
A Quantitative Evaluation of Privilege Separation in
Web Browser Designs

Xinshu Dong, Hong Hu, Prateek Saxena, and Zhenkai Liang

Department of Computer Science, National University of Singapore
{xdong, huhong, prateeks, liangzk}@comp.nus.edu.sg

Abstract. Privilege separation is a fundamental security concept that has been
used in designing many secure systems. A number of recent works propose re-
designing web browsers with greater privilege separation for better security. In
practice, however, privilege-separated designs require a fine balance between se-
curity benefits and other competing concerns, such as performance. In fact, per-
formance overhead has been a main cause that prevents many privilege separa-
tion proposals from being adopted in real systems. In this paper, we develop a
new measurement-driven methodology that quantifies security benefits and per-
formance costs for a given privilege-separated browser design. Our measurements
on a large corpus of web sites provide key insights on the security and perfor-
mance implications of partitioning dimensions proposed in 9 recent browser de-
signs. Our results also provide empirical guidelines to resolve several design de-
cisions being debated in recent browser re-design efforts.

Keywords: Privilege separation, browser design, measurement

1 Introduction
Privilege separation is a fundamental concept for designing secure systems. It was first
proposed by Saltzer et al. [31] and has been widely used in re-designing a large number
of security-critical applications [9, 12, 28]. In contrast to a monolithic design, where
a single flaw can expose all critical resources of a privileged authority, a privilege-
separated design groups the components of a system into partitions isolated from each
other. According to the principle of least privilege, each partition is assigned the mini-
mum privileges it needs for its operation at run-time. Intuitively, this reduces the risk of
compromising the whole system, because the attacker only gains a small subset of priv-
ileges afforded by the compromised component. Common intuition suggests that the
more we isolate components, the better. We question this intuition from a pragmatic
standpoint, and systematically measure the security benefits and costs of privilege-
separating large-scale systems (such as a web browser) retroactively. Our empirical
data suggests that “the more the better” premise is not categorically true. Instead, we
advocate that practical designs may need to balance several trade-offs in retrofitting
least privilege to web browsers.

Web browsers are the underlying execution platform shared between web applica-
tions. Given their importance in defeating threats from the web, web browsers have
been a prime area where privilege separation is being applied. For instance, numerous
clean-slate browser proposals [9,18,20,21,23,24,33,35] and commercial browsers like
Bromium [2] and Invincea [3] are customizing privilege separation boundaries in web

browsers. However, excessive isolation between code components also incurs perfor-
mance cost. Ideally, a practical browser design should balance security gains and the
additional performance costs incurred by a new design. In browser design proposals,
many important design dimensions are actively being debated. Should browsers put
each web origin in its own partition? Should browsers host sub-resources (such as im-
ages, SVG, PDF, iframes) of a web page in separate partitions? Should sub-resources
belonging to one origin be clubbed into the same partition? Should two code units (say,
the JavaScript engine and the Document Object Model (DOM)) be assigned to different
partitions? A systematic methodology to understand the empirical benefits and costs
achieved by a partitioning strategy is important, but has not been investigated in depth.

Our study In this work, we study security and performance implications of choosing
one or more of these partitioning dimensions in browser designs. To do this, we first
extract a conceptual “blueprint” of the web browser that captures the logical compo-
nents of a typical web browser. Then, we empirically measure a variety of parameters
that measure security gains and performance costs of separating these logical compo-
nents. This measurement is performed on a real web browser (Mozilla Firefox) using
a large-scale test harness of the Alexa Top 100 web sites. Our measurements enable us
to estimate the security benefits gained against the performance costs that arise when
choosing a partitioning strategy.

Based on empirical data, we draw several inferences about the benefits and costs of
design dimensions proposed in 9 recent browser design proposals. Our measurements
lend pragmatic insights into some of the crucial design questions on how to partition
web browsers. For example, we find that using separate OS processes to load cross-
origin sub-resources requires 51 OS processes per web site, while giving marginal im-
provement in security for the increased performance cost. As another example, we find
that isolating the JavaScript engine and the DOM creates a performance bottleneck,
but also affords significant security gains. Many such empirical results are quantified
in Section 5. Our measurements identify key performance bottlenecks in the browser
designs we study, and we find that several of the bottlenecks identified correlate well
with browser implementation efforts for design proposals that have public implementa-
tions. We hope our results and methodology serve as a baseline for further research on
the problem, and are instructive in identifying early bottlenecks in upcoming browser
designs.

Methodology Browsers are examples of large-scale systems, with millions of lines-
of-code. For example, the browser we choose as the blueprint in this work (Firefox)
has a development history of 8 years and comprises of over 3 million lines of code. If
a security architect is tasked with privilege-separating an existing browser (like Fire-
fox), how does she estimate security gains and performance bottlenecks of any partic-
ular privilege-partitioning configuration? In this paper, we take a step towards quanti-
tatively studying this question with empirical data measurements. In previous research
on privilege-separated browsers, performance measurements have been “after-the-fact”,
i.e., after a chosen partitioning configuration has been implemented. In this work, we de-
velop and report on a more rigorous measurement-based methodology that estimates the
security benefits and performance costs, without requiring a time-intensive implemen-
tation. Our methodology precisely formulates back-of-the-envelope calculations that

security architects often use, and thereby systematizes a typical security argument with
empirical rigor. Most prior works on browser re-design report performance on a small
scale (typically on 5-10 sites). Our data-driven methodology leads to design decisions
that are backed by a large-scale dataset.

Our methodology only aims to estimate weak upper bounds on the performance in-
curred by a proposed browser partitioning scheme. We recognize that these estimates
can, of course, be reduced in actual implementations with careful optimizations and
engineering tricks. However, our methodology lets us identify the likely bottlenecks
where significant engineering effort needs to be invested. The metrics we evaluate in
this work are not new and, in fact, we only systematize the measurement of quantities
that prior works base their security arguments on. For instance, most prior works (some-
what informally) argue security based on two artifacts: (a) the reduction in size of the
trusted computing base (TCB), and (b) the reduction in number of known vulnerabil-
ities affecting the TCB after the re-design. To unify the security arguments previously
proposed, we systematically measure these quantities using real-world data — 3 million
lines of Firefox code and its corresponding bug database (comprising 8 years of Firefox
development history).

