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Abstract

Liver cancer is a serious disease in human beings. An effective way to cure

liver cancer is the liver transplant operation. However, to make the surgical

plan, the doctors need to know the structure, location and thickness of the

hepatic vein. Therefore, hepatic vein segmentation is an initial and crucial

step in liver cancer surgery.

This thesis focuses on segmentation of hepatic veins from abdominal CT

images. The purpose of this work is to obtain a volumetric hepatic vein model

from the abdominal CT for liver transplant operation. To solve this problem,

this thesis proposes a fast marching method driven by Gaussian mixture mod-

els (GMM) to segment hepatic vein from CT images. Anisotropic smoothing

is applied to the original CT data to remove the noise. After that, GMMs

are built for both hepatic vein area and non-hepatic vein areas based on

hand-draw sampling points. The fast-marching propagation speed at each

location is controlled by the generated GMMs. After that, a parametric

cylinder model based algorithm is proposed to remove the unnecessary vena

cava from the segmentation result. The segmentation results are analyzed

and discussed.



Chapter 1

Introduction

1.1 Motivation

Liver cancer is a serious disease in human beings, and it is the third common-

est cancer followed by stomach cancer and lung cancer. As reported in the

Annual Statistics Reported on Causes of Death in 2004, an average of 23.1

out of 100,000 USA people died of liver cancer [27]. If the patient’s whole

liver is spoiled and cannot function anymore, The patient requires to plant

new liver tissue from other people through transplantation.

Liver transplant operation is such an operation that removes the whole

damaged liver from the patient and transplants a new and health liver tissue

into the patient’s body.

When transplanting part of liver from the donator to the patient, the

cutting path on the liver must be carefully designed based on the anatomy

of the patient’s liver organ in order to minimize damage to the liver vascula-

ture. The less the liver vasculature is damaged, the faster the transplanted
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liver tissue grows. So before the operation, surgeons must obtain accurate

information of the liver blood vessels, especially hepatic vein and portal vein,

which can help them to decide the liver cutting path. This information can

be obtained from liver CT images. Therefore, the segmentation of liver blood

vessels in CT images plays a crucial role in liver transplant operation.

Many segmentation algorithms have been designed for blood vessel seg-

mentation in the last few decades. They can be categorized into three groups:

centerline-based approaches, region-based approaches and boundary-based

approaches. However, none of these algorithms can segment tree-structured

blood vessels well from CT images. Centerline-based approaches extract

blood vessel centerlines and then connect the centerlines to form the vessel

tree, but they usually require a large amount of user inputs. The users is re-

quired to mark the start and end points for each vessel branch, which makes

it impossible to segment complex vessel trees. Region-based approaches try

to accumulate all image voxels that belong to the blood vessels, but they

are sensitive to noise and suffer from serious leakage problems. Boundary-

based approaches employ some parametric models to fit the boundaries of the

blood vessels in CT images, but they always require high computational cost,

and the output result is highly dependent on good initialization. As a result,

semi-automatic segmentation is still widely used in real medical applications,

which is rather tedious and time consuming. Therefore, new segmentation

algorithm is required to segment liver blood vessels in CT images.
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1.2 Thesis Objective

The objective of this thesis is to develop an algorithm for segmenting and

reconstructing 3D volumetric model of the hepatic veins from CT images.

The algorithm requires all the features below:

• The algorithm should produce a correct segmentation result of hepatic

veins, including left hepatic vein, right hepatic vein and middle hepatic

vein.

• The algorithm can produce a 3D volumetric model of the hepatic vein.

The relative location, orientation, thickness and connecting information

of each bifurcate vessel branches should be accurate enough for the

purpose of surgery planning.

• The algorithm should be effective and efficient.

• The algorithm should also require few user inputs and easy to use.

The main contribution of my thesis is that I develop an algorithm to

segment the tree-structured hepatic veins from CT images. It can segment

main branches as well as bifurcate branches of the hepatic vein at the same

time and it does not require specific initialization for each vessel branch. My

algorithm only requires a small amount of user inputs. Thus the doctors can

process each patient’s data and determine the surgical plan in a short period

of time. My algorithm can remove vena-cava from the segmentation result,

which may be wrongly segmented by other algorithms such as level-set and

region growing.
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1.3 Thesis Organization

To understand the difficulties and detailed requirements of hepatic vein seg-

mentation problem, it is necessary to discuss the liver anatomy first (Chapter

2). Then existing blood vessel segmentation algorithms are reviewed in Chap-

ter 3, including centerline-based approaches (Chapter 3.1), region-based ap-

proaches (Chapter 3.2) and boundary-based approaches (Chapter 3.3). Pros

and cons of these approaches are analyzed in Chapter 3.4. My algorithm

will be introduced in Chapter 4. Experiment results and comparison are also

given in Chapter 4. Chapter 5 concludes the whole thesis finally.
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Chapter 2

Background

2.1 Liver Anatomy

The classical descriptive anatomy nomenclature divides the liver into 4 lobes,

namely right, left, caudate and quadrate, based on external ligament visible

on the surface of the liver [38]. Right and left lobes are separated by the

falciform ligament on the anterior surface of the liver. On the inferior and

posterior surfaces, an H-shaped group of fissures and fossae delimits the four

lobes. Figure 2.1 shows the anterior and inferior views of a human liver, in

which the four lobes are marked.

Another nomenclature widely accepted by hepatic surgeons currently is

based on internal vascular and biliary architecture of the organ [38]. Internal

vascular includes hepatic veins, portal veins, gallbladder and so on. In this

nomenclature, the liver is divided into eight segments, each of which has a

branch of the portal vein at its center and a hepatic vein at its periphery.

Figure 2.2 illustrates the front view of the eight segments. As can be seen,
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(a)

(b)

Figure 2.1: The four lobes of the liver. Images are downloaded from
http://home.comcast.net/WNOR/liver.htm. (a) Anterior view of the liver.
(b) Inferior view of the liver.
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Segment Two to Segment Four belong to the left lobe, and Segments Five

to Segment Eight belong to the right lobe. Segment One is the caudate lobe

which cannot be seen from the front.

