
DARWIN: An Approach for Debugging Evolving Programs

Dawei Qi†, Abhik Roychoudhury†, Zhenkai Liang†, Kapil Vaswani§
†National University of Singapore §Microsoft Research India

{dawei,abhik,liangzk}@comp.nus.edu.sg kapilv@microsoft.com

ABSTRACT
Debugging refers to the laborious process of finding causes of pro-
gram failures. Often, such failures are introduced when a program
undergoes changes and evolves from a stable version to a new, mod-
ified version. In this paper, we propose an automated approach for
debugging evolving programs. Given two programs (a reference,
stable program and a new, modified program) and an input that fails
on the modified program, our approach uses concrete as well as
symbolic execution to synthesize new inputs that differ marginally
from the failing input in their control flow behavior. A compari-
son of the execution traces of the failing input and the new inputs
provides critical clues to the root-cause of the failure. A notable
feature of our approach is that it handles hard-to-explain bugs like
code missing errors by pointing to the relevant code in the refer-
ence program. We have implemented our approach in a tool called
DARWIN. We have conducted experiments with several real-life
case studies, including real-world web servers and the libPNG li-
brary for manipulating PNG images. Our experience from these
experiments points to the efficacy of DARWIN in pinpointing bugs.
Moreover, while localizing a given observable error, the new inputs
synthesized by DARWIN can reveal other undiscovered errors.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Symbolic execution; D.3.4 [Programming Languages]:
Processors—Debuggers

General Terms
Experimentation, Reliability

Keywords
Software Evolution, Debugging, Symbolic Execution

1. INTRODUCTION
Programmers do not write programs entirely from scratch. Rather,

over time, a program gradually evolves. In industrial software de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09, August 23–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

velopment projects, this complexity of software evolution is explic-
itly managed via check-in of program versions. Validation of such
evolving programs (say, to address possible bugs introduced via
program changes) remains a huge problem in terms of software de-
velopment. This adds to the cost for software maintenance, which
is much larger than the initial software development cost. The cost
of maintaining a software and managing its evolution is said to ac-
count for more than 90% of the total cost of a software project,
prompting authors to call it the “legacy crisis” [26].

To tackle the ever-growing problem of software evolution and
maintenance, software testing methodologies have long been stud-
ied. Regression testing is a well-known concept which is currently
employed in any software development project. In its simplest
form, it involves re-testing a test-suite as a program changes from
one version to another. In the past, the problem of detecting which
tests in a given test-suite do not need to be re-tested has been thor-
oughly studied (e.g., see [10]). However, even among the tests
which are tested in both old and new program versions — how do
we find the root cause of a failed test input? For any large software
development project, finding root causes of these regression bugs
is a major headache! In this paper, we employ dynamic analysis to
address this issue.

Problem statement. The problem we tackle can be summa-
rized as follows. Consider a program P accompanied by a test-
suite T , such that P passes all the tests in T . We call P as the
old program or the stable program since it passes all the tests, that
is, the observable output of P for all the tests in T is as expected
by the programmer. Suppose P changes to a new program P ′ and
certain tests in T now fail, that is, their output does not meet the
programmer’s expectations. Let t ∈ T be such a test. Our goal is
to produce a bug report Rep(t, P, P ′) such that Rep contains the
explanation of why t fails in P ′ while passing in P . Of course, we
want to construct a bug report which is as concise as possible, while
pinpointing the error cause statements to the programmer. Program
debugging methods often highlight a fragment of the program be-
ing debugged as bug report. So, we can expect Rep(t, P, P ′) to
be a fragment of the buggy program P ′ and/or stable program P .
For our proposed solution to work, P and P ′ need not even be ver-
sions of the same program. They might simply be two completely
different implementations — P being a reference implementation
and P ′ being an optimized implementation. We only require the
following — for the set of inputs which are common to P and P ′,
the behavior of P, P ′ are expected to be “equivalent”, that is, P
and P ′ are two implementations of the same specification.

