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Abstract

Due to the prevalence and severity of colorectal cancer, the segmentation of

the mesorectum in MRI scans, to better determine treatment options and

patient outcomes for colorectal cancer patients, is of particular interest.

However, medical MRI images are prone to significant variation and thus

difficult to segment. Manual segmentation has issues with intra-operator

and inter-operator reproducibility, and is so tedious and time-consuming to

perform that is impossible to practice routinely in hospitals. Thus, ground

truth is not available, so accuracy cannot be used as a measurement of

performance. Alternative metrics will be used instead. In this study, a

semi-automated algorithm that utilizes mesh deformation is proposed, and

has been found to be robust, consistent and efficient.

This work has the potential to augment the work of medical staff in analyz-

ing MRI scans, leading to better patient outcomes. Finally, the algorithm

would enable other medical researchers easily measure mesorectum volumes

and conduct further research in this area.

Keywords: segmentation, mesh deformation, MRI, mesorectum, medical,

colorectal cancer.
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Chapter 1
Introduction

1.1 Motivation

In Singapore, cancer is the top cause of death. In 2015, cancer accounted for almost

30% of deaths [oDO17]. Among the various types of cancer (e.g. brain, lung, bone

cancer), colorectal cancer accounts for the most commonly diagnosed type of cancer

in Singapore. Between 2011 and 2015, 9,807 new cases of colorectal cancer were

diagnosed, and in the same period of time, 3,906 people died from colorectal cancer.

Moreover, colorectal cancer, when measured against breast cancer and cervical cancer,

tends to be detected at later stages, resulting in lower survival rates. Statistics from

the National Registry of Diseases Office put the percentage of colorectal cancer cases

detected at late-stage (i.e. stages III & IV) at 57.6% (male) 59.7% (female), while

only 28.9% for breast cancer and 33.4% for cervical cancer. Thus, colorectal cancer is

an important and urgent area where advances in technology can prove helpful.

The main treatment for colorectal cancer is total mesorectal excision (TME), where

the whole mesorectum is surgically removed [HHR82]. The mesorectum refers to the

region around the rectum, and is filled with vascular structures, lymphatic and blood

vessels, nerves, lymph nodes and fatty tissue [THL+07]. Additionally, there may be

chemotherapy or radiotherapy involved, depending on the case.

There have been several studies that investigated the significance of the mesorectum
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volume and its possible correlation with factors that impact patient outcomes, such as

[TB05, AGB07, THL+07, IOH+13, TRS+15]. [IOH+13] showed the significance of the

mesorectum volume as a predictor of surgical difficulty in keyhole surgery for rectal

cancer. This is clinically important because knowledge of the mesorectum volume can

aid the surgeon in deciding which type of surgery (keyhole or open) is best for the

patient. Additionally, [AGB07] showed that mesorectum volume does not correlate

with body physique and body mass index (BMI), suggesting that mesorectum size

is largely genetic, rather than environmentally influenced. This has implications for

patient care, because some doctors may recommend a high-calorie diet prior to surgery

on the assumption that doing so would increase the mesorectum volume and thus ensure

that the tumor would be completely within the mesorectum; but this assumption may

not be true, and a high-calorie diet might have introduced complications for no gain.

Going further, [AGB07] suggested the mesorectum volume might be a predictor for a

positive surgical margin, which refers to the margin of the excised tissue containing

cancer cells. The ideal situation for a patient is for a negative surgical margin, where

the margin of the removed tissue contains no cancer cells, giving confidence that

all cancer cells had been removed. In addition, [TRS+15] found that patients with

a greater mesorectum volume had a lower risk of a relapse occurring and a higher

mortality risk than patients with a lesser mesorectum volume, although neither of

these findings were statistically significant. [TRS+15] also called for a larger study to

establish the significance of the mesorectal volume. These studies clearly show the

importance of the mesorectum volume.

All of the studies cited above used manual segmentation to segment the mesorectum,

where an expert is called upon to manually segment the mesorectum. However, manual

segmentation has several downsides, which include issues with reproducibility, intra-

operator and inter-operator variability and operator fatigue [MT96]. Intra-operator

variability occurs when the same operator measures the mesorectum volume differently
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across different MRI scans. In contrast, inter-operator variability occurs when different

operators, who may differ also in years of experience and judgment, segment the

mesorectum differently. Above all, manual segmentation is so tedious and time-

consuming that it is impossible to practice routinely in hospitals. There are also no

practical alternative methods to obtain the mesorectum volume.

Hence, this thesis explores a semi-automated segmentation technique, which can

incorporate domain knowledge and computational efficiency, in order to achieve seg-

mentation results that are reliable and useful. This semi-automated technique can

augment doctors’ and medical staffs’ capability to measure the volume of the mesorec-

tum quickly and reliably. Moreover, by making measurements of the mesorectum

volume easy and quick, this greatly increases the ease of conducting further research

into the impact of mesorectum volume, which in turn has clinical relevance and impact

to patients’ quality of life.

As discussed above, it is very tedious and time-consuming to manually segment the

mesorectum. Although the treatment for colorectal cancer involves the removal of the

entire mesorectum, such that the mesorectum (after removal) can be measured, the

volume measured in vitro (inside the human body) and ex vivo (outside the human

body) will be different as the mesorectum is largely composed of soft tissues that are

influenced by the surrounding structure when inside the body. Consequently, ground

truth is not available in this study, so accuracy cannot be used to measure the perfor-

mance of the semi-automated segmentation method. Instead, other measurements will

be discussed in Chapter 4.1 to investigate the performance of the method.

1.2 Thesis Objective

This paper proposes a robust semi-automated algorithm for segmenting the mesorectum

in a quick and reliable manner, with the ultimate goals of providing doctors and medical
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staff with more consistent and readily available information at a faster pace to make

better surgical decisions, thereby minimising colorectal surgery risks and improving

colorectal cancer patient outcomes.



