Chapter 3 

Neural Network Model of Reading Process

3.1 Overall Structure of the Model

The model accepts letter sequence as its input and produces a phoneme sequence as its output. It consists of at least two representational levels: letter level and phoneme level. Max Coltheart et al. believed that “it’s logically possible that human reading system contains more than two different representational levels”. Besides letters and phonemes, an educated person also has the knowledge of grapheme, syllable, etc. In this project, an assumption is made that these additional representational levels lie between the input (letter level) and the output (phoneme level). To simplify the model, all these intermediate representational levels are put into the middle level, which is called the chunking level.

The current neural network model consists of three layers. Each layer corresponds to a unique representational level:

· Letter Layer: This layer takes a sequence of letters of a word as its input and provides letter features for the next layer.

· Chunking Layer: This layer stores the miscellaneous intermediate representations of the words, such as grapheme-phoneme pairs, graphemes, whole words, etc. The grapheme-phoneme rules are mainly encoded in this layer.
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· Phoneme Layer: This layer produces the phoneme sequence according to the information obtained from the output of the Chunking Layer. In other words, this layer interprets the intermediate representations to produce the phoneme output.
Figure 3.1 shows the overall structure of the neural network model. The Letter Layer receives a word as the input. Then the features of the word captured by the Letter Layer are passed to the Chunking Layer through the connections between these two layers. Neurons in the Chunking Layer are triggered by the word’s features. They compete and cooperate with each others. The winning chunking units produce the intermediate representations for the input word, such as the grapheme divisions, the whole word, and so on. These intermediate neurons turn on the relevant neurons in the Phoneme Layer. The phoneme neurons cooperate and compete with each others and the active phoneme neurons produce the phoneme sequence of the word.

The Chunking Layer lies between the Letter Layer and the Phoneme Layer to capture and store the pronunciation rules. The Chunking Layer can be regarded as a collection of various intermediate representations of a word. The possible intermediate representations include graphemes, Grapheme-Phoneme (GP) pairs, syllables, onset-rime, whole-word, and so on. At present, only graphemes, GP pairs and whole-words are implemented in the model. Therefore, there are four types of chunking units in the model:

· GP neurons, encode Grapheme-Phoneme pairs

· Whole-word neurons, encode whole words

· Grapheme neurons, encode graphemes

· Phoneme-chunking neurons, encode phonemes
From the definition of GP pair in Chapter 2, it can be learned that different from either graphemes or phonemes, GP pairs encode the correlation between them. A GP pair comprises one grapheme and one phoneme. If a grapheme correlates to n phonemes, the correlation can be represented by n GP pairs. In other words, the mapping from grapheme to phoneme can be represented by GP pairs. Because of their difference in representation, GP pair and grapheme/phoneme are implemented in two different neural network models, which will be introduced next. 
3.2 Implemented Models

This project implemented two models that have different GPC components. 

· Model A: The GPC route is realized through GP pairs. The GP route converts an input word to a GP pair, which includes the phoneme information of the word.

· Model B: The GPC route is realized through cascaded grapheme level and phoneme level. Along the GPC route, a letter sequence is converted to a grapheme sequence at grapheme level first, and then the phoneme sequence is produced at phoneme level given the input of the grapheme sequence.

Figures 3.2 and 3.3 show the overall structures of models A and B. Two clear routes exist in both models. There are inhibitory connections from whole-word route to GPC route so as to inhibit the activation of GPC route if whole-word route is activated. It can be observed from the figures that model B is different from model A only in the implementation of the GPC route. Model B implements the GPC route through two cascaded groups of chunking units: Grapheme chunking blocks and phoneme chunking blocks. These two groups together realize the grapheme-phoneme correlations, which are achieved through the GPC blocks in model A.

A GP pair includes phoneme information that can map a grapheme to a unique phoneme; therefore, a GP-chunking unit is the same as a phoneme-chunking unit from the point of view of the Phoneme Layer.  The network architecture of model A is essentially the same as that of model B except for the implementation details of the GPC route. 
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Figure 3.2 Overall structure of model A, GPC route is implemented through GP pairs.