Hepatic vein is the blood vessel that drain de-oxygenated blood from

the liver back into heart through inferior vena cava (IVA). In liver anatomy,

hepatic vein has three main branches, whose roots are connected with inferior

vena cava. The three main branches propagate some tiny branches, which go

deeply into the eight segments of the liver. As can be seen in Figure 2.2, the

thick and straight tube is the inferior vena cava, and the three blue branches

are the hepatic vein, namely left, middle and right hepatic vein.

The portal vein is a blood vessel in the liver that drains blood from the

digestive system and its associated glands. In liver anatomy, the main portal

vein has two main branches, called left portal vein and right portal vein. The

left portal vein initially come into the caudate lobe, which is Segment one

of the liver. Then it divided into two branches. The ascending branch of

the left portal vein then travels anteriorly in the left intersegmental fissure

to divide the medial and lateral segments of the left lobe. The right portal

vein has an anterior branch that lies centrally within the anterior segment of

the right lobe and a posterior branch that lies centrally within the posterior

segment of the right lobe [38]. As can be seen from the lower part of Figure

2.2, the purple vasculature denotes the portal vein.

Hepatic artery is a short and thin blood vessel that supplies oxygenated

blood to the liver. Seen from Figure 2.2, the thin red blood vessel in the

lower part of the figure denotes the hepatic artery. It is not important in

liver surgery, so it will not be discussed in details in this thesis.
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Figure 2.2: Diagram of the liver segments (I-VIII) with their portal ve-
nous branches (violet), separated by hepatic veins (blue branches) and the
transverse fissure. Segments are numbered in a counterclockwise direction.
Segment 1 is the caudate lobe which cannot be seen from the front [38].

2.2 Liver CT Images

For a better understanding on the segmentation requirement and difficulties

on liver blood vessel segmentation, four CT image slices are shown in Figure

2.3 They are acquired from one patient, and shown in top-bottom order.

As can be seen from the images, the white ellipse in the middle of all

four image slices is the abdominal aorta, which is a thick and straight blood

vessel in abdomen. The gray ellipse lies on top-left of abdominal aorta is the

inferior vena cava. Abdominal aorta and inferior vena cava can be seen in

all liver CT slices.

Hepatic veins are vessel branches connecting the inferior vena cava. As

can be seen in Figure 2.3(a) and Figure 2.3(b), the two branches are right
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and middle hepatic vein, which connect the inferior vena cava. Left hepatic

vein cannot be seen here.

The main branches of the portal veins always occur at the lower part of

the liver. Seen from Figure 2.3(c) and Figure 2.3(d), the entrance of the

portal vein is a gap between live lobes. And the right and left portal vein

always form a ’H’ shape.
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(a) (b)

(c) (d)

Figure 2.3: Four CT slices of the liver. Slices are shown in top-bottom order.
Abdominal aorta (AA), inferior vena cava (VC), right hepatic vein (RHV),
middle hepatic vein (MHV), right portal vein (RPV) and left portal vein
(LPV) are marked in the slices. Data collected from National University
Hospital, Singapore.
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Chapter 3

Related Work

Vasculature segmentation on medical images is an essential step in medi-

cal diagnosis and surgery. However, segmentation methods vary depending

on the imaging modality, application domain, method being automatic or

semi-automatic, and other specific factors. Generally, current vasculature

segmentation methods can be categorized into three groups as follows:

• Centerline-based approaches

• Region-based approaches

• Boundary-based approaches

3.1 Centerline-based Approaches

The main idea of centerline-based approaches is to extract the vasculature

centerlines from the images and then reconstruct the vasculature tree by

connecting all the centerlines. Figure 3.1 shows an example of coronary
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(a) (b)

Figure 3.1: An example of coronary artery segmentation using centerline-
based method [30]. (a) the extracted centerline. (b) the segmentation result

artery segmentation using centerline-based approaches. The centerline is

first extracted from the image data, and then the boundary of the coronary

artery is obtained by some fitting procedure.

Different techniques can be applied to extract the centerlines. Niki et al.

[22] uses thresholding and 3D object connectivity procedure to obtain the

blood vessel centerlines. Tozaki et al. [39] extract the centerline by applying

the thresholding followed by a thinning procedure. The thinning procedure

erodes the thresholding result until one voxel thickness. Kawata [16, 17] uses

a graph description procedure to extract the curvilinear centerlines of the vas-

culature. Their procedure consists of three steps: thresholding, elimination

of the small connected components and then a 3D fusion process.

Sorantin et al. [37]proposed a 3D centerline detection method to segment

tracheal stenoses in spiral CT images based on fuzzy connectedness theory.

First, the tracheal stenoses is roughly segmented using fuzzy connectedness.
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Tracheal stenoses is extracted as a single object started from a user-supplied

seed point. Then a 3D dilation procedure is applied to handle the uncertain

boundary points due to partial volume effect. Second, a 3D thinning oper-

ation is applied to the segmented tracheal stenoses. In the third step, the

centerline is obtained using a shortest path searching algorithm. Here the

begin and end points of the centerline should be manually marked. Then

a smooth procedure is applied to the centerline. Finally the cross-sectional

diameter of the vessel is calculated.

Aylward et al. [3], Bullitt [2], Chandrinos [5], Florin [9] and Guo [13] use

ridge-based methods to extract the centerlines. Ridge-based methods treats

the gray-scale images as 3D elevation maps in which intensity ridges approx-

imate the skeleton of the tubular objects (See Figure 3.2). After creating the

elevation map, ridge points are local peaks and can be detected. The ridge

based centerline detection algorithm consists of four steps. In the first step,

the elevation map is created based on image intensity. In the second step,

a seed point is manually marked as the starting point. Tn the third step,

an ridge point can be obtained by tracing the elevation map from the seed

point along the steepest ascent direction until reaching the local peak. In the

fourth step, the entire centerline can be obtained by tracing from the ridge

point in step three along the tangent direction.