Contributions Our goal in this paper is not to suggest new browser designs, or to
undermine the importance of clean-slate designs and measurement methodologies pro-
posed in prior work. On the contrary, without extensive prior work in applying privilege
separation of real systems, the questions we ask in the paper would not be relevant.
However, we argue to “quantify” the trade-offs of a privilege-separated design and en-
able a more systematic foundation for comparing designs.

In summary, we make the following contributions in this paper:

– We propose a systematic methodology to quantify security and performance param-
eters in privilege-separated designs, without requiring an implementation of the de-
sign.

– We perform a large-scale study on Firefox (>3 million LOC) on the Alexa Top 100
web sites.

– We draw inferences on the likely benefits and costs incurred by various partitioning
choices proposed in 9 recent browser designs proposals, giving empirical data-driven
insights on these actively debated questions.

2 Overview
In this section, we introduce the concept of privilege separation, and then discuss privilege-
separated designs in web browsers, including their goals and various design dimensions.

2.1 Privilege Separation in Concept

Privilege separation aims to determine how to minimize the attacker’s chances of ob-
taining unintended access to other part of the program. We consider each running in-
struction of a software program belongs to a code unit and a run-time authority. A code
unit is a logical unit of program code, such as a software component, a function or a
group of statements. The run-time authority can be a user ID or a web session, etc.
Specifically, let pi be the probability for any code unit or authority other than i to get
unintended access to resources ri belonging to i. From a purely security perspective, the

goal is to minimize the attacker’s advantage. We can model this advantage using a va-
riety of mathematical functions. For instance, an attacker’s worst-case advantage from
compromising a single vulnerability may be defined as max(pi); a privilege-separated
design is good if it yields a large value of (1 − max(pi))

1. However, as we argue in
this paper, a practical privilege-separated design often departs significantly from this
conceptual formulation. We argue that this purely security-focused viewpoint ignores
the implicit performance costs associated with partitioning. Rather than focusing on
mathematical modeling, we focus on the key methodology to quantify the benefits of a
privilege partitioning scheme in this work.

2.2 Privilege Separation in Browsers

Network

Parser

DOM

JavaScript Engine

Browser Event Manager

Browser Add-ons

1

2

3
4

5

7

8

9

10

12

13

Send requestReceive response Create
XMLHttpRequest

Feed page
content

Load external
resources

Process script

Read/write
DOM

ParseFeed new
content

11

Register
to events

6
Call event
handlers /
Process

script

Register
to events

Events

Trigger event
processing

Load web page

14

Layout

15 16

14

17

Store style
attributes

Reflect
structure

<canvas>
/ WebGL

Storage

17

Store / retrieve

File System Libraries

Web Browser

Operating System

Web ServersTCP, SSL,...

IP...

Fig. 1. Browser Blueprint. It shows typical interactions between browser components in process-
ing a web page.

Blueprint To discuss trade-offs in partitioning, we use a conceptual blueprint that
shows the various code units in a typical browser. We have manually extracted this
from Mozilla Firefox, a popular web browser, and we show it in Figure 12. We have
confirmed that this conceptual blueprint is also consistent with WebKit-based browsers

1 Alternative definitions of attacker’s advantage are easy to consider—for example, considering the average
case with avg rather than max. We can assign additional weights to the resources ri via a severity function
S(j, ri) if failure protect ri from j has more severity than other resources, etc.

2 Security analysts can pick different blueprints in their design; our methodology is largely agnostic to the
blueprint used.

and models sufficient details for comparing prior works on browser re-design. This
blueprint intuitively explains the processing of web pages by various browser compo-
nents. A web page is first received by the Network module that prepares content to be
parsed by the HTML parser. The HTML parser creates a DOM, which can then invoke
other execution engines such as the JavaScript engine, CSS, and so on. The legitimate
flow of processed content between components is illustrated by arrows in Figure 1; for
brevity, we skip explaining the details. In a single-process browser, all these compo-
nents execute in the same partition. Web browser designs utilize privilege separation to
isolate the resources owned by different authorities, which are defined next.

Isolating authorities Web browsers abstractly manage resources owned by one of the
following authorities: web origins, the system authority, and the user authority. Web
origins correspond to origins [4] of HTML pages, sourced scripts, CSS and so on. The
system authority denotes the privilege of the browser core, also referred to as the chrome
privilege. It has access to sensitive OS resources, such as the file system, network,
display, etc. We associate the user authority to UI elements of the browser, which convey
necessary security indicators to allow them to make sensible security decisions, such as
security prompts, certificate warnings, access to preferences and settings [30].

Security threats Security vulnerabilities can result in one authority gaining unintended
access to resources of another. In web browsers, we can classify threats based on which
authority gains privileges of which other authority.

– CROSS-ORIGIN: Cross-Origin Data & Privilege Leakage, due to vulnerabilities
such as missing security checks for access to JavaScript objects or XMLHttpRequest
status, and capability leaks [11].

– WEB-TO-SYS: Web-to-System Privilege Escalation, via vulnerable JavaScript APIs
exposed by the browser components or plugins.

– WEB-TO-COMP: Web-to-Component Privilege Escalation, allowing attackers to run
arbitrary code in vulnerable browser components, consisting of different memory
corruption errors in the browser code.

There are also other categories of browser vulnerabilities. For completeness, we list
them below. However, these are beyond the scope of the same-origin policy and we do
not measure the security benefits of applying privilege separation to mitigate them.

– USER: Confusion of User Authority. These vulnerabilities may allow attackers to
manipulate user interfaces to confuse, annoy, or trick users, hijacking their abilities
in making reasonable security decisions. Recent incidents of mistakenly accepting
bogus or compromised certificates [36] also belong to this category.