Chapter 2
Related Work

2.1 Image Segmentation

There are many ways to perform image segmentation, and can be classified into three

main categories: manual, semi-automated (also known as interactive) and automated.

Manual segmentation, as the name suggests, refers to segmentation done solely by the

manual efforts of an expert. For example, given a 3D MRI scan, a skilled operator (e.g.

radiologist) would use some software to view the MRI slice by slice, i.e. in 2D. For each

slice, if the object of interest is present, the operator uses the software to draw a closed

polygon to demarcate the boundary of this object. This method has several limitations,

including difficulty in obtaining reproducible measurements, is time-consuming, prone

to intra-operator and inter-operator variability, and leads to operator fatigue [MT96].

Conversely, automated algorithms work without any human input, but there has not

been much success, due to many reasons, including the significant variability in organs

and soft tissue shapes across specimens. Semi-automated methods enjoy the most

success, because they combine human input and efficiency of algorithms to speed up

segmentation in an accurate manner. For example, a operator might be prompted

to initialize certain parameters, and tweak these parameters if the output is not as

expected. In this section, semi-automated methods will be discussed as the proposed

algorithm is of this kind.

5
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One basic method of image segmentation is thresholding, also known as binarization,

which works on the assumption that different objects, or structures, have different

intensities [SSW88]. Usually, this is done in a semi-automated fashion, where the

operator experiments with the threshold value and visually inspects the output,

although fully automated methods are possible.

Another common technique in image segmentation is region growing, where the

operator places one or more seeds in a region, and the region is grown until certain

criteria are met (e.g. when it reaches an edge)[PXP00]. This method is commonly used

in conjunction with other methods such as thresholding, to segment basic structures

(e.g. tumors). However, region growing is not particularly robust, where noise present

in an image can cause the region to have “holes”.

Deformable models are another class of techniques that has demonstrated success

in image segmentation is that of [MT96]. Deformable models are highly successful

at segmentation because they are able to utilize constraints from the image, as well

as incorporate prior information about the structure. This prior information may

take the form of initial conditions or values, constraints on model parameters, data

constraints or implemented as part of the model fitting procedure. By doing so, such

models can handle the large variation in medical images when segmenting structures

of interest.

One well-known deformable model is the snake [KWT88], which is a type of active

contour model that is able to localize lines and edges near its initialization. This is

achieved by using an energy minimization framework, premised on the assumption

that boundaries are piecewise continuous or smooth. The snake is typically initialized

in a semi-automated fashion where an operator places it near the object boundary to

be delineated, although it is also possible for the snake to be placed in an automatic

fashion if there exists a reliable way to do so. The snake deforms based on internal and

external forces, where the internal forces impose a piecewise smoothness constraint
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while external forces on the snake push it towards the object (e.g. boundary, line) of

interest.

Deformable models have been successfully applied to medical MRI and computed

tomography (CT) images, for example, to the segmentation of the inner wall of the

left ventricle [BCA98], reconstruction of the cerebral cortex [DB96], and segmentation

of spinal vertebra [NL98]. In one of the early studies of deformable models, Miller

[MBL+91] initialized an icosahedron (as an approximation to a sphere) and geometri-

cally deformed this model until the model surface matched the object surface in 3D

CT data. The deformation was, as usual, formulated by the minimization of a cost

function.

Many segmentation techniques have been successfully applied to 2-dimensional im-

ages. However, when the object of interest is 3-dimensional, if these 2-dimensional

techniques were applied to each slice of this object, there necessitates a tedious process

after segmentation in order to reconstruct the 3-dimensional boundary. During this

reconstruction, there may be inconsistencies in the output. An example of this is

shown in Fig. 2.1, where consecutive slices of an MRI scan were manually segmented

using the Horos software. It can be observed that when all the segmented images are

stacked together, the overall boundary is not very smooth. Thus, it is preferable to

use a 3-dimensional deformable model to construct a smoother, more accurate, and

more reliable segmentation.

Furthering the concept of model deformation, [Fen10] proposed using a 3D quadrilateral

mesh to segment an object in the context of medical image segmentation. By evolving

the mesh to register at the target object boundary, segmentation could be achieved

with higher accuracy and efficient manner than other common segmentation approaches

such as snakes.

In the next two sections, two methods of model deformation, namely Laplacian
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Figure 2.1: MRI scan of mesorectum. Yellow: segmentation of 2D slices stacked
together.

deformation and Thin Plate Spline, will be covered in greater detail, as these will be

used in the proposed algorithm subsequently.

2.2 Laplacian Deformation

Another technique based on deformable models is that of Laplacian deformation

[SCOL+04], which is a non-rigid deformation that allows for a better fit. The source

model is an initial model such as a sphere, that is deformed towards a target, or desired,

output. In the context of 3D medical imaging, it can be envisioned as deforming a

sphere to fit the boundary of an organ. As with other deformable models, Laplacian

deformation is also a minimization problem, with two terms: the fitting term Ef which

refers to the distance between the deformed source and target, and the distortion

term Ed which minimizes the distortion to the source shape. This method has been

shown to be effective and highly useful, which can be adapted for use in medical image

segmentation. The Laplacian deformation works as follows: we denote the n number

of source points as p1, p2, ..., pn, and the m number of target points as q1, q2, ..., qm.

Then the Laplacian deformation becomes a question of finding all p′
i such that Eq. 2.1
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is minimized, where p′
i are the source points after deformation.

E = Ef + Ed (2.1)

The fitting term can be expressed as:

Ef =
m∑
i=1

||p′

i − qi||2 (2.2)

Recall that the Laplacian operator L is

L(pi) = pi −
1

|Ni|
∑
j∈Ni

pj (2.3)

where Ni is set of neighboring vertices of pi. Then the distortion term can be expressed

as

Ed =
n∑
i=1

||L(p′

i)− δi||2 (2.4)

where δi is the Laplacian at pi before deformation.

