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ABSTRACT
Internet advertising is one of the most popular online business mod-
els. JavaScript-based advertisements (ads) are often directly em-
bedded in a web publisher’s page to display ads relevant to users
(e.g., by checking the user’s browser environment and page con-
tent). However, as third-party code, the ads pose a significant threat
to user privacy. Worse, malicious ads can exploit browser vulner-
abilities to compromise users’ machines and install malware. To
protect users from these threats, we propose AdSentry, a compre-
hensive confinement solution for JavaScript-based advertisements.
The crux of our approach is to use a shadow JavaScript engine to
sandbox untrusted ads. In addition, AdSentry enables flexible reg-
ulation on ad script behaviors by completely mediating its access to
the web page (including its DOM) without limiting the JavaScript
functionality exposed to the ads. Our solution allows both web
publishers and end users to specify access control policies to con-
fine ads’ behaviors. We have implemented a proof-of-concept pro-
totype of AdSentry that transparently supports the Mozilla Firefox
browser. Our experiments with a number of ads-related attacks suc-
cessfully demonstrate its practicality and effectiveness. The perfor-
mance measurement indicates that our system incurs a small per-
formance overhead.

1. INTRODUCTION
Internet advertising is one of the most popular business mod-

els of today’s Internet companies. For example, more than 96%
of Google’s revenue is from Internet advertising [15]. In Internet
advertising, web site owners or web publishers include advertise-
ments (or “ads”) from advertisers in their pages, and get paid by
advertisers when users view and click on these ads.

To increase the likelihood for users to click on the ads, adver-
tisers commonly use (JavaScript) code in ads to check a user’s
browser environment to select advertisements that are believed to
be more attractive to the users. As third-party code, these ads unfor-
tunately pose great security threats to both web applications and the
underlying operating systems. For example, such ads require close
integration with the displayed page contents, which may leak users’
private data [28] and break web applications’ integrity. Worse,
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malicious ads can further exploit software vulnerabilities in web
browsers to launch drive-by downloads and surreptitiously install
malware on users’ machines. A recent research shows that “about
1.3 million malicious ads are being viewed online everyday, most
pushing drive-by downloads and fake security software” [33].

To mitigate the threats from untrusted ads, a number of solutions
have been recently proposed. They address the threats to user pri-
vacy and web application integrity by sandboxing JavaScript ads
through functionality restriction or isolation [2, 4, 10, 13, 17, 19, 23,
26,27,30,35,40,45,49]. However, they cannot block ads from trig-
gering drive-by downloads, which have been “persistently” plagu-
ing online users as one of the main attack mechanisms. In ad-
dition, these solutions are not flexible in controlling behaviors of
JavaScript advertisements: the allowed access of an ad must be de-
cided before it starts to run. In the face of these limitations, there is
a need for an integrated solution that can not only flexibly regulate
the ad access to various web contents, but also effectively block
drive-by downloads from malicious ads.

In this paper, we present the design, implementation and eval-
uation of AdSentry, a comprehensive and flexible isolation frame-
work to confine JavaScript-based advertisements. Instead of sup-
porting only a subset of JavaScript functionality or isolating the
ad execution through significant changes to web pages, AdSentry
provides a shadow JavaScript engine for untrusted ad execution.
The purpose of having a shadow JavaScript engine is to ensure that
the ad will not affect the host web content without proper control,
thus protecting user privacy and the integrity of web applications.
More importantly, it provides the control in a transparent manner
and still exposes the full spectrum of JavaScript functionality to the
untrusted ads. Meanwhile, to block possible drive-by downloads
and preserve the integrity of the host system, the shadow JavaScript
engine is strictly sandboxed.

By design, AdSentry effectively mediates all accesses made by
untrusted ads to the web application. We stress that the shadow
JavaScript engine (for the ad execution) by default cannot access
the original page DOM (Document Object Model). To accommo-
date legitimate accesses by ads to some part of the page content,
AdSentry transparently interposes related DOM accesses from the
ads. For every such access, AdSentry checks its legitimacy (ac-
cording to a given access control policy) and, if benign, redirects
it to the original page DOM to substantiate the access. Our frame-
work is flexible in allowing both web publishers and end users to
specify or customize the access control policies for ads, as well as
allowing dynamically changing policy after an ad starts to execute.

We have implemented a proof-of-concept AdSentry prototype.
The shadow JavaScript engine implementation is based on the open-
source Mozilla SpiderMonkey. Its execution is strictly sandboxed
with Native Client [48], which has demonstrated its effectiveness



in confining third-party code with high efficiency and reliability.
Our development experience further indicates that AdSentry is a
generic framework that can be conveniently implemented as a reg-
ular browser extension without requiring the modification of the
browser code. Our evaluation results with a number of ad-related
exploits show that AdSentry is effective in successfully blocking
all of them. The performance evaluation shows that the protection
is achieved with a low overhead.

Contributions.
We identified the critical need for a confinement solution to pre-

vent ads from threatening the privacy and integrity of user data as
well as the integrity of users’ computing systems. To summarize,
this paper makes the following contributions:

• AdSentry provides a comprehensive isolation framework to
confine untrusted ads on web pages. Its comprehensiveness
is achieved by not only regulating the ad access to the orig-
inal web application (or web contents), but also effectively
confining the ad execution in a strongly sandboxed environ-
ment to block possible drive-by downloads.

• Our solution preserves the original execution environment
for third-party scripts. Unless otherwise specified by access
control policies, AdSentry does not alter the execution order
of different scripts on the page even after certain ad scripts
are sandboxed by our solution. Sandboxed ads scripts also
have full access to global JavaScript objects created or over-
written by other scripts outside the sandbox, if allowed by
access control policies.

• Our solution allows for flexible mediation of each DOM ac-
cess from untrusted ads. It is also flexible in allowing both
web publishers and end users to specify access control poli-
cies for ads. We highlight that it is important to empower
users with full control as they can choose how to protect the
viewed web pages from ads (according to their own require-
ments and running environments) and remain confident in
protecting the integrity of their host systems.