– INTRA-ORIGIN: Intra-Web-Origin Data & Privilege Leakage. This category of browser
vulnerabilities results in running code within the authority of a web origin. These
include bugs in parsing malformed HTML content, identifying charsets, providing
HTTP semantics and so on. They can introduce popular forms of web attacks, such
as XSS, CSRF and so on.

Partitioning dimensions 9 recent browser designs propose several ways of partition-
ing to mitigate the aforementioned threats. In this paper, we apply systematic method-
ology to study the security and performance trade-offs in these partitioning dimensions.

Browser Isolation
Primitive Partitioning Dimension Plugins JS HTML

Parser DOM Layout NetworkStorage

Firefox Process Nil Separate ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Chrome Process By Origin, By Component With Hosting Page
or Separate ⊕ ⊕ ⊕ ⊕ ◦ ◦

Tahoma VMs By Origin With Hosting Page ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Gazelle Process By Origin, By Sub-resource,
By Component Separate Per Origin ⊕ ⊕ ⊕ ⊕ ◦ ◦

OP Process By Origin, By Component Separate Per Origin
& Plugin ⊕ ◦ ◦ ◦� � �

OP2 Process By Origin, By Sub-resource,
By Component Separate Per Origin ⊕ ⊕ ⊕ ⊕ � �

IE8/9 Process Per Tab With Hosting Page
(ActiveX) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

IBOS Process By Origin, By Sub-resource,
By Component Separate ⊕ ⊕ ⊕ ⊕ ◦ �

WebShield Host Nil With Hosting Page ⊕ ⊕ ◦ ◦ ⊕◦ ⊕

Table 1. Privilege Separation in Browsers The table explains different partitioning dimensions in
browser designs. For the right part of the table, same symbols denote the corresponding compo-
nents are in the same partition.

Table 1 summarizes the design dimensions considered in each browser design, and we
explain these dimensions below.

– By origin: Each origin has a separate partition. This mitigates CROSS-ORIGIN
vulnerabilities between web pages. For example, IBOS [33], Gazelle [35], Google
Chrome [9], OP [20] and OP2 [21] all isolate primarily on origins 3. In Chrome’s
default setting, web pages from different origins but belonging to the same “site
instance”4 are exceptions to this isolation rule.

– By sub-resource: When an origin is loaded as a sub-resource in another origin, say as
an iframe or as an image, web browsers can isolate the sub-resources. This provides
additional isolation between cross-origin resources, especially in mashups that in-
tegrate contents from various origins, and prevents CROSS-ORIGIN vulnerabilities
from sub-sources explicitly included by an origin. For example, Gazelle [35] allo-
cates a separate process for each destination origin of the resource and IBOS [33]
uses a separate process for each unique pair of requester-destination origins; Chrome
does not isolate sub-resources.

– By component: Different components are isolated in different partitions. Web browsers
have proposed isolating individual components that are inadvertently exposed across
origins, but do not need the full privileges of the system authority. For example, the
OP browser [20] isolates the HTML parser and the JavaScript engine in different par-
titions. This prevents exploits of a WEB-TO-COMP vulnerabilities. Browsers also
isolate components that need heavy access to resources of the system authority (such
as the file system, network) from components that need only access to web origin
resources. For example, Google Chrome [9] and Gazelle [35] separate components
into web components (renderers) and system components (browser kernels). Parti-

3 OP and OP2 propose isolating web pages within the same origin, but the same-origin policy does not
recognize such intra-origin boundaries and permits arbitrary access between web pages of the same origin.
From a security analysis perspective, we treat them as the same.

4 Connected web pages from the domains and subdomains with the same scheme. [17]

tioning along this dimension prevents WEB-TO-SYS vulnerabilities in the codebase
of renderer partitions.

3 Quantifying Trade-offs with Empirical Measurements
How do we systematically evaluate the security and performance trade-offs of a given
partitioning configuration? To answer this question, we measure several security and
performance parameters. Our methodology places arguments made previously on a
more systematic foundation backed by empirical data.

3.1 Security Parameters

The goal of measuring security improvements is to estimate the reduction in the like-
lihood of an attacker obtaining access to certain privileged resources, which we intro-
duced as probabilities pi in Section 2.1. Estimating the resilience of software to un-
foreseen future has been an open problem [22, 25, 29]. In this work, our goal is not to
investigate new metrics or compare with existing ones; instead, we aim to systematize
measurements of metrics that have already been proposed in works on privilege separa-
tion. Security analysts argue improvements in security using two metrics: (a) reduction
in TCB, i.e., the size of code that needs to be trusted to protect resource ri, and (b)
reduction in impact of previously known security vulnerabilities 5. Next we explain the
intuitive rationale behind the parameters we adopt in our evaluation. We leave details
on how we measure them to Section 5.

S1: Known vulnerabilities in code units One intuitive argument is that if a com-
ponent A has more vulnerabilities historically than B, then A is less secure than B.
Therefore, for a given partitioning scheme, we can compute the total number of vul-
nerabilities for code units in one partition as the vulnerability count for that partition.
The smaller the count, the less is the remaining possibility of exploiting that partition
to gain unintended access to its resources.

S2: Severity weightage It is important to characterize the impact or severity of vulner-
abilities. As we discuss in Section 2.2, different vulnerabilities give access to different
resources. For instance, WEB-TO-SYS vulnerabilities give web attackers full access
to system resources (including all other origins), so they are strictly more severe than
CROSS-ORIGIN vulnerability. To measure this, we categorize security vulnerabilities
according to their severity.

S3: TCB reduction An intuitive argument is that if the code size of a trusted partition
is small, it is more amenable to rigorous formal analysis or security analysis by human
experts. If a resource ri, such as the raw network access, is granted legitimate access
to one component, then the size of the partition containing that component is the attack
surface for accessing ri. In security arguments, this partition is called the trusted com-
puting base (TCB). By measuring the total code size of each partition, we can measure

5 Note that these metrics are instances of reactive security measurement, which have been debated to have
both advantages [10] and disadvantages [29].

the relative complexity of various partitions and compute the size of TCB for different
resources6.