Figure 3.3 Overall structure of Model B. GPC route converts an input word to a grapheme sequence first, and then obtains the phoneme sequence from the grapheme sequence.

3.3 Encoding scheme 

Each layer in the model is a “representational level”, so encoding scheme is needed to encode these representation sequences in the neurons. A straightforward encoding scheme is adopted in the model: 1-for-1. The following illustrates the encoding scheme through the encoding of 26 English letters.

· For a given representation level, there are at most n possible linguistic units. For example, the English has 26 letters. There, n = 26.

· To encode n units of a representation level, n neurons will be employed. Each neuron uniquely represents one unit. For English letters, 26 neurons will be used to encode 26 English letters, each neuron uniquely representing one English letter. 

· If a linguistic unit is present at the representation level, the neuron that encodes it will have the value 1, or be active; otherwise, the neuron will have the value 0 or will be inactive. For example, if the letter a is present, then the neuron that encodes the letter a will have the value 1. Otherwise, it will have the value 0. Since a letter can be only one alphabet at a time, there is only one neuron to have value 1 and all other neurons have value 0, i.e. 100....0 represents for  letter a, 010....0 for letter b, and so on.

· If a neuron is activated, it will participate in the production of output of the representation level it belongs to, and offer input to the next level. It means that if the neuron that encodes the letter a is active, then the letter a will present. 

In the encoding scheme, each unit is represented by one and only one neuron, i.e. each unit has the same strength as others in the model. This encoding schema uniquely and fairly represents the target units. 

 3.4 Representation of Unit Sequence

After the encoding scheme is determined, the representation of unit sequence will be introduced. At each representation level, the representation sequence often consists of n units. 

· A representation sequence is normally composed of m units. If each unit is represented by n neurons, as described in section 3.3, then 
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 neurons are needed to represent m units.

·  The offset of a unit in the sequence is its position. Units’ positions in a sequence are numbered from left to right. The leftmost unit has position 0. The ith unit has position i. 

· A letter sequence associates with different representation sequences at different representation levels. For example, the word turf appears as t, u, r, and f at letter level; as t, ur and f at grapheme level; as t, 3: and f at phoneme level. The letter f is located at position 3 while its corresponding grapheme and phoneme are located at position 2. To avoid such inconsistency, a unit’s base position is used, which is the smallest position of its corresponding letter in letter sequence. In the internal representation, the base position is used as the position of a unit in a representation sequence in all representation levels. Hence, for the word turf, its phoneme units, t, 3: and f, have the base positions 0, 1 and 3 respectively. 

· Corresponding position: For two correlated representation sequences a and b, unit u in sequence a can map to one or more units in sequence b. The positions of these units are called the corresponding positions of unit u in sequence b. For the correlated GP sequence “t|t / ur|3: / f|f” and letter sequence turf, the corresponding positions of GP pairs in letter sequence are 0 for t|t, 1 and 2 for ur|3: and 3 for f|f. GP pair ur|3: has two corresponding positions: 1 and 2.

To encode a representation sequence, the base position of each unit is computed first. Then the neurons at corresponding base positions will be given the value to represent the unit sequence. For example, given the grapheme sequence t|ur|f, the base positions of three units are obtained first, which are 0, 1 and 3. Next, grapheme blocks 0, 1 and 3 will be assigned the correct values to represent these three units. The grapheme block 2 does not encode any unit and all its neurons will have the value 0.

The output of the model is interpreted similarly. When the network is stable, the activations of neurons are checked from left to right. If a neuron is activated, the representation unit it encodes will appear at the corresponding position of the output sequence. If no neurons are active at a position, the position in the output sequence will be left blank. For the word turf, the positions 2 and 4 to 7 should be left blank. If more than one neuron is active at a position, the neuron that has the largest output will be treated as the active neuron.

