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Chapter 1

Introduction

1.1 Motivation

Skull deformities occur frequently in the world. Many patients suffer from skull fracture in

traffic accidents. In Singapore, National University Hospital (NUH) alone receives about

250–350 patients with skull fracture every year. Also, some patients’ skulls are congeni-

tally deformed. Worldwide, one in 5,600 children is born with facial asymmetry [Hem10].

Moreover, some ancient skulls unearthed by archaeologists are incomplete and deformed

due to natural forces or ancient religious purposes. Fig. 1.1 illustrates examples of skull

deformities.

In addition to inaesthetic facial appearance, skull deformities may lead to incomplete

functionalities because the muscles and skins attached to a deformed skull are also de-

formed [LP98]. For example, jaw deformity may lead to chewing problem by affecting

the movement of the jaws [Che13]. Orbit (eye socket) deformity may affect the ability of

the skull to support the eye ball and lead to impaired vision [Che13]. Skull deformities

greatly affect the patients’ quality of life and even threaten their lives. In forensics, the

completeness of a skull is a valuable factor in successful identification of missing individ-

uals. In archeology, skeletal remains excavated by archaeologists are often fractured into

pieces due to environmental or animal activities. The analysis of the morphology of an-

1
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(a) (b) (c)

Figure 1.1: Examples of skull deformities. (a) Fractured skull due to accident [Che13].

(b) Congenitally deformed skull [ZLES05]. (c) Incomplete medieval skull [FdCP+08].

cient skulls is also conditioned by the integrity of the cranium. Therefore, reconstruction

for deformed skulls is crucial and significant.

Skull reconstruction is a difficult task for surgeons, forensic investigators and archae-

ologists. Firstly, the normal shape corresponding to the missing or fractured part is un-

known. When the unknown normal shape is complex, it takes time and effort to predict

and generate the estimated shape for the fractured or missing part. Secondly, for a signifi-

cantly damaged skull, there are usually plenty of missing or fractured parts to be repaired

(Fig. 1.2). In this case, it is very time consuming for restorers to achieve the reconstruction.

Due to these difficulties, computer-aided skull reconstruction is necessary and significant.

Skull reconstruction is also difficult for computation. Firstly, the shapes of human

skulls vary greatly across different identity, age, gender and racial groups. Due to the

skull variation, the unknown normal shape corresponding to the fractured or missing part

can differ a lot among different skulls. Therefore, the estimation of unknown normal shape

is challenging for computation, since a reconstruction algorithm should make the recon-

struction as close as possible to the original undamaged skull no matter where the target

skull is from. Secondly, to fill in the missing part with a normal shape, the reconstruction

algorithm should ensure surface continuity which means that the salient surface of the

normal part should be flushed with the salient surfaces of the input deformed skull. Salient

surfaces of a skull include outer surfaces and surfaces around the eye sockets and other
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(a) (b)

Figure 1.2: Severely damaged skulls with plenty of fractured parts (blue colored) to be

repaired.

openings (Fig. 1.3). To guarantee surface continuity, the algorithm needs to deal with

local details of skull surfaces. However, the local surface structure of a human skull is

very complex. For example, as can be seen in Fig. 1.4, the surfaces contain many open-

ings (e.g. openings around eye sockets). If the reconstructed bone is near the eye socket,

it is difficult for the algorithm to check whether the bone is flushed with other undamaged

surfaces or not. Therefore, it is difficult for the algorithm to ensure surface continuity of

the reconstruction.

Existing approaches for skull reconstruction include symmetry-based reconstruction,

geometric reconstruction and statistical reconstruction. Symmetry-based reconstruction

[CSP+07, dMCP+06, LCL+03, CTS+10, FdCP+08, GWL99, BS11, LYW+11, YWML11]

take advantage of the approximately left-right symmetry of human skulls. It uses the re-

flection of the part that is present on one side to fill in the missing part or replace the

fractured part on the other side. Symmetry-based reconstruction methods are not applica-

ble to skulls which are bilaterally deformed. Geometric reconstruction [BS11, LYW+11,

YWML11, WYLL11, BSMG09, GMBW04, FdCP+08, Che13] register and deform a ref-

erence model to match the shape of the target model and replace the fractured part or fill

in the missing region by its corresponding part on the reference model. Geometric re-
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(a) (b)

Figure 1.3: Salient surfaces (red color). (a) Outer salient surfaces that can be identified

automatically. (b) Salient surfaces around eyes sockets that are difficult to detect.

Figure 1.4: The complex surface structure of a skull. The surface contains many openings,

which makes it hard for computation to ensure surface continuity if the reconstructed

bone is around the openings.

construction uses single reference model, which is insufficient for reconstructing skulls

because the detailed shapes of human skulls differ significantly with different identifies,

genders, ages and races. Statistical reconstruction [LAV09, ZLES05, Zha14] generate the

estimated model for the deformed skull by changing shape parameters of the statistical

model and fill in the missing part or replace the fractured part with its corresponding part

on the estimated model. Each shape parameter of the statistical model adds overall changes

to the mean skull shape. Therefore, statistical reconstruction focuses on global structures
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rather than details of local features, which may lead to mismatches between normal parts

of the input skull and the reconstructed skull [Zha14].

A good reconstruction approach should be robust, accurate and able to deal with the

limitations discussed above. Firstly, it should be robust enough to handle incomplete and

deformed skulls. It should produce correct reconstruction for the fractured bones or miss-

ing parts in the target model. Secondly, a good reconstruction approach should yield ac-

curate result. In practice, it is impossible to measure accuracy without ground truth, so

we expect the reconstruction to at least satisfy some properties that we know about normal

skulls. These properties include, for example, skull normality which means the recon-

structed model should look like a normal human skull, and surface continuity which

means the salient surfaces (Fig. 1.3) of a reconstructed skull should be flushed with the

salient surfaces of the input deformed skull. Satisfying these properties should contribute

to accurate reconstruction.