Centerline based approaches have two advantages. First, it can get the

structure information of the vascular structure. So it can used to segment

complex tree structured blood vessels. Second, centerline based approaches

do not need specific initialization. However, centerline based approaches are

sensitive to noise, which makes them impossible to extract all tiny blood
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Figure 3.2: An example of the elevation map [3]. (a) An MRI brain image
slice. (b) Its corresponding elevation map in 3D.

vessels in medical images such as CT and MRI where noise occurs. More-

over, besides the blood vessel centerline extraction, the blood vessel surface

reconstruction procedure is also an important issue in blood vessel segmenta-

tion area. Therefore centerline based approaches are always combined with

other sophisticated segmentation approaches such as geometric model based

approaches.

3.2 Region-based Approaches

3.2.1 Region Growing Approaches

Region growing approaches segment object of interests by starting from some

seed points and incrementally recruiting image pixels to a region based on

some predefined criteria. Value similarity and spatial proximity [14] are two

important segmentation criteria. It assumes that the neighboring pixels that
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have similar intensity belong to the same object.

Region growing approaches are widely applied in vasculature segmenta-

tion. Yim et al. [45] segments vessel tree structure form MR angiogram

using ordered region growing methods, which can resolve the ambiguities in

the tree branching due to vessel overlap by incorporating a prior knowledge

about the bifurcation spacing. Schmitt et al. [31] uses region growing meth-

ods combined with thresholding to segment vessels from 3D rotational XRA

image volumes.

O’Brien et al. [23]uses region growing method to segment coronary ar-

teries from temporal angiogram sequence. Their algorithm consists of three

steps. In the first step, a seed point is manually given, and the coronary ar-

teries are approximatively segmented using region growing. The thresholding

value is given by experience. In the second step, the centerline of coronary

arteries are obtained by balloon test. In the third step, the noise are removed

by interpolating spatial and temporal connectivity information into the an-

giogram sequence. Figure 3.3 shows an example of O’Brien’s approach. All

their segmentation are done in 3D.

Region growing approaches have at least two advantages. They are ca-

pable of correctly segmenting regions that have the same properties and are

spatially separated, and they generates connected regions. However, region

growing approaches have some limitations. First, the segmentation result is

highly dependent on the definition of homogeneity criteria. If it is not prop-

erly chosen, the regions may leak out into other regions or merge with other

regions out of the object of interest. Second, it is difficult to determine the

homogeneity criteria in images with low contrast. Therefore, region grow-
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(a) (b)

(c)

Figure 3.3: An example of coronary artery segmentation using region growing
method [23]. (a) The original image. (b) The intermediate segmentation
result using region growing. (c) The final result after interpolating spatial
and temporal connectivity information.
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ing approaches cannot work well on CT and MR images compared with an-

giogram. Third, region growing approaches are sensitive to the noise, causing

extracted regions to have holes or even become disconnected. To overcome

this drawback, homotopic region growing approach [10] is proposed, in which

the structure information between an initial region and an extracted region

is preserved. Fuzzy analogies to region growing have also been developed

[11].

3.2.2 Morphological Operator-based Algorithm

The main idea of morphological operator based algorithm is to detect the

object forms or shapes from the images based on a set of pre-defined struc-

turing elements. Usually a set of structuring elements is defined based on

the prior knowledge, then some morphological operators apply structuring

elements to images. Dilation and erosion are the two main morphological

operators. Dilation expands objects by a structuring element, filling holes,

and connecting disjoint regions. Erosion shrinks objects by a structuring

element.

A lot of segmentation methods have been proposed using morphological

operator. Trackray [40] uses morphological operators to segment vascular

structures with a set of eight morphological operators, each of which rep-

resents an oriented vessel segment. Figueiredo [8] uses morphological edge

detector to segment vessel contours in XRA angiogram. Eiho [6] proposed

a method using top − hat operator to segment coronary arteries from cine-

angiogram.
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Figure 3.4: The structuring element set [27].

Park [27] proposed their morphological operator based algorithm to seg-

ment liver vessels from abdominal CT image slices. The algorithm consists

of four steps. In the first step, the liver region, which is the area of inter-

est, is segmented approximately using thresholding. In the second step, a

range of structuring elements are defined based on prior knowledge. In liver

vessel segmentation where the object of interest is the tubular structure, the

structuring element set is made up of circle shape and stick shape with many

angles, as shown in Figure 3.4. In the third step, each image slice is di-

lated and eroded by the structuring elements to obtain the liver vessels. In

the fourth step, the 3D liver vessels are reconstructed by adding all slices

together.

Morphological operation based algorithm has several advantages. First

it does not need any specific initialization, which makes it possible to design

the fully-automatic algorithms. Second it focuses less on the structure of the

object of interest. Therefore, it can work well on the vessels whose structure

varies between different persons. However, morphological operation based

18



(a) (b)

(c) (d)

Figure 3.5: An example using morphological operation based algorithm to
segment liver vessels from CT image slices [27]. (a) One CT image slice. (b)
The area of interest after thresholding. (c) The segmentation result. (d) The
3D reconstruction result of the liver vessel.

19



algorithm is sensitive to noise. So it cannot precisely segment tiny blood

vessels where noise occurs.

3.3 Boundary-based Approaches

3.3.1 Snake

Snake [15], which is also called active contour model, was first proposed by

Kass, Witkin, and Terzopoulos in 1987. The snake model is represented by

a series of connected points. and it can be deformed under the influence of

internal forces, image forces and external forces. Internal forces are defined

to constrain the stretching and banding of the snake, which keep the snake

smooth throughout the deformation. Image forces are the forces derived from

the image that drive the snake towards the desire feature of interest, such

as the edges. External forces are the forces that constrain the deformable of

the snake, which is seldom used in medical applications. Figure 3.6 shows

an examples of applying snake model to segment 2D MR heart image. The

snake model is initialized as a circle and then allowed to deform o the inner

boundary of the left ventricle.