3.5 Length of Input Sequence

The length of English words varies greatly from l letter to more than 20 letters. Research on eye movement in reading process reveals that during reading, our eye movements (saccades) are separated by relatively still periods (fixations). During fixations, the effective vision span is about 8-9 letter spaces. The typical saccade is about eight to nine letter spaces too and is not affected by the size of the print if it is not too small or too large. Perception of long words is realized through the moving around of eyes. 

Based on these observations, the maximum word length that the model allows is set to 8 letter spaces. The model accepts a letter sequence that is composed of no more than 8 letters as its input. 

3.6 Representations at Different Levels 

Currently, there are 5 different representation levels in model: letter, grapheme, grapheme-phoneme pair, whole-word and phoneme. This section will illustrate the representation of them in the neural network model.

The representation of a letter sequence is realized through 8 neuron blocks. Each block associates with 1 letter, from left to right. For example, the word turf is represented as the sequence of t, u, r and f, as shown in Figure 3.4. In the figures below, only relevant neuron blocks are drawn. Blocks with neurons having 0 values are omitted.


Figure 3.4 Representation of the word turf at the Letter Layer. From left to right are the representations of the letters t, u, r and f respectively. The combination of the representations of these four letters gives the representation of the word turf.


Figure 3.5 Representation of grapheme sequence t|ur|f. In block 0, the only active neuron t represents that the grapheme t is present at this position. Similarly, only graphemes ur and f are activated at positions 1 and 3. These three grapheme blocks together constitute the grapheme sequence t|ur|f.

Eight grapheme blocks are employed for the representation of grapheme sequence. Each grapheme block contains a whole set of grapheme neurons. Figure 3.5 shows the representation of grapheme sequence t/ur/f. Since the base positions of the three Graphemes are 0, 1 and 3, the corresponding active neurons appear in GP blocks 0, 1 and 3 accordingly. In this project, each grapheme block contains 96 grapheme units, one for each possible grapheme.

There are 8 GP neuron blocks for representing the GP sequence. Each GP block contains a whole set of GP neurons. Figure 3.6 depicts the representation of the GP sequence t|t, ur|3: and f|f of the word turf. Since the base positions of the three GP pairs are 0, 1 and 3, the corresponding active neurons appear in GP blocks 0, 1 and 3 accordingly.  In this project, each GP block contains 172 GP units, one for each possible GP pair.


Figure 3.6 Representation of GP sequence t|t / ur|3: / f|f. In block 0, the only active neuron a|& represents that the GP pair t|t appears at this position. Similarly, only GP pair ur|3: and f|f are activated at positions 1 and 3. These three GP blocks together represent the GP sequence “t|t / ur|3: / f|f”.


Figure 3.7 Representation of the word turf in the whole-word block. A dedicated neuron in the whole-word block is employed to represent the word act. While the activation of this neuron is 1, all other whole-word neurons’ activations are 0.

In the model, there is only one whole-word block. The whole-word block is responsible for the collection of whole-word neurons. They are created dynamically during the learning process and encode exception words that the model fails to learn with the GPC route. A whole-word neuron explicitly encodes the pronunciation of the exception words it represents through the connections from it to the phoneme layer. Figure 3.7 shows the representation of the whole word turf.

There are 8 phoneme blocks in the model. They can represent a phoneme sequence composed of up to 8 units. Each phoneme block comprises a whole set of phoneme neurons. Figure 3.8 shows the representations of phoneme units for the word turf, whose corresponding phonemes are t, 3: and f. In this project, each phoneme block contains 67 phoneme units, one for each possible phoneme.


Figure 3.8 Representation of phoneme sequence t|3:|f. In block 0, the only active neuron t represents that the phoneme t appears at this position. Similarly, only phonemes 3: and f are activated at positions 1 and 3. These three phoneme blocks together represent the phoneme sequence t|3:|f.

3.7 Connections in the model

There are two kinds of connections in the model:

1. Feed-forward Connections: They transfer the outputs of neurons to the next layer. They exist between two neighbor layers, connecting upper-layer neurons to lower-layer neurons. 