Putting Eqs. 2.2 and 2.4 together yields

E =
m∑
i=1

||p′

i − qi||2 +
n∑
i=1

||L(p′

i)− δi||2 (2.5)

which is of the form

min
x
||Ax− b||2 subject to Cx=d (2.6)

Eq. 2.6 can be interpreted where A is the 3n× 3n matrix of Laplacian constraints, x

is a 3n× 1 vector that we want to solve for and has been sorted such that the top 3m
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elements are those with positional constraints, and b is the 3n× 1 vector containing

δi, C a 3m× 3n matrix of positional constraints, and d is a 3m× 1 vector of target

positions. This is an equality constrained least squares problem that can be solved

exactly by QR factorization, with the solution:

x =


d

v

 (2.7)

where

v = (AT
2A2)

−1AT
2 (b−A1d) (2.8)

where A1 and A2 are simply derived by splitting the matrix A into a 3n× 3m matrix

and a 3n× 3(n−m) matrix.

2.3 Thin Plate Spline

The Thin Plate Spline is another method that describes deformations by using the thin

plate spline as an interpolant [Boo89]. TPS is similar to Laplacian deformation where

both source and target points are required to be specified. In contrast, there exists

a closed-form solution for TPS, which entails solving a linear system of equations.

TPS can be formulated as follows: given source points p1, p2, ..., pn and target points

q1, q2, ..., qn, it outputs a deformation function f(p) for every point p. TPS is also a

minimization problem, as shown in Eq. 2.9 where the fitting term Ef carries the same

meaning as in Laplacian deformation, but now Ed refers to the distortion of space,

and there is an additional λ term referring to the degree of non-rigid warping allowed.
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E = Ef + λEd (2.9)

The fitting term can be expressed as:

Ef =
n∑
i=1

||f(pi)− qi||2 (2.10)

while the distortion term Ed for a 3D thin metal sheet can be expressed as:

Ed =

∫ ∫ ∫ (
∂2f

∂x2

)2

+

(
∂2f

∂y2

)2

+

(
∂2f

∂z2

)2

+

2

(
∂2f

∂xy

)2

+ 2

(
∂2f

∂xz

)2

+ 2

(
∂2f

∂yz

)2

dxdydz (2.11)

Minimization of Eq. 2.11 takes the form:

f(p̃) = aT · p̃+
n∑
i=1

φ(||p− pi||)wi (2.12)

where p̃ are the homogeneous coordinates of source points, φ(r) is some function that

increases with r, for example, r2log(r), a is an affine transformation matrix, and wi

the weights.

For TPS, the aim is to solve for w and a in Eq. 2.13, given source points p and target

points v:


w

a

 =


K P

PT 0


−1

v

0

 (2.13)
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where K is an n × n matrix with entries Kij = U(||pi − pj||), and of course its

diagonal entries are 0; and P is an n× (d+1) matrix of source points in homogeneous

coordinates.

2.4 Choice of Segmentation Techniques

Based on literature, snakes and region-growing techniques were considered during

preliminary studies, and experiments using these techniques were carried out using

the software ITK-SNAP. However, the results from these preliminary studies were not

promising, due mainly to two reasons. First, the MRI images are highly noisy; and

second, the mesorectum boundary is very faint and on many occasions, not visible at

all. Consequently, of the techniques mentioned in this chapter, Laplacian deformation

and TPS deformation were chosen to be used in the proposed algorithm.



Chapter 3
Proposed Algorithm

3.1 Proposed Algorithm Overview

There are 4 main steps in the algorithm. The first is initialization of data and

parameters, including operator input of initial landmarks. The second step is for the

algorithm to search within those MRI slices with landmarks, for more points that

delineate the mesorectum boundary. The third step is to utilize the initial landmarks,

along with the points found along the mesorectum boundary, to deform an initial

spherical mesh. For this third step, two different techniques are attempted: Laplacian

deformation and TPS. In the fourth and final step, the mesh, after deformation, is

overlaid onto the MRI slices to delineate the boundary of the mesorectum. Then, the

mesorectum volume for each slice is calculated, which are summed up to give the total

mesorectum volume.

3.2 Algorithm Step 1: Initialization

The full 3D MRI comes in three views: axial, coronal and sagittal. Each view provides

information along an orthogonal axis, and these are illustrated in Fig. 3.1 [Ric14]. To

visualize this, we use a human standing up as the frame of reference. The axial view

shows MRI slices of a person standing up as planes parallel to the ground, while the

13
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Figure 3.1: Anatomical planes: axial plane (green), coronal plane (blue), median
plane (red) and sagittal plane (yellow).

coronal view shows MRI slices of a person with the planes running from the front to

back, and the sagittal view runs across from the left to the right.

For the purposes of segmenting the mesorectum, anonymized axial MRI images of the

mesorectum were loaded into Mathematica version 11.1.1.0, and dimensions of these

MRI slices were recorded in both pixels (512 by 512) and millimeters (180 by 180).

Both units are carefully distinguished because subsequent operations are performed

on the images, but the final output (e.g. MRI volume) should correspond to physical

reality.

As part of the initialization, the operator specifies three slices corresponding to the top,

middle and bottom of the mesorectum. This has multiple functions: (1) specification

of the ends of the mesorectum constrains the ends of the mesh that will be deformed

to fill the volume; and (2) it gives a better fit because the shape of the mesorectum

varies significantly along the z-axis. For example, Figs. 3.2 and 3.3 illustrates the

variation in shape of the mesorectum from squarish to an ellipse respectively. Another
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Figure 3.2: MRI slice, axial view.
White arrows point to the mesorectum
boundary. Mesorectum shape resem-
bles a square.

