leaf (Source: [EDH`09]).

Chapter 2. Botanical Background 12

Elliptic Lanceolate Oblanceolate Oblong Oval

Obovate Ovate Rhomboidal Orbicular Deltoid

Cordate Reniform Obcordate

Figure 2.7: Leaf shapes commonly discussed in botanical literature.

(a) (b) (c) (d)

Figure 2.8: The types of leaves based on marginal projections. (a) Entire margin has no
projection, (b) toothed margin has small projections. (c) Palmately lobed leaf has large
projections originating from the base, and (d) pinnately lobed leaf has large projections
originating along the main vein (Source: [EDH`09]).

Chapter 2. Botanical Background 13

(a) (b) (c)

Figure 2.9: The types of laminar asymmetries. (a) A simple leaf with asymmetric maximum
width. (b) A simple leaf with asymmetric cordate base. (c) A simple leaf with cordate base
on one side and no extension on the other (Source: 1, 2: [EDH`09]).

2.3 Venation Patterns in Broad Leaves

The veins of a broad leaf are categorized according to their thickness and course into primary
veins, secondary veins, and higher-order veins (Figure 2.3). The arrangement of veins in the
lamina is called venation pattern. There are many venation patterns and there is no fixed
rule as to which type of leaves can have which venation pattern. This section illustrates
common veins and venation patterns [EDH`09].

2.3.1 Primary Veins

The main or primary or first-order vein is the thickest vein and it goes from the base to the
apex of a leaf. In some leaves, there is more than one thick vein. If the thickness of these
veins is at least 75% of the thickest vein, they are considered as primary veins. In some
leaves there is more than one vein originating from the base and their course is similar to
that of the thickest vein. These veins are considered as primary veins if their thickness is
25–75% of the thickest vein. If a leaf has more than one primary vein, they are collectively
called primaries.

A leaf with only a single primary vein is said to have pinnate venation pattern (Figure 2.10a),
whereas a leaf with three or more primaries is said have palmate venation pattern (Fig-
ures 2.10b to 2.10g). Palmate venation pattern is further divided into categories based on
the number of primaries and the thickness and course of primaries. There can be either a
small number (3–10) of thick primaries or a large number (ą 10) of thin primaries. These
primaries can either diverge from the base or converge towards the apex (Table 2.1).

Chapter 2. Botanical Background 14

Table 2.1: Palmate venation patterns of the primary veins. Palmate venation patterns
are defined based on the number of primaries and the thickness and course of primaries.
D: Primaries diverge from the base. C: Primaries converge towards the apex. Thk: Primaries
are thick. Thn: Primaries are thin. B: Primaries branch into other veins.

Venation D C Thk Thn B Remarks

Pattern

Actinodromous ! ! 3 or more primaries (Figure 2.10b)

Palinactinodromous ! ! ! 3 or more primaries (Figure 2.10c)

Acrodromous ! ! 3 or more primaries (Figure 2.10d)

Flabellate ! ! ! Many primaries (Figure 2.10e)

Parallelodromous ! ! Many primaries (Figure 2.10f)

Campylodromous ! ! Many primaries, strongly curved (Fig-
ure 2.10g)

2.3.2 Secondary Veins

The secondary or second-order veins are thinner than the primary veins. These veins vary
substantially in both thickness and course. Secondary veins can be further categorized into
the following types:

1. Major Secondaries
These are the rib-forming veins that originate from the primary vein and run towards
the margin. Venation patterns are defined based on whether the major secondaries
reach the margin, or branch into other veins before reaching the margin, or form loops
with other veins (Table 2.2).

2. Minor Secondaries
The minor secondary veins branch from lateral primaries or major secondaries and
run towards the margin. If the minor secondaries terminate at the margin, it is called
craspedodromous pattern (Figure 2.12a). If they branch near the margin and one of
the branches terminate at the margin and the others join adjacent minor secondaries,
it is called semicraspedodromous pattern (Figure 2.12b). If they join together to form
loops, it is called simple brochidodromous pattern (Figure 2.12c).

3. Inter-secondaries
The inter-secondary veins have a course similar to major secondaries but they do
not reach the margin. Their thickness is between those of major secondaries and
higher-order veins (Figure 2.13a).

Chapter 2. Botanical Background 15

Table 2.2: Venation patterns of the major secondaries. M: Major secondaries reach the
margin. B: Major secondaries branch into other veins. L: Major secondaries form loops with
other veins.

Venation Pattern M B L Remarks

Craspedodromous ! Figure 2.11a

Semicraspedodromous ! ! ! Single loop (Figure 2.11b)

Festooned semicraspedodromous ! ! ! Several loops (Figure 2.11c)

Eucamptodromous ! Several loops via tertiary veins (Fig-
ure 2.11d)

Reticulodromous ! ! Form network of higher-order loops
(Figure 2.11e)

Cladodromous ! Branch freely (Figure 2.11f)

Brochidodromous ! Several loops (Figure 2.11g)

4. Interior Secondaries
The interior secondary veins join two primaries or a primary vein with a marginal or
intramarginal vein (Figure 2.13b).

5. Intramarginal Secondaries
The intramarginal secondary veins run parallel to the margin (Figure 2.13c).

6. Marginal Secondaries
The marginal secondary veins run along the margin (Figure 2.13d).

2.3.3 Higher-order Veins

Higher-order veins are thinner than secondary veins. They link various primaries and
secondaries forming the “fabric” of the lamina. When they join adjacent secondaries, it is
called percurrent pattern (Figure 2.14a). When they form a network of veins, it is called
reticulate pattern (Figure 2.14b). When they form tree-like structures, it is called ramified
pattern (Figure 2.14c).

Chapter 2. Botanical Background 16

Primary vein

(a)
Primary veins

(b)
Primary veins

(c)
Primary vein

(d)

Primary veins

(e)
Primary veins

(f)
Primary veins

(g)

Figure 2.10: Primary vein venation patterns. (a) Pinnate pattern has a single primary. (b)
In actinodromous pattern, three or more primaries diverge radially. (c) In palinactinodro-
mous pattern, three or more primaries diverge in a series of branches. (d) In acrodromous
pattern, three or more primaries run in convergent arches towards the apex. (e) In flabellate
pattern, many thin primaries diverge radially and branch towards the apex. (f) In parallelo-
dromous pattern, many thin primaries converge towards the apex. (g) In campylodromous
pattern, many thin primaries run in strongly recurved arches that converge towards the apex
(Source: [EDH`09]).

Chapter 2. Botanical Background 17

Primary vein

Major Secondaries

(a)
Major Secondaries

Primary vein

(b)

Primary vein

Major Secondaries

(c)

Primary vein

Major Secondaries Tertiary veins

(d)

Major Secondaries

Primary vein

(e)

Major Secondaries

Primary vein

(f)

Major Secondaries

Primary vein

(g)

Figure 2.11: Major secondary venation patterns. (a) In craspedodromous pattern, major
secondaries reach the margin. (b) In semicraspedodromous pattern, major secondaries
branch near the margin, one of the branches reaches the margin and the others form
loops with adjacent major secondaries. (c) Festooned semicraspedodromous pattern is
similar to semicraspedodromous except that adjacent major secondaries form several loops.
(d) In eucamptodromous pattern, major secondaries form loops via tertiary veins. (e)
In reticulodromous pattern, major secondaries form a network of higher-order veins. (f)
In cladodromous pattern, major secondaries branch freely forming tree-like structures.
(g) In simple brochidodromous pattern, adjacent major secondaries form several loops
(Source: [EDH`09]).

Chapter 2. Botanical Background 18

Minor
Secondaries

Major
Secondary

(a)

Minor
Secondaries

Major
Secondary

(b)

Minor
Secondaries

Major
Secondary

(c)

Figure 2.12: Minor secondary venation patterns. (a) In craspedodromous pattern, minor
secondaries reach the margin. (b) In semicraspedodromous pattern, minor secondaries branch
near the margin. (c) In simple brochidodromous pattern, minor secondaries form loops
(Source: [EDH`09]).

Primary vein

Secondary vein Inter-secondary vein

(a)
Iy

Primary vein

Interior veins

(b)

Primary vein

Intramarginal vein

(c)

Primary vein

Marginal vein

(d)

Figure 2.13: Miscellaneous secondary venation patterns. (a) Inter-secondary veins run
parallel to major secondaries and do no reach the margin. (b) Interior veins join two primaries.
(c) Intramarginal veins run parallel to the margin. (d) Marginal veins run along the margin
(Source: [EDH`09]).

Chapter 2. Botanical Background 19

Primary vein

Secondary
vein

Higher-order
veins

(a)
Primary vein

Secondary
vein

Higher-order
veins

(b)
Primary vein

Secondary
vein

Higher-order
veins

(c)

Figure 2.14: Higher-order venation patterns. (a) In percurrent pattern, higher-order veins
join two secondaries. (b) In reticulated pattern, higher-order veins form networks. (c) In
ramified pattern, higher-order veins form tree-like structures (Source: [EDH`09]).

Chapter 3
Literature Review

Over the last decades many methods have been developed for modeling plants and trees:
interactive [LD99, BPF`03, OOI05, ASSJ06, SLCS06, WZW`06, GK08, WZW09], rule-
based [PMKL01, IOI06, VK06, Han07, APS09], image-based [NFD07, TZW`07, ZTZ`08],
3D data-based [PH02, GP04a, GP04b, PGW04, XGC05, XGC07, ZZHJ08, YWM`09],
biology-based [SFS05], machine learning [CNX`08], and ad hoc [RLP07]. Several soft-
wares [Luf, wdi, KHT`, Sch, KL, Per, Vis, Bon, Cre, XFr] are also available for modeling
plants and trees [RACJ09]. However, these methods model only the branching structure
or the crown of trees and plants. The leaves, in these methods, are modeled using simple
geometric shapes such as quadrilateral, triangle, ellipse, or disk textured mapped with a leaf
image.

This chapter discusses the current state of the art in leaf modeling. Based on the technique
used, existing methods are categorized into image-based methods (Section 3.1) and rule-based
(Section 3.2) methods.

3.1 Image-based Methods

Image-based methods [QTZ`06, MZL`08] attempt to reconstruct the 3D geometry of leaves
from a set of images. These methods use computer vision techniques to recover 3D infor-
mation from the images. The 3D information is then used to segment the leaves as well
as estimate their position and orientation. Then, a generic leaf model of the given plant is
placed at the estimated positions. The generic leaf model is built manually using the image
of a leaf from the input images. Finally, instances of the generic leaf model are deformed to
match the leaves in the images. Various methods differ in the technique used for each step.

Quan et al. [QTZ`06] used structure from motion to estimate a sparse set of 3D points from
the input images. The 3D points and the images are used in an interactive graph-based leaf
segmentation algorithm. The segmentation is done on both input images and estimated
3D points. The user interaction is minimal and the user have to only click to confirm

20

Chapter 3. Literature Review 21

segmentation, draw to split and refine segments, and click to merge two adjacent segments.
At the end, the generic flat leaves are scaled and warped using 3D points and leaf boundaries
extracted from the image.

Since leaves heavily occlude each other in images, Ma et al. [MZL`08] proposed an approach
to model leaves by detecting apexes of leaves from the volumetric data. The volumetric data
is estimated from the images by voxel coloring with zero-mean normalized cross-correlation
photo consistency constraints. The idea is to first automatically segment only the apexes,
and then use the orientations of the apexes to automatically segment the leaves. In order
to segment the apexes reliably, the method assumes that leaves are large enough in input
images. The apexes are detected in the volumetric data using a sharp feature detection
algorithm.

In addition to model leaves, image-based methods also reconstruct the branches and build
the geometric model of the entire plant. These approaches work very well and are able to
produce realistic reconstruction of a variety of plants. However, since a single instance of an
existing plant is reconstructed, another method is required for generating plant instances
which have same overall shape but differ slightly in detail. In addition, these methods do not
have a unifying model for representing different kind of leaves. Thus, data from real plants
must be captured and processed for generating instances of many different leaves, which is
too tedious and time-consuming.

3.2 Rule-based Methods

Rule-based methods describe the shape of a leaf by a set of rules. These rules are then
interpreted by an algorithm to generate the geometric shape of the leaf. The most popular
rule-based method is the L-systems. It was originally introduced by Lindenmayer [Lin68]
to formalize the development of multicellular organisms and subsequently expanded by
Prusinkiewicz and Lindenmayer to model branching structure and plants [PL90]. L-systems
consists of an axiom or initial state and a set of production rules. They starts with the
axiom and recursively expands the axiom using the production rules. Thus, L-systems are
particularly suitable for modeling self-similar objects such as branching structure of a plant
or tree.

Since the geometric shapes of leaves do not exhibit self-similarity, they cannot be directly
modeled by the L-systems. However, several methods have been proposed to extend L-
systems to the modeling of geometric shapes of leaves. Rodkaew et al. [RLFS02] used genetic
algorithm with a parametric L-system to reconstruct the shape of a leaf from reference image.

Chapter 3. Literature Review 22

The genetic algorithm is used to estimate the parameters of the L-system by minimizing the
Euclidean distance between the silhouette of a leaf in the reference image and the silhouette
generated by the L-system.

Peyrat et al. [PTMG08] proposed a method that combines 2D generalized map (2Gmap)
with L-systems for modeling leaves. 2Gmap is the topological model that represents the
topology of any 2D subdivision. The idea is to define operations using a 2Gmap for growing,
glueing, and splitting 2D faces. These operations are used in the production rules of an
L-system for generating the venation pattern of the leaf. The leaf shape is then generated
by iteratively adding faces to the veins using 2Gmap topology. The production rules of the
L-system are also extended for generating texture and modeling aging of leaves.

Hammel et al. [HPW92] proposed a method for modeling lobed leaves using L-systems and
implicit contours. L-systems is used to generate the venation pattern of a lobed leaf and
implicit contours are used to generate the margin of the leaf. For each vein in the venation
pattern, an implicit function is defined by the length of the vein, radius of influence at
each end of the vein, and a method to interpolate influence between two end-points. The
margin of the leaf is defined as a level set of the summation of implicit functions of all the veins.

Rule-based methods are quite powerful and they can be used to generate realistic looking
plants and trees. However, they are difficult to use for non-experts because there is no
standard method for writing the production rules for a given leaf. Moreover, the rules tend
to be complex, requiring constants, variables, and conditional statements even for simple leaf
shapes. Figures 3.1 and 3.2 illustrate instance of a unilobed and multilobed leaf generated
by the 2Gmap L-system [PTMG08]. Tables 3.1 and 3.2 illustrate the set of production rules
used to generate these shapes, respectively. It is not immediately obvious what kind of leaf
shapes will be produced by the production rules and what are the effects on the leaf shapes
if the rules are modified. It is also difficult to provide theoretical guarantee on the numerical
stability of the system. A small change in the production rules might produce large changes
in the leaf shape.

3.3 Summary

Image-based methods are very easy to use as they only require a set of images which can be
captured using a hand-held camera. Thus, with some user interaction they be used to quickly
create an instance of a real plant. Their main drawback is that generating many different
kind of leaves is too tedious and time-consuming as data for many plants must be captured
and processed. Rules-based methods are very powerful for generating the self-similar objects

Chapter 3. Literature Review 23

Figure 3.1: Instance of a unilobed leaf generated from 2Gmap L-system [PTMG08].