2. Rule Connections: They encode the pronunciation rules learned during the training process. These connections exist between neurons in the same layer. Rule connections can be classified into two types according to their functionality: 

· Excitatory Connections: If there is an excitatory connection from neuron A to neuron B, the activation of neuron A will enhance the activation of neuron B. The weights of this kind of connections are positive.

· Inhibitory Connection: If there is an inhibitory connection from neuron A to neuron B, the activation of neuron A will inhibit the activation B. The weights of such connections are negative.

Each neuron except letter neurons receives inputs from the previous layer through feed-forward connections. The neuron is fully connected with all the neurons at the corresponding position in the previous layer. The neuron that offers the desired input is called a trigger neuron. The connection from the trigger neuron has a positive value and the connections from non-trigger neurons have negative values. When the desired trigger neuron is on, a neuron will receive positive inputs from previous layer and therefore is likely to be activated. Otherwise, it will receive negative inputs that inhibit its activity and prevent it from being activated easily. 

Rule connections existing between two neurons in the same layer encode inhibitory or excitatory effects between the neurons. The final output of the network is a reflection of the overall relationship of all the neurons. Initially, the weights of the rule connections are very small and random. The learning process modifies the weights of the rule connections according to a learning algorithm. The details will be discussed in Chapter 5. The functionality of a rule connection is determined by its value, positive for excitatory connection and negative for inhibitory connection. It is possible for a connection to change its role between excitatory and inhibitory during the learning process.

3.8 GPC Route and Whole-Word Route

In the network, the GPC route is implemented as shown in Figure 3.9. The left route denoted by solid arrow is the GPC route. The right route denoted by dotted arrow is the whole-word-route. The rounded arrow from the whole-word block to the GPC block represents the inhibition effect of whole-word neurons on GPC neurons. 

Both whole-word neurons and GPC neurons receive input from letter layer simultaneously. The GPC route computes output according to the learned pronunciation rules while the whole-word route looks for a matched whole-word neuron. If there is no corresponding whole-word neuron, the GPC route will be responsible for the production of the output. Otherwise, the output of the active whole-word neuron will inhibit the activation of the GPC neurons and take over the control. 








Figure 3.9 Illustration of the dual-route model with the input word is turf. In the figure, only feed-forward connections start from active neurons are depicted. The connections denoted by solid arrow construct the GPC route. The connections denoted by dotted arrow construct the whole-word-route. The rounded arrow from the whole-word block to the GP block represents the inhibitory effect of whole-word neurons on all GP neurons.

In figure 3.9, the word turf is used as the input word to illustrate the work of the network. At first, feed-forward connections from Letter Layer to Chunking Layer transmit the features of the input word to the chunking units, which include GP neurons t|t in block 0, ur|3: in block 1, f|f in block 2, and whole-word neuron turf. The three GP neurons have excitatory effect on each others, which are shown by the pointed arrows from t|t to the other two neurons. A GP neuron may have inhibitory effect on other GP neurons, e.g., the inhibitory connection from ur|3: in block 1 to ur|3: in block 0. Whole-word neuron turf has inhibitory connections to GP neurons, depicted by the round arrows. Both GP neurons and whole-word neurons connect to phoneme neurons through feed-forward connections to trigger the desired phoneme neurons and therefore form the desired phoneme sequence, the output of the model.

Chapter 4 

Network Activation 

4.1 General Flow

The network accepts one word each time. Figure 4.1 shows the general flow chart of the model while processing one word. At first, the input word is clamped into the Letter Layer by representing the word using the representation method mentioned in Chapter 3. Then the network’s activity is updated repeatedly. The output of a neuron is transmitted to other neurons through connections between them. At each cycle, the new state of a neuron is computed according to its activation equation. Updating of activation values terminates when it reaches a stable state. After the network has stabilized, its connection weights are modified to capture knowledge about the word. There are two separate weight modification processes: (a) If the target pronunciation of the word is available, the network will learn the pronunciation rules by modifying the connection weights according to weight change rules. (b) Otherwise, it will modify the feed-forward connections to capture word frequency which reflects the familiarity of the word. The activation equations will be introduced in this chapter and the weight changing rules will appear in the next chapter.