1.2 GRP Research Objectives

The overall research goal is to develop a robust and accurate method for reconstructing

normal skulls from severely deformed ones. First of all, a reference model is needed. A

reference model provides information about the shape of a normal skull, salient surfaces,

anatomical landmarks and lateral symmetric plane. Moreover, a reference model repre-

sented by a statistical model can also provide information about variation of normal human

skulls. These information are potentially useful for the deformed skull reconstruction. To

utilize the information, the reference model needs to be aligned to match the shape of the

target model so that the information on the reference model can be applied onto the tar-

get model. A perfect alignment that matches the shape of the reference model and the

target model requires non-rigid registration. In addition to matching shapes, non-rigid

registration also needs to take care of the size, position and orientation of the models. So,

this paper focuses first on rigid registration, and non-rigid registration will be studied in

subsequent research.
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[Che13] presents a rigid registration method specialized for human skulls. The work

compares its method with 2 other rigid registration methods on 3 fractured skulls, which

is no enough to show its robustness and accuracy. So, this paper performs a benchmark

test on more skull models to evaluate the accuracy of the three methods.

Secondly, in reconstructing a normal skull from a deformed skull, the salient surfaces

of the reconstructed skull should flush with salient surfaces of the normal parts of the de-

formed skull. Salient surfaces include outer surfaces and surfaces around eye sockets and

other openings (Fig. 1.3). Outer surfaces are easy to detect automatically, while the auto-

matic detection of salient surfaces around eye sockets and other openings are more difficult

to achieve. A fully automatic algorithm for salient surface detection would contribute to

the research on reconstructing deformed skulls.

Based on the discussion above, two objectives are identified for the initial GRP re-

search:

• Perform benchmark test on the three rigid registration methods reported in [Che13].

Quantitative analysis is needed to evaluate the accuracy of the three methods.

• Develop a method that automatically extracts salient surfaces on a skull. The method

must work for both normal skulls and incomplete, deformed skulls. The developed

method should identify both the outer surfaces and the surfaces around eye sockets

and other openings automatically.
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Related Work

Many existing work about skull reconstruction involves rigid registration. A robust rigid

registration is significant to skull reconstruction, as the accuracy of rigid registration can

affect the performance of the reconstruction result. This chapter will talk about rigid reg-

istration (Sec. 2.1) and skull reconstruction (Sec. 2.2).

2.1 Rigid Registration

Existing rigid registration methods include Iterative Closest point (ICP), Fractional Iter-

ative Closest Point (FICP) and plane-fitting registration. All these algorithms can work

without knowing the correspondence between two models.

2.1.1 Iterative Closest Point Registration

Iterative Closest Point (ICP) [BM92] is an effective algorithm for rigid registration with-

out knowing the correspondence. It is an iterative algorithm that repeatedly guesses the

correspondence between the reference model and the target model and computes the best

similarity transformation between them. ICP is summarized in Algorithm 2.1.

7
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Algorithm 2.1: Iterative Closest Point (ICP) registration algorithm

Repeat until convergence:

1. For each point on the reference model, find its closest point on the target model.

2. Compute the similarity transformation using the correspondence points.

3. Apply the similarity transformation to all points of the reference model.

(a) (b)

Figure 2.1: An example of ICP registration. (a) Before registration. (b) After registration.

ICP does not rely on any parameters, which enables it to work automatically. It can

achieve good performance for normal models (Fig. 2.1). However, one weakness of ICP

is that it is not robust to noise. It could fail when there are many outliers or missing parts

in the target model.

2.1.2 Fractional Iterative Closest Point Registration

Fractional Iterative Closest Point (FICP) algorithm [PLT07] is a variant of ICP that is ro-

bust to outliers and missing data. Similar to ICP, FICP also computes the best similarity

transformation iteratively that registers the reference model to the target model. ICP reg-

istration does not work when the target model contains a large number of outliers, since



Chapter 2. Related Work 9

Algorithm 2.2: Fractional Iterative Closest Point (FICP) registration algorithm

Repeat until convergence:

1. Find correspondence between the reference model and the target model.

2. Find the inlier subset of the reference model.

3. Compute similarity transformation using correspondence of points in the inlier

subset.

4. Apply the transformation on all points of the reference model.

it blindly finds correspondence for all points of the reference model, which may involve a

large number of outliers on the target model. To make the registration robust, FICP regis-

tration algorithm computes the transformation using only the inlier set which is a subset of

reference model points that have the smallest distances to the target model. The algorithm

is summarized in Algorithm 2.2.

FICP algorithm is more robust than ICP. Fig. 2.2 shows an example where FICP reg-

istration outperforms ICP registration.

2.1.3 Plane-Fitting Registration

Plane-fitting registration [Che13] is a rigid registration algorithm specialized for laterally

symmetric models such as human skulls. It is more robust than existing rigid registration

algorithms such as ICP and FICP. Although FICP algorithm is robust to outliers, it is not

suitable for registering deformed skulls because it does not take into account anatomical

structure of the skulls. As a result, the parts of the reference model does not match to

the anatomically correct parts of the deformed skull. Plane-fitting registration achieves its

robustness by ensuring that the symmetric plane of the reference model is registered to the
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(a) (b)

Figure 2.2: Example where FICP outperforms ICP. (a) ICP registration. Two models did

not fit well since ICP registration is influenced by the missing data. (b) FICP registration.

The reference matched the target model well.

planar landmarks (i.e. landmarks on the mid plane of the target model).