Snake is regarded as a good model in many medical segmentation appli-

cations. It can be deformed to any shape as long as all the forces are well

defined, and it can produce a smooth and accurate boundary of the object,

even if the edges of the object are disjoint in some area. However, snake also

has some disadvantages. For example, It does not converge well to concave

features, because the internal force of the snake can limit their geometric flex-
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Figure 3.6: A 2D example using snake model to extract the inner wall of the
left ventricle of a human heart from an MR image [29]. The snake model is
initialized as a circle and then allowed to deform o the inner boundary of the
left ventricle

ibility. It is also sensitive with the initialization and noise. Furthermore, the

structure information must be known in advance since snake cannot segment

objects with shape changes.

Several variations of snake are proposed to overcome these shortcomings.

One variation is the gradient vector flow (GVF) snake [44, 42, 43] proposed

by Xu and Prince. GVF field is a vector field derived from the diffusion of

the gradient vectors of a gray-level or binary edge map generated from the

input image. Then GVF snake uses the GVF field as the image force, which

is different from the original snake that use edge map as the image force.

GVF can attract the snake to fit the concave part of the object in the image.

As is shown in Figure 3.7, GVF snake is less sensitive to the initialization

and can segment concave object. However, it is still sensitive to the noise.
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: A comparison between original snake and GVF snake [42]. (a)
Convergence of a traditional snake. (b) image force of the original snake (c)
close-up of the concave part. (d) Convergence of a GVF snake. (e) GVF
snake image forces. (f) Close-up of the concave part of GVF.
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(a) (b)

Figure 3.8: Level set. (a) A 2D contour. (b)The level set surface (red). The
zero level set (blue).

Snakes can also be extended to 3D, which is referred to as the active

surface. Usually a 3D surface is represented by a set of correlated control

points, such as the surface mesh. External force, internal force and image

force can be defined similarly as they are in 2D snake. However, due to the

large amount of control points, 3D snake is reported as time-consuming.

3.3.2 Level Set

Level set methods [35, 33, 34] is proposed by Sethian and Osher in 1988. It

solves the segmentation problem in one higher dimension.

Let Γ denote a closed curve in 2D. Then a level set function d = φ(x(t), y(t), t)

is defined (The red curve in Figure 3.8) to represent the distance d of the

point (x, y) from Γ. d is positive if the point (x, y) is outside Γ, d is negative

if the point (x, y) is inside Γ, and d is zero if the point (x, y) is on Γ. The

intersection of φ(x(t), y(t), t) and the xy plane (the blue circle in Figure 3.8)

gives the contour of Γ. Therefore, the contour Γ can be obtained by solving

equation φ(x(t = 0), y(t = 0), t = 0) = 0, which is referred to as the zero

level set.
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The level set method works as follows. In the initialization step, an initial

shape of Γ is given by the initial contour of φ(x, y, t = 0). After that the

level set function φ(x, y, t) moves up and down alone the φ axis under a pre-

defined force F. The force is usually made up of a constant inflation term, an

internal force based on the curvature of the zero level set, an image force based

on the image information such as edges. This force gives the propagation

speed of Γ in its normal direction. Numerical methods can be applied to

approximate the equations of motion by computing φ(x, y, t+ ∆t) = 0 given

φ(x, y, t+ t) = 0, where ∆t is the time step. This evolution will iterate until

the level set function converges.

Level set method is applied in many vasculature segmentation applica-

tions [20, 32]. Figure 3.9 [32] shows an example of using level set to segment

arteries. The contour starts from a circle inside the blood vessel and prop-

agates to fit the boundary of the arteries. Level set method can also be

extended from 2D to 3D [41, 19, 26, 12]. For example, Magee [19] uses

triangular-mesh model and 3D level set method to segment abdominal aortic

aneurysms (See Figure 3.10), and Grunerbl [12] uses 3D level set method and

geodesic contour to segment Femur from a range of CT slices.

The advantage of the level set method is that the level set method makes

it very easy to follow shapes that change topology, for example when a shape

splits into two, develops holes, or the reverse of these operations. Also,

the intrinsic geometric properties of the contour can be easily determined

from level set function. Level set can be easily extended to segment objects

in higher-dimensional data, where the formulation is the same for higher-

dimensional propagating hyper-surfaces. However original level set method
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Arteries segmentation using level set method [32]. (a) The initial
contour. (b-e) The contour expands to fit the contour of arteries. (f) The
segmentation result.
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Figure 3.10: Segmentation of abdominal aortic aneurysms using 3D level set
[19].

does not have any geometrical constrains. Therefore the level set may leak

into some undesired regions when the input image data is not clear enough.

To overcome the leakage problem, Nain [21] proposed a vessel segmentation

method combining the level-set model with a soft shape prior, which is re-

ferred to as the shape driven flow. Figure shows the segmentation result using

shape driven flow. As can be seen, in the areas where the image information

is ambiguous, the algorithm overcomes the leakage problem.

The general level set method is also reported as time-consuming, because

in each iteration the φ value of each pixel should be re-computed. Some

improvement have been done to increase the algorithm efficiency, such as

the narrow band [1] and fast marching [36]. Narrow band method only

updated the φ value at a thin region around the propagating contour, because

the pixels far away from the contour do not affect the propagation. Fast

marching method is very efficient for the case in which the contour is always
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(a) (b)

(c) (d)

Figure 3.11: A comparison of the level set segmentation algorithm with and
without shape driven flow [21]. (a) 2D segmentation result without shape
driven flow. (b) 2D segmentation result with shape driven flow. (c) 3D
segmentation result without shape driven flow. (d) 3D segmentation result
with shape driven flow.
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Figure 3.12: A typical parametric model of blood vessel [7].

propagating in the same direction at a particular speed.