Table 3.1: The production rules of the 2Gmap L-system used to generate Figure 3.1

#define A(4,1,0,0,-90,1,0.1)
#define B(4,2,0,0,0,2,0.1)
#define D(4,1,0,0,0,0.2,0.1)
#define E(4,1,0,0,0,1,0.1)
#define F(4,1,0,0,0,1,0.1)

@variables@
#define anglesecondaire = 55
#define anglecourbure = 3
#define anglesecondairecurling = 2
#define curling = 2

#axiome : A
p00 A -> A[B(,,,,,,)]_{E} // Face B is created and glued on A_E
p00 B -> B[D(,,,<curling>,,,)]_{E}
p00 D -> D[B(,,,<curling>,,,)]_{E}
p01 D -> D[E(,,,,<anglesecondaire>,,)]_{C1}
p01 D -> D[F(,,,,<-anglesecondaire>,,)]_{C2}
p02 E -> E[E(,,,<anglesecondairecurling>,<-anglecourbure>,,)]_{E}
p02 F -> F[F(,,,<anglesecondairecurling>,<anglecourbure>,,)]_{E}

such as branching structure of plants. However, since the rules in the existing methods tend
to be complex, it is difficult for non-experts to use these methods. In addition, it is not clear
how to write the rules for a given leaf.

In contrast, the leaf model proposed in this thesis is simple and intuitive. The user can easily
specify the desired shape of a leaf using a simple GUI. Moreover, as will be analyzed in
Section 5.4, the algorithm that generates the leaf instances is numerically stable. Table 3.3
compares the existing methods with respect to the desirable properties of the leaf model
listed in Section 1.2.

Chapter 3. Literature Review 24

Figure 3.2: Instance of a multilobed leaf generated from 2Gmap L-system [PTMG08].

Table 3.2: The production rules of the 2Gmap L-system used to generate Figure 3.2

#define A(8,1,0,0,-90,1,1)
#define B(4,1.5,0,0,0,0.2,0.1)
#define C(4,1,0,0,0,2,0.1)
#define D(4,1.5,0,0,0,0.1,0.1)
#define E(4,2,0,0,0,1,0.1)
#define F(4,1.5,0,0,0,0.1,0.1)
#define G(4,2,0,0,0,1,0.1)
#define H(4,1,0,0,0,0.1,0.1)
#define I(4,1,0,0,0,1,0.1)
#define J(4,1,0,0,0,1,0.1)

@variables@
#define angle = 1/etapeFinale
#define ecartementnervure = 20

#axiome : A
p00 A -> A[B(,,,,130,,)]_{C1}
p00 A -> A[B(,,,,90,,)]_{C2}
p00 A -> A[B(,,,,45,,)]_{C3}
p00 A -> A[B(,,,,,,)]_{E}
p00 A -> A[B(,,,,-45,,)]_{C4}
p00 A -> A[B(,,,,-90,,)]_{C5}
p00 A -> A[B(,,,,-130,,)]_{C6}
p01 B -> B[D(,,,<angle>,,,)]_{E}
p01 D -> D[B(,,,<angle>,,,)]_{E}
p01 B {} {etape == etapeFinale } {} -> B[B(,<etapeFinale/5.0>,,<angle>,,,)]_{E}
p01 C -> C[C(,,,<angle>,,,)]_{E}
p02 D -> D[E(,,,,<ecartementnervure>,,)]_{C1}
p02 D -> D[E(,,,,<-ecartementnervure>,,)]_{C2}
p03 E -> E[E(,,,<etapeFinale/10>,,,)]_{E}

Chapter 3. Literature Review 25

Table 3.3: Comparison of leaf generation methods.

Property Image-based Rule-based Proposed model

General ! ! !

Intuitive ! # !

Concise — # !

Generative # ! !

Numerically stable — ? !

Chapter 4
Overview of Computational Leaf Modeling

The goal of this research is to develop a method for generating the geometric shape of a
variety of leaves. To accomplish this goal, it is important to first enumerate and characterize
the laminar shapes that are modeled. For ease of computational modeling and application,
this thesis categorizes leaves into two broad categories: unilobed and multilobed. The
proposed leaf model is based on unilobed leaves, which are characterized in Section 4.1.
Multilobed leaves are modeled as a combination of unilobed leaves, and they are characterized
in Section 4.2. Given the model of a leaf shape, multiple instances of the leaf can be generated,
each having the same overall shape but differ slightly in detail. The algorithms for generating
leaf instances and new laminar shapes are presented in Chapters 5, 6 and 7.

4.1 Types of Unilobed Leaves Modeled

As discussed in Section 2.2, the shape of unilobed leaves can be characterized by the shapes
at the base and the apex, and the location and the extent of the widest part of the lamina.
In this thesis, the widest part of the lamina is called the waist. Based on the leaf shapes
discussed in Section 2.2, the base shapes are categorized into six types: straight, concave,
convex, concavo-convex, complex, and cordate (Figure 2.4), the apex shapes are categorized
into four types: straight, convex, acuminate (concave or concavo-convex), and emarginate
(Figure 2.5), and the waist shapes are categorized into five types: elliptic, obovate, ovate,
oblong, and linear (Figure 2.6). Table 4.1 summarizes the shape characteristics of unilobed
leaves.

Considering all possible combinations of these shapes, there are 5ˆ6ˆ4 “ 120 possible types
of leaf shapes. However, not all combinations occur in nature. Oblong leaves (Figure 2.6d)
have convex base and convex apex. So, there is only one shape for oblong leaves. Leaves
with linear shape (Figure 2.6e) are very thin compared to the length of the lamina and the
shape of the base and the apex are similar for all leaves with linear shape.

26

Chapter 4. Overview of Computational Leaf Modeling 27

Table 4.1: Characteristics of unilobed leaves. The shape of unilobed leaves can be charac-
terized by the location and the extent of the widest part of the lamina (waist shape) and the
shapes of the margin at the base (base shape) and the apex (apex shape).

Waist Shape Base Shape Apex Shape

Elliptic Straight Straight

Obovate Concave

Ovate Convex Convex

Oblong Concavo-Convex Acuminate

Linear Complex

Cordate Emarginate

(a) (b) (c)

Figure 4.1: Laminar shapes omitted by the leaf model. (a) A leaf with teeth. (b) Leaves
with drip-tips. (c) A leaf with complex base (Sources: 1,4: [HGL92]).

In order not to induce extraneous complexity into the proposed leaf model, the following
shape features are omitted:

• Teeth along the leaf margin (Figure 4.1a) are omitted as they do not contribute
significantly to the overall shape of the leaf. They can be added to the margin using
methods such as curve analogies [ZG04].

• Some leaves have long slender tips called drip-tips (Figure 4.1b). The apex shapes of
these leaves are initially concave and then convex. Drip-tips are not modeled as they
do not contribute significantly to the overall shape of the leaf.

• Leaves with complex base shape (Figure 4.1c) are omitted. The number of leaf types
with complex base shape is very small. So, they can be omitted.

Chapter 4. Overview of Computational Leaf Modeling 28

Table 4.2: Laminar shapes modeled by the leaf model. C: Convave, S: Straight, V: Convex.
X: with extension. ###: The number of combination of the base and the apex shapes.

Waist Shape Base Shape Apex Shape ### Figure

Elliptic C, S, V, X C, S, V, X 16 4.2

Obovate C, S, V, X C, S, V, X 16 4.3

Ovate C, S, V, X C, S, V, X 16 4.4

Oblong V V 1 4.5a

Linear S S 1 4.5b

Total 50

In summary, 50 types of unilobed leaf shapes are modeled by the proposed model (Table 4.2).
Of these 50 shapes, 26 occur naturally. The remaining 24 shapes may occur in nature but
the author is unable to find real leaf examples of them. Shapes with naturally occurring
leaves are illustrated with real leaf examples in Figures 4.2 to 4.5. For other leaves computer
generated shapes are inserted into the figures for the purpose of illustration. Note that each
type of leaf shape admits many variations depending on the aspect ratio, and the amount of
concavity, convexity, and extension of the base and the apex. Moreover, the divisions between
shape types can be fuzzy. For example, straight base is a transitional shape between concave
and convex bases. There is no strict rule as to how straight a base needs to be before it is
classified as straight as opposed to concave or convex. Nevertheless, these shape types serve
as a useful method for botanists and the general users to intuitively describe the shape of a leaf.

As discussed in Section 2.2, the leaf shape can be asymmetric on the two sides of the primary
vein (Figure 2.9). Asymmetric leaves can be modeled either with different shapes for the left
and the right side, or with the same shape but with different parameter values.

Some of the common leaf shapes have been given specific names by botanists (Figure 2.7).
These leaf shapes are included in Figures 4.2 to 4.5. Table 4.3 characterizes leaf shapes in
Figure 2.7 according to the shapes of the base, the waist and the apex.

4.2 Types of Multilobed Leaves Modeled

There are three basic types of multilobed leaves: palmately lobed, pinnately lobed, and
bilobed. In a palmately lobed leaf (Figures 4.6a to 4.6c), the lobes originate at the base of

Chapter 4. Overview of Computational Leaf Modeling 29

Table 4.3: Shape characteristics of common leaf shapes illustrated in Figure 2.7.

Leaf Name Waist Shape Base Shape Apex Shape Figure

Elliptic Elliptic Convex Convex 4.2 (c3)

Lanceolate Ovate Convex Straight 4.4 (c2)

Oblanceolate Obovate Straight Convex 4.3 (b3)

Oblong Oblong Convex Convex 4.5a (c3)

Oval Elliptic Convex Convex 4.2 (c3)

Obovate Obovate Straight Convex 4.3 (b3)

Ovate Ovate Convex Straight 4.4 (c2)

Orbicular Elliptic Convex Convex 4.2 (c3)

Rhomboidal Elliptic Straight Straight 4.2 (b2)

Cordate Ovate Cordate Straight 4.4 (d2)

Deltoid Ovate Concave Straight 4.4 (a2)

Reniform Ovate Cordate Straight 4.4 (d2)

the leaf. These leaves have an odd (typically three, five, or seven) number of lobes. In a
pinnately lobed leaf (Figure 4.6d), the lobes originate along the primary vein of the leaf.
These leaves typically have many lobes, and the number of lobes can be even or odd. Leaves
with an odd number of lobes have a lobe at their apexes. A bilobed leaf (Figure 4.6e) has
two lobes that originate at the base. Unlike a palmately lobed leaf, there is no lobe at the apex.

Multilobed leaves can be symmetric or asymmetric, i.e., the lobes on the left and right sides
of the leaves can have the same or slightly different shapes. Each lobe in a multilobed leaf
can be symmetric or asymmetric. Multilobed leaves can also have teeth along the margin.
As for unilobed leaves, teeth are omitted because they do not contribute significantly to the
overall shape of a leaf.

Chapter 4. Overview of Computational Leaf Modeling 30

(a)

(b)

(c)

(d)

(1) (2) (3) (4)

Figure 4.2: Examples of various shapes of leaves with elliptic waist. Rows correspond
to leaves with same base shapes. (a) Concave. (b) Straight. (c) Convex. (d) Base with
extension. Columns correspond to leaves with same apex shapes. (1) Concave. (2) Straight.
(3) Convex. (4) Apex with extension.

Chapter 4. Overview of Computational Leaf Modeling 31

(a)

(b)

(c)

(d)

(1) (2) (3) (4)

Figure 4.3: Examples of various shapes of leaves with Obovate waist. Rows correspond
to leaves with same base shapes. (a) Concave. (b) Straight. (c) Convex. (d) Base with
extension. Columns correspond to leaves with same apex shapes. (1) Concave. (2) Straight.
(3) Convex. (4) Apex with extension.

Chapter 4. Overview of Computational Leaf Modeling 32

(a)

(b)

(c)

(d)

(1) (2) (3) (4)

Figure 4.4: Examples of various shapes of leaves with Ovate waist. Rows correspond
to leaves with same base shapes. (a) Concave. (b) Straight. (c) Convex. (d) Base with
extension. Columns correspond to leaves with same apex shapes. (1) Concave. (2) Straight.
(3) Convex. (4) Apex with extension.

(a) (b)

Figure 4.5: Example of leaves with linear and oblong waist. (a) A leaf with oblong waist.
(b) A leaf with linear waist.

Chapter 4. Overview of Computational Leaf Modeling 33

(a) (b) (c)

(d) (e)

Figure 4.6: Examples of various shapes of multilobed leaves. (a–c) Palmately lobed leaves
with three, five, and seven lobes. (d) A pinnately lobed leaf with ten lobes. (e) A bilobed
leaf.

Chapter 5
Modeling of Unilobed Leaves

This chapter presents a parametric leaf model of the geometric shapes of unilobed leaves
discussed in Section 4.1. The shape of the leaf is represented by a set of landmark points on
the margin and tangents to the margin at these points. These parameters can be specified
intuitively using a GUI and a reference image (Section 5.2). The parameters of the leaf
model are used by the laminar shape generation algorithm to generate the laminar surface
(Section 5.3). Performance of the algorithm is discussed in Sections 5.4 and 5.5.

5.1 Parametric Leaf Model

The parametric leaf model is defined on a local right-handed coordinate system placed on
the leaf with the origin at the base and the y-axis pointing towards the apex of the leaf. The
x-y plane is set as the laminar plane of the leaf. The primary vein is defined to have a unit
length (Figure 5.1). All parameters are defined relative to the primary vein. In this way, a
leaf instance can be placed in some global coordinate system by appropriate scaling, rotation,
and translation. The surface of a leaf is divided by the primary vein into the left side and
the right side. Parameters for the two sides are defined separately so that asymmetric leaf
shapes can be modeled.

For a unilobed leaf without basal extension, one side of its margin is defined by three
landmark points pi, i “ 1, 2, 3, and the corresponding unit tangents ti at these points
(Figure 5.2a). Landmark point p1 is the base, which is fixed at p0, 0q. p2 is the waist, the
point at which the laminar width is maximum. p3 is the apex, which is fixed at p0, 1q.
Tangent t1 can vary clockwise from p0, 1q to p1, 0q and t3 can vary counter-clockwise from
p0, 1q to p´1, 0q. By definition of the waist, t2 is parallel to the y-axis. Thus, there are only
4 free parameters for defining one side of the leaf margin, namely θa, θb, and p2 “ px2, y2q,
where 0 ď θa, θb ď

π
2 , x2 ą 0, and 0 ă y2 ă 1. The landmark points and tangents are related

34

Chapter 5. Modeling of Unilobed Leaves 35

x

y

Origin

Primary vein

Secondary vein
L = 1.0

Figure 5.1: Coordinate system of the leaf model. The parameters of the leaf model are
expressed in a right-handed coordinate system with origin at the base and the y-axis pointing
towards the apex of the leaf. The primary vein is defined to have a unit length.

to these free parameters as follows:

p1 “ p0, 0q,

p2 “ px2, y2q,

p3 “ p0, 1q,

t1 “ psin θb, cos θbq,

t2 “ p0, 1q,

t3 “ p´ sin θa, cos θaq.

For a unilobed leaf with basal extension, one side of its margin is defined by four landmark
points pi, i “ 1, . . . , 4, and the corresponding unit tangents ti at these points (Figure 5.2b).
Landmark point p1 is the base, which is fixed at p0, 0q. p2 is the tail, at which the basal
extension is maximum. p3 is the waist, at which the laminar width is maximum. p4 is
the apex, which is fixed at p0, 1q. The tangent t1 can vary clockwise from p1, 0q to p0,´1q

and t4 can vary counter-clockwise from p0, 1q to p´1, 0q. By definition of the tail and waist,
respectively, t2 is parallel to the x-axis and t3 is parallel to the y-axis. Thus, there are only 6
free parameters for defining one side of the margin: θa, θb, p2 “ px2, y2q, and p3 “ px3, y3q,
where 0 ď θa ď

π
2 ,

π
2 ď θb ď π, x2 ą 0, y2 ă 0, x3 ą 0, and 0 ă y3 ă 1. The landmark

Chapter 5. Modeling of Unilobed Leaves 36

x

y

p1

t1

p2

t2

p3

t3

θb

θa

(a)

p1

p2

p3

t1 t2

t3

p4

t4

x

y

θa

θb

(b)

Figure 5.2: Parameters of the leaf model for unilobed leaves. (a) Leaf without basal
extension. (b) Leaf with basal extension.

points and tangents are related to these free parameters as follows:

p1 “ p0, 0q,

p2 “ px2, y2q,

p3 “ px3, y3q,

p4 “ p0, 1q,

t1 “ psin θb, cos θbq,

t2 “ p1, 0q,

t2 “ p0, 1q,

t3 “ p´ sin θa, cos θaq.