Plane-fitting registration is an extension of FICP algorithm. In each iteration, it finds

correspondence between the reference model and the target model using not only mesh

vertices but also the planar landmarks. The correspondence for the plane landmarks serves

as a constraint that enhances the matching of the mid plane between two models. As a

consequence, plane-fitting registration may yield better registration result than FICP on

skull models (Fig. 2.3). In [Che13], plane-fitting registration algorithm is tested on 3

fractured models, which is not enough to prove its robustness. As a reason, benchmark

test will be done on ICP, FICP and plane-fitting registration to see which method is more

suitable for skull registration.

2.2 Skull Reconstruction

Existing approaches for skull reconstruction include symmetry-based reconstruction, ge-

ometric reconstruction and statistical reconstruction.
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(a) (b)

Figure 2.3: Registration on skull models and plane-fitting registration is better. (a) FICP

registration. There is a mismatch on the mandible. (b) Plane-fitting registration. The skull

models fit well.

2.2.1 Symmetry-Based Reconstruction

Human skulls can be considered as approximately left-right symmetric with respect to

the Mid-Sagittal Plane (MSP) which is the vertical plane through the midline of the skull.

Symmetry-based reconstruction methods [CSP+07, dMCP+06, LCL+03, CTS+10, FdCP+08,

GWL99, LYW+11, YWML11] use the reflection of the normal part on one side of the skull

to replace the fractured part or fill in the missing part on the other side.

For example, the work in [LCL+03] uses symmetry-based reconstruction approach for

implant design. The mirrored image of the healthy part is used as the implant for the

deformed part. The authors apply this method to generate implant for an eight years old

boy with a large defect on the left side of skull. The implant surgery is successful and the

postoperative recovery is smooth.

In the work of [FdCP+08], some parts on the left side of the medieval skull are missing

(Fig. 2.4). The reflection of the healthy part on the right side of skull is used to cover the

missing part on the left side. Then their algorithm deforms the mirrored part to fit the skull

better, completing the reconstruction.
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(a) (b)

Figure 2.4: Symmetry-based reconstruction on the deformed skull [FdCP+08]. (a) Orig-

inal skull model with some parts on the left side of the face missing. (b) Normal model

constructed by reflecting the right side to the left side.

The work of [CSP+07, CTS+10] uses symmetry-based reconstruction in their computer-

aided surgery system. Users can cut abnormal parts of a skull and reflect normal parts with

respect to the mid-sagitta plane (MSP) to cover the missing regions.

The method in [LYW+11] uses symmetry-based reconstruction approach to iteratively

refine the estimated shapes corresponding to the missing parts of an incomplete skull until

the symmetry error of the reconstructed model is minimal. To begin with, the missing

parts of the target skull model are filled in by their corresponding parts on a reference

model. Then during each iteration, the reflection of the repaired target skull model with

respect to the symmetry plane, which is identified automatically, is set as the new reference

model. The missing parts of the repaired target model are filled in by their corresponding

parts on the new reference model.

The work in [YWML11] uses symmetry-based reconstruction approach to fill in miss-

ing parts when it is possible. For those which cannot be filled in by symmetry-based

reconstruction, they are filled by their corresponding parts from a reference model.

Symmetry-based reconstruction is a simple and useful approach that is widely used in

computer-aided surgery planning systems and has been successfully applied to many real
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Figure 2.5: Framework for skull assembly and completion [WYLL11].

cases. However, it cannot be applied directly to a deformed skull with bilateral defects.

2.2.2 Geometric Reconstruction

Geometric reconstruction [BS11, LYW+11, YWML11, WYLL11, BSMG09, GMBW04,

FdCP+08, Che13] registers and deforms a reference model to match the shape of the target

model and replaces the fractured part or fills in the missing part with their corresponding

parts on the reference model.

[WYLL11] proposes a framework for skull assembly and completion (Fig. 2.5). The

framework computes rigid registration from fragments to a reference model in order to de-

termine the spatial relationship between the fragments for assembly. Since the assembled

skull is usually incomplete, skull completion operation is needed to refine the reconstruc-

tion (Fig. 2.6). To begin with, it computes non-rigid registration from a reference model

to the assembled skull, which deforms and aligns the reference model to the assembled

skull. The missing part on the assembled skull is filled in by its corresponding part on the

reference model. Finally, surfaces between the filled-in patch and the assembled skull are

flushed to make the surface continuous.

[BSMG09] is another example of geometric reconstruction from the field of forensic

identification. The goal of their work is to deform a reference model to estimate the shape

of an incomplete medieval cranium. It is almost impossible to reconstruct the original

shape of the cranium due to its poor condition (Fig. 2.7). To reconstruct the skull, an
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(a) (b) (c)

Figure 2.6: Skull completion for the assembled skull [WYLL11]. (a) The incomplete skull

and the deformed template patch. (b) Gluing the patch by connecting boundary vertices

and generating triangle faces between the patch and the assembled incomplete skull. (c)

Smoothing the patch.

(a) (b) (c) (d)

Figure 2.7: Geometric reconstruction for the incomplete medieval skull [BSMG09]. (a)

incomplete cranium. (b) landmarks of the incomplete cranium. (c) reference model and its

landmarks. (d) skull reconstruction by warping landmarks of the reference model towards

those of the cranium.

intact skull with similar appearance and same gender is selected as the reference model.

Their algorithm deforms the reference model using Thin-Plate Spline (TPS) by moving

its landmarks towards those of the cranium. The deformed reference model serves as an

approximation for the target skull.

The work in [BS11] compares three reconstruction methods for incomplete skulls with

each left cheek bone of them missing. The first method and the second method are both

symmetry-based reconstruction. The third method warps a reference model onto the tar-
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get skull model using Thin Plate Spline (TPS) and uses the warped model to repair the

missing cheek bone. Experiment shows that the third method yields better results than the

symmetry-based methods.