Figure 3.3: MRI slice, axial view.
White arrows point to the mesorectum
boundary. Mesorectum shape resem-
bles an ellipse.

MRI slice might show the mesorectum being roughly triangular too.

Then, for each MRI slice chosen (i.e. top, middle and bottom), the operator selects

N number of points along the mesorectum boundary, which are called “landmarks”,

by clicking on the image as shown in Fig. 3.4. N is held constant across slices for a

chosen value of N . For a given slice, these landmarks form a set of x-y coordinates

forming the set Si:

Si = {{xi,1, yi,1}, {xi,2, yi,2}, . . . , {xi,N , yi,N}} for i = 1, 2, 3 (3.1)
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Figure 3.4: MRI slice, axial view. Example of landmarks (represented by yellow
dots) selected by the operator, in the case of N = 4.

3.3 Algorithm Step 2: Finding landmarks

As MRI images are prone to noise, a curvature flow filter is applied to smoothen the

image without losing information about the edges. Furthermore, since the mesorectum

boundary is actually darker than the surrounding areas, the pixel intensity of the

image is inverted, i.e. the value v of each pixel intensity is replaced with (1− v). This

operation is so that when the intensity profile was studied, the mesorectum boundary

appears as a peak instead of a trough, and is easier for the human eye to recognize.

The first objective is for the algorithm to find a set of points along the mesorectum

boundary, with the least amount of input from the operator. The algorithm needs

a starting point, however, as the mesorectum boundary is difficult for an automated
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algorithm to characterize. To complicate matters, a single starting point may not be

always useful because at points along the mesorectum boundary may have different

characteristics. Thus, the minimum N was chosen to be 4, because 4 points are needed

to define the corners of a square, which is the shape the mesorectum corresponded to

in Figure 3.4. Moreover, the number of operator-specified landmarks needs to achieve

a balance between the amount of work the operator has to do, and the amount of

initializing data for the algorithm. This can be intuitively understood where having

more points (i.e. higher N), the algorithm has more initial landmarks to work with

and be in a better position to choose similar points that correspond to the mesorectum

boundary, but at the cost of additional effort from the operator.

With these N landmarks, the global centroid cg for that slice can be computed as:

cg =

{
x1 + x2 + . . .+ xN

N
,
y1 + y2 + . . .+ yN

N

}
(3.2)

Fig. 3.5 illustrates the process the algorithm goes through to find points along the

mesorectum boundary. The coordinate system will also be transformed from the

xy-coordinate system to a radial coordinate system with the global centroid as the

origin.

First, the intensity profile of the landmark along the line connecting the global centroid

and one of the N landmarks is measured, as shown in Fig. 3.6. A subset of the intensity

profile will be used as the ground truth when comparing against other intensity profiles

in the region, and is centered on the landmark. The intensity profile is parameterized

by the window size, which refers to the size of the intensity profile. Preliminary

experiments show that a small window size of about 11 pixels is optimal for MRI slices

when there are other structures (e.g. the rectum) in close proximity to the mesorectum

boundary, while a larger window size of 41 pixels is better for MRI slices where there
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Figure 3.5: Searching process (not to scale). With N = 4, blue diamonds at the
corners represent landmarks, while the red circle at the center is the global centroid.
The green bar represents the intensity profile measured along the bar, and the length of
the bar corresponds to the window size. The size of the search space is parameterized
by the angle φ.

are other structures are further away.

Working in radial coordinates, each landmark is used to identify other points that

lie on the mesorectum boundary, only in its immediate region, where this region is

termed the “search space”. The size of the search space φ for any given landmark is

determined by taking the minimum of the angle between itself and the two adjacent

landmarks, where each ith landmark has a corresponding angle θi relative to the global

centroid cg:
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Figure 3.6: Example of intensity profile along line connecting global centroid to
landmark. The mesorectum boundary corresponds to one of the peaks, and the window
size parameterizes the length of the intensity profile used as the ground truth.

φi(θi, N) =



min{|θi + 2π − θi−1|, |θi+1 − θi|}, for i = 1

min{|θi − θi−1|, |θi+1 − θi|}, for 1 < i < N

min{|θi − θi−1|, |θ1 + 2π − θi|}, for i = N

(3.3)

The line connecting the origin and the ith landmark is treated as θ = 0◦ and r = r0.

Then, at every step of searching, the angle θ is incremented by 1◦ up to the limit of
φi
2
; and in the radial direction, the algorithm searches along an interval corresponding

to the window size centered on r0. The previous radius is used as a starting point for

the next radius.

For each angle θ = ±1, 2, . . . , φi
2
, the local intensity profile ix,0 is compared against the
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intensity profile within the search space ix. The loss function Lx is chosen to be the

absolute difference in intensities at each pixel, and the cost function C is the sum of

all losses along the intensity profile. The reason for choosing an absolute loss over a

mean squared loss is that MRI images tend to be noisy and full of outliers, and the

effect of outliers is magnified by the mean squared loss, thus the absolute loss is more

likely to give better results. In doing so, the point which has the most similar intensity

profile to that of the landmark would be chosen.

Lx = |ix,0 − ix| (3.4)

C =
∑
x

Lx (3.5)

However, just because two points share a similar intensity profile, need not necessitate

that these two points are on the mesorectum boundary. The resulting points found

from the above method may not actually lie on the mesorectum boundary, as there

could be other points that have a closer intensity profile similarity to the landmark. An

additional piece of information is thus included, which is the position of the previous

two landmarks found. Thus, instead of using a point found at face value, the mean

of that point and the previous two points is used. Evidently, this cannot be the case

for the points immediately adjacent to the landmark, in which case the mean of the

landmark found and the operator-specified landmark is used. This helps to smoothen

the points found, and is a way of encoding prior information (that all the points found

should form a line) into the algorithm.