• We have implemented a prototype that transparently supports
modern Mozilla Firefox browsers. Our prototyping and eval-
uation results with real-world examples demonstrate its prac-
ticality and effectiveness.

The rest of this paper is organized as follows: Section 2 pro-
vides an overview on Internet advertising. Sections 3 and 4 present
our system design and implementation. Section 5 presents detailed
evaluation results. Section 6 discusses limitations of our approach
and suggests future improvement. Finally, Section 7 describes re-
lated work, and Section 8 concludes the paper.

2. PROBLEM OVERVIEW
In Internet advertising, advertisers pay web publishers directly

to display their ads on these web sites, or more often, pay adver-
tising networks to get their ads displayed on popular sites, easily
reaching out to a large amount of audiences. Moreover, advertis-
ers usually allow web sites or advertising networks to dynamically
decide what kind of ads to display to their visitors, based on the
web contents users are viewing. This behavior is called “targeting”
of ads. It makes Internet advertising more relevant and presumably
more helpful to visitors. The profit of web publishers hosting ads
can be calculated by different revenue models, including measuring
how many times the ads are displayed, how many visitors have seen
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Figure 1: An architecture overview of AdSentry. The core com-
ponents of AdSentry are highlighted in the figure.

the ads, or how many times the ads have been clicked by visitors,
etc. [47]

Internet advertising brings in new challenges to web security and
privacy. One possible way for publishers to include advertisements
is to completely isolate them in separate iframes. However, such a
complete isolation makes advertisement targeting impossible. As a
result, third-party ads are often included in <script> elements,
so they have the same privilege as other JavaScript on the web page.

In this paper, we focus on such third-party JavaScript-based ad-
vertisements (ads) that are deployed on web pages. These ads are
hosted outside web publishers’ servers, but included as JavaScript
on the web pages. If some of them become malicious, they may
abuse their privileges in accessing web application data for various
purposes, such as leaking confidential user information and issuing
unauthorized transactions. Moreover, they may exploit software
vulnerabilities in browsers to take over the users’ systems.

Our goal in this work is to comprehensively confine these un-
trusted JavaScript ads and effectively protect users’ privacy and the
integrity of both web applications and the users’ computer systems.

3. SYSTEM DESIGN
To effectively confine untrusted ads, we have four design goals,

i.e., comprehensiveness, flexibility, transparency, and efficiency.
By comprehensiveness, we aim to provide an integrated scheme
that not only regulates ad access to the host web page, but also
contains malicious ads from launching drive-by downloads. The
flexibility requirement allows both web publishers and end users
to specify access control policy for ads. Users can also dynam-
ically change access control decisions based on application run-
time states. The transparency goal requires no modification to the
browser for the support and preserves the timing of the JavaScript
behaviors in the web applications. The transparency requirement
ensures that the current billing model of ads is not affected. Actu-
ally, it is a stronger requirement than simply requiring no changes
to ads billing. Also, the proposed solution needs to be efficient in
introducing low performance or maintaining a similar level of user
experience.

Following these design goals, we have developed a novel ad
isolation framework called AdSentry, whose overall architecture
is shown in Figure 1. In essence, AdSentry provides a shadow
JavaScript engine to confine untrusted ads. This shadow JavaScript
engine by default has no direct access to the original browser envi-



ronment and the operating system. Therefore, the ads can be fully
confined, and the host web page and OS will remain intact even if
the ads are malicious. To meet the transparency requirement, the
shadow JavaScript engine can be seamlessly integrated into current
browsers through the standard browser’s extension application pro-
gramming interfaces (APIs), i.e., no browser modification will be
necessary.

With the introduction of a shadow JavaScript engine, AdSentry
essentially works with two JavaScript engines: the untrusted ads
run inside the shadow engine while the rest (normal) JavaScript in
the web page runs as usual in the default engine. We point out that
an ad may have legitimate reasons to access certain web content
(e.g., for the purpose of advertisement targeting). To accommodate
these requests, AdSentry provides a virtualized DOM to the shadow
JavaScript engine. The virtual DOM has all the standard DOM
interfaces, including XMLHttpRequest, so page accesses made by
ads running in the shadow engine will be received by the virtual
DOM. When the virtual DOM is being accessed, it will relay the
access to the page agent in the browser through a policy enforcer.
The policy enforcer will decide whether a page access is allowed
by users’ security policies. If yes, the page agent proceeds with the
access request on behalf of the isolated ad, and returns the results
back to the isolated ad through the virtual DOM. If not, the access
will be blocked to protect the integrity of the web page.

Besides virtualizing the DOM access for untrusted ads, AdSen-
try also sandboxes the ad execution within the shadow engine, pre-
venting them from compromising users’ operating systems.

It is important to note that AdSentry is transparent to web pages
by automatically dispatching ads to the shadow engine and seam-
lessly supporting their accesses. As a result, the billing model of
ads is not affected. AdSentry preserves the original execution tim-
ings of all JavaScript in the web page, including ads scripts running
in the shadow JavaScript engine. This is a key advantage of Ad-
Sentry over iframe-base isolation techniques, such as AdJail. This
ensures that the behaviors of the applications and user experience
will not be altered unless for security concerns, making AdSentry
applicable to securing a wider class of untrusted JavaScript code in
web applications.

3.1 Shadow JavaScript Engine
By introducing a shadow JavaScript engine to host untrusted ads,

AdSentry allows us to achieve the comprehensiveness goal: re-
silience against exploits to browsers themselves and protection for
the confidentiality and integrity of web application data. As men-
tioned earlier, the shadow JavaScript engine is executed inside a
Native Client (NaCl) [48] sandbox. There are two reasons why we
choose to build our system on top of NaCl. First, NaCl sandbox
has been shown to be secure against code injection attacks with mi-
nor performance overhead. Second, NaCl has been supported on a
number of platforms, such as x86, x86-64 and ARM [41], which
can be very helpful for adopting AdSentry by end users, especially
with the rising popularity of the Google Chrome browser and the
Chrome OS that ships NaCl as one built-in component.