Existing solutions. To motivate our solution, we first discuss
the difficulties in using existing approaches to solve this problem.

Change inspection. Since by changing a stable program P to a
new program P ′ we cause certain tests to fail, one possibility is to
find the failure inducing changes (e.g., see [31]). However, the ac-
tual bug may be in P , but it could be manifested by the change from
P to P ′. A pointer which is mistakenly set to null in P but never
dereferenced is indicative of such a situation. The mistake may
only be observed in P ′ where the pointer is dereferenced. A good
bug report should pinpoint the control location where the pointer
is mistakenly set to null, not the control location where it is de-
referenced. Moreover, a search for failure inducing changes will
not work if P and P ′ are two completely different implementa-
tions (say two web-server implementations both implementing the
HTTP protocol) since then the set of program “changes” from P to
P ′ is hard to enumerate.

Trace comparison. In the last decade, trace comparison meth-
ods have been successfully used for localizing error causes in pro-
grams. Given a buggy program, the trace produced by a failed test
input (whose behavior is unexpected) is compared with the trace
produced by a successful test input (whose behavior is as expected).
Techniques have been developed to determine (a) which successful
test input to use (e.g., [17]), and (b) how to compare and report the
differences between two program executions (e.g., [32]). In these
approaches, the successful test input is supposed to capture “bug-
free” program behavior. In our problem setting, we have a stable
program representing bug-free behavior, which should be used and
exploited within the debugging method.

Basic idea behind our approach. Given a stable program
P , a buggy program P ′ and a test input t which passes in P and
fails in P ′, we compare the trace produced by t in P ′ with the trace
produced by another test-case t′ in P ′. We automatically generate
a test input t′ satisfying the following properties: (i) t′ and t fol-
low the same program path in P , and (ii) t′ and t follow different
program paths in P ′. Such a test t′ can be found by computing
the path conditions of t in P and P ′. Since t′ and t follow the
same program path in P – the behavior of t, t′ are supposed to be
“similar” in P (the stable program version). However, since t, t′

follow different program paths in P ′ — their behaviors “differ” in
P ′ (the buggy new version). By computing and highlighting the
differences in their behavior, we highlight the possible causes of
the error exposed by test-case t. A pictorial description of the de-
bugging method appears in Figure 1. As we will see in the next
section, this is only the core method and needs extensions. Our so-
lution can also be used to debug errors in the situation where P , P ′

are two completely different implementations (of the same specifi-
cation), rather than being two versions of the same program. This
feature of our method is shown by our experiments on web-servers.

Thus, our approach works in two phases. In the first phase, we
collect and suitably compose the path conditions of the failed test
input in the two programs to generate alternate test inputs. In the
second phase, we compare the traces of the alternate test inputs
with the trace of the failed test input to produce a bug report.

Contributions. We provide an automated and scalable solution
to a problem faced by any development team — locating causes
of regression bugs. Efficacy of our debugging method is demon-
strated on (i) a case study involving libPNG — a widely used
open-source library for the Portable Network Graphics (PNG) im-
age format, and (ii) case studies involving real-life webservers such
as miniweb, savant and apache. Further, the alternate test in-
puts generated by our method can be used for purposes other than
localizing a given observable error. These alternate inputs can point
to new undiscovered errors, as demonstrated by our experiments.

Failed input tTest Input t passes here
N i t t’

Buggy
Old stable
program P

New input t’

ggy
program P’

Path condition f

program P

P h di i f’

h

Path condition f Path condition f’

h ’Path π
for test tPath σ

Path π’
for test t’

2. Compare π and π’ to get bug report

1. Solve f ∧ ¬f’ to get another input t’

Figure 1: Pictorial description of basic debugging method

2. OVERALL APPROACH
To start with, consider a program fragment with an integer input

variable inp – the program P in Figure 2. This is the old program
version. Note that g, h are functions invoked from P . The code for
g, h is not essential to understanding the example, and hence is not
given. Suppose the program P is slightly changed to the program
P ′ in Figure 2, thereby introducing a “bug”. Program P ′ is the new
program version. As a result of the above bug, certain test inputs
which passed in P may fail in P ′. One such test input is inp
== 2 whose behavior is changed from P to P ′. Now suppose the
programmer faces this failing test input and wants to find out the
reason for failure. Our core method works as follows.