3.3.3 Parametric Model-based Approaches

Parametric model based approaches define objects perimetrically. In vascular

structure segmentation applications where blood vessels are tube-like objects,

blood vessels are defined as a set of overlapping ellipsoids. After that, the

initial model is deformed and aligned to each 2D slice of a 3D volumetric

data to get a best fit.

Generally, the parametric model consists of a space curve, or axis, and a

cross-section function defined on the axis [18]. In blood vessel segmentation

area, the blood vessels are cylindrical shape, so the cross-section function

is usually an ellipse. Therefore, the blood vessels are defined by a cross-

sectional element that is swept along the axis using some sweep rules. (See

Figure 3.12)

Pellot [28] used parametric model based method to segment blood vessels

with concentric stenoses from two-view XRAs. Their model are initialized

using a stack of parallel 2D ellipses (See Figure 3.13) and then the initial

model is deformed to fit the two-view XRA images. An adaptive simulated

28



Figure 3.13: A blood vessel model using a stack of parallel 2D ellipses [28].

annealing optimization algorithm is used to control the deformation. Prop-

erties on the optimal solution are described by a Markov Random Field. The

method is reported to perform well both on single vessels and on branches.

Bors [4] uses geometric model to segment tooth pulpal blood vessel from

image volume data. In their approach, the object is considered as a stack

of overlapping ellipsoids whose parameters are found using the normalized

first and second order moments. The segmentation process is based on the

geometrical model and gray-level statistics of the images. It consists of two

steps. In the first step, the center of the ellipsoids are estimated using an

extended Hough Transform algorithm in 3D space. Then a Radial Basis

Function (RBF) network classifier is employed to model the 3D structure

and gray-level statistics. In their RBF classifier, each unit corresponds to an

ellipsoid. The learning of the RBF network is based on the a-Trimmed Mean

algorithm.
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(a) (b)

(c) (d)

Figure 3.14: Segmentation of tooth pulpal blood vessel using geometric model
[4]. (a) The input image slices. (b) 3D visualization of the stack of frames.
(c) The segmentation result using RBF algorithm. (d) Segmentation result
using α-Trimmed Mean RBF algorithm.
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O’Donnell [24, 25] use a form of geometric cylinder model to segment

cylindrical structures from CT angiogram. The model is initialized as a

volume created by cross-section swept along a 3D curve, which is regarded

as the centerline. The centerline is represented by a 3D cubic B-spline and

the cross-section swept is always in the plane orthogonal to the centerline to

form the cylinder. The strength of the model comes from additional finite

element (FEM) mesh-like component lying on top of their model to address

the fine detail in complex structures. In order to insure a smoothness of

fit, this mesh-like component is endowed with a stretching penalty which

penalizes sharp edges. Figure 3.15 represents the segmentation result of the

aortic arc from CT angiogram.

Parametric model based approaches have a lot of advantage. They can

guarantee the smoothness and robustness of the reconstructed tubular sur-

face. Also, parametric model based approaches do not have leakage problems,

because the shape is preserved in the segmentation procedure. However,

parametric model based approaches has three limitations. First, it makes

the assumption that the vasculature should be tube-like object. Therefore,

they can only segment some parts of the vasculature where this assump-

tion holds. Second, parametric model based approaches are sensitive to the

initialization. If not initialized properly, parametric model based approaches

may fail in some cases where the vascular structures are very complex. Third,

parametric model based approaches requires large quantities of computation,

which makes it very slow where the blood vessel structure is complex.
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Figure 3.15: The final result of O’Donnell’s model to segmented a healthy
human aortic arc from spiral CT angiogram data. [25]
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3.4 Summary

In this section current segmentation algorithms on blood vessel segmen-

tation are reviewed, including centerline-based approaches, region-growing

approaches, morphology-based approaches, snakes, level-set and parametric

model-based approaches. Pros and cons are also analyzed.

Centerline based approaches perform well in maintaining complex vascu-

lar structure, and do not need specific initialization, but they are sensitive to

noise, which makes it impossible to segment tiny blood vessels where noise

occurs. So in hepatic vein segmentation, pure centerline based approaches

will overlook some tiny hepatic vein branches due to noise.

Region growing based approaches can correctly segment regions that have

the same properties and are spatially separated. However, in hepatic vein

segmentation, it is very hard to define the grouping homogeneity criteria.

Moreover, there is a lot of noise in liver CT images, which may cause seri-

ous leakage problem. Therefore, region growing based approaches are not

applicable in hepatic vein segmentation.

Morphological operation based approaches are not sensitive to the initial-

ization, and they focus on not the tree structure of the object but the object

shape. Therefore, it cannot produce accurate result.

Snake is deformable model based approach, which can be deformed to any

shape as long as all the forces are well defined, and it can produce a smooth

and accurate boundary of the object, even if the edges of the object are

disjoint in some area. However, snake cannot handle structure change during

the segmentation procedure. In hepatic vein segmentation, the structure of
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the hepatic vein is unknown, so the initialization of the snake will be very

specific and complex. Therefore, snake is not applicable in hepatic vein

segmentation.

Level set method can easily segment objects with topology change. And

it do not need any specific initialization. The intrinsic geometric properties

of the contour can be easily determined from level set function. However, in

hepatic vein segmentation, the blood vessel boundaries in CT images are not

so clear, and the blood vessels have narrow diameter in some area. As a result,

the initial contour (or 3D surface) cannot propagate to fit the boundary of

the hepatic vein precisely. In some area the contour may stop propagating

due to the narrow vessel, and in some area the contour may leak out due to

the fuzzy vessel boundary. So some modification should be applied on level

set method to overcome these drawbacks..