Like the normal JavaScript engine in the current browser, the
shadow JavaScript engine is shared across web pages in the browser.
To distinguish different ads from different pages, each ad will be
assigned a unique identification number. With that in place, when
an ad needs to be executed, AdSentry sends its JavaScript and the
ad’s identification number to the shadow engine. To preserve the
original execution timing of the web page, the browser waits until
the ad’s JavaScript finishes in the shadow engine, in the same way
that the original browser JavaScript engine handles its execution.

Specifically, once the sandboxed JavaScript engine receives a

JavaScript to execute, it creates a new JavaScript context for the
ad with the associated identification number. A virtualized DOM
will be initiated to contain a set of global objects, which are then
made accessible to the JavaScript context. The virtual DOM has all
standard DOM interfaces, but each interface is simply a stub that
forwards the access to it to the page agent in the browser. After
the initialization, the shadow JavaScript engine starts executing the
received JavaScript. If the script accesses a particular DOM inter-
face, the access is intercepted by the virtual DOM, which in turn
communicates with the page agent to handle the access request.

3.2 Page Agent
The intercepted DOM access requests from the virtual DOM are

forwarded to the page agent, which resides on the same page with
the web application. After the verification from the policy enforcer,
the page agent will perform the requested DOM access on behalf
of the ad. If the request is to create or modify DOM element(s),
the page agent takes special care to capture all resulting JavaScript
executions and forwards them back to the shadow engine for pro-
cessing. For instance, when a user clicks on a button created by an
ad, the triggered onclick() function call will be captured and
executed in the shadow engine.

The communication between the virtual DOM and the page agent
is in the form of message passing. When the page agent receives a
message requesting a DOM access from the shadow JavaScript en-
gine, it extracts the access from the message, and processes it in the
context of the original web page. The page agent then sends the re-
sult back to the virtual DOM, and in turn, to the shadow JavaScript
engine, completing the access made by the confined ad.

AdSentry also naturally regulates access to HTTP requests from
untrusted ads. Specifically, ads may initiate HTTP requests by ei-
ther generating new DOM elements (that have already been con-
trolled by the page agent), or by directly initiating XMLHttpRe-
quest. As XMLHttpRequest is not part of the JavaScript engine,
but is provided by the virtual DOM, the invocation to XMLHttpRe-
quest is also regulated by our system.

In order to ensure that the relayed DOM access is transparent to
the executing ad, we need to address a few issues – some of them
come from innate JavaScript features.

Dynamically generated JavaScript.
Ads can insert a new piece of JavaScript into a web page.

The new JavaScript must also be executed in the same shadow
JavaScript engine. Otherwise, the newly generated JavaScript can
escape the isolation of AdSentry.

There are several ways for ads to introduce new JavaScript into
the original web page. Examples include abusing document.write
or setting the innerHTML attribute of an element. Accordingly,
whenever AdSentry receives a message from the shadow JavaScript
engine requesting to invoke such DOM interfaces, the request is in-
terpreted and all newly introduced JavaScript is properly flagged to
ensure they will execute in the shadow JavaScript engine. We detail
this solution in Section 4.

Timers and event listeners.
One interesting challenge comes from the support of asyn-

chronous events, such as timers, where ads register callback rou-
tines to be executed later. Such callback routines need to be ex-
ecuted in the shadow JavaScript engine. To handle these asyn-
chronous events, AdSentry dynamically creates a stub as the cor-
responding event handler in the web page. This stub will notify or
invoke the true callback routine in the shadow JavaScript engine.

Unfortunately, as asynchronous events occur unexpectedly, the



notifying message sent to the shadow JavaScript engine may arrive
in the middle of the execution of some other DOM accesses, which
causes an undesirable race condition. To avoid that, the messages
from asynchronous events will be separately marked and tempo-
rally buffered by the shadow JavaScript engine. These messages
will then be processed after the ongoing DOM accesses are fin-
ished.

Anonymous functions.
The JavaScript language supports anonymous functions. For

example, the following code snippet creates an anonymous func-
tion with a function body alert(0).
window.addEventListener("click",

function () { alert(0); },
false);

As an ad may create these anonymous functions, we need to
isolate them properly. Particularly, if these anonymous functions
are being used as event listeners, they should be invoked within
the shadow JavaScript engine when the corresponding events oc-
cur. Unfortunately, anonymous functions are represented as na-
tive function objects in the JavaScript engine, rather than strings
of JavaScript code. Therefore, we cannot handle them in the same
way as we do for JavaScript code on the page.

To address this problem, in our system, when the shadow JavaScript
engine executes a statement that creates an anonymous function, we
record the function’s internal identification number, associate that
number with the related DOM access, and forward it to the page
agent. When the page agent receives the message at the real DOM
side, it dynamically composes a new JavaScript function whose
task is just to send a message containing the identification num-
ber of the anonymous function to the shadow JavaScript engine.
After that, it assigns the newly composed function as the argument
to the event listener. When the event occurs, the newly composed
function will be invoked (at the real DOM side) to send a message
to the shadow JavaScript engine and ask it to run the anonymous
function with the specified identification number.

3.3 Policy Enforcer
By confining the shadow JavaScript engine within a sandboxed

environment, our system effectively blocks possible drive-by down-
loads that target the underlying JavaScript engines (more concrete
examples will be shown in Section 5). In the meantime, it is im-
portant to point out that the sandbox itself does not provide any
guarantee on the confidentiality or integrity of the web application.
As a result, it needs to work in concert with the policy enforcer to
achieve this goal. Specifically, the policy enforcer checks the re-
quests intercepted by the virtual DOM according to a given user
security policy. Only if allowed by the enforced security policy, the
request will then be forwarded to the page agent for processing.

As mentioned earlier, our system allows both web publishers and
end users to customize the access policy for ads. Specifically, for
web publishers, as they can simply change the web page content,
they may choose to wrap the ad and confine its execution in the
shadow JavaScript engine. For end users, our current system lever-
ages Adblock Plus [34] to automatically identify ads and confine
them with a customized JavaScript wrapper. We will present the
details as well as the supported policies in the next section.