[Che13] uses Laplacian deformation to deform the salient surfaces (Fig. 1.3) of the

reference model to estimate the normal surfaces of patient’s skull model. Experiments

are conducted in the work to examine the characteristics of normal skulls. It discovers

that a feature measuring local variation is small between two normal skulls. Based on

this observation, it registers and deforms the salient surfaces of the reference model by

minimizing the local variation of difference. The estimated normal surface is continuous

since the salient surface of reference model is continuous.

The basic idea of geometric reconstruction is to use a reference model to repair the

target model. Usually the first step is to align the reference model to the target model us-

ing rigid registration. Then the reference model is deformed to fit the shape of the target

model in order to repair it. Geometric reconstruction is applicable to skulls with bilat-

eral deformities, and it overcomes the limitation of symmetry-based reconstruction. The

selection of reference model is essential as it determines the accuracy of reconstruction.

However, geometric reconstruction uses single reference model, which is insufficient for

reconstructing skulls because detailed shapes of human skulls differ significantly with dif-

ferent identifies, genders, ages and races.

2.2.3 Statistical Reconstruction

Statistical reconstruction generates the estimated model for the deformed skull by changing

shape parameters of the statistical model. Then it replaces the fractured part or fills in the

missing part of the target skull model with its corresponding part on the estimated model.

[LAV09] reconstructs estimated shapes for missing parts of incomplete skulls using a

statistical model based on a robust variation of PCA. The statistical model is suitable for

deformed skull reconstruction since it can be built from low quality data sets with artifacts

and missing information. To begin with, given a training set of skulls, a complete and
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(a) (b) (c) (d)

Figure 2.8: Workflow of the outlier detection [LAV09]. (a) A reference model is seg-

mented into parts based on anatomy (b) Some shapes used for model building are incom-

plete or noisy. (c) The reference is warped to match the shape of the target. The missing

parts lead to an unnatural deformation and can thus be identified as outliers. (d) The outlier

parts are reconstructed from the remaining data.

normal model is singled out as the reference model, which is then segmented into parts

based on anatomical structure (Fig.2.8). The authors assume that every target model can be

obtained by deforming the reference surface with a smooth vector field which can be com-

puted by a non-rigid registration algorithm based on Thirion’s Demons algorithm [Thi98].

The reference model is deformed by the computed vector field for each model in the train-

ing set in order to detect the outliers and missing data. Outliers are marked as missing, and

the remaining parts of each model are used for building the statistics shape model using

Probabilistic PCA (PPCA) [Row98, TB99]. According to the authors, PPCA is fast and

able to estimate the missing data with maximum likelihood. For each target model, the

missing parts can then be reconstructed by searching for the best shape parameters for the

statistical shape model.

Active Shape Model (ASM) [CTCG95] is by far the most popular statistical shape

model, which has been adopted in [Zha14] for skull reconstruction. To build ASM, the

training models need to be resampled by computing the correspondence between the them

using the algorithm proposed in [ZCL13] such that all of them have the same number

of vertices and connectivity. The resampled training models are then aligned together

spatially using Procrustes analysis [Goo91, Gow75]. The aligned models are used to build
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the active shape model. Given a target deformed skull model, the algorithm searches

for optimal shape parameters to minimize the shape error between the generated model

and the target model. The model generated from optimal shape parameters serves as the

reconstruction of the target skull.

Statistical reconstruction generates estimated shape by changing shape parameters of

statistical models, which overcomes the limitation of geometric reconstruction as it can

handle the significant variation of human skulls. However, statistical reconstruction fo-

cuses on global structures rather than details of local features because the shape parame-

ters govern overall changes to the mean skull shape. This may cause the surfaces of the

reconstructed model and the normal parts of the deformed model to be mismatched.

2.3 Summary

The methods for model reconstruction include symmetry-based reconstruction, geometric

reconstruction and statistical reconstruction. Symmetry-based reconstruction is not ap-

plicable when the target skull model has bilateral defects. Geometric reconstruction uses

single reference model, which is insufficient for reconstructing skulls because detailed

shapes of human skulls differ significantly across different genders, ages, identities and

races. Statistical reconstruction focuses on global structures rather than details of local

features, which may cause the surfaces of the reconstructed model and the normal parts of

the deformed model to be mismatched.

Registration plays an important role in the field of skull reconstruction. Although

Iterative Closest Point (ICP) works well in many cases, it yields poor results when there

are significant outliers. Fractional Iterative Closest Point (FICP) is robust to outliers, but it

does not take into account the anatomical constraint. As a result, FICP is not that suitable

for deformed skull registration. Plane-fitting registration incorporates the advantages of

FICP and the mid-sagittal plane constraint, which may produce better results than FICP

on skull models.
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Plane-Fitting Registration

Plane-fitting registration [Che13] registers a reference model to the target model such that

the landmarks on the target model are as close as possible to the symmetric plane of the ref-

erence model. It is more robust than existing registration algorithms such as ICP [BM92]

and FICP [PLT07]. It achieves its robustness by ensuring that the symmetric plane of the

reference model is registered to the planar landmarks on the target model. This makes it a

promising rigid registration algorithm for deformed skull models.

3.1 Plane-Fitting Registration Algorithm

Plane-fitting registration is a robust algorithm that registers a reference model to match

the target model. Reference model and target model can differ in size and shape details,

due to deformation caused by injury, normal variation between individuals and possible

incomplete scanning of the target skull. The registration algorithm should be robust to

these variations, and find the common parts between the two models to align them.