A unilobed leaf with apical extension is defined by analogous landmark points and tangents,
with 6 free parameters for one side of its margin.

5.2 User Interface

GUI provides an interactive means for a user to specify the shape of a unilobed leaf intuitively.
Figure 5.3 illustrates an example of specifying a unilobed leaf without basal extension. After
loading a reference image of a leaf, the user places a point with an arrow at the base of
the reference leaf. The point represents the position and the arrow represents the tangent
to the margin at the point. The user then rotates the arrow about the point such that

Chapter 5. Modeling of Unilobed Leaves 37

(a) (b)

(c) (d)

Figure 5.3: User specification of laminar shape of unilobed leaves without basal extension.
(a) First, the user loads a reference image of a leaf. Then, the user specifies the landmark
points and tangents for the (b) right side and the (c) left side. (d) The margin of the leaf
generated by the system.

the arrow is tangent to the margin at the base. Similarly, the user specifies the apex and
the tangent to the margin at the apex. For ease of use, the user specifies the tangent
´t3 at the apex. Finally, the user places a point on the waist of the leaf, at which the
leaf has the maximum width. The tangent at the waist is by definition parallel to the
y-axis. So, the user does not need to specify this tangent. The system then generates the
margin for one side of the leaf. The margin for the other side of the leaf is generated similarly.

To define a leaf with basal extension, a similar method is used. In addition, the user places
a point on the tail of the leaf, at which the basal extension is maximum (Figure 5.4).

Chapter 5. Modeling of Unilobed Leaves 38

(a) (b)

Figure 5.4: User specification of laminar shape of unilobed leaves with basal extension. (a)
The user specifies the landmark points and tangents for the right side and the left side. (b)
The margin of the leaf generated by the system.

Figure 5.5: Specifying the position of the apex for a leaf with drip tip. For this leaf, the
apex should be specified at a point such that tangents to the margin are just beyond the
concave part of the margin.

Some unilobed leaves have a drip-tip or a drip-base. As discussed in Section 4.1, these leaves
are not modeled directly by the proposed leaf model. For leaves with drip-tips, the apex
should be specified at a point such that the tangents to the margin at apex start just beyond
the concave part of the drip-tip (Figure 5.5). The base for leaves with drip-base should be
specified similarly.

5.3 Laminar Shape Generation Algorithm

The margin of a leaf is generated by fitting a pair of quadratic B-spline curves to the landmark
points and tangents, one for each side of the leaf. Each B-spline curve passes through the
points pi, and the unit tangents to the B-spline curve at the points pi are ti. B-spline curves
are used because they have many nice properties with geometric significance [PT97]. The

Chapter 5. Modeling of Unilobed Leaves 39

degree of B-spline curves is independent of the number of control points. B-spline curves
have local control, i.e., modifying a control point only changes the shape of a part of the
curve. A part of a degree-d B-spline curve is contained in the convex hull of d consecutive
control points. Furthermore, no straight line intersects a B-spline curve more times than it
intersects the curve’s control polygon (variation diminishing property). These properties
are important for intuitive control over the laminar shape. They ensure that the estimated
margin is within the user’s expectation.

A degree-d B-spline is a piecewise polynomial curve defined as follows [PT97]

ppuq “ pxpuq, ypuqq “
n
ÿ

i“0

Bi,dpuqqi, (5.1)

where ppuq are points on the B-spline curve parametrized by u, which lies in the range
r0, 1s. The points qi, i “ 0, . . . , n are the n` 1 control points. The functions Bi,dpuq are the
B-spline basis functions. They are defined by a sequence of non-decreasing real numbers
called knots v0, . . . , vm and vi ď vi`1. Intuitively, they are the points in the parameter space
at which the curve changes from one polynomial to another. The ith B-spline basis function
of degree-d, Bi,dpuq, is defined as

Bi,0puq “

$

&

%

1 if vi ď u ă vi`1,

0 otherwise.
(5.2)

Bi,dpuq “
u´ vi
vi`d ´ vi

Bi,d´1puq `
vi`d`1 ´ u

vi`d`1 ´ vi`1
Bi`1,d´1puq. (5.3)

The degree d, the number of control points n` 1, and the number of knots m` 1 are related
by m “ n` d` 1.

For a given u, the derivative of the B-spline curve can be obtained by computing the derivative
of its basis functions:

p1puq “
n
ÿ

i“0

B1i,dpuqqi. (5.4)

The derivative of the ith B-spline basis function of degree-d is given by

B1i,d “
d

vi`p ´ vi
Bi,d´1puq ´

d

vi`p`1 ´ vi`1
Bi`1,d´1puq. (5.5)

For the proposed leaf model, degree-two B-spline curves are chosen. Degree-one B-spline
curves are just a set of straight line segments passing through the control points. Degree-three
or higher-degree B-spline curves sometimes create unnecessary points of inflection, resulting
in overly complex leaf shapes that may have self-intersections (Figure 5.6). Thus, degree-2,

Chapter 5. Modeling of Unilobed Leaves 40

Figure 5.6: Effect of varying the degree of B-spline curves on leaf shapes. The leaf shapes
in the first row were generated using degree-3 B-spline curves. The second row shows the
corresponding leaf shapes generated using degree-2 B-spline curves.

i.e., quadratic, B-spline curves are the most appropriate.

5.3.1 B-spline Fitting

Many methods have been proposed in the literature for fitting a B-spline curve to a set
of points with known first derivatives. In this thesis, the algorithm given in Section 9.2.4
of [PT97] is used. The B-spline fitting algorithm finds the parameters of a quadratic B-spline
curve that passes through a set of points tpiu, i “ 1, . . . , N , such that the unit tangents to
the curve at points pi are ti. For each point pi, a parameter value ui can be determined
such that the B-spline curve passes through it:

pi “ ppuiq “
n
ÿ

k“0

Bk,2puiqqk. (5.6)

The first derivatives of the B-spline curves are given by

αiti “ p1puiq “
n
ÿ

k“0

B1k,2puiqqk, (5.7)

where αi is a scalar used to scale the unit tangent ti to match the first derivative of the
curve at ui.

The unknowns in Equations 5.6 and 5.7 are the control points qk, the knots vi, the parameter
values ui, and the scalars αi. The value of vi, ui, and αi are estimated by approximating
the B-spline curve by a polyline formed by connecting the points pi. The position of the
control points qk are computed by solving Equations 5.6 and 5.7. To obtain a unique set
of control points qk, the number of control points must be equal to the number of equa-

Chapter 5. Modeling of Unilobed Leaves 41

tions. Since there are 2N equations, the number of control points (n`1) must be equal to 2N .

The ideal choice for the parameter values ui are the normalized arc-lengths of the B-spline
curve. Since the curve is not yet known, the arc-lengths are approximated using chord
lengths between points pi [PT97]. Let D be the total chord length

D “
N
ÿ

i“2

||pi ´ pi´1||. (5.8)

Then the parameters are defined as

u1 “ 0

ui “ ui´1 `
||pi ´ pi´1||

D
, i “ 2, . . . , N.

(5.9)

To ensure that the B-spline curve passes through the first and the last control point, the
first three knots are set to 0 and the last three knots are set to 1 [PT97]. The remaining
knots are estimated by averaging the parameter values ui:

v0 “ v1 “ v2 “ 0,

vm´2 “ vm´1 “ vm “ 1,

vj`2 “
1

2

j`1
ÿ

i“j

ui j “ 1, . . . , n´ 2.

(5.10)

There are two cases for modeling one side of the leaf margin with a B-spline curve: leaves
without basal extension (N “ 3) and leaves with basal extension (N “ 4). These cases are
discussed separately.

Case 1: N “ 3

For leaves with no basal extension, N “ 3 and the inputs to the B-spline fitting algorithm
are p1, t1,p2, t2,p3, t3. The parameter values ui are estimated using Equation 5.9 as

u1 “ 0, u2 “
||p2 ´ p1||

D
, u3 “ 1. (5.11)

The number of control points (n` 1) must be equal to the number of equations (2N). Thus,
n is equal to 5. The number of knots m` 1 is related to the number of control points (n` 1)
and the degree d by m “ n` d` 1 [PT97], which implies that m is equal to 8. The knots vi
are estimated using Equation 5.10 to yield

vi “ 0, 0, 0,
u2
2
, u2,

u2 ` 1

2
, 1, 1, 1. (5.12)

Chapter 5. Modeling of Unilobed Leaves 42

Using Equations 5.11 and 5.12 and setting all αi “ D, Equations 5.6 and 5.7 can be expanded
as

p1 “ q0,

Dt1 “ ´
4

u2
q0 `

4

u2
q1,

p2 “ p1´ u2qq2 ` u2q3,

Dt2 “ ´4q2 ` 4q3,

p3 “ q5,

Dt3 “ ´
4

1´ u2
q4 `

4

1´ u2
q5.

(5.13)

In matrix form, the linear system is given by
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

´
4

u2

4

u2
0 0 0 0

0 0 1´ u2 u2 0 0

0 0 ´4 4 0 0

0 0 0 0 0 1

0 0 0 0 ´
4

1´ u2

4

1´ u2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

q0

q1

q2

q3

q4

q5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

p1

Dt1

p2

Dt2

p3

Dt3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.14)

This linear system can be solved analytically for qi:

q0 “ p1,

q1 “ p1 `Dt1

´u2
4

¯

,

q2 “ p2 ´Dt2

´u2
4

¯

,

q3 “ p2 `Dt2

ˆ

1´ u2
4

˙

,

q4 “ p3 ´Dt3

ˆ

1´ u2
4

˙

,

q5 “ p3.

(5.15)

Case 2: N “ 4

For leaves with basal extensions, N “ 4 and the inputs to the B-spline fitting algorithm are
p1, t1,p2, t2,p3, t3,p4, t4. The parameter values ui are estimated using Equation 5.9 as

u1 “ 0, u2 “
d1

D
, u3 “

d2

D
, u4 “ 1, (5.16)

Chapter 5. Modeling of Unilobed Leaves 43

where d1 “ ||p2 ´ p1||, and d2 “ ||p3 ´ p2||. The number of control points (n` 1) is equal
to number of equations (2N). Thus, n is equal to 7. The number of knots m` 1 is equal to
n` d` 1, which implies that m “ 11. The knots vi are estimated using Equation 5.10 as

vi “ 0, 0, 0,
u2
2
, u2,

u2 ` u3
2

, u3,
u3 ` 1

2
, 1, 1, 1. (5.17)

Using Equations 5.16 and 5.17 and setting all αi “ D, Equations 5.6 and 5.7 can be expanded
as

p1 “ q0,

Dt1 “ ´
4

u2
q0 `

4

u2
q1,

p2 “
u3 ´ u2
u3

q2 `
u2
u3

q3,

Dt2 “ ´
4

u3
q2 `

4

u3
q3,

p3 “
1´ u3
1´ u2

q4 `
u3 ´ u2
1´ u2

q5,

Dt3 “ ´
4

1´ u2
q4 `

4

1´ u2
q5,

p4 “ q7,

Dt4 “ ´
4

1´ u3
q6 `

4

1´ u3
q7.

(5.18)

In matrix form, the linear system is given by

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0

´
4

u2

4

u2
0 0 0 0 0 0

0 0
u3 ´ u2
u3

u2
u3

0 0 0 0

0 0 ´
4

u3

4

u3
0 0 0 0

0 0 0 0
1´ u3
1´ u2

u3 ´ u2
1´ u2

0 0

0 0 0 0 ´
4

1´ u2

4

1´ u2
0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 ´
4

1´ u3

4

1´ u3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

q0

q1

q2

q3

q4

q5

q6

q7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

p1

Dt1

p2

Dt2

p3

Dt3

p4

Dt4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

(5.19)

Chapter 5. Modeling of Unilobed Leaves 44

αi “ D{0.5 αi “ D{0.75 αi “ D αi “ D{2 αi “ D{5

Figure 5.7: Effect of changing the value of αi on the leaf shape.

This linear system can be solved in closed form for qi as

q0 “ p1,

q1 “ p1 `Dt1

´u2
4

¯

,

q2 “ p2 ´Dt2

´u2
4

¯

,

q3 “ p2 `Dt2

ˆ

u3 ´ u2
4

˙

,

q4 “ p3 ´Dt3

ˆ

u3 ´ u2
4

˙

,

q5 “ p3 `Dt3

ˆ

1´ u3
4

˙

,

q6 “ p4 ´Dt4

ˆ

1´ u3
4

˙

,

q7 “ p4.

(5.20)

For visualization, the B-spline curve on each side of the primary vein is discretized into
polylines with m sample points. In implementation, m is set to 64. Thus, each unilobed leaf
is represented by 128 points.

5.4 Analysis of Laminar Shape Generation Algorithm

The parameter αi in Equation 5.7 controls the tension of the B-spline curve. The smaller
the value of αi, the tighter is the B-spline curve. The effect of varying the value of αi on the
leaf shape is illustrated in Figure 5.7. For rhomboidal and deltoid leaf shapes in Figure 5.19,
a value of D{2 was used for αi, where D is the total chord length of the landmark points.

Figure 5.8 illustrates the effect of varying the parameter values for leaves without basal
extension. The first row shows that as the tangent angle θb is increased from 0˝ to 90˝, the
shape of the base changes from concave (Figure 5.8a) to straight (Figure 5.8b,c) to convex

Chapter 5. Modeling of Unilobed Leaves 45

(a) (b) (c) (d) (e) (f)

Figure 5.8: Effect of varying the parameter values in leaves without basal extension. The
first row shows the effect of varying the tangent angle at the base. The second and the third
rows show the effect of varying the x and y-coordinates of the waist, respectively.

(Figure 5.8d–f). The second row shows that as the x-coordinate of the waist is increased,
the lamina becomes wider. Since, the tangents at the base and the apex are constant, the
shapes of the base and apex change from convex (Figure 5.8a–c) to straight (Figure 5.8d,e)
to concave (Figure 5.8f). This illustrates that the shape of the base and apex depends not
only on the tangent angles θb and θa, respectively, but also on the x-coordinate of the waist.
Let φ be the angle between the y-axis and the line-segment between the base and the waist.
Then, the base shape is concave if θb ă φ´ ε, straight if φ´ ε ď θb ď φ` ε, and convex if
θb ą φ` ε, where ε is a small constant. The apex shape is defined similarly. The third row
shows that as y-coordinate of the waist is increased, the shape of the waist changes from
ovate (Figure 5.8a,b) to elliptic (Figure 5.8c,d) to obovate (Figure 5.8e,f).

Figure 5.9 illustrates the effect of varying the parameter values for the shape of the tail in
leaves with basal extension. The first row shows that as the tangent angle θb is increased
from 90˝ to 150˝, the tail becomes flatter. The second row shows that as the x-coordinate of
the tail is increased, the point of maximum basal extension moves away from the primary
vein. The third row shows that as the y-coordinate of the tail is increased, the tail become
longer.