4. IMPLEMENTATION
We have implemented a proof-of-concept prototype of AdSentry

based on the browser extension support of Firefox, and it is imple-
mented and tested in Mozilla Firefox 3.5.8. Our implementation

of the shadow JavaScript engine is based on Mozilla SpiderMon-
key version 1.8.0. The virtual DOM support is generated with a
code generator of 770 SLOC in perl. On the browser side, the other
two components (i.e., the policy enforcer and the page agent), are
implemented entirely in the JavaScript language. These two com-
ponents add about 3100 SLOC.

4.1 Specifying Advertisement Scripts
AdSentry is flexible in deployment. It allows both web publish-

ers and end users to specify the scripts to be executed in the sand-
box. The intuitive way is to associate an attribute with the script
indicating it is an advertisement script. However, this solution re-
quires the browser to be modified to recognize the attribute. In Ad-
Sentry, we provide a function sandboxAds. It takes the body of
an ad or the URL of an ad script, and notifies AdSentry to execute
it in isolation.

Therefore, to use AdSentry, web publishers can process the ad-
vertisement with the function sandboxAds, as illustrated by the
following example, where the last argument indicates whether the
first argument is the URL (true) or the body of an ad script (false).

<script>
sandboxAds(’http://ads.com/ad.js’,

id, true)
</script>

AdSentry also provides the option to end users by automati-
cally identifying ads instances at the client side. It uses Adblock
Plus [34] to identify ads and automatically processes them with
sandboxAds.

4.2 Shadow JavaScript Runtime and Virtual
DOM

We use NaCl to sandbox the SpiderMonkey JavaScript engine.
We found this process relatively straightforward. However, the
main challenge comes from the extension we make to the origi-
nal JavaScript engine. Specifically, to enable ads running in the
JavaScript environment to access related page content (e.g., for ad
rendering), there is a need to provide virtual DOM objects. In our
prototype, a virtual DOM is made available to the JavaScript en-
gine in the form of a tree of objects. The root of this tree is called
the global object. 1 In the case of a web page, the global object
is the window object. This global object has a number of prop-
erties, including global JavaScript variables and functions, such as
the document object, the location object, and the eval func-
tion. With this tree structure, all other virtual DOM objects are also
properties of their parent objects.

We obtain a standard DOM structure from the standard DOM
specifications [44], construct virtual DOM objects and expose them
to the shadow JavaScript engine as host objects. More specifi-
cally, the virtual DOM for SpiderMonkey is generated in the fol-
lowing steps: 1) Create a new JSRuntime object and set up ini-
tial configurations and in runtime, create JSContexts for the ex-
ecution of ads scripts. 2) Create a JSClass for each class of
DOM objects. 3) Specify properties and member functions for each
JSClass. 4) Implement property and function accessor methods
for each JSClass, most of which will invoke one of the cen-
tralized access handling functions, respectively. 5) Implement the
centralized access handling functions for virtual DOM accesses.
These functions will then relay the access to the page agent (on the
browser side). To relay the access, they also perform other tasks,
such as preparing arguments to actual DOM function calls, looking
1Note that the concept of the global object here is different from
that of global objects in a JavaScript program.



for anonymous functions, buffering event listener code for later ex-
ecution, etc. These functions interpose each and every access from
ads to the real DOM. 6) Create instances of standard objects from
JSClass definitions, starting from the window global object. For
non-global objects, we will specify their parent objects during the
creation to form the tree structure.

Considering the large number of virtual DOM objects we need to
construct and the associated tree structure we need to maintain, we
have a code generator in place to automate the above steps for all
virtual DOM objects. The code generator reads in an XML file that
specifies the DOM tree objects and structures, and then generates
an output file that embeds the JavaScript engine and sets up its host
environment with the virtual DOM.

4.3 Page Agent
To facilitate the communication between the shadow JavaScript

engine and the page agent, we define a simple message format for
data exchange. The format is summarized as follows:

msg::= command data
command::= script | callFunc | getProp

| setProp | return
data::= <text>

Each message contains a command field and a related data field.
Our prototype has defined five different commands: a script
command is used to notify the page agent that an ad script needs
to be sent to the shadow engine for execution. Upon receiving the
message, the shadow engine will prepare the runtime environment
and then start executing it. During execution, it will intercept any
DOM access from the ad script and based on the type of access,
translate it into three other types of messages to the page agent:
callFunc for function invocations, getProp for property re-
trievals, and setProp for property (re)initialization. Finally, a
return command carries the results in the message body, i.e., the
data field.

The page agent extends the Firefox browser through its stan-
dard extension interfaces. We create a Firefox extension, which
monitors the dispatched message events notified by sandboxAds.
Specifically, following the above message format, if a script com-
mand is received, it parses the message stored in the event object,
and communicates with the sandbox. We stress that web pages
cannot directly communicate with the sandbox, and all communi-
cations are done via the Firefox extension. During the ad execu-
tion, if it needs to access a DOM object, the sandbox intercepts it
and encapsulates the access by sending a message to the page agent
requesting a DOM access. Here, the DOM access is meant for the
access of the real web page and the extension cannot evaluate it in
its own execution environment.

There are two possible approaches for our extension to evaluate
the intended DOM access in the web page context. The first ap-
proach is straightforward: simply posting a message (or dispatch-
ing a custom event) to the web page. After receiving it, the web
page can then evaluate the requested DOM access (encoded in the
message or event). However, message passing is asynchronous,
which allows other JavaScript on the same web page to preempt
the execution of the current ad script. This kind of preemption may
cause serious problems as it alters the original execution order of
different scripts on the page. For example, scripts may have de-
pendency on each other, and a premature execution of a later script
may fail if the dependent script has not been executed. As another
example, document.write is normally executed before a web
page is loaded. If it’s executed after a page is loaded, it creates
a new page, completely eliminating the original one. To execute

sandboxed scripts normally, AdSentry should not alter the original
execution order of scripts on the web page, so this first approach is
not suitable here.