Figure 4.1 General flow chart of the network given an input word. At first, the network’s state is updated until it reaches stable state. Then connection weights are modified to encode pronunciation rules if standard pronunciation of the input word is known, otherwise, feedforward connections are modified to capture word frequency.

It is very possible that the network cannot learn the phoneme sequence of a word correctly in one cycle. Under this situation, the network will learn about the word repeatedly until it successfully captures the pronunciation rules or the number of learning cycles reaches a maximum value and the word is regarded as an exception word. Then an entry in whole-word route will be generated to encode the pronunciation of the exception word.

4.2 Activation Equation

The Letter Layer of the model receives letter sequence as input. After the model starts to run, the chunking neurons and phoneme neurons will change their states according to their activation equations. The neuron’s activation equation is a variation of the shunting Short Term Memory (STM) equation. 
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 (4.1)

· Opi is the activation level of neuron i at position p in the network.
· 
[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

å

pi

m

k

mk

mkpi

I

O

w

,

 is the excitatory term of neuron pi;  
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is the weight of excitatory connection from neuron k at position m to neuron i at position p; Omk is the output of neuron k at position m in the same layer as neuron Opi; Ipi is the input from the lower layer.
· 
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 is the inhibitory input of neuron pi; 
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 is the weight of inhibitory connection from neuron l at position n to neuron pi; Onl is the output of neuron nl in the same layer as neuron Opi; Jpi is the inhibitory input from the lower layer.
· (, ( and ( are term coefficients .
· The shunting terms are 
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When the activation level of a neuron stops to change, i.e. 
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= 0, the neuron reaches the stable state. At stable state, we have
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(4.2)

In practice, instead of waiting for (Opi to become zero, which may take a long time, a neuron is regarded as stable if (Opi ( (, where ( is a small positive value, 0.001 in the model. When all neurons in the neural network are in stable state, the network is regarded as in stable state. 

At stable state, a neuron can be in either active state or inactive state. Active neurons will participate in the production of output sequence and offer input signals to the next layer. To judge the state of a neuron, the Active Threshold TA is used. If the activation level of a neuron is larger than TA, the neuron is in active state; otherwise, the neuron is in inactive state. TA is an arbitrarily selected value. In the model, TA = 0.5.

4.3 Chunking Neurons

As mentioned earlier, chunking neurons refer to all neurons in the chunking layer. A chunking neuron accepts inputs from the letter layer and other chunking neurons, and provides an input to the phoneme layer. There are four kinds of chunking neurons, their activation equation are based on the basic activation equation introduced in 4.2. 

Since whole-word neurons have higher privilege over other chunking neurons, the activation of neurons in GPC route is inhibited by the output of the whole-word route. In this model, if an active whole–word neuron encodes an n-letter word, it will produce an inhibition on the leftmost n chunking neurons. If the output of a whole-word neuron is larger than 0.9 (max = 1), then it is deemed to be activated and will inhibit relevant chunking units, grapheme or grapheme-phoneme neurons in this model.

GP neurons and grapheme neurons are implemented in the GPC route and have similar activation equation. They receive input from letter layer and provide input to phoneme layer. The output of whole-word route has inhibitory effect on the activation of GP neurons. Their activation equation is shown as equation 4.4.
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· Cpi is the activation level of GP neuron or grapheme neuron i at position p. 

· 
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 is the excitatory term of neuron pi; Cmk is the output of chunking neuron k at position m; 
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 is the inhibitory input of chunking neurons pi; Cnl is the output of GPC neuron nl.
· Dj is the activation of whole-word neurons. 