Plane-fitting registration algorithm is an extension of the Fractional Iterative Closest

point (FICP) [PLT07]. FICP does not ensure the matching of anatomic parts between the

reference model and the target model. To overcome this limitation, plane-fitting registra-

tion algorithm enforces the matching of the reference plane to the planar landmarks on the

18
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target model by forcing the planar landmarks on the target model as close as possible to

the MSP of the reference model. Given a reference model F and a target model D with

unknown correspondence, FICP minimizes a fractional mean-square distance [PLT07]:

E1 =

(
|F |
|G|

)λ
1

|G|
∑
p∈G

‖T (p)− c(p)‖2 (3.1)

where G is a subset of F containing only the inliers, c() is the correspondence mapping

function of p that finds p’s closest point on the target model, λ is a constant parameter

with positive value, and T () is the similarity transformation to be optimized. By mini-

mizingE1, FICP finds a large inlier setGwith small errors and outputs the transformation

computed only on G.

In addition to the fractional mean-square distance (Eq.3.1), plane-fitting registration

introduces a plane-fitting error E2 to the objective function:

E2 =
1

|L|
∑
v∈L

d2π(v) (3.2)

where L is the set of planar landmarks on the target model, and dπ(v) is the distance from

v to the symmetric plane of the transformed reference model F . The overall objective

function to be minimized becomes:

Er = E1 + E2 (3.3)

There is no weighting parameter between E1 and E2. In E1, except for the factor

(|F | / |G|)λ, it measures the mean distance between corresponding points, which is similar

toE2 that measures the mean distance between landmarks and the lateral symmetric plane.

The term factor (|F | / |G|)λ ranges from 2 to 27 in our experiment, which means E1 and

E2 could be unbalanced. So, adding a weighting parameter α to E1 might be necessary.

Then the equation becomes

Er = αE1 + E2

A straightforward way to balanceE1 andE2 is to set α to
(
|F |
|G|

)−λ
. But this will cancel the

factor (|F | / |G|)λ in E1, which may affect plane-fitting registration’s robustness to noise.

Therefore, determining the balancing parameter α is a challenging task. So, this paper

omits the α on now, and leaves it to continuing research work.
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Algorithm 3.1: Plane-fitting registration algorithm

Repeat until convergence:

1. Find correspondence between F and D using mesh vertices and plane

landmarks. Denote q ∈ D as corresponding point of p ∈ F .

2. Find inlier subset G of F .

(a) Sort corresponding pairs (p, q) by ‖T (p)− q‖2 in ascending order.

(b) Find the first |G| reference points as the inliers from the sorted pairs that

minimize E1.

3. Compute similarity transformation T that minimizes Er using correspondence

of points in G.

4. Apply T on all points of F .

Plane-fitting registration finds the similarity transformation T that minimizes Er in

Eq.3.3. The algorithm is summarized in Algorithm. 3.1.

The second step and the fourth step of plane-fitting registration is the same as those

of FICP. In the first step, for a mesh vertex p ∈ F , its corresponding point q ∈ D is the

closest point of p. On the other hand, for a landmark q ∈ L, its corresponding point p of

the reference model is the orthogonal projection of q on the symmetric plane PF of the

reference model. Let us denote the set of points of the reference model and plane p as P ,

and the set of corresponding points q as Q.

In the third step, Er can be rewritten as

Er =
∑
p∈P

w2
p‖sRp+ t− q‖2 (3.4)
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where:

w2
p =



(
|F |
|G|

)λ
1

|G|
, for p ∈ G

1

|L|
, for other p

An unweighted version of Er can be solved using Horn et al.’s algorithm [Hor87,

HHN88]. Intuitively, a point with integer weight can be considered as corresponding to

multiple points at the same position. If the weights are not integer, they can be converted

approximately to integer by dividing them by their greatest common divisor. Based on this

intuition, we know that the weighted version is similar to the unweighted version and thus

it is solvable. We use the implementation from [Pap06] to solve this problem.

Plane-fitting registration algorithm can converge to local minimum because registra-

tion error Er decreases in each step of the iteration. In the first step, finding closest points

for mesh vertices would reduce E1, because the new closest points for vertices in F are

closer than the closest points in previous iteration. Finding new corresponding points for

planar landmarks also reduces registration error, because the orthogonal projection p on

the symmetric plane of reference model is closer to q than the previous corresponding

point on the same plane. In the second step, Er does not increase, because we can keep

the original inlier subset to maintain its value. Finally, in the third and forth steps, the op-

timal transformation T ∗ that minimizes Er (in the form of Eq.3.4) is applied to reference

model. Since we can keep the original transformaion T such that T (p) = p to keepEr un-

changed and the optimal transformation T ∗ is usually better than T , Er usually decreases.

Therefore, same as ICP and FICP, plane-fitting registration algorithm converges to local

minimum.

3.2 Experiments and Discussions

Experiments were conducted to evaluate plane-fitting registration algorithm on skull mod-

els. In the experiments, 32 full normal skull models were used. One of them was used as



Chapter 3. Plane-Fitting Registration 22

(a) (b) (c) (d)

Figure 3.1: Skull Models. (a, b) normal skull model. (c, d) fractured skull model. Green

landmarks are planar landmarks that should lie on the symmetric plane (grey lines).

the reference (Fig. 3.1a). In practice, target skulls are usually patients’ skulls with defor-

mities. For this reason, 5 skulls were manually cut in a manner similar to real fractures in

patients to synthesize five fractured skulls (Fig.3.3(2)). Moreover, 5 skull models of real

patients from a local hospital were also used for testing. Fig.3.1c shows an example of a

patient’s skull. As can be seen, in addition to deformities caused by fracture, real patients’

skulls were also incomplete because in practice images are acquired only for the parts of

the skulls under treatment.

The resolution of the CT images to generate mesh models ranged from 0.31 to 3

mm/pixel. The CT images were segmented and 3D mesh models were reconstructed from

them.

Plane-fitting registration algorithm was applied to register the reference model to all

the test target models. For comparison, two popular similarity registration algorithms, ICP

[BM92] and FICP [PLT07], were also tested. For fair assessment, the same initialization

is performed before executing the registration algorithms.