The second approach is to implement the communication be-
tween the web page and the extension like a function call. Mozilla
Firefox provides a mechanism for extensions to evaluate JavaScript
code in web pages’ privileges, called evalInSandbox [32]. In
our prototype, we leverage this method to call a function in the
context of the web page that contains the ad script, which in turn
evaluates the DOM access being requested, and returns the result to
the extension. After that, the extension sends it back to the sandbox
via a pipe. By doing so, when an ad script is being executed, we can
ensure the JavaScript engine in the original browser environment is
always in one of the three states: a) waiting for messages from the
sandbox; b) executing our script in the extension; or c) executing
the message processing function in the host web page while our ex-
tension is waiting for the return. As a result, no other scripts on the
web page could preempt the current execution of ads script.

Consequently, our implementation is based on the second com-
munication approach. More details are discussed below.

Concurrent ads scripts.
AdSentry supports processing multiple ads scripts concurrently.

To avoid mix-ups of ad scripts from different web pages, our browser
extension maintains a message queue to ensure that only one ad
script is being processed at any point of time. Each message sent
to the shadow engine is marked with an identification number, en-
abling the engine to evaluate each ad script in its own JavaScript
context. When evaluating DOM accesses requested by the sand-
box, AdSentry also makes sure the accesses will be evaluated in
the same page that originally contains the ad script being executed.

Object maps.
The communication mechanisms implemented in AdSentry are

text-based, but in some cases we need to pass objects as parame-
ter or return values. This is achieved by maintaining object maps
at both the page agent and the shadow JavaScript engine, and only
communicating the objects’ indices in the messages. Before a JavaScript
object is to be communicated to the other end, it is checked against
the local object map. If it already exists in the map, its index is
returned; otherwise, it is inserted into the map with its new index
returned. Then in the message sent, the index of the object is in-
cluded, rather than the object’s real data. Next time when a message
is received from the other end containing an object index, the object
is restored by querying its index from the local object map.

Parameter buffering.
AdSentry enforces security policies on the result of JavaScript

actions, which will be described in Subsection 4.4. One possible
way to bypass our access control policy enforcement is to insert
content into the web page piece by piece. For example, instead of
calling

document.write("<scr" + "ipt> some script <"
+ "/scr" + "ipt>");

malicious ad script may attempt to avoid being detected by in-
serting a script element like the following

document.write("<scr");
document.write("ipt> some script <");
document.write("/scr");
document.write("ipt>");

This way, checks on parameters to each individual DOM function
call would not detect that a new script element is being inserted.



To prevent such misuses, AdSentry buffers such consecutive func-
tion calls by not sending them one by one to the shadow JavaScript
engine for execution, but finally replace them with a single call with
the entire piece of content being inserted, which is checked by the
access control policy enforcer as normal.

4.4 Access Control Policy Enforcement
To regulate the communication between the host web page and

the confined ad script, our policy enforcer acts as a moderator. Any
communication between the two parties needs to be approved ac-
cording to a given policy. AdSentry is flexible in allowing both web
publishers and end users to specify the access control policies for
ads.

AdSentry has a default policy. The default policy disallows any
JavaScript code originated from ads to run in the host web page.
In other words, all untrusted scripts will be guaranteed to be only
executed inside the shadow JavaScript engine. To enforce that,
we examine all incoming messages from the sandbox, distinguish
page updates containing dynamic JavaScript content versus static
HTML, and then handle them accordingly.

Specifically, for the static HTML content, our system first nor-
malizes the HTML into the corresponding XML format and then
serializes the XML back to HTML before processing. The HTML
code is widely known as badly formed, to the point that badly writ-
ten code is often called “tag soup” [6]. Also, all major browsers
have permissive parsing behaviors by supporting a rendering mode
called “quirks mode” beside the “standards mode” [5]. These browser
quirks have many negative implications, one of which is that mali-
cious attacker can embed JavaScript code inside a malformed frag-
ment of HTML code. To strive a balance between security and
the support of potential browser quirks, we took three phases for
parsing HTML code. First, we attempt to reformat the code by cor-
recting popular mistakes in web authoring. For instance, we close
all open tags and correct all improperly nested tags. Second, we
leverage the XML parser in the web browser to parse this refor-
matted code into a XML model. Note that a malformed HTML
is considered dangerous and will be rejected by our parser. Since
XML parser is strictly standard-compliant, any surviving forma-
tion will bear no ambiguity. Finally, we serialize this XML model
back to HTML code before handing to the page agent for further
processing.

For the JavaScript dynamically generated by ads scripts, we in-
stall wrappers that request the sandbox to run the dynamic JavaScript
code. In other words, all untrusted scripts are guaranteed to ex-
ecute inside the shadow page, not the real page. In our proto-
type, we apply the code wrapping based on the above XML model.
Specifically, we leverage the XML XPath facility available in most
browsers to traverse the XML model tree and inspect the enclosed
nodes. We first query for patterns of dynamic code on the model.
These patterns of dynamic code include event handlers such as
onclick(), as well as related JavaScript functions such as
addEventListener() , setTimeout() and setInterval().
The resulting node set will then be properly wrapped or trans-
formed. In our prototype, we have installed wrappers on all 32
possible vectors of dynamic code and ensure that no potentially
malicious code will ever be injected to the real page. As an exam-
ple, the following code snippet

setTimeout(’ slideAd(10,100); ’, slideDelay);

will be transformed into the following code fragment:

setTimeout(’ sandboxAds(" slideAd(10,
100);", id, false); ’, slideDelay);

To further ensure the privacy of sensitive user data in the web
page, we allow users to configure the data to be shared with the
script. As mentioned earlier, we do not copy all the content of the

real DOM to the virtual DOM. Instead, we choose to interpose on
every access to the virtual DOM from the untrusted ad and subject
it for policy verification. As such, users can decide to be extremely
cautious with certain kind of ads, and block any read access from
the ad to the entire page. On the other extreme, a user might want
to trust certain ads, and allow free accesses to the real DOM con-
tent. In addition to the above two policies, a user is also allowed to
specify a policy that blocks accesses to the document.cookie
object or mandates that ad can only read from its own elements and
not the surrounding content. Moreover, an ad can be prohibited
from appearing outside of the allocated region of the web page (by
stating the allowed values of width, height and overflow
property of ad elements). This is helpful to thwart some types of
phishing attacks. In fact, as a comprehensive isolation framework,
our system provides a mediation capability that can accommodate
existing access control polices [23] for ads. And both web publish-
ers and end users can take the advantage of the same capability to
enforce security policy on ad behaviors.