Whole-word neurons implement the whole-word route. They receive input from letter layer, and provide input to phoneme layer. The output of whole-word neurons will also inhibit the activation of neurons in GPC route. Their activation equation is shown as equation 4.5.
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Di and Dl are the activation of whole-word neurons. Since there is only one entry for any whole-word, an input word will activate no more than one whole-word neuron. Consequently, there is no mutual excitation term in the equation. The activation of phoneme neurons is given by the following activation equation:
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(4.6)

4.4 Phoneme Neurons
Phoneme layer is the lowest layer of the network. A phoneme neuron in the phoneme layer accepts inputs from the chunking layer and other phoneme neurons. Below is the activation equation of phoneme neurons.


[image: image17.wmf](

)

å

å

å

å

-

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

+

-

=

D

l

n

nl

nlqi

qi

l

l

lqi

s

t

ts

tsqi

k

m

mk

mkqi

qi

qi

qi

P

w

P

D

Z

C

Z

P

w

P

P

P

,

,

,

1

g

b

a

  (4.7)

· Pqi is the activation level of neuron i at position q. 

· 
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 is the excitatory term of neuron qi;  
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is the weight of excitatory connection from phoneme neuron k at position m to qi; Pmk is the output of phoneme neuron k at position m; Ztsqi is weight of connection from chunking neuron s at position t to qi; Cts is the output of chunking neuron ts. Zlqi is weight of connection from whole-word neuron l to qi; Dl is the output of whole-word neuron l. 
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 is the inhibitory input of phoneme neuron qi; 
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 is the weight of inhibitory connection from phoneme neuron l at position n to neuron qi; Pnl is the output of phoneme neuron nl
Chapter 5

Network Training

There are letter-to-chunking connections, chunking-to-phoneme connections and chunking-to-chunking connections in the network. For chunking-to-chunking connections, there are connections among the same representation category, e.g. GPC-to-GPC connections, and connections from whole-word neurons to neurons in GPC route that realize the inhibitory function of whole-word route on GPC route. In these connections, the followings will be modified during the learning process:

· Letter-to-chunking connections, will be modified to learn word frequency

· Connections among the same representation category, will be modified to learn the pronunciation rules.

5.1 Learning Pronunciation Rules

When a word is clamped into the letter layer, neurons in the chunking layer are activated and their activations propagate through the connections. After the neural network reaches a stable state, there are two possible results:

· The correct neurons are activated, which means the word is correctly processed by the network.

· Otherwise, the model needs to learn the pronunciation rules of the word, and rule connections have to be modified to capture the rules.

The model consists of many different representation levels, e.g. the GPC pairs, the grapheme sequence and the phoneme sequence. Each level has its output. The model has correctly learned a word when the outputs of all representation levels are correct. Therefore, the learning task of the model becomes the learning task at each representation level. Next, we will focus on how to achieve the desired output sequence at a representation level.

To obtain the weight change equation, it’s useful to learn the relationship between two neurons in the ideal case. If the weight change equation can reflect the relationship in a long term, we can believe that the weight change equation can accomplish the learning task.

The learning process of the model is supervised learning, which means that the model knows the target phoneme output and target chunking’s presentations of a word before the word is learned. In the ideal case, when the network reaches a stable state, the desired neurons should have the value 1 and the undesired neurons should have the value 0. Table 5.1 shows the relationship of two neurons in the same representation level. The symbol “+” stands for excitatory relationship, “(” stands for inhibitory relation, “X” means don’t care.

Table 5.1 Relationship of two neurons in the same representation level.
	Tpi
	Tqj
	wpiqj
	wqjpi

	0
	0
	X
	X

	0
	1
	X
	(

	1
	0
	(
	X

	1
	1
	+
	+


· Tpi is the target value for neuron i at position p and Tqi is the target value for neuron j at position q. 

· Neuron pi and neuron qi belong to the same representation level, which means the two neurons belong to the same kind of neurons in the model and located at the same representation level.

· wpiqj is the connection from neuron pi to neuron qj and wqjpi is the connection from neuron qj to neuron pi.
Based on the different combination of the two neurons’ values, there are four possible situations:

1. Tpi = 0 and Tqj = 0: The target values of both neuron pi and qj are 0, i.e. they are inactive. The activations of the two neurons have no effect on each other under this scenario. No information about the connection weight of between them can be drawn.