3.2 Performance Parameters

The precise performance costs of a privilege-separated design configuration can be
precisely determined only after it has been implemented, because various engineer-
ing tricks can be used to eliminate or mitigate performance bottlenecks. However, im-
plementing large re-designs has a substantial financial cost in practice. We propose a
systematic methodology to calculate upper bounds on the performance costs of imple-
menting a given partitioning configuration. These bounds are weak because they are
calculated assuming a straightforward implementation strategy of isolating code units
in separate containers (OS processes or VMs), tunneling all communications over inter-
process calls as proposed in numerous previous works on browser re-design. This strat-
egy does not discuss any engineering trick that can be used in the final implementation.
We argue that such a baseline is still useful and worthy of systematic investigation.
For instance, it lets the security analyst identify parts of the complex system that are
going to be obvious performance bottlenecks. Our methodology is fairly intuitive and,
in fact, often utilized by security architects in back-of-the-envelope calculations to es-
timate bottlenecks. We explain the performance cost parameters C1-C7 we are able
to quantitatively measure below. Mechanisms for measuring these parameters and the
inference from combining them are discussed in Section 5.

C1: Number of calls between code units If two code units are placed in separate
partitions, calls between them need to be tunneled over inter-partition communication
channels such as UNIX domain sockets, pipes, or network sockets. Depending on the
number of such calls, the cost of communication at runtime can be prohibitive in a
naive design. If a partitioning configuration places tightly coupled components in sep-
arate partitions, the performance penalty can be high. To estimate such bottlenecks, we
measure the number of calls between all code units and between authorities when the
web browser executes the full test harness.

C2: Size of data exchanged between code units If two code units are placed in sep-
arate partitions, read/write operations to data shared between them need to be mirrored
into each partition. If the size of such data read or written is high, it may create a
performance bottleneck. Two common engineering tricks can be used to reduce these
bottlenecks: (a) using shared memory or (b) by re-designing the logic to minimize data
sharing. Shared memory does not incur performance overhead, but has trades-off secu-
rity to an extent. First, as multiple parties may write to the shared memory regions, it is
subject to the time-of-check-to-time-of-use (TOCTTOU) attack [37]; second, complex
data structures with deep levels of pointers are easily (sometimes carelessly) shared
across partitions that makes sanitization of shared data error-prone and difficult to im-
plement correctly. To estimate the size of inter-partition data exchange, we measure the
size of data that are exchanged between different code units. This measurement identi-
fies partition boundaries with light data exchange, where Unix domain sockets or pipes

6 We do not argue whether code size is the right metric as compared to its alternatives [15, 26]; of course,
these alternatives can be considered in the future. We merely point out that it has been widely used in
previous systems design practice and in prior research on privilege separation.

are applicable, as well as boundaries with heavy data exchange where performance bot-
tlenecks need to be resolved with careful engineering.

C3: Number of cross-origin calls Client-side web applications can make cross-origin
calls, such as postMessage, and via cross-window object properties, such as
window.location, window.top, and functions location.replace,
window.close(), and so on. We measure such calls to estimate the inter-partition
calls if different origins are separated into different partitions.

C4: Size of data exchanged in cross-origin calls Similar to C2, we also measure the
size of data exchanged between origins to estimate the size of memory that may need
to be mirrored in origin-based isolation.

C5: Number & size of cross-origin network sub-resources One web origin can load
sub-resources from other origins via network interfaces. If the requester is separated in
a different partition than the resource loader, inter-partition calls will occur. We measure
these number and size of sub-resources loading to evaluate the number of partitions and
size of memory required for cross-origin sub-resource isolation.

C6: Cost of an inter-partition call under different isolation primitives Partitioning
the web browser into more than one container requires using different isolation primi-
tives, such as processes and VMs. These mechanisms have different performance im-
plications when they are applied to privilege separation. We measure the inter-partition
communication costs of 3 isolation primitives in this work: Linux OS processes, LAN-
connected hosts, and VMs; other primitives such as software-based isolation (heap iso-
lation [8], SFI [34]) and hardware-based methods (using segmentation) can be calcu-
lated similarly.

C7: Size of memory consumption for a partition under different isolation prim-
itives With different isolation primitives, memory overhead differs when we create
additional partitions in privilege separation. This is also an important aspect of per-
formance costs dependent on design choices.

4 Measurement Methodology
To measure the outlined parameters above, we take the following as inputs: 1) an exe-
cutable binary of a web browser with debug information, 2) a blueprint of the browser,
including a set of code units and authorities for partitioning, and 3) a large test harness
under which the web browser is subject to dynamic analysis.

We focus our measurements on the main browser components and we presently ex-
clude measurements on browser add-ons and plugins. Our measurements are computed
from data measured during the execution of the test harness dynamically, since com-
puting these counts precisely using static analysis is difficult and does not account for
runtime frequencies. Based on measurement data, we compare with partitioning choices
in recent browser design proposals, and evaluate the security benefits and performance
costs in those design dimensions.

In this work, we perform the measurement on a debug build of Firefox, a blueprint
manually abstracted from Firefox and WebKit designs, historical Firefox vulnerabilities
retrieved from Mozilla Security Advisories [27], and Alexa Top 100 web sites.

Since the engineering effort required to conduct such a large-scale study is non-
trivial, we develop an assistance tool to automate our measurement and analysis to a
large extent. Especially for the measurement of inter-partition function calls and data
exchange sizes, we develop an Intel Pin tool. It applies dynamic instrumentation on
the Firefox browser to intercept function calls and memory access. By maintaining a
simulated call stack structure, we capture the caller-callee relationships during browser
execution over test harness web pages. Before our experiments, we register accounts
for the Alexa Top 100 web sites, when applicable, and log into these web sites using
a vanilla Firefox browser under a test Firefox profile. Then we manually run Firefox
instrumented by the Pin tool to browse the front pages of the web sites under the same
test profile, so that contents requiring authentication are also rendered. As Firefox is
slowed down by the Pin tool, it took one of the authors around 10 days to finish the
browsing of the 100 web sites.