AdSentry also enables end users to dynamically specify access
control policy with tools during the execution of web applications.
In addition, AdSentry leverages a customized version of Adblock
Plus [34] to automatically identify and wrap ads scripts on web
pages.

5. EVALUATION
In this section, we evaluate the functionality and performance

of AdSentry. In particular, we have conducted four sets of experi-
ments. The first one is based on real-world browser exploits to eval-
uate AdSentry’s defense against drive-by download attacks. The
second one is to test its resilience against malicious attempts that
inject JavaScript into web applications. The third one is to eval-
uate AdSentry’s protection of privacy against rogue information-
stealing ads; The fourth one is to measure the performance over-
head. Our experiments were conducted on a Dell E8400 worksta-
tion with a Core 2 Duo CPU (3GHz 6 MB L2 Cache) and 4GB
of RAM. The system runs Ubuntu 9.10 and we its the default web
browser – Mozilla Firefox 3.5.8 – for our experiments.

5.1 Browser Exploits
To evaluate the effectiveness of AdSentry in sandboxing ads,

we conducted experiments with a few real-world exploitations, ob-
tained from existing research work [25] as well as vulnerability
databases [1, 31]. All the exploits we tested with caused the vul-
nerable versions of the Firefox browser to crash during our ex-
periments. They are all marked as critical by Mozilla developers,
and can be further crafted to launch severe attacks such as drive-by
download.

Our experiments are summarized in Table 1. The eight examples
exploit the vulnerabilities in the SpiderMonkey JavaScript engine.
Most of them are various instances of buffer overflow or memory
corruption attacks, and they could lead to arbitrary code execution.
With AdSentry installed in the vulnerable versions of the Firefox
browser (in our experiments, we used Firefox 3.0 and Firefox 3.5
for corresponding exploits), each of the exploits was successfully
contained by the shadow JavaScript engine. This confirmed and
demonstrated one of our design goals that we would like to run
untrusted ads scripts in an isolated environment so that even in
the worst case, they would not crash the entire web browser. As
AdSentry sandboxes the JavaScript engine, so any memory attack
against vulnerabilities in the JavaScript engine would be contained
by the sandbox.



Bugzilla ID Attack Behavior Outcome
426520 Browser crashed by memory corruption with crafted XML namespace Contained by shadow JS engine
454704 Browser crashed by exploiting a vulnerability of XPCSafeJSObjectWrapper Contained by shadow JS engine
465980 Browser crashed by pushing to an array of length exceeding limit Contained by shadow JS engine
493281 Browser crashed by stack corruption starting at unknown symbol Contained by shadow JS engine
503286 Browser crashed by exploiting a vulnerability of Escape()’s return value Contained by shadow JS engine
507292 Browser crashed by incorrect upvar access on trace involving top-level scripts Contained by shadow JS engine
561031 Browser crashed by overwriting jump offset Contained by shadow JS engine
615657 Browser crashed by buffer overflow due to incorrect copying of upvarMap.vector Contained by shadow JS engine

Table 1: AdSentry evaluation using browser exploits

Scenario Attack Vector Attack Behavior Outcome Description
1 Direct code injection Inject script Blocked Denied by the default policy
2 Browser parsing quirk Malformed < img > tag Blocked Rejected by message normalization
3 Browser parsing quirk Malformed < script > tag Blocked Rejected by message normalization
4 Browser parsing quirk Malformed < script > tag Blocked Rejected by message normalization
5 Browser parsing quirk Malformed < b > tag Blocked Rejected by message normalization
6 Browser parsing quirk Malformed < script > tag Blocked Rejected by message normalization
7 Browser parsing quirk Malformed < iframe > tag Blocked Rejected by message normalization

Table 2: AdSentry evaluation using JavaScript injection attacks

5.2 Script Injection by Ads
In our second experiment, we evaluated the effectiveness of our

default policy in preventing untrusted code from being injected
from the ad to the web page. In particular, we examined the XSS
Cheat Sheet [7] and identified a number of cases that can success-
fully result in injecting JavaScript from the ad into the web page
for execution. We confirmed the successful injection and execution
in the default Firefox without AdSentry being installed. During
our experiments, we explicitly cleared the browser’s cache between
each step.

Our results are shown in Table 2. The first one is a direct attempt
to include an external JavaScript to execute in the web page while
the other six exploit numerous parsing quirks [7]. Such attacks
are created to execute a simple script that displays a message box
“hacked!” The use of browser parsing quirks reflects the current
trend [24] in part because they are much harder to repair without
breaking compatibilities with legacy web applications. This was
blocked by the default policy in AdSentry that direct injection of
scripts into the web page is disallowed.