Parametric model based approaches define the initial blood vessel model

parametrically, and then deform the model to fit the image data. They can

produce a smooth and robust 3D blood vessel segmentation result. However,

they require large amount of user input, especially when segmenting tree-

structured blood vessels.
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Chapter 4

Fast Marching Method Driven

by Gaussian Mixture Models

Segmentation of tree-structured blood vessel in CT image slices is a crucial

step in medical diagnosis and surgery. The related work reviewed in Chapter

3 shows that this problem has not been well solved. Existing algorithms can

perform fairly in single branch blood vessel segmentation. However, they

cannot work well on tree-structured blood vessel with many branches. For

example, centerline based approaches require a large amount of user input

to segment each branch separately, region-based approaches are not robust

enough, and parametric-model-based algorithm are slow and sensitive to the

initialization. The major contribution of this research is developing a fast and

accurate semi-automatic blood vessel segmentation algorithm which requires

a small amount of user inputs and is easy to use.
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4.1 Problem Description

4.1.1 Input Data

The input data of this project are liver CT images collected from National

University Hospital. In our experiment, every data set is made up of about

320 slices, and the size of each CT slice is 512 × 512 pixels. The inter-slice

thickness is 1.0mm.

Figure 4.1(a) represents the main branches of hepatic vein in data set 1.

As can be seen, there are six main branches in this data set. The white area

in the blue circle is the right hepatic vein, the two vessel in the green area is

the middle hepatic vein, while the three vessels in the red circle is the right

hepatic vein.Figure 4.1(b) represents the main branches of hepatic vein in

data set 2. The left, middle and right hepatic veins are also labels with blue,

green and red correspondingly.

However, compared with data set 1, data set 2 has fewer branches. As can

be seen, there are only one branch in the middle hepatic vein, and only two

branches in the right hepatic vein. This diversity is very common between

human beings. Our algorithm is capable to segment all types of hepatic vein

without special initialization.

4.1.2 Overview of Algorithms

According to the characteristic of the hepatic veins, fast marching is selected

as the main segmentation method in my algorithm. Gaussian mixture model

(GMM) is chosen to determine the propagating speed during the propagation
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(a)

(b)

Figure 4.1: The diversity of hepatic vein between patients. The vessel ladled
with blue, green and red are left, middle and right hepatic vein correspond-
ingly. Data collected from National University Hospital, Singapore.
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procedure. Parametric-cylinder-model is selected to segment the vena cava

and remove it from the segmentation result. In general, our hepatic vein

segmentation algorithm consists of three steps as follows:

• Noise Removal of CT data

• Hepatic vein segmentation using fast marching method

• Vena cava removal using cylinder-model-based method

The flow of the algorithm is shown in Figure 4.2.

4.2 Hepatic Vein Segmentation Algorithm

4.2.1 Noise Removal

Noise in CT images has many origins. Generally they can be categorized into

two groups: The noise caused by human body motion and the noise caused

by X-ray CT technique.

Human body motion during the imaging procedure may cause the mis-

alignment between CT slices. A global registration algorithm can remove

this kind of noise well. In my experiment data, the patient kept still during

the imaging procedure, so it is not necessary to align all CT slices before

segmentation.

The noise caused by CT techniques is called quantum noise. This kind

of noise is caused by the radioactive source itself, which is unavoidable in

CT images. The higher the image resolution is, the more this noise occurs.

In our experiment, the resolution in each CT slice is between 0.63mm and
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Figure 4.2: The flow of my algorithm.
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0.74mm per pixel and the inter-slice thickness is 1.0mm, and this kind of

noise cannot be overlooked in the experiment. Therefore, a noise removal

procedure should be applied before segmentation.

In my experiment, anisotropic diffusion is selected as the smoothing filter.

Anisotropic diffusion is an non-linear smoothing filter, which is the solution

to the heat equation, with a variable conductance term to limit smoothing

at edges. The kernel equation is given as follows.

∂I(x)

∂t
= ∇C(x) · ∇I(x) + C∆I(x) (4.1)

where I(x) denotes the pixel value at location x, C(x) denotes the conduc-

tance value at location x. ∇ is the gradient, and ∆ is the Laplacian operator.

The variable conductance term C(x) is given by

C(x) = e−(
‖∇I(x)‖

K
)2 (4.2)

here the constant K controls the sensitivity to edges and is chosen experimen-

tally. In my experiment K = 0.25. Figure 4.3 represents the noise removal

result using anisotropic smoothing filter. As can be seen, the quantum noise

is removed significantly, and the boundary of the hepatic vein is preserved.

4.2.2 Hepatic Vein Segmentation Using Fast Matching

Method

Fast marching method is introduced by James A. Sethian as a numerical

method for solving boundary value problems. Typically, such a problem
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(a)

(b)

Figure 4.3: Noise removal using anisotropic smoothing filter. (a) The original
CT slice. (b) The noise removal result.

41



describes the evolution of a closed curve (or a surface in 3D) as a function

of time T with speed F (x) in the normal direction at a point x on the curve

(or a surface in 3D). The force F is always be positive, such that the curve

(or surface in 3D) can only propagate outward. If the force is large, the cost

time for the point arriving the next position is small. If the force is small,

the cost time for the point arriving the next position will be large. If the

force equals 0, the cost time will be infinite, and the propagation stops.

The definition of the force F varies in different applications. In my algo-

rithm, the force is calculated using Gaussian mixture model.

In the first step, one CT slice that containing the hepatic vein is selected,

and some strokes are marked to identify the hepatic vein area and non-

hepatic vein area. Figure 4.4 is an example of stroke image in my algorithm.

The red lines denotes the hepatic vein area, and the green lines denotes all

non-hepatic vein area.

After that the pixel values on the red strokes and green strokes are ob-

tained from CT data. Histograms for the hepatic vein area and non-hepatic

vein area are build separately.

The segmentation for hepatic vein area and non-hepatic vein area are

done parallelly. The procedure of non-hepatic vein area segmentation is the

same as that of hepatic vein area. For simplicity, here we only describe the

procedure of hepatic vein area segmentation.