5 Experimental Evaluation
We conduct empirical measurements to obtain the data for evaluating browser designs.
Our measurements are mainly conducted on a Dell

TM
server running Ubuntu 10.04

64bit, with 2 Xeon R© 4-core E5640 2.67GHz CPUs and 48GB RAM. For the mea-
surement of inter-partition communication overhead, we connected two Dell

TM
desktop

machines with a dual-core i5-650 3.2GHz CPU and 4GB RAM via a 100 Mbps link.

5.1 Measurement Goals

Our measurements aim to measure the following:
Goal 1. Security benefits of isolating a browser component with regard to the num-

ber of historical security vulnerabilities that can be mitigated by privilege separation.
Goal 2. Worst-case estimation of additional inter-partition calls and data exchange

that would be incurred by isolating a component, and by isolating an authority (web
origin).

Goal 3. Memory and communication overhead incurred by different isolation prim-
itives.

Comp# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LOC 136 367 74 155 32 3 131 21 77 366 10 269 763 17 223 24 137 478 24 188 53

Table 2. Kilo-lines of Source Code in Firefox Components. In our experiments, we consider the
following components: 0. NETWORK, 1. JS, 2. PARSER, 3. DOM, 4. BROWSER, 5. CHROME,
6. DB, 7. DOCSHELL, 8. EDITOR, 9. LAYOUT, 10. MEMORY, 11. MODULES, 12. SECURITY,
13. STORAGE, 14. TOOLKIT, 15. URILOADER, 16. WIDGET, 17. GFX, 18. SPELLCHECKER,
19. NSPR, 20. XPCONNECT, and 21. OTHERS.

5.2 Measurement over Alexa Top 100 Web Sites

Next, we explain how we measure these metrics and present their results.
For Goal 1: security benefits. We measure the number of historical security vulnera-
bilities in each Firefox component according to each severity category (Security Param-

0 50 100 150 200 250 300

JS, 88 DOM, 59
Layout, 43 GFX, 22
Plug-ins, 12 Modules, 10
XPConnect, 10 Network, 7
Security, 5 Internationalization, 4
Widget, 4 Editor, 3
Accessible, 2 XPCOM, 2
DocShell, 1 General, 1
Media, 1 NSPR, 1
Toolkit, 1 URILoader, 1

CROSS-ORIGIN, 38

INTRA-ORIGIN, 14

USER, 20

WEB-TO-SYS, 11

WEB-TO-COMP, 277

(a) Number of Historical Security Vulnerabilities in Fire-
fox, Categorized by Severity and Firefox Components

(b) Gray-scaled Chart of Call Counts across
Code Units. Components are numbered as with
Table 2. Each cell at (i, j) denote the number
of calls from Component i to Component j.

Fig. 2. Summary of Vulnerability Study and Performance Measurement

eters S1, S2) and the size of source code in Firefox components (Security Parameter
S3).

We implement a Perl utility with 95 lines of code to crawl and fetch Firefox bug
reports online [27]. According to the blueprint of browser components, and our classi-
fication of vulnerability severity, we count the 362 vulnerabilities7 we have access to,
by 1) browser component, and 2) severity category. Figure 2(a) depicts the number of
Firefox vulnerabilities with our categorization outlined in Section 2.2. We can see that
76.5% of the security vulnerabilities are WEB-TO-COMP vulnerabilities (277), which
can lead to code execution. There is also a large amount of CROSS-ORIGIN vulnera-
bilities (38), whereas the number of other categories is much smaller. Among browser
components, the JavaScript engine has the largest number of vulnerabilities (88). The
Layout module (43) and DOM (59) also have large amount of vulnerabilities. These are
all major components consisting of complex browser logic. On the other hand, more
peripheral components have less vulnerabilities. For example, the Editor has only 3
WEB-TO-COMP vulnerabilities. Such results are in line with our intuition that more
complex and critical components tend to have more vulnerabilities discovered.

We use the wc utility to measure the lines of source code for all .h, .c and
.cpp files in Firefox components. Table 2 lists the lines of source code we measure for
different components in Firefox. Components such as JavaScript, Layout and Security,
etc. have large size code size. These data reflect the (relative) complexity of different
browser components (See S3).

For Goal 2: performance costs. We dynamically measure performance costs corre-
sponding to Performance Parameters C1-C5, respectively.

Inter-code-unit call overhead. For Performance Parameters C1 and C2, we apply
our Pin tool on Firefox to browse Alexa Top 100 web sites, counting the number of

7 2 of them are uncategorized due to insufficient information.

function calls whose caller and callee belong to two different components, and the size
of data exchanged during the function calls. We briefly discuss the results below, and
the detailed measurement data can be found online at [1].

The numbers of inter-code-unit function calls (in 1000s) between different browser
components are illustrated in Figure 2(b). These calls may become inter-partition calls
after privilege separation. Thus, the larger the number is between the two components,
the higher is the communication cost if they are isolated into different partitions. We
find that there are 4,270,599,380 times of calls between the Layout engine and the
DOM during our measurements, 369,305,460 times between the GFX rendering engine
and the Layout engine, and 133,374,520 times between the JavaScript engine and the
DOM. Heavy calls between these components correspond to tight interactions during
run time, such as DOM scripting and sending layout data for rendering.

We also measure data exchange sizes between components. For example, the DOM
and the Layout engine have larger data exchange than other components: 172,206.36
Kilobytes over the 100 web sites.

Cross-origin call overhead. Similarly, for calls and data exchange between different
web origins (Performance Parameters C3 and C4), we intercept the calls to client-side
communication channels in Firefox, retrieve the caller and callee origins, and record
the size of data passed in postMessage calls. For Performance Parameter C5, we
intercept all network responses to Firefox, and identify whose requester and destination
origins are different. We record such cases with the size of data passed in the HTTP re-
sponse body. Table 3 summarizes the number of client-side calls to access other origins
and the size of data exchanged in such calls.