For the rest examples, we use the second scenario as the rep-
resentative. Specifically, in the second scenario, the attempt is to
exploit a parsing quirk by embedding a <script> tag as literal
text inside a <img> tag, which will cause the browser to interpret
the text string as JavaScript code, thus causing an injection:

<IMG """><SCRIPT>alert("XSS")</SCRIPT>">

The related code snippet is shown above. It contains three pairs
of double-quotes, encapsulating different parts of the text. If a
parser were properly implemented, there would be three literal strings:
an empty string "", the second string "><SCRIPT>alert(" and
the last string ")</SCRIPT>". These three strings are orphaned
as they are not assigned to any property of the tag and therefore
should be discarded. As such, the entire tag should simply collapse
to <IMG XSS>, which can also be disregarded. However, this is
not the case in most modern browsers. In fact, existing browsers
tend to be very permissive in their parsing behavior [5]. For in-
stance, we observed that Firefox interpreted <IMG """> as the
first tag and <SCRIPT>alert("XSS")</SCRIPT> as the sec-
ond tag; the remaining "> was accepted as plain text and displayed
as is. As a result, the “malicious” code alert("XSS") was ex-
ecuted. This attempt was blocked because of the normalization

through the standard-compliant XML in our system. We success-
fully detected this malformed HTML content and substituted it with
the benign static text “Script Injection Blocked.”

5.3 Privacy Protection
In our third set of experiments, we test our system from the pri-

vacy perspective. In particular, it has been known that third-party
JavaScript can violate user privacy in various ways. Examples in-
clude cookie stealing, location hijacking, history sniffing, and be-
havior tracking [20]. In our experiments, we evaluated AdSentry
with a synthesized ad that simulates the above information-stealing
behaviors.

In particular, the synthesized ad is developed to perform all these
four types of behaviors: The cookie stealing is implemented to
access the cookie property of document object; The location
is hijacked by setting the location property of window (or
document); The previously browsed URLs are sniffed by obtain-
ing the color of the populated hyperlinks, which can be done by
invoking the getPropertyValue function of the
ComputedCSSStyleDeclaration object (with the argument
“color”) 2; Behavior tracking is achieved by registering related event
listeners of interested elements, such as onclick, onmouseover,
etc.

AdSentry successfully detected each of the above four types of
behaviors. For the first two types, our system simply denies the
read access to the document.cookie and the write access to
the window.location and document.location. For the
third type of ad behavior, it is detected by monitoring any invoca-
tions to the related getPropertyValue function. For behavior
tracking, AdSentry refused the registration of callback routines of
those elements if the ad does not own them.

We stress that our privacy protection enforcement does not suf-
fer from JavaScript object and property aliasing problems. This is
because the access is intercepted by the virtual DOM that, when
invoked, has already resolved all object and property aliasing, if
any.

Moreover, we also evaluated the user experience of AdSentry us-
ing 15 popular website with ads, shown in Table 3. The embedded
ads are automatically recognized by the Adblock Plus extension

2Recent browsers return the same computed styles for visited and
unvisited links.



Web site Properties of ads
www.msn.com Ads on different domain of same company
www.aol.com Ads on content distribution network (CDN)
www.livejournal.com Ad network DoubleClick
espn.go.com Ad network DoubleClick
www.cnet.com Ads on different domain of same company
imageshark.us Ad network Google
www.nytimes.com Ad network Checkm8
www.ehow.com Ad network YieldManager
sourceforge.net Ad network DoubleClick
www.reference.com Ad network DoubleClick
www.dailymail.co.uk Ad network DoubleClick
www.guardian.co.uk Ad network Google
www.gmx.net Ad network Uimserv
yfrog.com Ad network Rubicon Project
www.comcast.net Ad network Yahoo!

Table 3: Web sites used in user experience evaluation

and then transparently confined with AdSentry. To allow users to
interactively specify security policies, we integrate a Firefox exten-
sion called Firebug [3] and extend it with a pop-up menu that can be
triggered with a right mouse click. Specifically, we use the Firebug
to visually capture available screen regions and for a selected re-
gion, a right mouse click will activate the pop-up menu. From the
menu, a user will be shown the list of ads (grouped by domains)
currently embedded in the current page and can then choose which
ad can have a read access to the chosen screen region or can reg-
ister call-back routines (e.g., event listeners). By default, these ads
are only allowed to read their own elements, not the surrounding
areas. Users can also specify new policies during run time, which
will overwrite existing ones if necessary.

Our experiments did not find any suspicious information-stealing
behavior for these websites.

5.4 Performance Evaluation
In order to assess the performance overhead, we conducted ex-

periments to measure the page load overhead. We picked up four
typical ads, one from each of the top four ad networks. We created
a test page for each ad and ran the test page with and without Ad-
Sentry. Each experiment was repeated for 20 times, and the average
results were recorded.

Our results are shown in Table 4. Overall, AdSentry incurs small
overhead. The relative overhead ranges from 3.03% in MSN Ad
Network ad to 4.96% in Google Adsense ad. We observed that a
typical ad might only infrequently access DOM namespace, which
might attribute to the low overhead. From another perspective, the
relative overhead can be low because ad content such as images
are often dynamically loaded from a remote server, this process
experiences network round trip delay that is typically much more
significant than local computation time in web browsers. Also, to
improve responsiveness, modern browsers typically start rendering
any elements immediately once they are available. Therefore a user
may not notice the difference in the speed of ad loading time at all.
In other words, this pipelining of the rendering process contributes
to masking the delay that may be experienced by any single element
in a web page.

In addition to the above real ads, we also measure the time needed
to initialize our sandbox. Our results show that it takes 31 ms to ini-
tialize and set up the sandbox. Though it is lightweight, we expect
opportunities still remain to reduce the time by further optimizing
the JavaScript engine and NaCl sandbox. Finally, we evaluate a
round-trip communication delay for a virtual DOM access. With-
out our system, it typically took 0.001 ms for the ad to finish the

reading of a particular DOM property. When being confined, it
will take 0.59 ms. This is expected as it needs to cross the sandbox
boundary and go through the normalization for policy verification.
Note that this overhead will be effectively amortized in real-world
scenarios – as demonstrated in the four real ads.

6. DISCUSSION
In this section, we discuss the limitation of AdSentry and future

work. First, our current work focuses on the JavaScript-based ad-
vertisements and has not yet explored the support of other types of
advertisements. In particular, Flash technology is another popular
way to write and display ads, which still remains to be investigated
how flash-based ads can be supported.