To quantitatively assess the algorithms, three errors were measured. Surface error ES
measured the root mean-square distance between the corresponding surfaces of two mod-

els, and plane-fitting errorEP measured the root mean-square distance from target models’

planar landmarks to the reference model’s symmetric plane. To examine the convergence

of the algorithms, registration errors of one severely fractured skull (Fig.3.3(3)) were mea-
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Table 3.1: Comparison of registration methods. ES denotes surface error (mm), and EP
denotes plane-fitting error (mm). Plane-fitting registration algorithm attained the overall

best performance with the lowest plane-fitting error and satisfactory surface error ES .

Skull ICP FICP Plane-fitting

Model ES EP ES EP ES EP

Normal 3.63 3.15 3.90 2.93 3.70 0.97

Synthetic 3.83 3.82 4.10 3.27 3.92 1.10

Patient 6.25 9.05 15.38 2.07 14.21 0.86

sured for the intermediate results after each iteration according to the algorithms’ objective

functions. For ICP, FICP and plane-fitting registration algorithm, the registration errors

are mean-square error, fractional mean-square error, and the error Er shown in Eq.3.3,

respectively. Execution time was measured on a PC with a 3.4GHz CPU.

Fig.3.3 shows skull registration results. ICP algorithm was able to find reasonable

results for normal skulls (Fig.3.3(1)). However, ICP registration results were greatly af-

fected by outliers caused by incompleteness and fractures of fractured models. Synthetic

fractured skulls and real fractured skulls were not properly aligned by ICP algorithm

(Fig.3.3(2-5)). For the case in Fig.3.3(3), ICP shrunk the reference model to a small region,

and failed to find reasonable alignment between the reference and the patient’s model. Due

to inaccurate alignment, the symmetric plane of the reference model were not accurately

aligned with the planar landmarks of patients’ models. In all the three categories of skull

models, ICP had the lowest surface error ES because it minimized the distance for the full

set of points even a portion of them are outliers in synthetic and patient models. However,

ICP did not take in account symmetric plane-fitting, resulting in large plane-fitting error

EP (Tab.3.1).

FICP was robust to outliers and aligned the reference model relatively well to syn-

thetic and patients’ models (Fig.3.3). FICP had larger surface error ES (Tab.3.1) than

ICP algorithm, because it identified a portion of outliers and did not take them into ac-
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count. Therefore, errors of the outliers may be arbitrarily large and result in large ES ,

even though the overall shape and the inliers are properly registered. This contradiction

shows that surface error ES is no a stable assessment of registration quality. Alignment

between the reference model’s symmetric plane and the patient models’ planar landmarks

were not accurate and has large plane-fitting error EP (Tab.3.1), because FICP did not

consider plane-fitting in the registration process.

Plane-fitting registration algorithm inherited its robustness from FICP. In addition to

robustly registering the reference models to the target model, it also matched the symmetric

plane of the reference model to the patients’ planar landmarks accurately (Fig.3.3). It was

more robust to outliers than FICP due to the fitting of symmetric plane. The outliers that

violated the fitting of plane were also identified and excluded from the computation of sim-

ilarity transformation. Therefore, the symmetric plane of the reference model was aligned

accurately to the patients’ planar landmarks, and the inlier surface points were robustly

registered, resulting in the lowest plane-fitting error and similar surface error compared to

FICP (Tab.3.1).

Fig. 3.2 shows the convergence curves of the three algorithms on a patient’s skull

(Fig. 3.3(3)). The convergence curves validate that ICP (grey) and FICP (red) converge

quickly to local minimum. FICP had smaller registration error after convergence than ICP

does, because FICP identified point pairs with large error as outliers and excluded them

from registration error computation. The convergence curve of plane-fitting registration

algorithm (blue) shows that plane-fitting registration algorithm also converged quickly to

local minimum after a few iterations. Plane-fitting registration algorithm had larger reg-

istration error than FICP method, because its registration error contained an additional

plane-fitting error term besides the fractional mean-square error of FICP.

In all the experiments, the convergence condition is to terminate when the reduction

of registration error in a iteration is smaller than 1h. For the model in Fig. 3.3(3), ICP

converges within 52 iterations and 0.48 second, FICP converges within 27 iterations and

0.60 second, and plane-fitting registration algorithm converges within 45 iterations and

1.01 second. The algorithm is about 0.5 second slower than the other two algorithms,
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Figure 3.2: Convergence curves. Same as ICP (green) and FICP (red), plane-fitting regis-

tration algorithms (blue) converges to a stable value quickly.

which is worthy considering the significant improvement in robustness and registration

quality.

3.3 Summary

Existing similarity registration methods such as ICP and FICP are not able to register

skull models properly. Plane-fitting registration algorithm is more robust than existing

registration algorithms. It achieves its robustness by ensuring that the symmetric plane of

the reference model is registered to the planar landmarks of the target model. Quantitative

and qualitative experimental results on real patients’ skull models show that plane-fitting

registration algorithm is efficient and can robustly align the overall structure of the models

while matching the symmetric plane of reference model and planar landmarks of target

model accurately.
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(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d) (e) (f)

Figure 3.3: Skull registration results. (1) normal skull. (2) synthetic fractured skull. (3-5)

patients’ fractured skulls. (a, b) ICP. (c, d) FICP. (e, f) plane-fitting registration algorithm.

Plane-fitting registration algorithm attained the best overall performance compared to ICP

and FICP. It aligned the reference skull models’ symmetric planes (grey lines) accurately

to the target skull models’ planar landmarks (green dots). Surfaces of the reference models

are colored red and the target models are colored grey.



Chapter 4

Salient Surface Detection

To ensure the surface continuity, the salient surfaces of the reconstructed skull should

flush with salient surfaces of normal parts of the deformed skull. This chapter presents

two algorithms for automatic salient surface detection and discusses their accuracy.