Cross-Origin Access Number of Calls Data Size Exchanged in Calls (KB)

Browser Side

postMessage 4,031 587
location 9 -

window.parent 24 -
window.frames 3,330 -

Network sub-resource Images, CSS, etc. 10,745 131,920
Table 3. Cross-Origin Calls & Sub-Resource Loading

More results on sub-resource loading To evaluate in more detail the performance im-
plications in using separate partitions for sub-resource loading, we measure the num-
ber of cross-origin sub-resources for each of the Alexa Top 100 web sites. Figure 3(a)
illustrates the significant differences in the number of different origins of network sub-
resource requests for each web page we measured. In our measurement, the largest
number is 51, with www.sina.com.cn. Figure 3(b) shows that the reoccurrence rate
of unique pairs of different requester and destination origins is very small. More than
746 pairs occur only once. In fact, there are in total 1,515 such unique pairs, averaged
to 1,515 / 100 = 15 pairs for each page.

For Goal 3: isolation primitive overhead. We measure the performance overhead
under different isolation primitives, in communication cost for Performance Parameter
C6, and in memory consumption for Performance Parameter C7.

0	

10	

20	

30	

40	

50	

60	

1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

#Unique	 Dest	 Origins	

(a) Number of Different Destination Origins
of Cross-Origin Resource Requests The largest
number of different destination origins from one
site is 51, while the smallest number is 1.

0	

100	

200	

300	

400	

500	

600	

700	

800	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	 49	 51	 53	 55	 57	 59	 61	 63	 65	 67	 69	 71	 73	 75	 77	 79	 81	 83	 85	

#Pairs	 	 of	 the	 Occurrence	 Frequency	

(b) Occurrence Frequencies of Unique Pairs of Different
Requestor-Destination Origins 746 unique pairs only oc-
cur once, while only 164 unique pairs occur more than 15
times.

Fig. 3. Sub-resource Loading Measurements

Size of MSG (in bytes) Average RTT for Unix
Domain Socket

Average RTT for
Network Comm

Average RTT for
Cross-VM Comm

50 4673 87642 252008
500 5045 176160 288276
1000 5145 276841 252107
2K 5821 367356 251605
4K 6838 449262 269845
8K 9986 638598 336999

Table 4. Round-Trip Time (RTT) of Unix Domain Socket, Network and Cross-VM Communica-
tions, in nanoseconds, Averaged over 10,000 Runs Each

We use a simple client-server communication program to measure the inter-partition
call costs between Unix domain sockets, between hosts connected via LAN, and be-
tween virtual machines on the same VM host. We average over 10,000 rounds of each
primitive with message lengths varying from 50 to 8K bytes. Table 4 summarizes our
measurements on round trip times for inter-partition communications with the three
isolation primitives. Unix domain sockets are 6-10 times more efficient than cross-VM
communications.

By checking the size of an empty process on different hosts, we estimate that the
memory used by an almost-empty process is about 120k-140K. As this number stays
very stable across different runs, we take this as the memory consumption of creating
processes. For the Ubuntu guest OS we create, the writeable/private memory used by
VirtualBox is about 25M bytes and the memory used by guest OS running in VirtualBox
is about 90M bytes. We take 90M as the size of memory cost with a VM partition or a
single host, and 25M as the memory overhead from a VM daemon in our quantification.
Therefore, a Linux process incurs 90M / 130K = 709 times lower memory overhead than
a VM.

5.3 Inference from Measurement Data

In this section, we summarize the high-level findings from our detailed measurements.
Specifically, we revisit the partitioning dimensions outlined earlier and evaluate their
security-performance trade-offs. We also summarize the performance bottlenecks that
our measurements highlight.

Partitioning Dimension #Vulnerabilities
Migitated Lines of Code Partitioned Comm

Cost
Data Exchanges
Cost

Memory
Cost

Single Process 0 N.A. 0 0 0.13K
One Process per Origin (w/o Cross-
Origin Sub-Resource Isolation) 0 N.A. 0 0 130K

One Process per Origin (with Cross-
Origin Sub-Resource Isolation) 38 N.A. 0.37ms 5.87MB 1.4MB

One Process per Pair of Requester-
Destination of Sub-Resource 38 N.A. 0.91ms 7.19MB 2.1MB

Renderer/Browser Division 81 1,863K 2.59min 3.54MB 130KB
JS/DOM Separation (Process) 147 JS:367K DOM:155K 6.67s 572.6KB 130KB
JS/DOM Separation (Network) 147 JS:367K DOM:155K 3.78min 572.6KB 90MB
Layout/Window Manager
(GFX+Widget) Separation 69 Layout:367K

GFX+Widget:615K 19.15s 739.3KB 130KB

DOM/Layout Separation 102 DOM:155K Layout:367K 3.56min 1.68MB 130KB

Table 5. Security Benefits and Performance Costs of Partitioning Dimensions Performance costs
are per page, averaged over Alexa Top 100 web sites.

Table 5 summarizes the estimated security benefits and performance costs for each
design point along the dimensions being debated in present designs. The values in the
table for performance costs are per web page, if applicable, averaged over the Top 100
Alexa pages.

Origin-based isolation One process per origin without separating cross-origin sub-
resources have no security benefits. If contents from another origin hosted as sub-
resources (such as PDF) can be processed in the same partition, security vulnerabilities
can still permit unintended escalation of privileges. This is consistent with the observa-
tions made by several browser designs that propose hosting sub-resources in separate
containers. Doing so, mitigates the CROSS-ORIGIN vulnerabilities (38 out of 362).

Sub-resource isolation Several browsers propose isolating each pair of requester-destination
of sub-resources to be further isolated in separate partitions. Our data suggests that (a)
this has no further security benefit in our model, and (b) it has a large performance cost.
For instance, the memory cost of creating several partitions (using processes) is large
and will be a performance bottleneck. In our measurement, one web page can include up
to 51 third-party sub-resources. If all these cross-origin sub-resources are to be isolated
by different processes, and consider a typical browser process need 20 Megabytes [5],
then around 1 Gigabyte memory overhead will be incurred just for loading third-party
resources for this single web page. Therefore, although sub-resource isolation can miti-
gate 38 CROSS-ORIGIN vulnerabilities, browsers may need to optimize memory usage
for processes that load sub-resources before they can practically adopt this proposal.