• We run program P for test input inp == 2, and calculate
the resultant path condition f , a formula representing set of
inputs which exercise the same path as that of inp == 2 in
program P . In our example, the path condition f is inp 6= 1.

• We also run program P ′ for test input inp == 2, and cal-
culate the resultant path condition f ′, a formula representing
set of inputs which exercise the same path as that of inp
== 2 in program P ′. In our example, the path condition f ′

is ¬(inp 6= 1 ∧ inp 6= 2).

• We solve the formula f ∧ ¬f ′. Any solution to the formula
is a test input which follows the same path as that of the
test input inp == 2 in the old program P , but follows a
different path than that of the test input inp == 2 in the
new program P ′. In our example f ∧ ¬f ′ is

inp 6= 1 ∧ (inp 6= 1 ∧ inp 6= 2)

A solution to this formula is any value of inp other than 1,2
— say inp == 3.

• Finally, we compare the trace of the test input being de-
bugged (inp == 2) in program P ′, with the trace of the
test input that was generated by solving path conditions (here
inp == 3). By comparing the trace of inp == 2 with
the trace of inp == 3 in program P ′ we find that they dif-
fer in the evaluation of the branch inp !=1 && inp !=2.
Hence this branch is highlighted as the bug report — the rea-
son for the test input inp == 2 failing in program P ′.

The above example clarifies the idea behind our method. For
the inputs common to P and P ′ (in this example the two programs
have exactly the same input space), we consider the partitioning of
program inputs based on paths —- two inputs are in the same par-
tition if and only if they follow the same path. Then, as P changes
to P ′ certain inputs migrate from one partition to another. Figure

int inp, outp;
scanf("%d", &inp);

int inp, outp;
scanf("%d", &inp);

if (inp !=1){
outp = g(inp);
} else{
outp = h(inp);

scanf(%d , &inp);
if (inp !=1 && inp !=2){
outp = g(inp);
} else{
t h(i)outp h(inp);

}
printf("%d", outp);

Program P

outp = h(inp);
}
printf("%d", outp);

Program P’g

1 1,2 0 1 2Explain inp == 21 0,‐1, ‐2,…,
2,3,4,…

1,2 0,‐1, ‐2,…,
3,4,…

Explain inp == 2

using inp == 3

Figure 2: Two example programs P, P ′ and their input space
partitioning. The behavior of the input 2 changes during the
change P → P ′. We choose an input 3 to explain the behavior
of the failing input 2 — since 2, 3 are in the same partition in
P , but different partitions in P ′.

2 illustrates this partitioning and partition migration. The behavior
of the failing input inp == 2 is explained by comparing its trace
with the trace of inp == 3, an input in a different partition in the
new program P ′. Furthermore, inp == 3 and inp == 2 lie in
the same partition in the old program P .

Sometimes, given two program versions P, P ′ and a test input t
which passes in P and fails in P ′ — we may not find any alternate
input by solving f∧¬f ′. Consider the example programs in Figure
3 and their associated input space partitioning. In this case, we have
a “code-missing error”, the code

if (inp > 9) {outp = g1(inp);}

is left out by mistake. Suppose we have the task of explaining the
behavior of inp == 100.