Second, AdSentry protects the browsers from attacks exploiting
vulnerabilities of the JavaScript engine, but it is not designed to
prevent attacks to other browser components, such as the HTML
rendering engine. If the malicious HTML segment is dynamically
generated by JavaScript code, AdSentry’s policy engine can mit-
igate the attack by the HTML normalization and signature-based
attack blocking. A more general solution is to extend our solution
to isolate other components of the browser.

Finally, we will continue to work on improving AdSentry’s com-
patibility with JavaScript on a web page. Our prototype implemen-
tation is able to handle typical JavaScript advertisements, which has
limited ways in accessing other parts of the web page. However,
third-party JavaScript code in general has much tighter integration
with the rest of the web page. As our future work, we will improve
the support for transparently isolating a wider class of JavaScript
code in web applications. It will also be interesting to investigate
possible ways (e.g., in software testing) that automatically test Ad-
Sentry’s compatibility with a broader set of web applications.

7. RELATED WORK
In this section, we discuss existing work that mitigates threats

from untrusted web content embedded into web applications, in-
cluding those compromising user data, web application integrity as
well as users’ operating systems.

Drive-by download prevention.
Drive-by downloads are serious threats to web and host secu-

rity [37,38]. BLADE [25] proposes a detection system for drive-by
download exploits. This type of attacks has recently received lots
of attention. For example, heap-spraying attacks can pre-populate
a large heap space with attack code and a software bug can be
exploited to redirect execution flow to the heap sprays (with at-
tack code). In addition, several systems [11, 12, 39] have been
proposed to leverage specific memory characteristics of these at-
tacks to identify them and prevent browsers from being exploited.
WebShield [21] proposes a middlebox framework that processes
page contents in a shadow browser, and transforms DOM updates
to the client browser to reflect DOM changes there. As a result,
drive-by downloads can be detected at the middlebox without af-
fecting the client browser. Other existing sandbox and isolation
solutions [14, 22] can also be used to protect the operating system
against drive-by download attacks. Compared to AdSentry, solu-
tions in this category are not designed to protect user privacy and
web application integrity from malicious JavaScript ads.

Isolation in web browsers.
Several recent research projects [9,16,46] attempt to achieve bet-

ter browser security architecture by running different browser com-
ponents in isolated environments. The Google Chrome browser



Performance Test with AdSentry (ms) without AdSentry (ms) Overhead (%)
Google Adsense Rendering 381 363 4.96
DoubleClick Ad Rendering 601 578 3.98

MSN Ad Rendering 1224 1188 3.03
Yahoo Ad Rendering 1539 1475 4.34

Table 4: Runtime page load overhead of AdSentry

also uses a sandbox to isolate browser components and protect the
operating system [8, 29]. The IBOS [42] system steps further by
designing a secure architecture for both the operating system and
the web browser altogether, minimizing default sharing and trust
between software components. However, they do not support iso-
lating JavaScript ads from the rest of web applications, while Ad-
Sentry executes untrusted ads scripts in a separate and sandboxed
environment from trusted scripts, mediating every access from ads
to web applications.

Web application integrity protection.
To prevent tightly-integrated third-party JavaScript from affect-

ing the integrity of web application, one type of solutions [2,10,13,
17,26,27] restricts the “dangerous” functionality of JavaScript. For
example, ADsafe [10] only allows ads to use a safe subset of the
JavaScript functionality. It removes dangerous JavaScript features,
such as global variables, eval, this, and with. ADsafety [36]
proposes a lightweight and efficient verification for JavaScript sand-
boxes, and has been successfully applied to ADsafe. Another line
of solutions [4,19,35,40,49] protects web application against JavaScript
ads through code transformation, enforcing policies against mali-
cious JavaScript at runtime. Similarly, ConScript [30] introduces
aspect into JavaScript language to enforce users’ security rules.
MashupOS [45] proposes new script integration primitives reflect-
ing different trust relationships between the integrator and the mashup
content provider. Besides enabling web publishers to protect their
web applications, AdSentry also allows end users to flexibly spec-
ify access control policies according to their own requirements.

AdJail [23] addresses the privacy and web application integrity
threat from ads by isolating them into an iframe-based sandbox.
Using a separate origin in the sandbox, AdJail leverages browser’s
native origin-based protection to isolate ads. It is a solution for
publishers to isolated third-party ads. Compared to AdSentry, Ad-
Jail assumes the ads on a web page are relatively independent and
do not have tight dependencies with the page environment. For ex-
ample, ad scripts cannot access global JavaScript objects defined or
overwritten by other trusted scripts in the same hosting page. Ad-
Sentry transparently supports tight dependency between ads and
the host page, without significant modification of the web page. It
also provides flexible control of behaviors of JavaScript ads.

In addition, solutions in this category cannot prevent malicious
ads from exploiting browser vulnerabilities.

Privacy protection.
One of users’ major concern about JavaScript ads is privacy. Pri-

vad [18] proposes a solution to protect users’ privacy by making
users anonymous to the advertisers and publishers, but it does not
prevent users’ data from being used by the ad script, which may
implicitly leak our user data. Adnostic [43] uses a browser exten-
sion to perform ad targeting, selecting ads to display from a larger
set of ads sent by the advertisement network. Compared to AdSen-
try, both solutions only focus on protecting users’ privacy, and do
not address the ad’s threat to integrity of web applications and the
underlying operating system.

8. CONCLUSION
JavaScript-based advertisements are ubiquitous on the Internet.

They pose threats to the privacy and integrity of web applications,
as well as security of operating systems. In this paper, we present
the design, implementation, and evaluation of AdSentry, a com-
prehensive and flexible framework to confine untrusted JavaScript
advertisements. AdSentry not only separates the untrusted ad ex-
ecution in a shadow JavaScript engine, but also mediates their ac-
cess to the main page with access control policies, which can be
specified by both web publishers and end users. We have imple-
mented a Linux-based prototype of AdSentry that supports current
Firefox browsers. Our experiments with a number of ad-related
exploits show that AdSentry is effective in blocking these attacks.
Our performance evaluation shows that the comprehensive protec-
tion is achieved with a small performance overhead.
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