After testing the algorithm, it was observed that for lower slices (i.e. slices numbered

#20 and below), due to the shape of the mesorectum, it was highly likely that if a

landmark was above the global centroid, then the boundary should not be far above

it. This additional information was then encoded back into the algorithm, in the form
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Figure 3.7: Set of all points that were found by the algorithm within the search
space.

of a hard constraint, such that if the algorithm erroneously predicts such points, these

are removed from consideration.

This search for points is repeated for each of the N landmarks, and for each of the

3 MRI slices. Then, outliers such as single points or tiny clusters that are not near

the main curves (one for each landmark), are removed. Finally, the output of the

algorithm at this stage is a set of points shown in Fig. 3.7, where the points distinctly

outline 3 boundaries, as expected. For ease of terminology, let us call all these points

landmarks as well. There are some discontinuities in the curves, and this is expected

because the algorithm was not able to find suitable points there, due to the fact that

the mesorectum boundary is not easily completely delineated in the first place, as

well as the variety of signal changes around the boundary [BJPB07]. Nevertheless, as

will be shown later, Laplacian deformation and TPS are both robust against these

discontinuities.

Depending on the choice of initial landmarks, it is possible that the output is not a
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good fit to the mesorectum boundary. The advantage of an interactive algorithm is

that these inputs or parameters may be changed from their default values, to achieve

a good fit:

• initial landmarks;

• window size of the intensity profile;

• size of the search space; and

• threshold value for the hard constraint on y-values of fitted points;

Throughout the experiments conducted, it was observed that a suitable choice of initial

landmarks tends not to require any modification of other parameters.

3.4 Algorithm Step 3: Mesh Deformation

The next stage is to utilize the landmarks found earlier, and deform a mesh to fit

these points. Thus far, we have been working in coordinate space (i.e. 512 px by 512

px). However, the desired mesh should be in real space, thus the coordinates of the

landmarks are transformed via a scaling of the x-coordinates and y-coordinates to

actual coordinates (i.e. 180 mm by 180 mm).

The mesh deformation procedure works as follows: first, the initialization of the mesh

is done by placing a tiny sphere of radius 1 mm at the centre of all the fitted points.

This ensures that the sphere is completely within the fitted points, and can only

deform outwards. The number of mesh vertices forming initial sphere can be increased

arbitrarily by imposing a maximum size on the tiny triangles that form the mesh.

In this example, a size of 10−5 is used as it gives a sufficiently high number of mesh

vertices (approximately 40,000) and can be computed quickly, under 5 seconds.

For each landmark found, a vector can be projected from the center of the initial
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Figure 3.8: Mesh deformed via Laplacian deformation.

spherical mesh to that landmark, and the intersection of this vector on the surface of

the spherical mesh is calculated. We denote these points of intersection as the source

points, which are the points that deform.

In the case of TPS, there is an additional step of downsampling by taking the every

dth landmark and discarding the rest, where d is the downsampling factor. This

requirement comes about because when there are many points (on the order of a few

hundred or more), the TPS algorithm is unable to find a correspondence, or even if

it does, does not produce a smooth mesh. There is thus a need to downsample the

landmarks from hundreds of such points, down to tens. During the downsampling,

the operator-specified landmarks might be dropped, so these landmarks are explicitly

added back in to the array of points. The exact downsampling factor is not known in

advance and has to be trialed and obtained by visual inspection. There is no such

requirement of downsampling for the Laplacian deformation.

When the meshes are deformed via Laplacian deformation and TPS, the overall shape

is as expected, as shown in Figs. 3.8 and 3.9.
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Figure 3.9: Mesh deformed via Thin Plate Spline.

3.5 Algorithm Step 4: Overlay of Mesh on MRI

Slices

In order to observe the fitting of points to the mesorectum boundary, especially on

MRI slices where there were no operator-specified landmarks, after the 3-dimensional

mesh has been obtained, the intersection of the mesh with a plane with z-coordinates

of each slice are calculated, and overlaid onto the MRI slice. This enables the operator

to perform a visual inspection for the goodness of fit. The landmarks previously found

on those slices where the operator had specified the landmarks, are also included.

Each mesh is composed of tiny triangles, and each vertex of the triangle must lie in

some combination of above, on or below the plane of intersection. The calculations for

the mesh intersection with the plane can be done by considering the following cases:

The intersection can be solved by using the similar triangles formula in 3D. We denote

that intersection to have vertices (x0, y0, z0) where z0 is known because that is the

z-coordinate of the plane. To illustrate the calculation, 2 of the points which form a
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Table 3.1: Possible cases of mesh vertices positioning relative to plane of intersection.

# of vertices # of vertices # of vertices Action

above plane below plane on plane

2 1 0 Solve for intersection

1 2 0 Solve for intersection

1 1 1 Solve for intersection

1 0 2 Record points of intersection

0 1 2 Record points of intersection

2 0 1 Record points of intersection

0 2 1 Record points of intersection

line intersecting the plane can be denoted as (x1, y1, z1) and (x2, y2, z2). Then, we just

need 2 equations to solve for the 2 unknowns x0, y0:

y2 − y1
z2 − z1

=
y2 − y0
z2 − z0

&&
z2 − z1
x2 − x1

=
z2 − z0
x2 − x0

(3.6)

When solving for the intersection between mesh and plane, there will be 2 points in

each solution. Together with the recorded points of intersection, these points trace

out the mesorectum boundary based on the deformed mesh.

3.6 Volume of MRI Slice

These mesh overlays on the MRI slices can be used to calculate the area of each slice.

The overlay demarcates the boundary of the mesorectum for each slice, and upon

morphological dilation by a factor of 3, delineates clearly the mesorectum from the

rest of the image. The morphological dilation has a negligible effect on the area of the
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Figure 3.10: MRI slice #25, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.11: MRI slice #25, axial
view. Overlaid with mesh deformed
via Laplacian deformation.

mesorectum segment, below 1%, and is a necessary step to turn the boundary into a

solid line, allowing a count of the area the mesorectum occupies in a given slice. The

volume is calculated by multiplying this slice area by the slice height, as per current

practice [TB05].