The laminar shape generation algorithm should be numerically stable so that a small change

Chapter 5. Modeling of Unilobed Leaves 46

Figure 5.9: Effect of varying the parameter values in leaves with basal extension. The first
row shows the effect of varying the tangent angle at the base. The second and the third rows
show the effect of varying the x and y-coordinates of the tail, respectively.

in parameter values produce a small change in the leaf shape. The stability of the algorithm
for leaves without basal extension is estimated from the linear system of Equation 5.14. A
linear system of equations is unstable if the coefficient matrix has a large condition number.
In Equation 5.14, the coefficient matrix is defined by a single parameter u2. The condition
number of the coefficient matrix is illustrated in Figure 5.10. It is clear that the condition
number is small except when u2 is close to zero or one. Thus, the laminar shape generation
algorithm is stable everywhere expect when the waist is close to the base or the apex.

Similar analysis can be performed for the laminar shape generation algorithm for leaves with
basal extension. The coefficient matrix in Equation 5.19 is defined by two parameters u2 and
u3 with u2 ă u3. The condition number of the coefficient matrix is illustrated in Figure 5.11.
The laminar shapes generation algorithm is stable everywhere except when the waist is close
to the apex or the tail, or when the tail is close to the base.

In the Equation 5.14, when u2 is equal to zero or one, the coefficient matrix has a zero
determinant. Thus, the coefficient matrix is not invertible and the control points of B-spline
curve cannot be computed. In this case, closed form solution (Equation 5.15) can be used to
compute the control points of the B-spline curve. In this case, the tangent at the base or
the apex has no effect on the shape of the curve. In the implementation, Equations 5.15
and 5.20 are used.

Chapter 5. Modeling of Unilobed Leaves 47

Figure 5.10: Numerical stability of the laminar shape generation algorithm for leaves
without basal extension. The condition number is small for all values of the parameter u2
except when it is close to zero or one.

The laminar shape generation algorithm is both time and space efficient. The time for fitting
a B-spline curve to a set of N landmark points is OpN3q, which is the time required to solve
the linear system in Equations 5.14 or 5.19. For the unilobed leaves, the number of landmark
points is 2, 3, or 4. Hence, the time complexity of laminar shape generation algorithm is
Op1q. The space required for fitting a B-spline curve to a set of N landmark points is OpN2q,
which is the space required to store the matrices in Equations 5.14 or 5.19. Again, since
the number of landmark points is small, the laminar shape generation algorithm needs Op1q
space. Thus, the laminar shape generation algorithm is constant time and space for all
unilobed leaves.

5.4.1 Accuracy of Generated Leaf Shapes

One of the main goals of the leaf model is to generate many instances of a leaf for simulating
interaction of plants with the environment. For the simulation to be realistic, it is important
that the generated instances should match the real leaf shapes. 34 real leaves (Figure 5.12)
were selected from examples given in Chapters 2 and 4 to evaluate the accuracy of the
laminar shape generation algorithm.

The differences between the generated laminar shapes and the laminar shapes of real leaves
were computed as follows. First, for each real leaf in Figure 5.12, the laminar shape was
extracted from the image manually aid by image processing tool. In addition, the base
and the apex points were manually marked on the images. Then, for each real leaf, the

Chapter 5. Modeling of Unilobed Leaves 48

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0

100

200

300

0

100

200

300

u2
u3

condition number

Figure 5.11: Numerical stability of the laminar shape generation algorithm for leaves with
basal extension. The condition number is small for all values of the parameters u2 and u3
except when u2 is close to zero, or u3 is close to u2 or one.

laminar shape was generated using the graphical user interface described in Section 5.2.
Both laminar shapes, the real and the generated, were represented as polygons and the
positions of the base and the apex were also saved. Since the real leaf images were of different
sizes, the laminar shapes should be normalized for comparison. To normalize the laminar
shapes, bases were translated to the origin, and apexes were transformed so that they laid
at (0, 1). Thus, the primary vein for all laminar shapes had unit length and laid on the y-axis.

After normalizing the laminar shapes, the difference between the generated and the real
laminar shapes was measured by the Euclidean distance between their corresponding points.
For a point pi on the generated laminar shape, its corresponding point on the real laminar
shape was computed by intersecting the line along the normal to the generated laminar
shape at pi with the real laminar shape. In general, the line along the normal at pi can have
more than one intersection with the real laminar shape. In this case, the point of intersection
on the real laminar shape closest to pi was selected as the corresponding point. This al-
gorithm was used because it worked well even when real laminar shape had teeth and drip-tips.

Figure 5.13 illustrates the boxplots of the Euclidean distance between the corresponding
points in the real and the generated laminar shapes. Boxplot is a convenient way to summarize
a sample using five statistics: minimum (lower end of the vertical line), 25th percentile
(lower edge of rectangle), median (horizontal line in the box), 75th percentile (upper edge of
rectangle), and maximum (upper end of the vertical line). It can be seen that most of the
generated laminar shapes have maximum error smaller than 0.03 (3% of the length of the
primary vein). Eight generated laminar shapes have maximum error larger than 0.03. The

Chapter 5. Modeling of Unilobed Leaves 49

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34

Figure 5.12: Real leaves used for evaluating the accuracy of laminar shape generation
algorithm. These leaves were selected from examples given in Chapters 2 and 4.

real and the generated laminar shapes of these leaves are illustrated in Figure 5.14. Leaf
number 3 has a drip-tip and leaf number 23 and 24 have teeth which are not modeled. Leaf
number 13, 14, and 31 have rough margins which are not captured by the leaf model. The
proposed algorithm only generates smooth laminar shapes. Leaf number 15 and 32 are not
precisely captured by the leaf model but the generated shapes are still very close to the real
shapes.

In conclusion, using a sample of leaves with various shapes, it is shown that the leaf model
can generate leaf shapes that match the real leaf shapes well. Extensive verification, however,
is not practical because of the huge variations in leaf shapes. Even from the same plant, leaf
shapes can vary a lot in minute details.

Chapter 5. Modeling of Unilobed Leaves 50

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Leaf number

D
is
ta
n
ce

(1
0
−
2
)
b
et
w
ee
n
co
rr
es
p
o
n
d
in
g
p
oi
n
ts

Figure 5.13: Boxplots of the Euclidean distance between the corresponding points in real
and generated laminar shapes. Each boxplot describes the distribution of distances of all
corresponding points between a real and the generated laminar shape. The numbers along
the x-axis indicate the real leaves illustrated in Figure 5.12.

5.5 Leaf Shape Generation Examples

The proposed leaf model in this thesis can generate 50 types of unilobed leaf shapes as
categorized in Section 4.1 (Table 4.2). Figures 5.15 to 5.17 illustrates 48 of them with
different combinations of waist, base, and apex shapes. The remaining two shape types,
oblong and linear, are illustrated in Figure 5.18. Among them, 26 shape types have real leaf
examples. The others may also occur in nature but the author is unable to find real leaf
examples for them.

Figure 5.19 illustrates leaf shapes that have been given specific names by botanists [HGL92].
Note that some of these leaf shapes belong to the same type. For example elliptic, oval, and
orbicular leaves in Figure 5.19 belong to the same type with elliptic (mid) waist, convex base,
and convex apex. They differ by their aspect ratios and the roundedness of their shapes.
These figures show that the leaf shapes generated by the proposed model match those of the
real leaves very well.

Figure 5.20 shows that our model can generate asymmetric leaf shapes. Figure 5.21 illustrates
more complex leaf shapes. Top row shows that laminar shape generation algorithm can
generate leaf shapes with drip tips. For a leaf with a very long and slender drip tip, the

Chapter 5. Modeling of Unilobed Leaves 51

3 13 14 15

23 31 32 34

Figure 5.14: Comparison of the generated and the real laminar shapes with maximum
error greater than 0.03 in Figure 5.13. The solid lines represent real laminar shapes and
dotted lines represent the generated laminar shapes. The lines connecting them are the
corresponding points. The numbers below the laminar shapes refer to the real leaves in
Figure 5.12.

match between the generated tip and the real tip is not perfect (Figure 5.21, third case) due
to the small number of landmark points used to generate the B-spline curves. Technically,
the match can be made perfect by including an additional landmark point. Bottom row of
Figure 5.21 shows that the generated margins fit the overall shapes of the leaves with teeth.
As discussed in Section 4.1, teeth are omitted in our model and can be added using methods
such as curve analogies [ZG04].

Figure 5.22 illustrates an example of lotus leaf in which the base is at the center of the
lamina. The proposed laminar shape generation algorithm can generate instance of such
leaves, however, the base will be at the margin of the leaf, instead of the center. Some
unilobed leaves have naturally curved primary vein. For simplicity, the proposed leaf model
assumes that the primary vein is straight but the laminar shape generation algorithm is
general and can generate curved unilobed leaves. Leaves with curved veins are generated by
specifying additional parameters to define a curved vein and then the landmark points are
expressed relative to the curved veins (Figure 5.23).

For many applications, many leaf instances for a given kind of leaf should be generated. The

Chapter 5. Modeling of Unilobed Leaves 52

laminar shape generation algorithm can generate multiple leaf instances by perturbing the
parameter values. The maximum amount of perturbation is specified by the user and is
expressed as a percentage of the parameter value. The algorithm adds a random percentage
within the maximum perturbation to each parameter value. Figure 5.24 illustrates five
instances each for elliptic, cordate and asymmetric leaves generated by adding 20% pertur-
bations to the parameter values. The effect of perturbation is illustrated in Figure 5.25. The
instances in the first, second, and third rows are generated by adding 20%, 30%, and 40%
perturbations to the parameter values, respectively.

Note that some combinations of extreme parameter values can produce shapes that do not
look like leaves. Figure 5.26 illustrate some of these non-leaf shapes. Such non-leaf shapes
can be used to populate virtual worlds.

On a laptop with Intel Core i7 2.0 GHz processor, on an average 2500 leaves per second can
be generated. This shows that the laminar shape generation algorithm is fast and can be
used for quickly generating large number of leaves instances.

Chapter 5. Modeling of Unilobed Leaves 53

Figure 5.15: Laminar shapes generated for leaves with elliptic waist illustrated in Figure 4.2.
Rows correspond to leaves with same base shapes. (Row 1) Concave. (Row 2) Straight.
(Row 3) Convex. (Row 4) Base with extension. Columns correspond to leaves with same
apex shapes. (Column 1) Concave. (Column 2) Straight. (Column 3) Convex. (Column 4)
Apex with extension.

Chapter 5. Modeling of Unilobed Leaves 54

Figure 5.16: Laminar shapes generated for leaves with Obovate waist illustrated in
Figure 4.3. Rows correspond to leaves with same base shapes. (Row 1) Concave. (Row 2)
Straight. (Row 3) Convex. (Row 4) Base with extension. Columns correspond to leaves
with same apex shapes. (Column 1) Concave. (Column 2) Straight. (Column 3) Convex.
(Column 4) Apex with extension.

Chapter 5. Modeling of Unilobed Leaves 55

Figure 5.17: Laminar shapes generated for leaves with Ovate waist illustrated in Figure 4.4.
Rows correspond to leaves with same base shapes. (Row 1) Concave. (Row 2) Straight.
(Row 3) Convex. (Row 4) Base with extension. Columns correspond to leaves with same
apex shapes. (Column 1) Concave. (Column 2) Straight. (Column 3) Convex. (Column 4)
Apex with extension.

(a) (b)

Figure 5.18: Generated instances for oblong and linear leaves illustrated in Figure 4.5. (a)
oblong leaf, and (b) linear leaf

Chapter 5. Modeling of Unilobed Leaves 56

Elliptic Lanceolate Oblanceolate Oblong

Oval Obovate Ovate Rhomboidal

Orbicular Deltoid Cordate

Reniform Obcordate

Figure 5.19: Examples of leaf shapes commonly discussed in botanical literature illustrated
in Figure 2.7

(a) (b) (c)

Figure 5.20: Generated instances of asymmetric leaves shapes illustrated in Figure 2.9. (a)
A leaf with asymmetric waist. (b) A leaf with asymmetric basal extension. (c) A simple leaf
with basal extension on the one side and no extension on the other.

Chapter 5. Modeling of Unilobed Leaves 57

Figure 5.21: Laminar shapes generated for complex shapes, (Top) Leaves with drip-tips.
(Bottom) Leaves with teeth.

Figure 5.22: Generated instance of a lotus leaf.

Figure 5.23: Generated instance of a leaf with curved primary vein.

Chapter 5. Modeling of Unilobed Leaves 58

Figure 5.24: Leaf instances generated for elliptic, cordate, and asymmetric leaves. The
instances in the first column are generated without perturbing the parameter values. Instances
in the remaining columns are generated by adding 20% perturbations to the parameter
values.

Figure 5.25: Effect of perturbation in leaf shapes. The leaf instances in the first, second,
and third rows are generated by adding 20%, 30%, and 40% perturbations to the parameter
values, respectively.

Chapter 5. Modeling of Unilobed Leaves 59

Figure 5.26: Examples of non-leaf shapes.

Chapter 6
Modeling of Multilobed Leaves

This chapter presents a parametric model of the geometric shapes of multilobed leaves
discussed in Section 6.1. The shape of a multilobed leaf is represented by a combination of
unilobed leaves, one for each lobe. A GUI is used to interactively specify the parameters using
a reference image of a leaf (Section 6.2). The laminar shape generation algorithm generates
the laminar surface using the parameters of the leaf model (Section 6.3). Performance of the
algorithm is discussed in Section 6.5.

6.1 Parametric Leaf Model

The margin of a multilobed leaf is represented by a combination of unilobed leaves. One
unilobed leaf is used for each lobe of the multilobed leaf. To combine the unilobed leaves,
first they must be placed and arranged in space. The placement and arrangement of unilobed
leaves is defined by the venation pattern of multilobed leaves. For a palmately lobed leaf
(Figure 2.8c) whose lobes originate at the base, primary veins (Figure 2.10c) are used for
placement. For a pinnately lobed leaf (Figure 2.8d) whose lobes originate along the primary
vein, the primary vein and major secondary veins (Figure 2.11a) are used for placement. To
simplify notation, this thesis categorizes veins in a multilobed leaf into two types: α0-vein
and α-veins. α0-vein is the primary vein which runs from the base to the apex of the leaf.
α-veins are the remaining primary veins in palmately lobed and major secondary veins in
pinnately lobed leaves. α-veins originate from the α0-vein and run to the apex of the lobes.
They are ordered from the base to the apex of a leaf (Figure 6.1).

In general, the placement and arrangement of the α-veins may not follow a strict linear
relationship. For simplicity of user specification, linear relationship is modeled. In this way,
the user has to specify the placement of only the first and the last lobes. The placement
of the other lobes can be computed automatically. However, the laminar shape generation
algorithm is independent of the function and, in general, any function can be used. It is also
possible to specify the start and end-point of each α-vein.

60

Chapter 6. Modeling of Multilobed Leaves 61

αr
1

αr
2

αl
1

αl
2

α0-vein

Base

Apex

(a)

αr
1

αr
2

αr
3

αr
4

αl
1

αl
2

αl
3

αl
4

α0-vein

Base

Apex

αr
2

(b)

Figure 6.1: Venation model for multilobed leaves. Multilobed leaves have two types of
veins: the primary vein α0, which runs from the base to the apex and the α-veins, which
originate from α0-vein and runs to the apex of the lobes.