Figure 4.5 represents the intensity distribution of both the hepatic vein

area and non-hepatic vein area. As can be seen in Figure 4.5, the intensity

distribution of the hepatic vein varies from 100 to 460, and the intensity

distribution of non-hepatic vein area varies from -150 to 180. Several peaks
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Figure 4.4: An example of the stroke image. The red strokes denotes the
hepatic vein area, and all green strokes denotes the non-hepatic vein area.
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can be seen in both histograms. Gaussian mixture model is selected to model

the intensity distribution of the pixels. However, the number of peaks and

peak values varies due to the individual differences in different data sets,

so it is impossible to assign constant parameters to model the distribution.

To solve this problem, we developed an adaptive binning method to assort

all pixel values into different clusters automatically. The adaptive binning

method works as follows.

All pixel values V1, V2, . . . , Vm are added into an vector and each value is

picked out one by one in a random order. To each pixel value Vi that are

picked out, calculate the distance Di,j between Vi and the centroids of all

existing clusters, C1, C2, . . . , Cn. Then the closest cluster is found. If the

closest distance is smaller than a threshold value T (in my experiment T =

30), Vi is added in to this cluster, and the centroid of the cluster is updated.

If the closest distance is larger than T , a new cluster is generated, and Vi will

be the centroid of the new cluster. After all pixel values are assigned, those

clusters with less than 30 pixel values will be deleted au7tomatically. After

all clusters C1, C2, . . . , Cn are built, the Gaussian parameters are estimated

for each cluster. Then to each value v that may occurs in the image, the

probability table is built based on the formula below:

P (Pixelvalue = v|Pixel ∈ Foreground) = Σn
i=1P (Pixel = v|Pixel ∈ Ci)·Wi

(4.3)

where Wi is the weight of Ci given by :

Wi =
|Ci|

Σn
k=1|Ck|

(4.4)
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(a) (b)

Figure 4.5: The histogram of the pixel values that are shown in Figure 4.4.
(a) The histogram of hepatic vein area. (red stroke in Figure 4.4) (b) The
histogram of non-hepatic vein area. (green stroke in Figure 4.4

After that the speed function for fast marching method is assigned to

each pixel based on the probability table. In the area where this pixel is

more probable to be the hepatic vein area, the speed at this pixel is large.

In the area where this pixel is less probable to be the hepatic vein area, the

speed at this pixel is small or even equals to 0. The starting seed points are

the pixels marked in the stroke image, and the stopping time is 300 in my

experiment.

Figure 4.6 represents the foreground volume and background volume us-

ing fast marching method with stopping time 300. As can be seen, there

are lots of overlapping between these two volumes. So a merging procedure

need to be applied to obtain the hepatic vein area. Our merging criteria is

as follows. Let FG denotes the To any voxel in the CT volume:

• If the voxel is in foreground volume and not in background volume, it

is the hepatic vein voxel.

• If the voxel is not in foreground volume and in background volume, it
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is the non-hepatic vein voxel.

• If the voxel is either in foreground volume or in background volume, it

is the non-hepatic vein voxel.

• If the voxel is both in foreground volume and in background volume,

compare the arriving time in fast marching procedure. If the arriv-

ing time in foreground volume is smaller, it is the hepatic vein voxel.

Otherwise it is the non-hepatic vein voxel.

The merging result can be seen in Figure 4.7. As can be seen, all the

branches are successfully segmented. However the undesired vena cava is

also segmented in the result. This can not be avoided using fast marching

method, because the hepatic vein connects with vena cave and the pixel

intensity is the same in CT images. So we should use some other method to

remove the vena cava.

4.2.3 Vena Cava Removal

As discussed in the previous section, the vena cava is also segmented us-

ing GMM-driven fast marching method, which is not a part of the hepatic

vein. So an additional procedure is required to cut off vena cava from the

segmentation result.

Seen from Figure 4.7, the vena cava is a straight and tubular shape object.

So in my framework, parametric cylinder model based algorithm is selected

to segment vena cava individully. The algorithm consists of two steps: The

centerline detection and the cylinder fitting.
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(a) (b)

Figure 4.6: The foreground volume and background volume in hepatic vein
segmentation algorithm. (a) The foreground volume with stopping time 300.
(b) The background volume with stopping time 300.

Figure 4.7: The merging result from foreground volume and background
volume shown in Figure 4.6
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Centerline Detection

Centerline detection algorithms are designed to find the centerlines of the

entire blood vessel. It is based on the assumption that the centerlines are

the brightest lines along the blood vessels. In my algorithm, the centerline

detection method proposed by [30] is applied.

Given the begin point V0 and end point Vn in an image I, the algorithm

can automatically find a series of adjacent points v1, v2, . . . , vn−1 that mini-

mize the cost function

Cost = Σn−1
k=0(w1(1− Ik)) + w2 · d(k, k + 1) (4.5)

The first term of the cost function is the intensity cost. Ik is the normalized

image intensity at point vk. The second term is the distance cost, representing

the distance between points vk and vk+1. w1 is the intensity weight and w2

is the distance weight.

After the centerline is obtained, the centerline is resampled and smoothed

using B-spline interpolation.

Cylinder Fitting

The parametric cylinder model represents a tubular shape object as a series of

n connecting cylinders. Each cylinder consists of 4 parameters: the centerline

location (x, y, z) and the radius r. The parameters of the cylinder model are

estimated by minimizing the cost function

Cost = Σk=n−1
k=1 (w1 · Ci(k) + w2 · Cr(k) + w3 · Cd(k)) (4.6)
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This cost function is similar with the cost function in [30]. However here we

use global cylinder fitting instead of local sphere fitting in [30].

The first term Ci(k) is the intensity. It aims at finding an optimal cylinder

between centerline pint Pk and P(k+ 1) that can classify the voxels into two

groups with minimum intensity difference. In practice, the definition of Ci(k)

is given by

Ci(k) = Σd(P ′,Pk,Pk+1)<r|I(P ′)− Iin|+ Σr<d(P ′′,Pk,Pk+1)<2r|I(P ′′)− Iout| (4.7)

where d(P ′, Pk, Pk+1) represent the point-line distance between point P ′ and

line (Pk, Pk+1). Iin is the average intensity of voxels in vena cava area, and

Iout is the average intensity of voxels outside vena cava. There two parameters

are given by experience.