The results of the overlays, for N = 4, are shown in Figs. 3.10 - 3.33.
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Figure 3.12: MRI slice #24, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.13: MRI slice #24, axial
view. Overlaid with mesh deformed
via Laplacian deformation.

Figure 3.14: MRI slice #23, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.15: MRI slice #23, axial
view. Overlaid with mesh deformed
via Laplacian deformation.
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Figure 3.16: MRI slice #22, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.17: MRI slice #22, axial
view. Overlaid with mesh deformed
via Laplacian deformation.

Figure 3.18: MRI slice #21, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.19: MRI slice #21, axial
view. Overlaid with mesh deformed
via Laplacian deformation.
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Figure 3.20: MRI slice #20, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.21: MRI slice #20, axial
view. Overlaid with mesh deformed
via Laplacian deformation.

Figure 3.22: MRI slice #19, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.23: MRI slice #19, axial
view. Overlaid with mesh deformed
via Laplacian deformation.
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Figure 3.24: MRI slice #18, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.25: MRI slice #18, axial
view. Overlaid with mesh deformed
via Laplacian deformation.

Figure 3.26: MRI slice #17, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.27: MRI slice #17, axial
view. Overlaid with mesh deformed
via Laplacian deformation.
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Figure 3.28: MRI slice #16, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.29: MRI slice #16, axial
view. Overlaid with mesh deformed
via Laplacian deformation.

Figure 3.30: MRI slice #15, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.31: MRI slice #15, axial
view. Overlaid with mesh deformed
via Laplacian deformation.
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Figure 3.32: MRI slice #14, axial
view. Overlaid with mesh deformed
via TPS.

Figure 3.33: MRI slice #14, axial
view. Overlaid with mesh deformed
via Laplacian deformation.
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In using the methods of Laplacian deformation and TPS to produce these 3D meshes,

it is evident that the meshes fit exactly to the target points that were specified earlier.

This is because these two methods consider the correspondence as hard constraints,

thus have no error with regard to the corresponding target points.



Chapter 4
Experiments

4.1 Overview

Assessing the performance of an algorithm on image segmentation tasks is not easy.

As mentioned in Chapter 1.1, accuracy cannot be used as a metric because the

ground truth does not exist. Instead, this study uses the concept of robustness as

one measure of the performance of the algorithm. Additionally, [UH99] offers two

metrics to validate the algorithm’s performance: consistency (also called reliability)

and efficiency. Consistency is measured by repeating the measurement process and

noting the variation using common statistical methods. Efficiency corresponds to the

practical viability of the technique, for example, in the number of MRI scans that

can be processed in an hour. The efficiency can be categorized into computational

time and operator time (i.e. time spent by the operator), where computational time is

said to be negligible provided it is below a practical threshold (e.g. 5 min), while the

operator time is considered to be the crucial factor. In this chapter, 3 experiments

are outlined, where the robustness, consistency and efficiency of the algorithm are

assessed.

34
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Table 4.1: Computed volume of MRI slices for varying N (Mean ± standard devia-
tion).

N Volume (cm3)(Laplacian) volume (cm3)(TPS)

4 93±1 94.5±0.9

5 98±1 98±3

6 96.0±0.8 96±1

7 96±2 95±2

8 95±2 95±1

4.2 Experiment 1: Robustness

Experiment 1 is to measure the robustness of the proposed algorithm. Here, robustness

is measured by the variability in resultant mesorectum volume when the number of

input landmarks N per slice varies. Intuitively, this can be thought of as when N →∞,

the resultant mesorectum volume tends to a fixed value. In practice, N cannot be too

large, else this process is too cumbersome for the operator, so the question becomes

for what small values of N the algorithm will output a stable mesorectum volume.

In this study, N was initialized at 4, and incremented until the total mesorectum

volume measured is observed to stabilize at a fixed value. For slices #14 and #20, as

N increased, additional landmarks were placed by the operator near the top boundary

of the mesorectum, as the boundary at the top (also known as the anterior) is rather

diffuse and blurs with other organs and structures, whereas the boundary at the

bottom (also known as the posterior) is relatively better defined. This setup was

replicated 5 times, and the results of mean mesorectum volume, as well as the standard

deviation, for each value of N , are shown in Table 4.1. The data from Table 4.1 is

plotted in Figure 4.1.

As suggested by [FC05], statistical methods should be used to analyze the mean of
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Figure 4.1: Plot of mesorectum volume (cm3) against number of input landmarks
per slice, N . Solid red line refers to volume when Laplacian deformation was used;
dashed blue line refers to volume when TPS was used.

Table 4.2: p-values for pairwise comparison of differences in mesorectum volume
across consecutive N .

Comparison between Ni&Nj p-value (Laplacian) p-value (TPS)

4 & 5 <.05 .05

5 & 6 .05 .19

6 & 7 .89 .48

7 & 8 .58 .86

segmented volumes, since segmentation is subject to variability. The Welch’s t-test

was chosen because unlike the standard student’s t-test, there is no assumption that

both populations have equal variances. Here, the significance level is set at 0.05.

From Table 4.2, it can be seen that there is a statistically significant difference in

means of mesorectum volumes when comparing N = 4 and N = 5 for both Laplacian

deformation and TPS, as well as when comparing N = 5 and N = 6 for Laplacian
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Figure 4.2: MRI slice #14, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 5.

Figure 4.3: MRI slice #14, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 6.

deformation. This result suggests that when N ≥ 6, there is no statistically significant

difference in terms of the resultant volume, and the proposed algorithm is robust once

a minimum N of 6 is used. This is also why the upper limit of N was set at 8, because

the algorithm seemed to be stable by then.