α0-vein is defined by the base pb and the apex pa. pb is fixed at p0, 0q and pa is fixed at
p0, 1q. α-veins on one side of the leaf are defined by their endpoints ri and ei, i “ 1, . . . , n,
where n is the number of lobes on one side of the leaf. Let N be the total number of lobes,
then n is equal to tN{2u. The position of the base of the ith α-vein αi on the right side of
the α0-vein is given by:

ri “ p0, riq, i “ 1, . . . , n. (6.1)

The y-coordinate ri of the α-vein αi is defined in terms of the y-coordinate ri´1 of the α-vein
αi´1 and the spacing si´1 between them:

ri “ ri´1 ` si´1. (6.2)

The spacing between two α-veins αi and αi´1 is a linear function:

si “ s0 ` i∆s, (6.3)

where ∆s is a constant rate of change of spacing and s0 “ r1 is the distance of the first
α-vein α1 on the right side of the α0-vein from the origin (Figure 6.2). The position of
the base of the ith α-vein αi is computed recursively by expanding Equation 6.2 and then

Chapter 6. Modeling of Multilobed Leaves 62

Base

Apex

α1

αn

s0

s1

...

sn−1

rn

rn−1

r1

x

y

r2

θn

en

θ1

e1

l1

ln

α0

Figure 6.2: Parameters of the venation pattern for multilobed leaves.

substituting si with s0 and ∆s from Equation 6.3:

ri “ ri´1 ` si´1,

“ ri´2 ` si´2 ` si´1,

“ ri´3 ` si´3 ` si´2 ` si´1,

...

“ r1 ` s1 ` s2 ` ¨ ¨ ¨ ` si´1

“ s0 ` p∆s` s0q ` p2∆s` s0q ` ¨ ¨ ¨ ` ppi´ 1q∆s` s0q.

Therefore,

ri “ is0 `
ipi´ 1q

2
∆s. (6.4)

In general, initial spacings sl0 and sr0 of the left and right α-veins can be different. s0 and ∆s

are zero for palmately lobed leaves because all lobes originate at the base of the leaf. Since
the apex is fixed at p0, 1q, the y-coordinate rn of the last α-vein αi must be less then one:

rn “ ns0 `
npn´ 1q

2
∆s ă 1. (6.5)

Therefore, for a given value of s0, ∆s has a upper bound:

∆s ă
2p1´ ns0q

npn´ 1q
. (6.6)

Chapter 6. Modeling of Multilobed Leaves 63

The angle of the α-vein αi relative to the α0-vein is given by:

θi “ θ1 ` pi´ 1q

ˆ

θn ´ θ1
n´ 1

˙

, (6.7)

where θ1 and θn are the angles of the first and the last α-vein, respectively (Figure 6.2). θi
varies from 0 to π. Similarly, the length of α-vein αi relative to the α0-vein is given by:

li “ l1 ` pi´ 1q

ˆ

ln ´ l1
n´ 1

˙

, (6.8)

where l1 and ln are the lengths of the first and the last α-vein, respectively (Figure 6.2). li
is expressed relative to the length of the primary vein and lies between 0 and 1.

In asymmetric leaves, the angles and lengths of α-veins can be different for two sides of
the leaf. Similar to spacing, the linear function is used to define orientation, and length of
α-veins because of its simplicity. In general, any function can be used and in particular,
the user can specify the angle and length of each α-vein. For simplicity, the leaf model
assumes that α-veins are straight, instead of curved. However, this is not inherent limitation
of the laminar shape generation algorithm. As illustrated in Figure 5.23, curved veins can be
specified using additional parameters and then the landmark points can be expressed with
respect to curved veins.

The position ei of the apex of the ith α-vein αi is defined by the base ri, orientation θi and
the length li of the α-vein as:

ei “ ri ` li rsin θi, cos θis
T . (6.9)

The shapes of lobes are defined by the model of unilobed leaf without basal extension. As
discussed in Section 5.1, the margin of one side of the unilobed leaf without basal extension
is defined by four parameters: θb, θa, and W. θb and θa define the tangents to the margin at
the base and the apex, respectively, and W is the waist of the unilobed leaf.

The positions of the valleys are defined by two parameters φ and m (Figure 6.3). φ is the
orientation of the valleys relative to the α-veins. m is a scalar which define the distances of
the valley positions from the origins ri relative to the lengths li of the α-veins. The position
hi of the valley between lobes at α-veins αi and αi`1 is given by:

hi “ ri `m

»

—

–

cosφ ´ sinφ

sinφ cosφ

fi

ffi

fl

pei ´ riq (6.10)

Chapter 6. Modeling of Multilobed Leaves 64

αi

αi+1

hi

φ

ri = ri+1 = (0, 0)

ei

ei+1

αi+1

mli
ei

θlv
θrv

(a)

αi

hi

φ
ri

ei

ei+1

αi+1

mli

αi+1

ri+1

α0

ei

θlv θrv

(b)

Figure 6.3: The parameters for specifying the valley position and shape in multilobed
leaves. (a) Parameters for a palmately lobed leaf. (b) Parameters for a pinnately lobed leaf.

The shapes of the valleys between lobes at α-veins αi and αi`1 are defined by the tangents tli
and tri to the margin at the valley. tli and tri are defined by the angles θl and θr, respectively,
relative to phi ´ riq. In pinnately lobed leaves with even number of lobes, there is a valley
at the apex of the leaf. The shape of the valley is specified by the angle ψ the tangent to
margin makes with the α0-vein.

In summary, the leaf model for the multilobed leaves consists of 26 parameters:

• The number of lobes: N .

• Parameters defining spacing between α-veins: sl0, s
r
0, and ∆s.

• Parameters defining the orientations of α-veins: θl1, θ
l
n, θr1, and θ

r
n.

• Parameters defining the lengths of α-veins: ll1, l
l
n, lr1, and l

r
n.

• Parameters of the 1st lobe: θlb, θ
r
b , W

l, Wr, θla, and θra.

• Parameters defining position and shape of valleys: m, φ, θrv, θlv, and ψ.

6.2 User Interface

A user intuitively specifies the shape of a multilobed leaf using an interactive GUI. Fig-
ure 6.4 illustrates an example of specifying the parameters of a multilobed leaf. The user
first loads a reference image and specifies the number of lobes in the leaf (Figure 6.4a).
Then, the user specifies the α0-vein by placing a point at the base and the apex of the
leaf (Figure 6.4b). For a palmately lobed leaf (Figure 6.4c), the αi-veins originate from

Chapter 6. Modeling of Multilobed Leaves 65

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Specifying the parameters of a multilobed leaf using interactive GUI. (a)
Reference image. (b) Specifying α0-vein. (c),(d) Specifying αi-veins. (e) Specifying the
shape of first lobe. (f) Specifying the position and shape of valleys.

the base. So, the user specifies the orientation and the lengths of the αi-veins by first

Chapter 6. Modeling of Multilobed Leaves 66

placing a point each at the apex of the first and the last lobe on the right side of the
leaf. The orientation and lengths of the other lobes will be derived by the algorithm. The
user specify the shape of the first lobe by placing tangent arrows at its base and apex
(Figure 6.4e). If the leaf is asymmetric, the user can also specify the lobes on the left side of
the leaf. Finally, the user specifies the position and shape of the valley by placing a point
with two arrows at the valley between the first and the second lobe on the right side of the leaf.

For a pinnately lobed leaf, the user can specify the parameters in the same way. In addition
the user has to specify the spacing of the αi-veins by placing a point each at the base of the
first, penultimate, and last lobe.

In general, the user may choose to specify the position, orientation, and length of each
αi-vein, the shape of each lobe and the position and shape of each valley. This is possible
without effecting the laminar shape generation algorithm, though it would be tedious. In this
case, the parameters are all specified by the user instead of being derived by Equations 6.4,
6.7 and 6.8.

6.3 Laminar Shape Generation Algorithm

The margin of a multilobed leaf is generated in three main steps (Figure 6.5): (1) generation
of venation pattern, (2) generation of lobes, and (3) combination of lobes.

In the first step, the venation pattern is generated. The end-points of the α0-vein are fixed
at p0, 0q and p0, 1q. The end-points ri and ei of α-veins are computed from s0,∆s, θ1, θn, l1,
and ln using Equations 6.4 and 6.9 (Figure 6.5a).

In the second step, a lobe L is generated from θb, W, and θa using the algorithm discussed
in Section 5.3. A scaled copy of L is placed along each α-vein such that the base and the
apex of the copy of L is at the base and apex of the α-vein. In palmately lobed leaves and
pinnately lobed leaves with odd number of lobes, a scaled copy of L is also placed at the
α0-vein (Figure 6.5b).

Finally, the adjacent lobes are combined to form the margin. The algorithm first computes
the positions of the valleys as the point of intersection of adjacent lobes (Figure 6.5c, left).
Each lobe is discretized into a set of connected line segments. The point of intersection of
two adjacent lobes is the point of intersection of a pair of line segments, one from each lobe.
If two adjacent lobes do not intersect, then the point of intersection of lobes with the y-axis

Chapter 6. Modeling of Multilobed Leaves 67

(a) (b)

⇒

(c)

⇒

(d)

Figure 6.5: Laminar shape generation algorithm. The margin of a multilobed leaf is
generated in three steps: (a) First, the venation pattern is generated. (b) Second, lobes
are created along α-veins. Finally, adjacent lobes are combined to generate the margin.
(c) To combine adjacent lobes, their points of intersection are computed and the margin is
generated. (d) If the valley position or shape is to be modified according to user inputs, then
the margin is recomputed by fitting B-spline curves.

is computed. Then, the algorithm removes the parts of the lobes that lie completely in the
intersection (dashed lines in Figure 6.5c, left) to generate the leaf margin (Figure 6.5c, right).

If the parameters for adjusting the valley positions (m and φ) or the shape (θ) are defined
by the user, then the margin must be recomputed. The algorithm first removes all lobes
except the first half of the first lobe and the second half of the last lobe (dashed lines in
Figure 6.5d, left). Then, the algorithm fits a B-spline curve for each half-lobe for all lobes
using the method described in Section 5.3 to generate the leaf margin (Figure 6.5d, right).
If the waist of a lobe lies between the valley and the apex, then a B-spline curve is fitted
to three landmark points: valley, waist, and apex. Otherwise, a B-spline curve is fitted to
only two landmark points: valley and apex. To visualize the curves in GUI, each B-spline is
discretized into polylines with m sample points. In implementation, m is set to 64. Thus,

Chapter 6. Modeling of Multilobed Leaves 68

(a) (b) (c) (d)

Figure 6.6: Effect of varying the initial spacing s0 and the rate of change of spacing ∆s
in multilobed leaves. (a) ∆s is constant, lobes are equally spaced. (b) ∆s is less then zero,
spacing between lobes decreases towards the apex. (c) ∆s is greater then zero, spacing
between lobes increases towards the apex. (d) Initial spacings sl0 and sr0 are different for the
two side of the leaf.

each lobe of a multilobed leaf is represented by 128 points.

6.4 Analysis of Laminar Shape Generation Algorithm

Figure 6.6 illustrate the effect of varying the initial spacing s0 and the rate of change of spacing
∆s. In pinnately lobed leaves ∆s controls the distance between lobes. When ∆s is zero then
the lobes are equally spaced (Figure 6.6a). Negative ∆s decreases the distance between lobes
towards the apex (Figure 6.6b) and positive ∆s increases the distance (Figure 6.6c). If the
initial spacing is different for the left side and the right side, then the lobes on the left side
and the right side start at different points along the α0-vein (Figure 6.6d).

Figures 6.7 and 6.8 illustrates the effect of varying the parameters of the first lobe in a
multilobed leaf. As discussed in Section 5.5, the tangent angle θb at the base controls the
shape of the base. Increasing θb increases the width of the base. In multilobed leaves, the
effect of θb depends on the width of the lobes. If the lobes are wide enough to hide the base
in the intersection of adjacent lobes, then θb has no significant effect (Figure 6.7, first row).
However, if the lobes are narrow and the base is visible, then as θb is increased, the base
becomes wider and the depths of the valleys decrease (Figure 6.7, second row). Analogously,
as the x-coordinate of the waist of the first lobe increase, the lobes become broader and the
valleys become less deep (Figure 6.8, first row). Increasing the y-coordinates of the waist
moves the widest parts of the lobes towards the apex (Figure 6.8, second row).

Figure 6.9 illustrates the effect of varying the tangent angle θv at the valley to the margin.

Chapter 6. Modeling of Multilobed Leaves 69

Figure 6.7: Effect of varying the tangent angle θb at the base to the margin of the first
lobe in a multilobed leaf. (Top row) If the lobes are wider, then θb has no significant effect.
(Bottom row) If the lobes are narrow, then as θb is increased the lobes become wider and
depths of valleys decrease.

Increasing θv changes the valley shape from sharp to smooth. Figure 6.10 illustrates the effect
of varying the valley orientation φ. As φ is increased the valley positions moves from the
first neighboring lobe to the second neighboring lobe of the valley. Figure 6.11 illustrates the
effect of varying the valley distance m. As m is increased, the valleys become less shallow.

It can be shown that the laminar shape generation algorithm is numerically stable by analyz-
ing each step of the algorithm presented in Section 6.3. The first step generates the venation
pattern using linear function, which is numerically stable. The second step generates the
lobes along each α-veins using unilobed leaf shape generation algorithm, which was shown
to be numerically stable except at a few isolated points (Section 5.3). Finally, the margin
is generated by computing the points of intersection between adjacent lobes, which is also
numerically stable. If the valley position and shape needs to be modified then a pair of
B-spline curves are computed for each valley, which is also numerically stable (Section 5.3).
Hence, the laminar shape generation algorithm is numerically stable.

The laminar shape generation algorithm is both time and space efficient. The time for
generating the margin of a multilobed leaf with n lobes is either Opnm2q (default valley
position) or Opnq (valley position is specified by the user). m is the number of points used
to discretize B-spline curves. With default valley positions, the algorithm needs Opnm2q

time to compute the points of intersection of all pair of adjacent lobes. When the valley
positions is specified by the user, the algorithm needs Opnq time to fit a B-spline curves for
each lobe. Since, the number of lobes in multilobed leaves is usually small (n ă 10), the time
complexity of laminar shape generation algorithm is either Opm2q or Op1q. The laminar

Chapter 6. Modeling of Multilobed Leaves 70

Figure 6.8: Effect of varying the waist of the lobes in a multilobed leaf. (Top row) As
the x-coordinate of the waist is increased the lobes become wider. (Bottom row) As the
y-coordinate of the waist is increased the widest part of lobes move towards the apex.

Figure 6.9: Effect of varying the tangent angle θv at the valley to the margin in multilobed
leaves. As θv is increased the valley shape changes from sharp to smooth.

shape generation algorithm takes Opnmq space for generating margin, which is the space
required to store m points for n lobes.

6.5 Leaf Shape Generation Examples

This section illustrates sample leaf shapes generated by the algorithm. Figure 6.12 illustrates
leaf shapes corresponding to those enumerated in Section 4.2.

For many applications, many leaf instances for a given kind of leaf should be generated.
Laminar shape generation algorithm generates leaf instances by perturbing parameter values.
The amount of perturbation to add is specified by the user and is expressed as a percentage
of the parameter value. Figures 6.13 and 6.14 illustrates instances of palmately lobed and pin-
nately lobed leaf, respectively, generated by adding 15% perturbation to the parameter values.

On a laptop with Intel Core i7 2.0 GHz processor, the laminar shape generation algorithm

Chapter 6. Modeling of Multilobed Leaves 71

Figure 6.10: Effect of varying the valley orientation φ in multilobed leaves. As φ is
increased the valley positions moves from the first neighboring lobe to the second neighboring
lobe of the valley.

Figure 6.11: Effect of varying the valley distance m in multilobed leaves. As m is increased,
the valley become shallow.

can generate on an average 400 multilobed leaves with three lobes per second and 200
multilobed leaves with seven lobes per second. This shows that the laminar shape generation
algorithm is fast and can be used for quickly generating large number of leaves instances.