4.1 Salient Surface Detection Algorithm

Salient surfaces are important surfaces that are required by surface continuity reconstruc-

tion. They include outer surfaces of a skull model that can be easily identified auto-

matically, and surfaces around eye sockets and other openings that are difficult to detect

(Fig. 1.3).

The outer surface detecting algorithm is based on the property of outer surface that a

ray going from the centroid of the model to a point on the outer surface does not intersect

with any other surfaces outside the outer surface. This algorithm cannot detect salient

surfaces around eye sockets and other openings, as most of vertices around them do not

satisfy the outer surface property.

To detect the whole salient surfaces including outer surfaces and surfaces around eye

sockets and other openings, two algorithms are proposed and their accuracy are verified

27



Chapter 4. Salient Surface Detection 28

Algorithm 4.1: Salient Surface Detection 1

1. Apply plane-fitting registration to register the reference model whose salient

surfaces are manually marked to the target model.

2. Search target model for salient surface vertices. For each vertex vi on salient

surfaces of the reference model, find its closest vertex v′i on the target model.

Mark v′i as a salient surface vertex if surface normals at vi and v′i are similar.

3. Extend salient surface vertices. For each salient surface vertex on the target

model, search vertices with similar surface normals nearby, and mark them as

salient surface vertices.

4. Close up the salient surfaces.

5. Find the maximally connected component for each bone of the model.

in Sec. 4.2. The first algorithm (Algorithm 4.1) transfers the outer surfaces and surfaces

around eye sockets and other openings from the reference model to the target model, while

the second algorithm (Algorithm 4.2) detects outer surfaces for the target model and trans-

fers surfaces around eye sockets and other openings from the reference model to the target

model.

Benchmark test in Chap. 3 shows that plane-fitting registration algorithm is more ro-

bust than ICP and FICP. So, plane-fitting registration is used for rigid registration in the

proposed algorithms.

4.2 Experiments and Discussions

Experiment is conducted to evaluate the accuracy of Algorithm 4.1 and Algorithm 4.2.
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Algorithm 4.2: Salient Surface Detection 2

1. Mark outer surfaces of the target model using the outer surface detecting algo-

rithm.

2. Apply plane-fitting registration to register the reference model whose surfaces

around eye socket and other openings are manually marked to the target model.

3. Search target model for eye socket vertices. For each vertex vi on surfaces around

eye sockets and other openings of the reference model, find its closest vertex v′i
on the target model. Mark v′i as a salient surface vertex if surface normals at vi
and v′i are similar.

4. Extend salient surface vertices. For each salient surface vertex on the target

model, search vertices with similar surface normals nearby and mark them as

salient surface vertices.

5. Close up the salient surfaces (Fig. 4.1).

6. Find the maximally connected component for each bone of the model

In the experiment, 5 normal, 5 fractured and 1 congenitally deformed skull models are

used. One of the normal models is used as the reference model. The salient surfaces of the

reference model are manually marked. It is impossible to measure the accuracy exactly

without knowing the ground truth, since salient surfaces are not uniquely defined. So,

instead of quantitative analysis, qualitative analysis is performed to evaluate the accuracy

of two algorithms.

Fig. 4.2 illustrates the registration results. As can be seen in Fig. 4.2, salient surfaces

detected by the outer surface detecting algorithm contained only the outer surfaces. For

those around eye sockets, it could not detect them, as vertices on surfaces around eye

sockets do not satisfy the outer surface property.
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(1)

(2)

(a) (b) (c) (d)

Figure 4.1: Algorithm 4.2 for automatic salient surface detection. (1) overall view. (2)

left eye view. (a) outer surface. (b) vertices around eye sockets are found. (c) vertices on

salient surfaces are extended. (d) salient surfaces are closed up.

Fig. 4.2 also shows that Algorithm 4.1 does not work well for the testing cases. For the

normal skull model, Algorithm 4.1 can detects its upper surfaces well but failed to detect

surfaces on its lower jaw. For the deformed model and the fractured model, most of the

salient surfaces are not detected by the algorithm. This may be because of two reasons.

Firstly, some parts of the reference model do not fit the target model well, especially in

the deformed case. Secondly, in step 2, a vertex on salient surfaces of the reference model

may not have similar normal with its closest point and its closest point is discarded.

Also, it is notable to see from Fig. 4.2 that the overall salient surfaces of the testing

models are well detected by Algorithm 4.2. For the normal model, the detecting result

is almost perfect. For the deformed model, surfaces around its right eye sockets are not

detected well. This may be because the closest point in step 3 may not have similar normal

with the salient surface vertex and is discarded. For the fractured model, salient surfaces

around its left eye sockets are identified successfully, while surfaces around its right eye

sockets are failed to detect. This is because when the algorithm looks for the closest point
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(1)

(2)

(3)

(a) (b) (c)

Figure 4.2: Selective salient surface extraction results. (1) Salient surfaces detected by

outer surface detecting algorithms. (2) Salient surfaces detected by Algorithm 4.1. (3)

Salient surfaces detected by Algorithm 4.2. (a) Normal skull model. (b) Deformed skull

model. (c) Fractured skull model. The outer surface detecting algorithm is not able to

detect surfaces around eye sockets. Algorithm 4.1 does not work well. Algorithm 4.2

detects both the outer surfaces and surfaces around eye sockets well.

on the target model for the salient surface vertex on the reference model, the point found

by the algorithm is usually on the fractured fragment which is close to the eye sockets.

Instead of looking for only one closest point, searching for vertices within a small region
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and picking the one with the most similar normal as salient surface vertex may solve this

problem. Anyway, Algorithm 4.2 can be considered as a promising algorithm for salient

surface detection according to the experiment result.