To understand why this is the case, we look at MRI slices #14, #20 and #25, for

N = 5, 6, 7, 8, where Laplacian deformation was used. These slices, with mesh overlays,

are shown in Figures 4.2 to 4.13. These are the MRI slices for which initial landmarks

were chosen, and we expect that the search for points along the mesorectum boundary

yields a better fit as N increases.
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Figure 4.4: MRI slice #14, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 7.

Figure 4.5: MRI slice #14, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 8.

Figure 4.6: MRI slice #20, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 5.

Figure 4.7: MRI slice #20, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 6.
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Figure 4.8: MRI slice #20, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 7.

Figure 4.9: MRI slice #20, axial view.
Overlaid with mesh deformed via Lapla-
cian deformation, for N = 8.

Figure 4.10: MRI slice #25, axial
view. Overlaid with mesh deformed
via Laplacian deformation, for N = 5.

Figure 4.11: MRI slice #25, axial
view. Overlaid with mesh deformed
via Laplacian deformation, for N = 6.
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Figure 4.12: MRI slice #25, axial
view. Overlaid with mesh deformed
via Laplacian deformation, for N = 7.

Figure 4.13: MRI slice #25, axial
view. Overlaid with mesh deformed
via Laplacian deformation, for N = 8.
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Table 4.3: p-values for comparison of differences in mesorectum volume across
Laplacian deformation and TPS.

N p-value

4 .07

5 .71

6 .88

7 .68

8 .95

Intuitively, with a higher N , greater variation in the mesorectum boundary can be

captured, especially if there is a sharp angle, or if the boundary is very diffuse and

ill-defined. This was true, especially for MRI slices #14 and #20, where additional

points helped the algorithm delineate the upper portion of the mesorectum boundary

better. However, as can be seen from the figures above, for N ≥ 6, the additional

details captured do not seem to significantly affect the shape of the mesh, as the

algorithm is able to find a good fit to the mesorectum boundary with lesser initial

landmarks.

Next, we look at whether the choice of mesh deformation technique, Laplacian de-

formation or TPS, has a significant influence on the resultant mesorectum volume.

Similar to above, the Welch’s t-test was chosen and the significance level is set at 0.05.

The resulting p-values are shown in Table 4.3.

All p-values were found to be above 0.05, thus the results suggest that there is no

statistically significant difference in resultant mesorectum volume, whether Laplacian

deformation or TPS was used. However, the p-value for N = 4 is quite small at p = .07,

hinting that there might be a difference. Nevertheless, since the minimum N was

found to be 6, when N ≥ 6, it does not really matter whether Laplacian deformation

of TPS is used.
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Table 4.4: Percentage standard deviation in mesorectum volume measurements.

N % Standard deviation (Laplacian) % Standard deviation (TPS)

4 1.2% 0.96%

5 1.5% 3.2%

6 0.86% 1.0%

7 1.7% 1.7%

8 2.1% 1.4%

4.3 Experiment 2: Consistency

Experiment 2 is to determine the consistency of the proposed algorithm. The consis-

tency of the proposed algorithm is measured here by the percentage standard deviation

in mesorectum volume measurements over 5 replications, as shown in Table 4.4.

The percentage standard deviations are all very low, below 4%. This suggests that

across multiple replications, when the operator initializes landmarks at different points

along the mesorectum boundary, the proposed algorithm is still able to achieve a good

fit to the mesorectum boundary, and the resultant volumes are highly consistent.

4.4 Experiment 3: Efficiency

Experiment 3 aims to measure the efficiency of the proposed algorithm. The total

time taken is the sum of computation time taken and operator interaction time. The

computation tasks can be divided into:

1. Initialization

(a) load dependency libraries
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(b) load MRI data

(c) process MRI metadata

(d) display MRI slices for operator to place landmarks on

(e) convert coordinate systems

2. Finding landmarks on mesorectum boundary

(a) apply anisotropic filter

(b) invert pixel intensities

(c) calculate global centroids

(d) record intensity profile of landmarks

(e) search within the conical region

(f) calculate loss function along search window and determine the point at

which there is lowest loss

(g) smoothen points found by taking the average of 3 points if possible, otherwise

the average of 2 points

(h) remove outliers

3. Mesh deformation

(a) (only for TPS) downsample data

(b) convert coordinate systems

(c) calculate placement of initial spherical mesh

(d) map landmarks to points on surface of spherical mesh (to identify source

points)

(e) perform Laplacian deformation or TPS
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(f) display mesh

(g) calculate coordinates of mesh triangles

4. Mesh overlay

(a) determine which points lie on the plane

(b) determine which points surround the plane

(c) solve for intersection between mesh and plane

(d) segment the image for each MRI slice

(e) calculate mesorectum volume

(f) display overlay

(g) export overlay as image file

The computational time taken when running the proposed algorithm across 5 replica-

tions, when N = 4, is shown in Table 4.5. Under the design of the proposed algorithm,

N does not have a direct impact on the computational time required. Rather, it is the

spacing between landmarks that determines how much processing is required, which

varies depending on the operator’s choice of initial landmark placement. In this study,

it was assumed that the spacing is usually non-uniform, which is reasonable given the

preference of placing more landmarks at the top of the mesorectum boundary. This

suggests that as N increases, time taken decreases. Thus, measuring the computational

time taken when N = 4 should give the upper bound. The average computation time

for the Laplacian method is 3.7 minutes while for the TPS method, the average time

taken was slightly longer at 4.9 minutes. The TPS method took longer because of the

additional step of downsampling required.

As a rough estimate, the operator interaction time is taken to be proportional to the

number of clicks required to perform the segmentation. For the proposed algorithm,
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Table 4.5: Computational time taken for proposed algorithm (Mean ± standard
deviation).