Chapter 6. Modeling of Multilobed Leaves 72

(a) (b)

(c)

(d) (e)

(f) (g)

Figure 6.12: Laminar shapes generated for various multilobed leaves. (a) A leaf with two
lobes. (b) A pinnately lobed leaf with 10 lobes. (c)–(g) Palmately lobed leaves.

Chapter 6. Modeling of Multilobed Leaves 73

Figure 6.13: Leaf instances generated for a palmately lobed leaf. The instances are
generated by adding 15% perturbations to the parameters values.

Chapter 6. Modeling of Multilobed Leaves 74

Figure 6.14: Leaf instances generated for a pinnately lobed leaf. The instances are
generated by adding 15% perturbations to the parameter values.

Chapter 7
Constrained Leaf Morphing

This chapter presents a leaf morphing method for morphing leaf shapes in the parameter
space of leaf shapes (leaf space). Reference leaf shapes can be easily specified by the user as
soft constraints for morphing from the source to the target leaf shape (Section 7.1). Since,
the number of free parameters vary for different kind of leaves, the leaf space for these leaves
must be united for morphing (Section 7.2). The constrained morphing path is computed in
the unified leaf space by fitting a NURBS curve over the source, the target and reference
shapes (Section 7.3). Leaf space plays the central role in morphing and understanding how
leaf shapes are distributed in the leaf space can be used to find interesting morphing paths
(Section 7.4). Section 7.5 illustrates examples of constrained leaf morphing and leaf growth.

7.1 Overview of Leaf Morphing

Leaves generally change shapes as they grow [Mak73, MR50]. In some species, the leaf
shapes can change significantly from one type to the other [MR50]. Leaf morphing can be
used to simulate leaf growth for biological studies, as well as to generate morphing sequences
for computer animation. To produce the correct morphing sequence for a particular species
of leaves, shape change has to be constrained. The constraints can be most easily provided by
the user as an ordered list of intermediate reference shapes. They should be soft constraints
so that the user can determine how much each reference shape influences the morphing
sequence to produce the desired shape change.

A straightforward method of leaf morphing is to use the reference shapes as key frames and
perform linear morph between the key frames. This method has several drawbacks. First,
key frames are hard constraints, which is not desirable. Second, shape change may be abrupt.
To generate a smooth nonlinear morph across the key frames, it is necessary to measure
shape change, which is very difficult to accomplished in the physical space of the leaf shape.

In contrast, the proposed method models leaf shapes by shape parameters. So, shape change
can be easily measured in the parameter space of leaf shapes, called leaf space. Each point in

75

Chapter 7. Constrained Leaf Morphing 76

the leaf space represents a leaf shape. Leaf morphing can then be cast as a problem of obtain-
ing a smooth morphing path in the parameter space under soft constraints of reference shapes.

Without loss of generality, morphing of symmetric leaf shapes is discussed. The same method
can be applied to morphing asymmetric leaf shapes with a doubling of the dimensionality of
the leaf space.

7.2 Unification of Leaf Spaces

As discussed in Sections 5.1 and 6.1, the number of free parameters vary for different types
of leaves. So, when the source, target, and reference shapes have different degrees of freedom,
they have to be mapped into a unified leaf space before morphing can proceed. The mapping
among various types of unilobed leaves is discussed in Section 7.2.1. The mapping between
unilobed and multilobed leaves is discussed in Section 7.2.2.

7.2.1 Unilobed Leaves

As discussed in Section 5.1, depending on whether a leaf shape has basal and apical extensions,
the number of free parameters for a (symmetric) unilobed leaf is either 4 (no extension), 6
(either basal or apical extension), or 8 (both extensions). Thus, when morphing from one
unilobed leaf type to another unilobed leaf type they should be mapped to a unified leaf space.

Let S and D denote two consecutive shapes in the morphing sequence. Without loss of
generality, suppose S has no basal extension and D has basal extension. Then, S and D are
mapped into a unified leaf space as follows. All the landmark points pi and tangents ti of
S are mapped to the corresponding landmark points p1j and tangents t1j of D, i.e., base to
base, waist to waist, and apex to apex. The tail p1t of D is mapped to a point p on S such
that p has the same arc-length ratio from the base and the waist as does p1t in D:

Lpp,pwq

Lpp,pbq
“
Lpp1t,p

1
wq

Lpp1t,p
1
bq

(7.1)

where L is the arc length measured along the leaf margin.

The point p in S is dependent on the B-spline curve that fits the margin of S. So, its
tangent can be computed from Equation 5.7. As the point p moves towards p1t, its tangent
also changes from the computed value to the (default) value of t1t. So, the unified leaf
space requires one additional dimension compared to the degree of freedom of the leaf

Chapter 7. Constrained Leaf Morphing 77

shape with basal extensions so as to include the tangent angle of p. In this case, the num-
ber of dimensions is 7. Now, S andD can be mapped to two shape points in the 7-D leaf space.

Analogous mapping can be applied for D with apical extensions. When D has both basal
and apical extensions, two additional landmark points are added to S, and the unified leaf
space has two additional dimensions compared to the degree of freedom of the leaf shape
with both basal and apical extensions. In this case, the number of dimensions is 10. When
S and D have different types of extensions, then an additional landmark point is added
to both S and D to map their extension points to the others. This process also raises the
dimensionality of the unified leaf space to 10.

7.2.2 Multilobed Leaves

Let S and D denote two consecutive shapes in the morphing sequence. Without loss of gener-
ality, suppose S is a unilobed leaf shape and D is a multilobed leaf shape. Then, S and D are
mapped into a unified leaf space by estimating the parameters of a multilobed leaf S1, such
that the difference in the leaf shapes S and S1 is minimized. One way to estimate the parame-
ters is to use non-linear optimization, which is computationally expensive and might get stuck
in local minimum. However, since the shape and structure of multilobed leaves is well defined
and known a priori, the parameters of S1 can be estimated directly from S and D (Figure 7.1).

The parameters of multilobed leaves are divided into three groups: parameters for specifying
α-veins, parameters for specifying the position and shape of valleys, and parameters for
specifying lobe shapes. The number of lobes N , initial spacing s0, rate of change of spacing
∆s, and angles θ1 and θn of S1 are set to those of D. The lengths li of α-veins are estimated by
intersecting rays ci with the margin of S. The origin of the ray ci is set to the origin ri of the
α-vein αi in D and the ray is parallel to ei´ri, where ei is the end-point of the α-vein αi in D
(Figure 7.1b). The points of intersection of ci with the margin of S are the apexes Ai of lobes.

The position Vi of valleys in S1 are set to the mid-point, along the margin of S, between two
adjacent apexes Ai and Ai`1. The angles θv at valleys are set to the angles between tangent
vectors to the margin of S at Vi and the vectors hi. hi is the vector from the average of the
origin of adjacent α-veins to the position of the valley Vi (Figure 7.1b).

The shape of lobes in multilobed leaves are defined by three parameters: tangent angle at
the base θb, tangent angle at the apex θa, and the waist W. As discussed in Section 6.3,
when the valley parameters are specified then the θb is not used. So, θa and W are the only
two free parameters for lobe shapes. θa is set to the angle between tangent to the margin of

Chapter 7. Constrained Leaf Morphing 78

(a)

α0

α1

V1
Wl

1

Wr
1

Wr
2

A1

A0

θa

θvθv

(b)

α0
α1

V1
Wr

1

Wr
2 A1

A0

Wl
1

θa

θv

(c)

Figure 7.1: Mapping a unilobed leaf to a multilobed leaf. (a) The source unilobed leaf.
(b) The mapping of the source unilobed leaf to the destination multilobed leaf. (c) The
destination multilobed leaf.

S at the apex Ai and the α-vein αi. The waist W for lobes is set to the mid-point, along
the margin of S, between the adjacent valley Vi and the apex Ai.

7.3 Generation of Morphing Path

Given the source shape S “ R0, the target shape T “ Rn`1, and an ordered list of reference
shapes Rk, 1 ď k ď n, the lowest-dimensional leaf space S that unifies these shapes is
determined. Next, the shapes are mapped to S by first mapping the tails, if they exist, using
the following algorithm:

1. Initialize list L to contain all Rk.

2. Repeat until L is empty:

(a) Identify shapes Ri in L that contain tails.

(b) For each immediate neighbor Rj of Ri that does not contain a tail, map the tail
of Ri to Rj and insert a tail into Rj . Then, remove Ri from L.

Mapping of shoulders (the point where apical extension is maximum), if they exist, is
performed in a similar manner. After mapping, all the shapes have the same degree of
freedom and they correspond to shape vectors in S.

Chapter 7. Constrained Leaf Morphing 79

Next, a morphing pathM is computed by fitting a NURBS curve to the shape points in S
such that it passes through S and T , and approximates Rk:

spuq “

n`1
ř

k“0

wkBk,2puqRk

n`1
ř

k“0

wkBk,2puq

(7.2)

where spuq is a point onM and wk is the weight of shape vector Rk in the unified leaf space.
The weights w0 and wn`1 of R0 “ S and Rn`1 “ T are set to 1.

After obtaining the morphing pathM, shape vectors are sampled at regular interval along
M, and intermediate shapes are generated from the shape vectors using the method discussed
in Section 5.3. The larger the weights wk, the moreM is pulled towards the reference shapes.
So, the user can determine the amount of influence imposed by each reference shape on the
morphing sequence.

7.4 Visualizing Leaf Space

Leaf space is essential for morphing as it allows leaf shapes with different number of param-
eters to be morphed to each other by mapping them into a unified leaf space. Thus, it is
important to visualize the leaf space to understand the distribution of leaf shapes in the
leaf space. This can be used to find interesting morphing paths. For example, to model
leaf growth it is necessary that all intermediate leaf shapes generated by morphing are real
and exist in nature. However, as discussed in Section 5.5, not all sets of parameter values
generate real leaf shapes which exist in nature. Thus, the proposed leaf morphing algorithm
cannot guarantee that all intermediate leaf shapes are real due to the presence of non-real
leaf shapes in the leaf space. It is possible for the morphing path to go through the non-real
leaf shapes.

As discussed in the last section, different kinds of leaves are defined in different leaf spaces.
For ease of explanation, this section discusses methods for visualizing unilobed leaves with
no extension as they have the least number of parameters. Leaf spaces for other leaf
shapes can be analyzed similarly. The leaf space for unilobed leaves with no extension has
four parameters: tangent angle at the base and the apex, and x and y coordinates of the waist.

To visualize the leaf space, ten points were uniformly sampled for each parameter dimension
of the leaf space. Thus, 10,000 points were sampled from the entire leaf space. Then, for

Chapter 7. Constrained Leaf Morphing 80

Figure 7.2: Examples of non-real leaf shapes generated for visualizing leaf space. The lines
(tangents at base and apex) and the circle (waist) indicate the parameters used to generate
the leaf shape.

each sampled point in the leaf space, an instance of unilobed leaf was generated and saved as
an image. Finally, each image was manually marked as either real or non-real leaf shape. It
was found that out of 10,000 leaf shapes, 5,008 were real and 4,992 were non-real leaf shapes.
Figure 7.2 illustrates some examples of the generated non-real leaf shapes.

It is not possible to directly visualize the 4D leaf space to determine how leaf shapes are
distributed in the leaf space. In this thesis, the 4D leaf space is visualized by using 3D
subspaces of the leaf space. Since, each parameter of the leaf shape is sampled with ten
points, there is a total of 40 3D subspaces. Each 3D subspace consists of 1,000 points and
each point is labeled with ´1 (non-real leaf shape) or `1 (real leaf shape). Thus, a 3D
subspace forms an implicit function and can be visualized as a level set surface. At the level
of 0, the level set surface defines the boundary between real and non-real leaf shapes. With
this boundary, the leaf morphing algorithm can ensure that all intermediate leaf shapes are
real by finding a path in the leaf space that does not cross any boundary level set surface
between real and non-real leaf shapes. Figure 7.3 illustrates 10 3D subspaces of the leaf
space at a particular tangent angle at the base. The surface indicates the boundary between
the real and non-real leaf shapes. A sharp boundary is illustrated only for visualization. In
principle, the boundary is fuzzy as there is a smooth shape transition from real to non-real
leaf shapes (Figure 7.4).

Chapter 7. Constrained Leaf Morphing 81

7.5 Leaf Morphing Examples

Figure 7.5 compares linear morphing with the proposed nonlinear morphing. The results
show that shape change is more smooth with nonlinear morphing.

Figure 7.6 illustrates examples of constrained leaf morphing. The first shape was morphed to
the last shape, constrained by the underlined shapes. Rows 1, 2, and 3 show the morphing
sequences with, respectively, zero, small, and large weight. With zero weight, no constraint
was imposed and the first shape was morphed to the last shape by first losing basal extensions
followed by growing apical extensions. With non-zero weight, the apical extensions grew
out before the basal extensions were lost. The larger weight imposed more influence by the
reference shape. Row 4 shows an example of morphing with two reference shapes.

Unification of parameter space of different kind of leaf shapes allows to morph not only
between unilobed leaf shapes but also from unilobed to multilobed leaf shapes and from
multilobed to multilobed leaf shapes. Figures 7.7a and 7.7b illustrate examples of morphing
from unilobed leaf shapes to multilobed leaf shapes. The first and last leaf shapes are the
source and target shapes. The source unilobed leaf shape is first mapped to the parameter
space of the target multilobed leaf shape (t=0). Then, the mapped source shape is morphed
linearly to the target shape in the space of the target multilobed leaf shape.

Figure 7.8 illustrates an example of constrained morphing from a multilobed leaf shape with
three lobes to a multilobed leaf shape with seven lobes, constrained by a unilobed leaf shape
with basal extension. The source multilobed leaf shape and the constraint unilobed leaf
shape are first mapped to the parameter space of the target multilobed leaf. Then, the
mapped source shape, the mapped constraint shape and the target shape are nonlinearly
morphed in the space of multilobed leaves of the target shape. Figure 7.9 illustrates an
example of linear morphing from the source to the target shapes from the previous example
without any constraint. The ability to morph any two kinds of leaf shapes by mapping them
to a common parameter space is possible because of the simplicity of the leaf model. With a
complex leaf model, it might not be easy to morph arbitrary leaf shapes.

For simplicity, Section 7.2 discussed the unification of leaf spaces for symmetric leaves. How-
ever, by doubling the dimensionality of the leaf space, asymmetric leaves can be morphed.
Figure 7.10 illustrates the linear morphing of a unilobed leaf shape with basal extension on
the left to a unilobed leaf shape with basal extension on the right.

Figure 7.11 illustrates examples of constrained leaf morphing for simulating the growth of

Chapter 7. Constrained Leaf Morphing 82

real leaf [MR50]. This morphing sequence also scaled the generated shapes according to the
actual sizes of the real leaves. Row 1 shows the real leaves at various stages of development.
In the unconstrained morphing sequence (row 2), the aspect ratio of the leaf shapes remain
roughly unchanged. When constrained by just the third real leaf, the leaf shapes remained
elongated longer (row 3), and basal extensions developed earlier. With both constraints, the
leaf shapes remained elongated longer (row 4), and basal extensions developed later.