2. Tpi = 0 and Tqj = 1: Neuron pi and neuron qj should not be activated simultaneously. The activation of neuron qj should inhibit the activation of neuron pi to make it inactive. But there is no information about the effect of neuron pi on neuron qj. So the weight wqjpi is of negative value and weight wpiqj is unsure.

3. Tpi = 1 and Tqj = 0: Similar to situation 2. The activation of neuron pi should inhibit the activation of neuron qj to make it inactive, but there is no information about the effect of neuron qj on neuron pi.

4. Tpi = 1 and Tqj = 1: The two neurons appear at the same time and they should enhance the activation of each other. Therefore, the weights of the connections between them should be positive.

From the relationship between the neurons in the representation level, we obtain the weight change equation for the connections between these neurons. 
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(5.1)


· wqjpi is the weight of connection from neuron qj to neuron pi.
· (( wqjpi is the self-decay term, ( is the self-decay rate. 

· ( (Tpi ( Opi)Tqj Oqj is the change committed to the weight. ( is the weight change rate; Tpi and Tqj are the target values of neurons pi and qj; Opi and Oqj are the actual activation levels of neurons pi and qj respectively.

Table 5.2 shows the four situations of the weight change equation. Since the self-decay term is very small compared with the weight change term, it can be ignored in the following analysis.

1. Tpi = 0 and Tqj = 0: 
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, no change is committed on the weight.
2. Tpi = 0 and Tqj = 1: Since 0 ( Opi ( 1, we have (Tpi – Opi) Tqj Oqj ( 0. Therefore, we get (wqjpi ( 0. That is, the weight of connection from qj (active neuron) to pi (inactive neuron) is modified toward negative value to inhibit the activation of pi.

3. Tpi = 1 and Tqj = 0: 
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, no change is committed on the weight.
4. Tpi = 1 and Tqj = 1: (Tpi – Opi) Tqj Oqj ≥ 0, 
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, The weight of connection between desired neuron pi and qi is modified toward the positive value so that they enhance each others’ activation.

Table 5.2 Comparison of the result of weight change equation with the relationship of neurons. If can be found that the result of the weight change equation match the feature of relationship very well. Therefore, if can be said that the weight change rule can accomplish the learning target.

	Tpi
	Tqj
	wqjpi
	( wqjpi

	0
	0
	X
	0

	0
	1
	(
	(

	1
	0
	X
	0

	1
	1
	+
	+


In addition to the four situations mentioned above, the weight change equation also has following features:

1. When Opi ( Tpi, the actual output of the neuron pi is nearly the same as the target state. It means that the network already learned the correct weights and no change is necessary. In this situation, (Tpi – Opi) ( 0, almost no change is committed to the weights of the connections to neuron pi.

2. The modification on the connection that comes from a neuron with a large output is much larger than that from a neuron with a small output. This is based on the assumption that a dormant neuron is irrelevant in the current scenario and the modification on the connection should be as small as possible, so as to avoid the breaking of any learned rule.

5.2 Learning Word Frequency 

Word frequency is an important factor that affects the performance of an educated person, such as the naming latency (response time). Research on reading process found that high frequency words generally have shorter response times than do low frequency words. It means that the degree of familiarity of a word is encoded in the human brain. Analysis of the naming latency acquired from human’s reading process reveals that the response time is related to the logarithm of the word frequency. To reflect this phenomenon, a model of the reading process should capture the word frequency.

In DRC model, a constant value called Constant Frequency Scaling variable is associated with each whole-word unit as a term of its activation equation. The value is calculated using log-frequency of the word directly. Below shows the term used by DRC.



[image: image28.wmf]FS

Lexicon

in

Frequency

Frequency

CFS

i

i

´

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

=

1

)

 

 

(max

log

)

(

log

10

10


Where CFSi is the constant frequency scale calculated for each word and FS is a constant.