The second term Cr(k) is the radius cost. It is defined by

Cr(k) = |r(k + 1)− r(k)| (4.8)

It reveals that the radius should not change too much between adjacent

cylinders.

The third term is the distance constrain. The center of the cylinder should

be as close as the corresponding centerline point obtained in the previous

step. So this term is defined by

Cd(k) = d(Pk, Pk0) (4.9)

The final cost function is the combination of there three terms with
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weights that are given in 4.6. w1, w2 and w3 are the weights defined by

users. The parameters are estimated using Insight Toolkit. The segmented

vena cava are deleted from the hepatic vein.

Figure 4.8 shows the segmented hepatic vein after vena cava removal. As

can be seen, the undesired vena cava is successfully removed from the hepatic

vein.

4.3 Performance Measure

As a comparison, region growing method is applied to the same data set.

Figure 4.9 shows the comparison between region growing result and my result.

As can be seen, region growing methods as serious leakage problem. Its result

includes not only the hepatic vein but also the portal vein and vena cava. So

it is not applicable in hepatic vein segmentation area.

Level-set algorithm is a state-of-art parametric segmentation algorithm

which is widely applied in medical image segmentations. So in my experi-

ment, level-set algorithm is also applied to the same data set as a comparison.

The level-set algorithm in my experiment is implemented by ITK-SNAP. As

can be seen in Figure 4.10, the level-set algorithm with low smooth constrain

has a serious leakage problem. The segmentation result leak to the liver

tissue and abdominal muscle area. Figure 4.11 is the segmentation result

using level-set algorithm with high smooth constrain. As can be seen in Fig-

ure 4.11, the propagating surface cannot reach to the end part of the blood

vessel. That is because the smooth constraint keeps the shape and prevents

the surface to propagate outwards. Figure 4.12 is the segmentation result
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(a)

(b)

Figure 4.8: The vena cava removal result. (a) The hepatic vein before vena
cava removal. (b) The hepatic vein after vena cava removal.
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(a)

(b)

Figure 4.9: The comparison between region growing and my result. (a) The
region growing result. (b) My result.
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Table 4.1: The cost time comparison between my algorithm and existing
algorithms)

Cost Time Drawback

My algorithm 115 seconds Overlook some tiny
bifurcate branches

Region growing 47 seconds Serious leakage
Levelset with low 337 seconds leakage
smooth constrain

Level Set with high 291 seconds Cannot reach the end part
smooth constrain of hepatic vein branches

of my algorithm at the same slice. Compared with level-set algorithm, my

algorithm produces a much better result.

The efficiency is also compared between my algorithm, level-set algorithm

and region growing. Table 4.1 represent the time cost of each algorithm. The

time is recorded in my desktop PC (2G memory and 2.3GHz CPU). As can

be seen, my algorithm is 2-3 times faster than level-set algorithm. Region

growing algorithm is faster than my algorithm, but it cannot overcome serious

leakage problem and cannot produce satisfactory result.
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(a)

(b)

Figure 4.10: The segmentation result using level-set with low smooth con-
strain. (a) The 3D segmentation result. (b) The cross-section between one
image slice and the segmentation result.
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(a)

(b)

Figure 4.11: The segmentation result using level-set with high smooth con-
strain. (a) The 3D segmentation result. (b) The cross-section between one
image slice and the segmentation result.
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(a)

(b)

Figure 4.12: The segmentation result of my result. (a) A selected image slice.
(b) My segmentation result.
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Chapter 5

Conclusion and Future Work

Blood vessel segmentation is a crucial step in medical diagnose and diagnosis.

In this thesis, existing blood vessel segmentation algorithms are reviewed.

The literature review shows that none of current algorithms can segment

hepatic vein in CT images well.

This thesis describes the segmentation algorithm on hepatic vein in CT

images. First, anisotropic filter is applied on CT data to remove noise. After

that, Gaussian mixture models are build for both hepatic vein area and non-

hepatic vein area based on a stroke image drawn by the user. Then the

fast marching algorithm are run in parallel on the same data set. An first-

come-first occupy criteria is set in the merging procedure to solve the leakage

problem. Finally the vena cava are segmented and removed from the hepatic

vein using parametric cylinder model based segmentation.

The main contribution of my thesis is that I develop an algorithm to

segmented the tree-structured hepatic veins from CT images. My algorithm

satisfies all the objectives proposed in Chapter 1.2. As discussed in Chapter 4,
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my algorithm can successfully segment the main branches as well as bifurcate

branches of the hepatic vein. My algorithm can also remove vena-cava from

the segmentation result, which may be wrongly segmented by some other

algorithms such as level-set. The output of my algorithm is the 3D volumetric

model of hepatic vein, and the segmentation result is verified by doctors in

National University Hospital. The location, orientation and thickness of

the hepatic vein is accurate enough for liver transplanting operation. My

algorithm is efficient and effective. In real applications my algorithm requires

only about 115 seconds to obtain the volumetric hepatic vein model. My

algorithm requires little amount of user input. The doctors only require

several seconds to draw several simple strokes in one selective images and

mark the begin and end points of the vena cava.

A comparison between my algorithm and existing algorithms is also given.

Region growing and level-set are selected as a comparison because they are

two state-of-art algorithms that are widely applied in medical image segmen-

tation applications. My algorithm requires 115 seconds to obtain the result.

The main branches are successfully segmented and the vena-cava is removed.

Only some unimportant bifurcated branches are missed. Region growing is

3 times faster than my algorithm, however it has serious leakage problem.

Level-set algorithm is much slower than my algorithm. Level-set with high

smooth constrain cannot reach the end part of hepatic vein, while level-set

with low smooth constrain has leakage problem.

My algorithm still has some limitations. For example, it may overlook

some tiny bifurcate branches with radius smaller than 1 pixel size. In future,

some further knowledge, e.g., the location and shape of liver organ and portal
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vein, may be interpolated to solve this problem.
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