It is interesting to compare our identified bottlenecks to choices made by today’s
web browsers. For instance, Google Chrome does not suffer from this performance bot-
tleneck by making a security-performance trade-off. It adopts a different strategy by
grouping resources according to a site-instance of the hosting page, which significantly
reduces the number of processes created [17]. We leave the detailed definition and dis-
cussion of this strategy out of scope; however, we believe that our methodology does
identify realistic practical constraints.

Component-based isolation Isolation by components mitigates WEB-TO-COMP vul-
nerabilities. For example, the JavaScript engine and the DOM have 147 such vulnera-
bilities. At the same time, the 367K of source code (TCB) in the JavaScript engine
can be isolated, which is 10% of the entire browser. Nevertheless, since they have fre-
quent interactions, such isolation costs prohibitively high communication and memory
overhead. Hence, although beneficial for security, such a partitioning dimension is less
practical for adoption. For instance, designers of OP redacted the decision to isolate
JavaScript engine and the HTML parser within one web page instance in OP2; our
measurement identifies this high overhead as a bottleneck.

Renderer/Browser kernel isolation We also take a popular architecture of render-
er/browser kernel division for evaluation. We evaluate our methodology on the Google
Chrome design model to measure the security benefits and performance costs. Such a
partitioning dimension would prevent WEB-TO-COMP vulnerabilities in the renderer
process, and WEB-TO-SYS vulnerabilities. If we apply the Firefox code size to this
design, the size of TCB in the kernel process would be around 1,863K, i.e., 53.5% of
the browser codebase. Note that this is just a rough estimation based on our blueprint
of coarse-grained components. Further dividing components can reduce the necessary
code size that needs to be put into the browser kernel process.

Our measurements identify potential performance bottlenecks that correlate with
actual browser implementations. Specifically, we find that isolation between compo-
nents in the renderer processes and the browser kernel process, as in Chrome, would
incur very high performance overhead, such as between the GFX and the Layout en-
gine. However, such performance bottlenecks do not appear in Chrome. Over the past
few years, a substantial amount of efforts [7] have been spent on improving and securing
the inter-partition communications in the Chrome browser. Besides, Chrome also uses
GPU command buffers and other engineering tricks to improve performance of render-
ing and communication [16]. This verifies our observation that potential performance
bottlenecks need to be re-engineered to reduce their overhead.

Component partitioning with high security benefits We identify a few browser com-
ponents that have high security benefits to be isolated from other components. For ex-
ample, the JavaScript engine is a fairly complex component with 367K lines of source
code, has 88, i.e., 31.8% of, WEB-TO-COMP vulnerabilities. Isolating it from other
browser components will mitigate a large faction of vulnerabilities. Other typical ex-
ample components include the Layout engine with 367K lines of source code and 43
(15.5%) WEB-TO-COMP vulnerabilities, as well as GFX, the rendering component for
Firefox, with 478K lines of source code and 22 (7.9%) WEB-TO-COMP vulnerabili-
ties.

Component partitioning with high performance costs We identify the main browser
components that have tight interactions with other browser components. Thus, isolat-
ing them from others would incur high performance costs. For example, our measure-
ments find 133,374,520 function calls between the JavaScript engine and the DOM,
and 369,305,460 calls between the GFX rendering engine and the Layout engine. To
show why they can become performance bottlenecks, here is a simple calculation. Sup-
pose they are separated by processes, a single RTT with Unix domain sockets would
cost a delay of around 5000 nanoseconds. If there is no additional optimization is in

place, these numbers correspond to 133,374,520 * 5000 nanoseconds / 100 pages =
6.67 seconds/page and 18.47 seconds/page, respectively. Such performance overhead
is prohibitively high. Security architects should either avoid such partitioning, or take
further measures to optimize these performance bottlenecks.

6 Related Work
Privilege separation The concept of privilege separation in computer systems was
proposed by Saltzer et al. [31]. Since then it has been used in the re-design of sev-
eral legacy OS applications [12, 28] (including web browsers) and even web applica-
tions [5, 8, 19]. Similar to our goals in this work, several automated techniques have
been developed to aid analysts to partition existing applications, such as PrivTrans [14],
Jif/Split [38], and Wedge [13]. Most of these works have focused on the problem of
privilege minimization, i.e., inferring partitions where maximum code executes in par-
titions with minimum or no privileges, while performance is measured “after-the-fact”.
Our work, in contrast, aims to quantify performance overhead with privilege-separated
designs with only a blueprint without the actual implementations. Our work also differs
with them by performing measurements on binary code, rather than source code.

Privilege separation in browsers Our work is closely related to the re-design of web
browsers, which has been an active area of research [9, 18, 20, 21, 23, 24, 33, 35]. Our
work is motivated by the design decisions that arise in partitioning web browsers, which
performs a complex task of isolating users, origins and the system. Among them, IE
uses tab-based isolation, Google Chrome [9] isolates web origins into different renderer
processes, while Gazelle [35] further isolates sub-resources and plugins. Our measure-
ments have shown that some web pages may include 51 sub-resources of different desti-
nation origins. Our data quantifies the number of partitions that may be created in such
designs as well as in further partitioned browsers, such as OP [20] and OP2 [21]. In
addition, our measurements also evaluate the performance costs in VM-based isolation,
such as Tahoma [18], and memory consumption from separate network processes for
sub-resources in IBOS [33] design. Our work advocates privilege-separated browsers
for better security, and identifies potential performance bottlenecks that need to be op-
timized to trim their performance costs.

Evaluation metrics Estimation of security benefits using bug counts is one way of
quantifying security. Riscorla et al. discuss potential drawbacks of such reactive mea-
surement [29]. Other methods have been proposed, but are more heavy-weight and re-
quire detailed analysis of source code [22, 25, 32]. Performance measurement metrics
such as inter-partition calls and data exchange have been identified in the design of iso-
lation primitives such as SFI [34]. We provide an in-depth empirical analysis of these
metrics in a widely used web browser (Mozilla Firefox).