In this neural network model, a similar term is used to capture word frequency. Unlike DRC model, we try to capture the frequency information in the weights of the connections that feed into the chunking neurons. A chunking neuron that encodes high frequency chunk will have larger connection weights with the letter units and therefore receive stronger input signals than do low frequency chunking neurons. Consequently, the activation of the chunking neuron is enhanced and the enhanced neuron will commit greater excitatory effect on desired neurons and inhibitory effect on undesired neurons. This method also helps the network to converge much faster. This means shorter response time (RT), which is exactly the effect we want. 

The frequency term appears as a developmental term in the model, instead of a fixed one as in DRC model. 
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(5.2)
· (wliqj is the change of weight of the connection from letter neuron i at position l to chunking neuron j at position q.
· The first term is the self-decay term, ( is the self-decay rate.

· The second term encodes co-occurrence, Li is the target value of letter neuron i, Cqj is the output value of chunking neuron qj. When Lli  = 1 and 
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, a co-occurrence occurred. In this situation, the second term is positive and the weight is increased; otherwise, the second term equals 0 and the weight will decrease slowly, like the “forgetting” process.

· (, ( and ( are positive parameters.
· 
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The upper and lower bounds are used to prevent a neuron from becoming either too outstanding to shadow other neurons or too weak to become a dead neuron.

5.3 Letter-to-chunking Connection

The connections between letter units and chunking units are typically feed-forward connections. The frequency factor is captured into the weights of these neurons. Since this project assumed that the letters of the input word are recognized correctly, the letter-to-chunking connections are handwired initially. Each connection has a small initial weight to guarantee that a letter unit can offer the necessary input to the corresponding chunking neurons.

Every time a word is put to the network, the letter-to-chunking connections will be modified to record the appearance of the word. After the network reaches the stable state, the network will modify each letter-to-chunking connection based on equation 5.2. The letter-to-chunking connections have two types: letter-to-GP connections (in model A), or letter-to-grapheme connections (in model B), and letter-to-whole-word connections.

Letter-to-GP and letter-to-grapheme connections connect letter neurons to neurons in the GPC route. The weight change equation is shown as Equation 5.3. In the equation, wliqj is the connection from a letter neuron li to a chunking neuron qj. Lli is the output of letter neuron li; Gqj is the output of chunking neuron qj. 
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(5.3)
Letter-to-whole-word connections connect letter neurons to whole-word neurons. The weight change equation is shown as Equation 5.4. 
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(5.4)
5.4 chunking-to-chunking connections

Chunking-to-chunking connections exist between two chunking neurons. There are three types: connections among the same representation category, e.g. GP-to-GP connections; inhibitory connections from whole-word neurons to chunking neurons in GPC route and grapheme-to-phoneme-chunking neurons (special for model B). In these three connections, the connections among the same representation category will be changed during the learning process. The other two are handwired. 

Pronunciation rules are stored in connections among the same representation category. Initially, all these connections have value around 0. It means that the network is an unbiased network initially. Every time a word is learned, the connections will be modified so as to capture the pronunciation rules at each representation level. The modification happens when the network reaches the stable state. The weight change equation for GPC route neurons is shown as Equation 5.5, where Tpi and Gpi are target and output values of neuron pi respectively.
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(5.5)


As for whole-word neurons, the weight change equation is shown as Equation 5.6, where Ti and Xj are the target and output value of whole-word neuron i.
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(5.6)


5.5 chunking-to-phoneme connections

Chunking-to-phoneme connections exist between the chunking layer and the phoneme layer. These connections connect chunking neurons to phoneme neurons to provide input to phoneme neurons. They are typical feed-forward connections. Since the frequency effect on such connections is unclear, no frequency information is stored in them at present.
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Figure 3.1 Overall structure of the neural network model. There are three layers in the model, Letter Layer, Chunking Layer and Phoneme Layer. These three layers correspond to the input layer, the middle layer and the output layer respectively
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