Task Average timing (seconds)

Initialization 7±3

Finding landmarks 40±10

Mesh deformation (Laplacian) 30±10

Mesh overlay (Laplacian) 150±20

Mesh deformation (TPS) 60±10

Mesh overlay (TPS) 180±60

Total (Laplacian) 220±20

Total (TPS) 290±60

it is 3N , because only N landmarks for 3 MRI slices are required. If N is set to 6,

which has been found to be the minimum N for which the algorithm is stable when

using both Laplacian deformation and TPS, only 18 clicks are needed. This can be

considered minimal effort on the part of the operator. Granted, the TPS downsampling

task requires operator intervention in the form of specifying which downsampling

factor is reasonable, but this can be treated as the equivalent of a single click. If some

operator intervention is required during the search for points — plausible scenarios

include overlapping curves due to landmarks being placed too close to each other —

the initial landmarks or default parameters can be tuned for a better fit.

4.5 Summary

As shown by Experiment 1, the proposed algorithm, using either Laplacian deformation

or TPS, is highly robust requiring only a small number (N = 6) of operator-initialized

landmarks on 3 MRI slices. From Experiment 2, the algorithm has also been found

to be highly consistent, with <4% standard deviation in mesorectum volume for any
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N . Based on Experiment 3, the efficiency of the algorithm is decent, requiring a

computational time of under 5 minutes regardless of mesh deformation technique.

Comparing Laplacian deformation and TPS, Laplacian deformation requires less effort

on the part of the operator because there is no need for a downsampling action, and is

computationally faster by about 1 minute. There does not seem to be any statistically

significant difference on the mesorectum volume found whether Laplacian deformation

or TPS was used.
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Conclusion & Future Work

5.1 Limitations

While the proposed algorithm has been shown to be highly consistent, this is partially

due to experience with the algorithm, where initial landmarks were chosen to come

from the same region instead of at random. For example, for MRI axial slice #

25, it was observed that initializing landmarks near the corners gave good fitting of

the mesorectum boundary, and points elsewhere led to a poor fitting. However, in

reality, a operator may not know where to initialize landmarks for any given MRI

slice. To accommodate the variation in choice of initial landmarks, the ideal situation

would be that the proposed algorithm is able to clearly delineate the mesorectum

boundary regardless of where the operator-specified landmarks were, so long as they

were accurately placed on the mesorectum boundary.

Due to the exploratory nature of this study, there was only one set of axial MRI scans

was available, which is admittedly a significant limitation. More data from different

colorectal cancer patients, both male and female, will be required to better assess the

robustness and consistency of the proposed algorithm.

Currently, the prototype is implemented in Mathematica, which was used as Mathemat-

ica is a very powerful high-level programming language, enabling quick prototyping for

research, at the cost of computational speed. When the algorithm is to be implemented

47
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in production, the algorithm can be made more efficient by porting it into C++, where

computations could be sped up by an order of magnitude or two.

Finally, it should be noted that the research thus far is highly exploratory, and has yet

to be implemented in a real world setting and tested by doctors. In order to ascertain

the usefulness of the proposed algorithm, further work has to be conducted to refine

the performance of the algorithm, and tested by the intended users.

5.2 Conclusion

Colorectal cancer affects a significant proportion of people throughout the world, and

particularly so in Singapore. The mesorectum volume has been hypothesized to be

an independent predictor of a positive surgical margin, as well as of surgery type

(i.e. laparoscopic or open surgery) that has the best medical outcome for the patient.

Measurements of mesorectum volume from MRI scans via manual segmentation are

extremely time-consuming, tedious, and prone to intra-operator and inter-operator

variability. In standard hospital practice, mesorectum volume is not measured at all.

On the other hand, there is also no robust fully automated algorithm for this purpose,

as medical MRI images are prone to significant variation and thus difficult to segment

automatically.

Hence, a new semi-automated algorithm has been proposed to segment and measure

the mesorectum volume from 3D MRI images. The algorithm has 4 main steps, namely

initialization, finding landmarks that delineate the mesorectum boundary, deforming a

mesh via Laplacian deformation and Thin Plate Spline, and overlaying the deformed

mesh on MRI scans. Based on the results of Experiment 1, the algorithm has been

found to be robust when N ≥ 6, where additional landmarks are not required. As

shown by the results of Experiment 2, the algorithm is also highly consistent, and able

to consistently produce resultant mesorectum volumes with a standard deviation of
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less than 4%. In terms of efficiency, the results of Experiment 3 suggest that relatively

minimal input is required from the operator, and the computational time taken is

only about 4-5 minutes. The 3 objectives of robustness, consistency and efficiency

have been shown to be achieved by the experiments conducted. Laplacian deformation

was also found to be faster than TPS by about 30 seconds, and both methods of

mesh deformation result in highly similar volume measurements with no statistically

significant difference.

This new algorithm has the potential to augment the work of medical staff in analyzing

MRI scans, saving time and effort and leading to better patient outcomes. With

the right information at the doctors’ fingertips, the correct surgical decision can be

made more frequently, leading to a lesser number of cases with surgical complications.

Additionally, with this algorithm allowing consistent and quick measurements of the

mesorectum volume, further research on the effect of mesorectum volume on other

medical variables can be easily conducted. Going forward, more data will be required

to improve the proposed algorithm’s robustness, consistency and efficiency.

With the proposed algorithm being able to segment the mesorectum robustly and

reliably, one natural extension is to segment the rectum as well. The rectum lies

completely within the mesorectum, and it would be interesting to use the volume

of the mesorectum in the two cases of including and excluding the rectum volume,

as factors for surgical assessment. Beyond just using the mesorectum and rectum

volumes, the densities of the mesorectum and rectum, or equivalently, their intensities

in the MRI scan, can also be measured and used as factors for surgical assessment.
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