7 Conclusion
In this paper, we propose a measurement-based methodology to quantify security bene-
fits and performance costs of privilege-partitioned browser designs. With an assistance
tool, we perform a large-scale study of 9 browser designs over Alexa Top 100 web sites.
Our results provide empirical data on security and performance implications of various

partitioning dimensions adopted by recent browser designs. Our methodology will help
evaluate performance overhead in designing future security mechanisms in browsers.
We hope this will enable more privilege-separated browser designs to be adopted in
practice.

Acknowledgments
We thank anonymous reviewers for their valuable feedback. This research is partially
supported by the research grant R-252-000-519-112 from Ministry of Education, Sin-
gapore.

References
1. Additional tables on performance evaluation. http://compsec.comp.nus.edu.sg/

bci/additional-tables.pdf

2. Bromium. http://www.bromium.com/
3. Invincea. http://www.invincea.com/
4. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foundation of web

security. In: Proceedings of the 23rd IEEE Computer Security Foundations Symposium. CSF
’10 (2010)

5. Akhawe, D., Saxena, P., Song, D.: Privilege separation in html5 applications. In: Proceedings
of the 21st USENIX Security Symposium (2012)

6. Alexa: Top sites, retrieved in 2012. http://www.alexa.com/topsites
7. Azimuth Security: The chrome sandbox part 2 of 3: The IPC framework. http://blog.

azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.
html

8. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities. In: Proceedings of the 17th Annual Network and Distributed System Security Sym-
posium. NDSS ’10 (2010)

9. Barth, A., Jackson, C., Reis, C., The Google Chrome Team: The security architecture of the
chromium browser. Tech. rep. (2008)

10. Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett, P.L.: A
learning-based approach to reactive security. In: Proceedings of the 14th International Con-
ference on Financial Cryptography and Data Security. FC’10 (2010)

11. Barth, A., Weinberger, J., Song, D.: Cross-origin javascript capability leaks: detection, ex-
ploitation, and defense. In: Proceedings of the 18th USENIX Security Symposium (2009)

12. Bernstein, D.J.: Some thoughts on security after ten years of qmail 1.0. In: Proceedings of
the 2007 ACM Workshop on Computer Security Architecture. CSAW ’07 (2007)

13. Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: splitting applications into reduced-
privilege compartments. In: Proceedings of the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation. NSDI’08 (2008)

14. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege separa-
tion. In: Proceedings of the 13th USENIX Security Symposium (2004)

15. Certification Authorities Software Team (CAST): What is a ”decision” in applica-
tion of modified condition/decision coverage (mc/dc) and decision coverage (dc)?
http://www.faa.gov/aircraft/air_cert/design_approvals/air_
software/cast/cast_papers/media/cast-10.pdf

16. Chromium: GPU command buffer. http://www.chromium.org/developers/
design-documents/gpu-command-buffer

17. Chromium: Process models — process-per-site-instance. http://www.chromium.
org/developers/design-documents/process-models#1_Process_per_
Site_Instance

18. Cox, R.S., Gribble, S.D., Levy, H.M., Hansen, J.G.: A safety-oriented platform for web ap-
plications. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy (2006)

19. Felt, A.P., Finifter, M., Weinberger, J., Wagner, D.: Diesel: applying privilege separation to
database access. In: Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. ASIACCS ’11 (2011)

20. Grier, C., Tang, S., King, S.T.: Secure web browsing with the op web browser. In: Proceed-
ings of the 2008 IEEE Symposium on Security and Privacy (2008)

21. Grier, C., Tang, S., King, S.T.: Designing and implementing the op and op2 web browsers.
ACM Transactions on the Web (2011)

22. Hart, T.E., Chechik, M., Lie, D.: Security benchmarking using partial verification. In: Pro-
ceedings of the 3rd USENIX Workshop on Hot Topics in Security. HotSec ’08 (2008)

23. IEBlog: Tab isolation. http://blogs.msdn.com/b/ie/archive/2010/03/04/
tab-isolation.aspx

24. Li, Z., Tang, Y., Cao, Y., Rastogi, V., Chen, Y., Liu, B., Sbisa, C.: Webshield: Enabling
various web defense techniques without client side modifications. In: Proceedings of the
Network and Distributed System Security Symposium. NDSS ’11 (2011)

25. Lie, D., Satyanarayanan, M.: Quantifying the strength of security systems. In: Proceedings
of the 2nd USENIX Workshop on Hot Topics in Security. HotSec ’07 (2007)

26. McCabe, T.J.: A complexity measure. In: Proceedings of the 2nd International Conference
on Software Engineering. ICSE ’76 (1976)

27. Mozilla Foundation: Mozilla foundation security advisories. http://www.mozilla.
org/security/announce/

28. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: Proceedings of the
12th USENIX Security Symposium (2003)

29. Rescorla, E.: Is finding security holes a good idea? IEEE Security and Privacy 3(1), 14–19
(Jan 2005)

30. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-driven access
control: Rethinking permission granting in modern operating systems. In: Proceedings of the
2012 IEEE Symposium of Security and Privacy (2012)

31. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. In: Pro-
ceedings of the IEEE (1975)

32. Ta-Min, R., Litty L., Lie, D.: Splitting interfaces: Making trust between applications and
operating systems. In: Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation. OSDI ’06 (2006)

33. Tang, S., Mai, H., King, S.T.: Trust and protection in the illinois browser operating system.
In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’10 (2010)

34. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
ACM SIGOPS Operating Systems Review 27(5), 203–216 (Dec 1993)

35. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The multi-
principal os construction of the gazelle web browser. In: Proceedings of the 18th USENIX
Security Symposium (2009)

36. Wikipedia: DigiNotar. http://en.wikipedia.org/wiki/DigiNotar
37. Wikipedia: Time of check to time of use. http://en.wikipedia.org/wiki/Time_

of_check_to_time_of_use
38. Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis, Cornell

University (2002)