The path condition f of inp == 100 in P is (inp ≥ 1∧inp >
9), that is, inp > 9. The path condition f ′ of inp == 100 in P ′

is inp ≥ 1. So, in this case

f ∧ ¬f ′ ≡ (inp > 9 ∧ ¬(inp ≥ 1))

which is unsatisfiable! The reason is simple, all inputs sharing the
same partition as that of inp == 100 in the old program, also
share the same partition with inp == 100 in the new program.

The solution to the above dilemma lies in conducting our debug-
ging in the old program. If we find that f ∧¬f ′ is unsatisfiable, we
can solve f ′ ∧ ¬f . This yields an input t′ which takes a different
path than that of the failing input t in the old program version. We
can now compare the traces of t and t′ in the old program version
to find the error root cause.

In our example Figure 3, we have

f ′ ∧ ¬f ≡ (inp ≥ 1 ∧ ¬(inp > 9))

that is, 1 ≤ inp ≤ 9. The solutions to this formula are the val-
ues 1, 2, . . . , 9 for the variable inp. These can serve as alternate
inputs. Comparing the trace of any of these alternate inputs with
the trace of inp == 100 in the old program P , points us to the
branch inp > 9. Indeed this branch is the check which was miss-
ing in the buggy program P ′, and points us the code-missing error
in this example.

The reader may think the above situation as odd — when a test
fails in a new program, we may return a fragment of the old pro-
gram as bug report! But, indeed this is our thesis — the bug report
returned by our debugging method will help the application pro-
grammer comprehend the change from the old program to the new
program, thereby helping him/her comprehend the new program.

int inp, outp;
scanf("%d", &inp);

int inp, outp;
scanf("%d", &inp);

if (inp >=1){
outp = g(inp);
if (inp>9){

outp=g1(inp);

scanf(%d , &inp);
if (inp >= 1){

outp = g(inp);
/* if (inp>9){

t 1(i)outp g1(inp);
}

} else{
outp = h(inp);

outp=g1(inp);
} */

} else{
outp = h(inp);

}
printf("%d", outp);

Program P

p p
}
printf("%d", outp);

Program P’

1,2,..,9
10,11,…

1,2,…,9,
10,11,…Explain inp == 100

using ??
0,‐1,‐2,.. 0,‐1,‐2,…

Figure 3: Two example programs P, P ′ and their input space
partitioning. The behavior of the input 100 changes during the
change P → P ′. How to find an input to explain its behavior?

In summary, the outline of our method is as follows. Given an old
program version P , a new program version P ′, a test input t which
passes in P and fails in P ′ — our method proceeds as follows.

1. Compute f , the path condition of t in P .

2. Compute f ′, the path condition of t in P ′.

3. Check whether f ∧ ¬f ′ is satisfiable. If yes, it yields a test
input t′. Compare the trace of t′ in P ′ with the trace of t in
P ′. Return bug report.

4. If f ∧ ¬f ′ is unsatisfiable, find a solution to f ′ ∧ ¬f . This
produces a test input t′. Compare the trace of t′ in P with
the trace of t in P . Return bug report.

It is noteworthy that (f ∧¬f ′)∨ (f ′∧¬f) should be satisfiable,
and hence we should get an alternate input from the steps given
in the preceding. If (f ∧ ¬f ′) ∨ (f ′ ∧ ¬f) is unsatisfiable, the
formula (f ⇔ f ′) is valid — which means that the input space
partition containing the failed test input t remains unchanged while
going from old program to new program.

3. DETAILED METHODOLOGY
In this section, we elaborate on the different steps of our method

— alternate input generation, trace comparison, and finally bug re-
port construction.

3.1 Generating Alternate Inputs
In this phase, we need to execute the test input under examina-

tion t in both the program versions. We first concretely execute
t, record the trace, and then perform symbolic execution on the
recorded trace. During the symbolic execution of t along a pro-
gram path π, we accumulate a symbolic formula characterizing the
set of inputs that exercise the path π. This symbolic formula is
the path condition of path π, the condition under which path π is
executed. Each byte of the program input is a symbolic variable
in the formula. It is worth mentioning that our path conditions are
calculated on the program binary, rather than the source code.