According to the observation, two techniques can be adopted to improve the proposed

algorithms. Firstly, the reference model can be deformed using non-rigid registration to fit

the target model better, which should increase the detecting accuracy. Secondly, for each

vertex on the salient surfaces of the reference model, instead of finding only one closest

point on the target model, search vertices of the target model within a range and mark the

one with the most similar normal as the salient surface vertex. The improvement will be

studied in future work.

4.3 Summary

Salient surfaces are important features used for surface continuity reconstruction. The

outer surface detecting algorithm can only detect outer surfaces but is not able to detect

salient surfaces around eye sockets and other openings. This chapter proposed two algo-

rithms for automatic salient surfaces detection. According to the experiment result, Algo-

rithm 4.1 does not perform well and Algorithm 4.2 is more accurate in detecting salient

surfaces of the tested skull models. So, Algorithm 4.2 can be considered a promising al-

gorithm for salient surface detection for now. Improvement on the proposed algorithms

will be studied in continuing work to achieve higher accuracy.
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Continuing Research

There are many problems to be solved in the continuing research for reconstruction of

deformed skulls, such as non-rigid registration, improved algorithms for salient surface

detection, and balancing of Eq. 3.3.

5.1 Non-rigid registration

Non-rigid registration rotates, translates, scales and deforms a reference model to match

the shape of target model. The information provided by the reference model can be better

applied to the target model after non-rigid registration. For example, [ZCL13] applies

non-rigid registration on a reference model to match the shape of the target model in order

to utilize the shape information better to build correspondence between them. Moreover,

non-rigid registration may be able to replace rigid registration in the algorithms proposed

in Chapter 4 to achieve more accurate result. Non-rigid registration will be studied in the

future research.

33
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5.2 Salient Surfaces Detection

In Chapter 4, the accuracy of two proposed algorithms could be improved. Firstly, it is

promising to deform the reference model to better match the shape of the target model by

replacing rigid registration with non-rigid registration. Secondly, for each vertex on the

salient surfaces of reference model, instead of finding only one closest point on the target

model, search vertices within a small range and pick one with the most similar normal

as salient surface vertex for the target model. These two improvements could potentially

increase the accuracy of the proposed algorithms.

5.3 Weighting Parameter

An error function is discussed in Chapter 3:

Er = αE1 + E2

Determining the weighting parameter α is challenging. This balancing problem will be

studied in the continuing work.

5.4 Reconstruction of Deformed Skulls

To develop an accurate and robust reconstruction method for deformed skulls, at least the

following components are needed.

• Plane-fitting rigid registration. The benchmark test in Chapter 3 shows that plane-

fitting rigid registration is more robust than ICP and FICP on deformed skulls. So,

it is promising for deformed skull alignment.

• Non-rigid registration. Non-rigid registration can be used for building correspon-

dence between skulls, transferring salient surfaces, and estimating normal shapes for

fractured or missing parts, all of which are useful for deformed skull reconstruction.
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• Statistical shape model. A statistical shape model provides information about vari-

ations of normal human skulls, which is useful for deformed skull reconstruction.

• Salient surfaces. The salient surfaces of the reconstructed skull should be flushed

with salient surfaces of normal parts of the deformed skull. It is significant to extract

salient surfaces automatically.



Chapter 6

Conclusion

Skull reconstruction is significant for surgery in improving patients’ quality of life, foren-

sics in individual identification, and archeology in analyzing the morphology of ancient

skulls. However, skull reconstruction is difficult for experts and computation due to the

skull complexity and the unknown normal shape corresponding to the fractured or missing

part.

Existing approaches for skull reconstruction include symmetry-based reconstruction,

geometric reconstruction, and statistical reconstruction. Symmetry-based reconstruction

is a simple and useful approach that is widely used in computer-aided systems and has been

successfully applied to many real cases. But it cannot be applied directly to a deformed

skull with bilateral defects. Geometric reconstruction is applicable to skulls with bilateral

deformities, and it overcomes the limitation of symmetry-based reconstruction. However,

it uses a single reference model, which is not enough for reconstructing skulls because

detailed shapes of human skulls differ significantly with different identifies, genders, ages

and races. Statistical reconstruction builds statistical model from a set of training models,

which enables it to handle significant variation of human skulls. But it focuses on global

structures rather than details of local features, which may lead to mismatches between

normal parts of the input skull and the reconstructed skull, causing the loss of local shape

information.

36
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Many existing work about skull reconstruction involves rigid registration. Rigid reg-

istration must be robust to deformed skull models, as its accuracy affects the accuracy of

the reconstruction result. Also, after reconstruction, the salient surface of the filled-in part

should be flushed with salient surfaces of the deformed skull to ensure surface continuity.

Inspired by these important facts, I have done some preliminary work to start this research.

Firstly, benchmark test is performed on ICP, FICP and plane-fitting registration to see

which method is the most robust for skull registration. Experiment shows existing similar-

ity registration methods such as ICP and FICP are not able to register skull models properly

and plane-fitting registration is efficient and can robustly align the overall structure of the

models while matching the symmetric plane of reference model and planar landmarks of

target model accurately.

Secondly, the accuracy of two algorithms for salient surfaces detection are verified.

The first algorithm transfers salient surfaces from the reference model to the target model.

The second one extracts outer surfaces of the target model and transfers salient surfaces

around eye sockets and other openings from the reference model to the target model. Ex-

periment shows that the first algorithm can only detect a small portion of salient surfaces,

while the second one can detect almost all the salient surfaces. The second one is thus

considered as a promising algorithm for salient surface detection. In the continuing work,

promising improvements such as deforming the reference model to match the shape of

the deformed model better and finding the salient surface vertex within a region will be

studied to enhance the robustness of the proposed algorithms.

All these work can contribute to the future research on reconstruction of deformed

skulls.
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