Chapter 7. Constrained Leaf Morphing 83

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

θ a

W xW y

−1

0.05
0.1

0.15
0.2

0.25
0.3

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

+1

+1

−1

−1

+1 +1

−1

θb “ 0.087 θb “ 0.252

0.1
0.2

0.3
0.4

0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

−1

−1

+1

+1−1

−1

0.1
0.2

0.3
0.4

0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

−1

−1

−1+1

−1

+1

+1

−1

θb “ 0.417 θb “ 0.582

0.1
0.2

0.3
0.4

0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

−1

−1

+1
+1

−1

+1
0.1

0.2
0.3

0.4
0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

−1

−1

−1

+1+1

+1

θb “ 0.747 θb “ 0.911

Figure 7.3: 3D subspaces of the leaf space with constant tangent angle at the base. Each
subspace is visualized by the boundary between real and non-real leaves (red surface). The
first subspace contains only non-real leaf shapes.

Chapter 7. Constrained Leaf Morphing 84

0.1
0.2

0.3
0.4

0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

−1 −1

−1

+1+1

+1

+1
0.1

0.2
0.3

0.4
0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

−1

−1

−1

−1

+1

+1

+1

θb “ 1.076 θb “ 1.241

0.1
0.2

0.3
0.4

0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

+1

+1

−1

−1

−1

−1

+1

0.1
0.2

0.3
0.4

0.5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

θ a

W xW y

+1

+1

−1

−1

−1

−1

+1

θb “ 1.406 θb “ 1.571

Figure 7.3 (continued): 3D subspaces of the leaf space with constant tangent angle at
the base. Each subspace is visualized by the boundary between real and non-real leaves (red
surface). The first subspace contains only non-real leaf shapes.

Chapter 7. Constrained Leaf Morphing 85

(a)

(b)

Figure 7.4: Fuzzy boundary between real and non-real leaf shapes. (a) A sample real leaf
shape (left) and non-real leaf shape (right) adjacent to it in the sampled leaf space. (b) Leaf
shapes generated between the real and non-real leaf shapes. Boundary between real and
non-real leaf shapes is fuzzy as the leaf shapes changes smoothly from real to non-real.

Figure 7.5: Comparison of linear morphing with proposed nonlinear morphing. Nonlinear
morphing (Row 2) produces smoother shape change than linear morphing (Row 1).

Chapter 7. Constrained Leaf Morphing 86

F
ig

u
re

7.
6:

C
on

st
ra
in
ed

le
af

m
or
ph

in
g.

E
xa

m
pl
es

of
m
or
ph

in
g
th
e
fir
st

sh
ap

e
to

th
e
la
st

sh
ap

e.
(R

ow
1)

N
o
co
ns
tr
ai
nt
.
(R

ow
2)

Sm
al
l

co
ns
tr
ai
nt

on
sh
ap

e
6.

(R
ow

3)
La

rg
e
co
ns
tr
ai
nt

on
sh
ap

e
6.

(R
ow

4)
C
on

st
ra
in
ed

by
sh
ap

es
4
an

d
7.

Chapter 7. Constrained Leaf Morphing 87

source t=0 t=1 t=2 t=3 t=4 t=5

t=6 t=7 t=8 t=9 t=10 t=11 target

(a)

source t=0 t=1 t=2 t=3

t=4 t=5 t=6 t=7 target

(b)

Figure 7.7: Leaf morphing from unilobed leaf shapes to a multilobed leaf shapes. At t=0,
the source leaf shape is mapped to the parameter space of the target leaf shape. Then, the
mapped source shape is linearly morphed to the target shape in the parameter space of the
target shape. (a) Morphing from unilobed leaf shape without any extension to a multilobed
leaf shape with three lobes. (b). Morphing from unilobed leaf shape with basal extension to
a multilobed leaf shape with seven lobes

Chapter 7. Constrained Leaf Morphing 88

Figure 7.8: Constrained leaf morphing from a multilobed leaf with three lobes to a
multilobed leaf with seven lobes. The source multilobed leaf (first row, first leaf) and the
constraint (underlined) are mapped in the space of target multilobed leaf.

Chapter 7. Constrained Leaf Morphing 89

Figure 7.9: Leaf morphing without constraint from a multilobed leaf with three lobes to a
multilobed leaf with seven lobes. The source multilobed leaf (first row, first leaf) is mapped
in the space of target multilobed leaf.

Chapter 7. Constrained Leaf Morphing 90

Figure 7.10: Morphing asymmetric leaves. Morphing a unilobed leaf shape with basal
extension on the left to a unilobed leaf shape with basal extension on the right.

Chapter 7. Constrained Leaf Morphing 91

F
ig

u
re

7.
11

:
M
od

el
in
g
le
af

gr
ow

th
us
in
g
co
ns
tr
ai
ne
d
le
af

m
or
ph

in
g.

(R
ow

1)
R
ea
ll
ea
ve
s.

(R
ow

s
2–
4)

M
or
ph

in
g
w
it
h
0,

1,
an

d
2
co
ns
tr
ai
nt
s

(u
nd

er
lin

ed
).

Chapter 8
Future Work

The leaf model presented in this thesis can be extended in several ways.

8.1 Automatic Estimation of Model Parameters

This thesis illustrates a GUI for the user to interactively specify the parameters of the leaf
model. This step can be automated so that generating instances of a known leaf is as simple
as taking a photograph of the leaf and running a software program. One way to solve this
problem is to use a computer vision algorithm for first extracting the margin of the leaf from
the image. Then, the margin can be analyzed to automatically detect the landmark points
and their tangents. To detect teeth, the algorithm can analyze the frequency of change of
gradient along the margin. High-frequency changes correspond to the present of teeth and
can be filtered out to yield smooth envelope of the margin without teeth.

8.2 Modeling Laminar Warping and Aging

The laminar shape generation algorithm presented in this thesis generates flat leaf shapes.
However, leaves naturally warp in 3D because of differential growth of the lamina. Lam-
inar warping can be accomplished in two steps. First, the veins can be warped accord-
ing to user specified constraints. Then, the laminar surface can be warped so that the
warped veins lay in the warped laminar surface. The laminar surface can be warped using
free-form deformations [MMPP03], harmonic interpolation [HSB05], skeleton-based defor-
mations [LGZL08, LZG09], and physics-based deformations [GHDS03, BWH`06, GGWZ07].

As a leaf ages, it changes color and in general starts to wrinkle with decreasing moisture
content. The wrinkles in an aging leaf can be modeled as laminar warping.

92

Chapter 8. Future Work 93

8.3 Ornamentation

Teeth, drip-tips, and venation pattern are necessary for realistic visualization of leaves. In
this thesis, teeth and drip-tips are not modeled, as they don’t contribute significantly to the
overall shape of the leaves. Teeth can be added to the leaf margin by using methods such
as curve analogies [HOCS02]. Drip-tips can be modeled by adding a landmark point at the
point of inflection on the leaf margin caused by the drip-tip.

The proposed leaf model for multilobed leaves uses α-veins for defining the placement,
orientations and lengths of the lobes. The same idea can be extended to model the secondary
and higher-order veins. The secondary veins can be defined by their placement and orientation
relative to the α-veins using Equations 6.4 and 6.7. The lengths of the secondary veins
can be computed by intersecting them with the margin. Higher-order veins can be defined
similarly, by placing them along the secondary veins. This algorithm produces venation
pattern with straight veins. Such a venation pattern is, in general, sufficient for modeling
laminar warping and aging (Section 8.2). Realistic venation pattern for visualization can be
generated using existing methods such as [RFL`05, JGZ09].

8.4 Compound and Narrow Leaves

In compound leaves, the lamina is divided into a number of smaller parts called leaflets.
Compound leaves can be generated by modeling each leaflet as a unilobed leaf and then
placing them along the petiole.

Based on the shape of lamina, there are two kinds of leaves: broad leaves and narrow leaves.
This thesis presented a procedural model for generating broad leaves. Narrow leaves have
3D structure and cannot be modeled using the same method as broad leaves. There are two
types of narrow leaves: needles-like leaves and scale-like leaves. Needle-like narrow leaves
have long cylindrical tubes emanating from a common base. These leaves can be modeled by
generalized cylinders. Scale-like narrow leaves have small leaflets wrapped around tree-like
structures. These leaves can be generated by modeling each leaflet as unilobed leaves and
then placing them appropriately.

8.5 Modeling Laminar Deformation

One of the important application of the leaf model is to simulate the interaction of plants
with the environment, for example when a rain drop hits the surface of a leaf. Thus, it is
necessary to extend the leaf model to include physical properties for physically accurate

Chapter 8. Future Work 94

simulation of deformation. There are many existing methods for simulating the interaction of
a deformable object with other objects such as mass spring models [EWS96, BW98, EGS03],
finite element methods [CC91, JP99], and thin shell models [GHDS03, BWH`06, GGWZ07].

These methods are very general and tend to be computationally expensive. The Cosserat
tree model proposed by Li Hao [Hao10] seems more appropriate because it is physically
correct and computationally efficient. Leaves generally deform, curl, and twist relative to
its primary and major secondary veins. Thus, one can use a hybrid model [HLC10] to bind
a Cosserat tree to the laminar surface. The Cosserat tree models the veins of the leaf and
surface mesh models the surface details of the laminar surface.

Chapter 9
Conclusions

In this thesis, a novel procedural leaf model for generating a wide variety of leaves was
developed. Leaf modeling is a difficult and challenging problem because there is a huge
variation in shape and structure of leaves. Thus, one of the important tasks in developing a
general leaf model is to find the geometric features common to all leaves. Based on botanical
literature, all possible leaf shapes were characterized and enumerated. Then, based on the
computational requirements, leaves were divided into two broad categories: unilobed, and
multilobed leaves. The proposed leaf model is based on the unilobed leaves. The shapes of
unilobed leaves is represented by a set of landmark points on the margin and tangents to
the margin at these points. The shapes of multilobed leaves is represented by a combination
of unilobed leaves, one leaf for each lobe.

For the leaf model to be useful in a wide variety of applications, it should have the following
properties: general, intuitive, concise, generative, and numerically stable. It was shown that
the leaf model can generate all possible enumerated leaf shapes. It was also shown that the
generated leaf shapes match those of real leaves very well. Thus, the proposed leaf model is
general. Since, the parameters of the model are based on the landmark points, they have
geometric meaning and the user can easily visualize the leaf shape that will be generated
from the parameter values. Thus, the leaf model is intuitive to use. The leaf model is concise
as the parameters are independent of each other. It was also shown that the leaf model can
generate multiple instances of a leaf, each having the same overall shape but differs in details,
by perturbing the parameter values. Finally, the leaf model was shown to be numerically
stable, which ensures that a small change in parameter values produces a small change in
the generated leaf shape.

This thesis also developed a morphing algorithm that performs constrained leaf morphing
in a unified leaf space. The proposed morphing algorithm can generate smooth morphing
sequences under the soft constraints of reference leaf shapes. It can be used to simulate
leaf growth for biological studies, as well as to generate morphing sequences for computer
animation. Morphing in unified leaf shape has two advantages: First, it is possible to

95

Chapter 9. Conclusions 96

morph between any two leaf shapes. Thus, the morphing algorithm is general. The ability
to morph between any two leaf shapes by mapping them to a common parameter space
is possible because of the simplicity of the leaf model. Second, in the unified leaf space,
the correspondence between two leaf shapes can be computed automatically by matching
their corresponding landmarks. Thus, there is no need for the user to manually establish
correspondence between two leaf shapes.

In conclusion, this thesis has made the following contributions:

• Design of a leaf model for intuitively specifying the geometric shapes of a wide variety
of leaves.

• Development of an efficient algorithm for creating instances of various kinds of leaves.

• Development of an algorithm for constrained morphing of leaf shapes in the unified
parametric leaf space.

References

[APS09] Fabricio Anastacio, Przemyslaw Prusinkiewicz, and Mario Costa Sousa. Sketch-
based parameterization of L-systems using illustration-inspired construction
lines and depth modulation. Computers & Graphics, 33:440–451, 2009.

[Arm10] W. P. Armstrong. Major divisions of life. http://waynesword.palomar.edu/
trmar99.htm, September 2010.

[ASSJ06] Fabricio Anastacio, Mario Costa Sousa, Faramarz Samavati, and Joaquim A.
Jorge. Modeling plant structures using concept sketches. In Proceedings of the
4th international symposium on Non-photorealistic animation and rendering,
pages 105–113, 2006.

[BAF`03] C.J. Birch, B. Andrieu, C. Fournier, J. Vos, and P. Room. Modelling kinetics
of plant canopy architecture - Concepts and applications. European Journal of
Agronomy, 19(4):519–533, 2003.

[BLEG`11] R Barillot, G Louarn, AJ Escobar-Gutiérrez, P Huynh, and D Combes. How
good is the turbid medium-based approach for accounting for light partitioning in
contrasted grass–legume intercropping systems? Annals of Botany, 108(6):1013–
1024, 2011.

[Bon] Nicolas Bonneel. Treegenerator. http://www.treegenerator.com.

[BPF`03] Frederic Boudon, Przemyslaw Prusinkiewicz, Pavol Federl, Christophe Godin,
and Radoslaw Karwowski. Interactive design of bonsai tree models. Computer
Graphics Forum, 22(3):591–599, 2003.

[Bre10] Pat Breen. Plant identification: examining leaves. http://oregonstate.edu/
dept/ldplants/Plant%20ID-Leaves.htm, September 2010.

[Bro10] C. Frank Brockman. Broadleaved trees of yosemite national park. http://www.
yosemite.ca.us/library/broadleaved_trees/field_key.html, September
2010.

[BW98] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques,
pages 43–54, 1998.

97

http://waynesword.palomar.edu/trmar99.htm
http://waynesword.palomar.edu/trmar99.htm
http://www.treegenerator.com
http://oregonstate.edu/dept/ldplants/Plant%20ID-Leaves.htm
http://oregonstate.edu/dept/ldplants/Plant%20ID-Leaves.htm
http://www.yosemite.ca.us/library/broadleaved_trees/field_key.html
http://www.yosemite.ca.us/library/broadleaved_trees/field_key.html

References 98

[BWH`06] Miklós Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grin-
spun. A quadratic bending model for inextensible surfaces. In Fourth Euro-
graphics Symposium on Geometry Processing, pages 227–230, 2006.

[CC91] Laurent D. Cohen and Isaac Cohen. Finite element methods for active contour
models and balloons for 2D and 3D images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15:1131–1147, 1991.

[CCS`07] Didier Combes, Michaël Chelle, Hervé Sinoquet, Abraham Escobar-Gutiérrez,
and Claude Varlet-Grancher. Evaluation of a turbid medium model to simulate
light interception by plant canopies at three spatial scales. In Przemyslaw
Prusinkiewicz, Jim Hanan, and Brendan Lane, editors, Proceedings of the 5th
International Workshop on Functions-Structural Plant Models, 2007.

[CEC`07] Michaël Chelle, Jochem B Evers, Didier Combes, Claude Varlet-Grancher, Jan
Vos, and Bruno Andrieu. Simulation of the three-dimensional distribution of the
red:far-red ratio within crop canopies. New Phytologist, 176(1):223–234, 2007.

[cma10] cmassengale. Introduction to the plant kingdom. http://biologyjunction.

com/introduction%20to%20plants.ppt, September 2010.

[CNX`08] Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing Kang.
Sketch-based tree modeling using markov random field. In ACM SIGGRAPH
Asia 2008, pages 109:1–109:9, 2008.

[Cre] The Game Creators. Treemagik G3. http://www.thegamecreators.com/?m=
view_product&id=2087.

[Cum10] Candace Cummings. Terminology - leaf, twig, and fruit characteristics
used in tree identification. http://www.clemson.edu/extension/natural_

resources/landowner/youth_environ_education/terminology.html,
September 2010.

[EDH`09] Beth Ellis, Douglas C. Daly, Leo J. Hickey, Kirk R. Johnson, John D. Mitchell,
Peter Wilf, and Scott Wing. Manual of leaf architecture. Cornell University
Press, 2009.

