
Practice: Observing Function Call and
Return using GDB

The goal of this group assignment is to get familiar with the GDB
debugger, and use it to understand the low-level function call and return
mechanism used by Intel CPUs.

Here is a document about the memory layout of programs in Linux:
http://dirac.org/linux/gdb/02a-Memory_Layout_And_The_Stack.php

1. Ubuntu 10.04 has address-space randomization turned on by default to

mitigate memory exploits, including buffer overflow. We need to turn
it off for easily observing the low-level mechanisms for call and return.
Using the following command to disable address-space randomization.

sudo sysctl -w kernel.randomize_va_space=0

2. Compile the provided source file sample.c with stack-protector
disabled (-fno-stack-protector), debugging information
(-g), and generate an executable file named sample (-o
sample).

gcc -fno-stack-protector -g -o sample sample.c

3. Start the GDB debugger:

gdb ./sample

4. Set a breakpoint at the beginning of the main() function:

(Under the gdb prompt) break main

5. Before we run the program under the debugger, disassemble the main
function to note down an important value from the program.

(Under the gdb prompt) disassemble main

http://dirac.org/linux/gdb/02a-Memory_Layout_And_The_Stack.php�

This is the assembly code of the main() function. Each instruction line
starts with the memory address of that instruction, followed by the
disassembled instruction. Note that the instruction at the address
0x0804849c (the instruction above the red line) is the call to
sample_function. Therefore, when the function returns, it should
continue to execute the next instruction, whose address is 0x080484a1
(the address in the red rectangle). Note down this address.

6. Now we can start to execute the program:

(Under the gdb prompt) run ./sample
Or simply run

Now the program stops in main(), before calling the printf() function.

7. Do a single step, executing the printf() functions. From the output, you

can see the memory address of the variable x.

(Under the gdb prompt) step

Now the program is about to call the function sample_function.

8. Let’s inspect the register values

(Under the gdb prompt) info registers

This command shows the value of registers and the decoded value.
Here we just need to use the first number (hexidecimal value of the
register).

We can see: the stack pointer ESP is at 0xbffff380. The base pointer
EBP is at 0xbffff3a8. The instruction pointer EIP is at 0x0804849c.
Can you check from the disassembly of main(), which instruction will
be executed next?

9. Before we enter the sample_function, do a disassemble of the sample
function.

The first three instructions of this function is common across most of
the functions generated by the gcc compiler. It saves the base pointer
on the stack (push %ebp), point the base pointer to the current stack
top (mov %esp, %ebp), and move down the stack pointer to allocate
space for local variables (sub $0x28, %esp). The rest of the
instructions is generated from the C code of sample_function.

Let’s see what will happen to the stack when the program enters
sample_function. The stack pointer is originally at 0xbffff380, shown
in the previous “info registers” command.

First, a return address will be pushed on the stack by the call
instruction. A return address is 4 bytes on a 32-bit computer. Therefore,
the stack pointer will be at 0xbfffff380 – 0x4 = 0xbffff37c.
This is the location of the return address of this activation of
sample_function.

Next, the push %ebp instruction will push a 4-byte EBP on to the

stack. The stack pointer will be moved down by 4, resulting in a new
value 0xbffff37c – 0x4 = 0xbfffff378.

Then, the mov %esp, %ebp instruction will set EBP to the value of
ESP, 0xbffff378.

Finally, the stack pointer is moved down by 0x28 to make space for
local variables. The new stack pointer ESP is 0xbffff378 – 0x28 =
0xbffff350. Therefore, the local variables of sample_function should
be in the range of 0xbfffff350 to 0xbffff378.

10. Do a single step to enter sample_function

11. Check the register values to see whether they match our analysis

12. Where will this program go after this function finishes? Let’s check
the return address. It is at location 0xbffff37c. It can also be found by
EBP+4, why?

(Under the gdb prompt) x/xw $ebp+4

You can also check the return address byte-by-byte
(Under the gdb prompt) x/4xb $ebp+4

Task:

Use a figure to illustrate the stack layout when the program is (1) right

before sample_function is called; (2) in sample_function; (3) right
after sample_function returns. Mark the location of the stack pointer,
the base pointer, and return address. Also describe the role of the
stack pointer (esp), the base pointer (ebp), and the instruction pointer
(eip) in a program.