[EGS03] Olaf Etzmuss, Joachim Gross, and Wolfgang Strasser. Deriving a particle
system from continuum mechanics for the animation of deformable objects.
IEEE Transactions on Visualization and Computer Graphics, 9(4):538–550,
2003.

[EWS96] B. Eberhardt, Andreas Weber, and W. Strasser. A fast, flexible particle-system
model for cloth draping. IEEE Computer Graphics and Applications, 16(5):52–
59, 1996.

http://biologyjunction.com/introduction%20to%20plants.ppt
http://biologyjunction.com/introduction%20to%20plants.ppt
http://www.thegamecreators.com/?m=view_product&id=2087
http://www.thegamecreators.com/?m=view_product&id=2087
http://www.clemson.edu/extension/natural_resources/landowner/youth_environ_education/terminology.html
http://www.clemson.edu/extension/natural_resources/landowner/youth_environ_education/terminology.html

References 99

[GGWZ07] Akash Garg, Eitan Grinspun, Max Wardetzky, and Denis Zorin. Cubic shells.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 91–98, 2007.

[GHDS03] Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schröder. Discrete
Shells. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
pages 62–67, 2003.

[GK08] Björn Ganster and Reinhard Klein. 1-2-tree: Semantic modeling and editing of
trees. In O. Deussen, D. Keim, and D. Saupe, editors, Vision, Modeling, and
Visualization 2008, October 2008.

[GP04a] Ben Gorte and Norbert Pfeifer. 3D image processing to reconstruct trees from
laser scans. In Proceedings of the 10th annual conference of the Advanced School
for Computing and Imaging, 2004.

[GP04b] Ben Gorte and Norbert Pfeifer. Structuring laser-scanned trees using 3D
mathematical morphology. In In Proceedings of International Archives of
Photogrammetry and Remote Sensing, pages 929–933, 2004.

[Han07] Jinshu Han. Plant simulation based on fusion of L-system and IFS. In Proceedings
of the 7th international conference on Computational Science, Part II, pages
1091–1098, 2007.

[Hao10] Li Hao. Predictive Surgical Simulation for Preoperative Planning of Complex
Cardiac Surgeries. PhD thesis, School of Computing, National University of
Singapore, 2010.

[HGL92] Anthony Huxley, Mark Griffiths, and Margot Levy, editors. The new RHS
dictionary of gardening, volume 1. Macmillan and Stockton Press, 1992.

[HLC10] Li Hao, Wee Kheng Leow, and Ing-Sh Chiu. Elastic tubes: Modeling elastic
deformation of hollow tubes. Computer Graphics Forum, 29(6):1770–1782, 2010.

[HOCS02] Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M. Seitz. Curve
analogies. In Proceedings of the 13th Eurographics workshop on Rendering, pages
233–246, 2002.

[HPW92] Mark S. Hammel, Przemyslaw Prusinkiewicz, and Brian Wyvill. Modelling
compound leaves using implicit contours. In International Conference of the
Computer Graphics Society on Visual Computing: Integrating Computer Graph-
ics with Computer Vision, pages 199–212, 1992.

[HRY03] Jim Hanan, Michael Renton, and Emily Yorston. Simulating and visualising
spray deposition on plant canopies. In Computer graphics and interactive
techniques in Australasia and South East Asia, pages 259–260, 2003.

References 100

[HSB05] Sung Min Hong, Bruce Simpson, and Gladimir V.G. Baranoski. Interactive
venation-based leaf shape modeling. Journal of Visualization and Computer
Animation, 16(3–4):415–427, 2005.

[IOI06] Takashi Ijiri, Shigeru Owada, and Takeo Igarashi. The sketch L-system: Global
control of tree modeling using free-form strokes. In Smart Graphics, pages
138–146, 2006.

[JGZ09] Wenbiao Jin, Wenzhe Gu, and Zhifeng Zhang. An improved method for modeling
of leaf venation patterns. In Image and Signal Processing, pages 1–5, 2009.

[JP99] Doug L. James and Dinesh K. Pai. ArtDefo: accurate real time deformable
objects. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, pages 65–72, 1999.

[KHT`] Vladlen Koltun, Pat Hanrahan, Jerry Talton, Daniel Gibson, and Chris Platz.
Dryad. http://dryad.stanford.edu.

[KKM`98] Yuri Knyazikhin, Jörn Kranigk, Ranga B. Myneni, Oleg Panfyorov, and Gode
Gravenhorst. Influence of small-scale structure on radiative transfer and photo-
synthesis in vegetation canopies. Journal of Geophysical Research, 103(D6):6133–
6144, 1998.

[KL] Radoslaw Karwowski and Brendan Lane. L-studio. http://

algorithmicbotany.org/lstudio.

[LD99] Bernd Lintermann and Oliver Deussen. Interactive modeling of plants. IEEE
Computer Graphics and Applications, 19(1):56–65, January 1999.

[LGZL08] Shenglian Lu, Xinyu Guo, Chunjiang Zhao, and Chengfeng Li. Model and
animate plant leaf wilting. In International Conference on Technologies for
E-Learning and Digital Entertainment, pages 728–735, 2008.

[Lin68] Aristid Lindenmayer. Mathematical models for cellular interaction in devel-
opment, parts i and ii. In Journal of Theoretical Biology, volume 18, pages
280–315, 1968.

[Loc04] Birgit Ilka Loch. Surface fitting for the modelling of plant leaves. PhD thesis,
School of Physical Sciences, University of Queensland, 2004.

[Luf] Thomas Luft. An ivy generator. http://graphics.uni-konstanz.de/~luft/
ivy_generator.

[LZG09] Shenglian Lu, Chunjiang Zhao, and Xinyu Guo. Venation skeleton-based mod-
eling plant leaf wilting. International Journal of Computer Games Technology,
2009:1–8, 2009.

http://dryad.stanford.edu
http://algorithmicbotany.org/lstudio
http://algorithmicbotany.org/lstudio
http://graphics.uni-konstanz.de/~luft/ivy_generator
http://graphics.uni-konstanz.de/~luft/ivy_generator

References 101

[Mak73] Roman Maksymowych. Analysis of Leaf Development. Cambridge University
Press, 1973.

[MML`95] R.B. Myneni, S. Maggion, J. Laquinta, J.L. Privette, N. Gobron, B. Pinty,
D.S. Kimes, M.M. Verstraete, and D.L. Williams. Optical remote sensing of
vegetation: Modeling, caveats, and algorithms. Remote Sensing of Environment,
51(1):169–188, 1995.

[MMPP03] Lars Mundermann, Peter MacMurchy, Juraj Pivovarov, and Przemyslaw
Prusinkiewicz. Modeling lobed leaves. In Computer Graphics International
Conference, pages 60–65, 2003.

[MR50] E. Milne-Redhead. Variation in leaf-shape within a species: Some examples
from the gold coast. Kew Bulletin, 5(2):261–264, 1950.

[MZL`08] Wei Ma, Hongbin Zha, Jia Liu, Xiaopeng Zhang, and Bo Xiang. Image-based
plant modeling by knowing leaves from their apexes. In International Conference
on Pattern Recognition, pages 1–4, 2008.

[NFD07] Boris Neubert, Thomas Franken, and Oliver Deussen. Approximate image-based
tree-modeling using particle flows. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2007), 26(3):88:1–8, 2007.

[OOI05] Makoto Okabe, Shigeru Owada, and Takeo Igarashi. Interactive design of
botanical trees using freehand sketches and example-based editing. Computer
Graphics Forum, 24(3):487–496, 2005.

[Per] Timothy C. Perz. L-system 4. http://www.reocities.com/tperz/L4Home.

htm.

[PGW04] Norbert Pfeifer, Ben Gorte, and Daniel Winterhalder. Automatic reconstruction
of single trees from terrestrial laser scanner data. In International Society for
Photogrammetry and Remote Sensing, pages 114–119, 2004.

[PH02] Ulla Pyysalo and Hannu Hyypp. Reconstructing tree crowns from laser scanner
data for feature extraction. In In International Society for Photogrammetry and
Remote Sensing Commission III, Symposium, 2002.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of
plants. Springer-Verlag, 1990.

[PMKL01] Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, and Bren-
dan Lane. The use of positional information in the modeling of plants. In
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 289–300, 2001.

http://www.reocities.com/tperz/L4Home.htm
http://www.reocities.com/tperz/L4Home.htm

References 102

[PT97] Les Piegl and Wayne Tiller. The NURBS book. Springer-Verlag New York, Inc.,
1997.

[PTMG08] Alexandre Peyrat, Olivier Terraz, Stephane Merillou, and Eric Galin. Generating
vast varieties of realistic leaves with parametric 2Gmap L-systems. The Visual
Computer, 24(7):807–816, 2008.

[QTZ`06] Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and Sing Bing
Kang. Image-based plant modeling. In ACM SIGGRAPH, pages 599–604, 2006.

[RACJ09] Armando Re, Francisco Abad, Emilio Camahort, and M. C. Juan. Tools for
procedural generation of plants in virtual scenes. In Proceedings of the 9th
International Conference on Computational Science, pages 801–810, 2009.

[RFL`05] Adam Runions, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle
Rolland-Lagan, and Przemyslaw Prusinkiewicz. Modeling and visualization of
leaf venation patterns. ACM Transaction on Graphics, 24(3):702–711, July
2005.

[RHNB00] P. Room, J. Hanan, B. Nolan, and R. Battaglia. Pesticide targeting: Measuring
and simulating effects of plant architecture on pesticide deposition. In Insect
Pest Management in Sweet Corn, (Workshop No. 3), Queensland Department
of Primary Industries, Bowen Research Station, pages 20–25, 2000.

[RHP96] Peter Room, Jim Hanan, and Przemyslaw Prusinkiewicz. Virtual plants: New
perspectives for ecologists, pathologists and agricultural scientists. Trends in
Plant Science, 1(1):33–38, January 1996.

[RLFS02] Yodthong Rodkaew, Chidchanok Lursinsap, Tadahiro Fujimoto, and Suchada
Siripant. Modeling leaf shapes using L-systems and genetic algorithms. In
International Conference NICOGRAPH, pages 73–78, 2002.

[RLP07] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. Modeling trees
with a space colonization algorithm. In Eurographics Workshop on Natural
Phenomena, 2007.

[Sch] Michael Schernau. Fractree. http://archives.math.utk.edu/software/

msdos/fractals/fractree.

[SFS05] Lisa Streit, Pavol Federl, and Mario Costa Sousa. Modelling plant variation
through growth. Computer Graphics Forum, 24(3):497–506, 2005.

[Ski04] David J Skirvin. Virtual plant models of predatory mite movement in complex
plant canopies. Ecological Modelling, 171:301–313, 2004.

http://archives.math.utk.edu/software/msdos/fractals/fractree
http://archives.math.utk.edu/software/msdos/fractals/fractree

References 103

[SLCS06] Lisa Streit, Paul Lapides, and Ehud Costa Sousa, Mario amd Sharlin. Modeling
plant variations through 3D interactive sketches. In 3rd Eurographics Workshop
on Sketch-based Interfaces and Modeling, pages 99–106, 2006.

[SML04] Saint-Jean S., Chelle M., and Huber L. Modelling water transfer by rain-splash
in a 3D canopy using monte carlo integration. In Agricultural and Forest
Meteorology, pages 183–196, 2004.

[TZW`07] Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan.
Image-based tree modeling. ACM Transactions on Graphics, 26(3), 2007.

[VEBS`09] J. Vos, J.B. Evers, G.H. Buck-Sorlin, B. Andrieu, M. Chelle, and P.H.B. de Visser.
Functional-structural plant modelling: A new versatile tool in crop science. In
Journal of Experimental Botany, pages 2101–2115, 2009.

[Vis] Interactive Data Visualization. Speedtree. http://www.speedtree.com.

[VK06] Rawin Viruchpinta and Noppadon Khiripet. Real-time 3D plant structure
modeling by L-system with actual measurement parameters. In Biological
ESTEEM Collection, 2006.

[wdi] wdiestel. Arbaro - tree generation for povray. http://arbaro.sourceforge.

net.

[WZW`06] Zhongke Wu, Mingquan Zhou, Xingce Wang, Xuefeng Ao, and Rongqing Song.
An interactive system of modeling 3D trees with ball b-spline curves. In
Proceedings of the 2006 International Symposium on Plant Growth Modeling,
Simulation, Visualization and Applications, pages 259–265. IEEE Computer
Society, 2006.

[WZW09] Zhongke Wu, Mingquan Zhou, and Xingce Wang. Interactive modeling of 3D
tree with ball B-spline curves. The International Journal of Virtual Reality,
8(2):101–107, June 2009.

[XFr] XFrog. http://www.xfrog.com.

[XGC05] Hui Xu, Nathan Gossett, and Baoquan Chen. Knowledge-based modeling of
laser-scanned trees. In ACM SIGGRAPH 2005 Sketches, 2005.

[XGC07] Hui Xu, Nathan Gossett, and Baoquan Chen. Knowledge and heuristic-based
modeling of laser-scanned trees. ACM Transactions on Graphics, 26(4), October
2007.

[YWM`09] Dong-Ming Yan, Julien Wintz, Bernard Mourrain, Wenping Wang, Frederic
Boudon, and Christophe Godin. Efficient and robust tree model reconstruction
from laser scanned data points. In 11th IEEE International conference on
Computer-Aided Design and Computer Graphics, pages 572–575, 2009.

http://www.speedtree.com
http://arbaro.sourceforge.net
http://arbaro.sourceforge.net
http://www.xfrog.com

References 104

[ZG04] Steve Zelinka and Michael Garland. Mesh modelling with curve analogies. In
Pacific Conference on Computer Graphics and Applications, pages 94–98, 2004.

[ZTZ`08] Tonglin Zhu, Feng Tian, Yan Zhou, Hock Soon Seah, and Xiaolong Yan. Plant
modeling based on 3D reconstruction and its application in digital museum.
Internaltion Journal of Virtual Reality, 7(1):81–88, 2008.

[ZZHJ08] Chao Zhu, Xiaopeng Zhang, Baogang Hu, and Marc Jaeger. Reconstruction of
tree crown shape from scanned data. In Proceedings of the 3rd international con-
ference on Technologies for E-learning and Digital Entertainment, Edutainment
’08, pages 745–756, 2008.

	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Research Objectives
	Thesis Organization

	Botanical Background
	Types of Leaves
	Structure of Broad Leaves
	Venation Patterns in Broad Leaves
	Primary Veins
	Secondary Veins
	Higher-order Veins

	Literature Review
	Image-based Methods
	Rule-based Methods
	Summary

	Overview of Computational Leaf Modeling
	Types of Unilobed Leaves Modeled
	Types of Multilobed Leaves Modeled

	Modeling of Unilobed Leaves
	Parametric Leaf Model
	User Interface
	Laminar Shape Generation Algorithm
	B-spline Fitting

	Analysis of Laminar Shape Generation Algorithm
	Accuracy of Generated Leaf Shapes

	Modeling of Multilobed Leaves
	Parametric Leaf Model
	User Interface
	Laminar Shape Generation Algorithm
	Analysis of Laminar Shape Generation Algorithm
	Leaf Shape Generation Examples

	Constrained Leaf Morphing
	Overview of Leaf Morphing
	Unification of Leaf Spaces
	Unilobed Leaves
	Multilobed Leaves

	Generation of Morphing Path
	Visualizing Leaf Space
	Leaf Morphing Examples

	Future Work
	Automatic Estimation of Model Parameters
	Modeling Laminar Warping and Aging
	Ornamentation
	Compound and Narrow Leaves
	Modeling Laminar Deformation

	Conclusions
	References