One issue that arises in the accumulation of path conditions is
their solvability by constraint solvers. In general, we have to as-
sume that the path condition calculated for a path π is an under-
approximation of the actual path condition. Usually such an under-
approximation is achieved by instantiating some of the variables
in the actual path condition. Recall that, we need to solve the
formula f ∧ ¬f ′ for getting an alternate program input, where

f , f ′ are the path condition of the test input t being examined
in the old and new program version respectively. Let fcomputed,
f ′

computed be the computed path conditions in the old and new pro-
gram versions respectively. In general, the computed f, f ′ will
be an under-approximation of the actual path conditions. Thus
fcomputed ⇒ f and f ′

computed ⇒ f ′. As a result, we cannot
ensure that fcomputed ∧ ¬f ′

computed is an under approximation of
f ∧¬f ′. Hence, after solving fcomputed ∧¬f ′

computed if we find a
solution t′ we also perform a validation on t′. The validation will
ensure our required properties, namely: t, t′ follow the same pro-
gram path in the old program version, and follow different paths in
the new program version. Such a validation can be performed sim-
ply by concrete execution of test inputs t, t′ in the old and new pro-
gram versions. Similarly, if we need to solve the formula f ′ ∧ ¬f ,
we validate the test input obtained by solving f ′ ∧ ¬f .

Choosing Alternate Inputs. Note that since f, f ′ are path
conditions, they are conjunctions of primitive constraints, that is,
f ′ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψm) where ψi are primitive constraints.
Thus instead of solving f ∧ ¬f ′ we solve the following m formu-
lae {ϕi | 0 ≤ i < m} where

ϕi
def
= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1

Each ϕi is a conjunction. A solution to any ϕi is a solution for
f ∧ ¬f ′. We solve each ϕi separately, and obtain any one solution
of ϕi (if one exists). Thus we obtain at most m solutions to the
formula f ∧ ¬f ′. Each of these are inputs which now undergo
“validation”; we check via concrete execution whether they follow
same path as that of t in P , and different path from that of t in P ′.
The reader may note our choice of ϕi — the formulae dispatched to
the solver. Each ϕi denotes a deviation from the path condition f ′

in exactly the ith branch condition of f ′. Thus, any alternate input
we get by solving ϕi can be expected to produce a trace which
differs from the trace of the buggy input in exactly the ith branch
position. Moreover, by solving the different ϕi we consider all
possible ways of deviating from the path denoted by path condition
f ′. Thus, our alternate inputs are witnesses to deviations from the
path denoted by path condition f ′ — one alternate input for each
possible deviation point in the path. Finally, note that if f ∧ ¬f ′

is unsatisfiable we solve f ′ ∧ ¬f also in a similar way. Thus, if f
is a conjunction of k primitive constraints θi, say f = (θ1 ∧ θ2 ∧
. . . ∧ θk) we solve the k formulae f ′ ∧ θ1 ∧ . . . θi ∧ ¬θi+1 where
0 ≤ i < k.

Reducing formula size. To reduce the size of the formulae ϕi

dispatched to the solver, we adopt a few optimization techniques.
First of all, during symbolic execution we only consider instruc-
tions which “depend” on the program input. These dynamic de-
pendencies are computed during the concrete execution, prior to the
symbolic execution. Further, while solving ϕi, we do not submit
the entire formula ϕi to the constraint solver. Recall that f , being
a path condition, is a conjunction of primitive constraints. We first
find the variables V ari appearing in ψ1, . . . , ψi+1. We then per-
form a least fixed-point computation to find those variables appear-
ing in f which are (directly/indirectly) “affected” by V ari — they
appear with V ari, or some variable affected by V ari in a primitive
constraint. Of course all variables in V ari are affected by V ari by
default. Now, only the primitive constraints of f which contain
variables “affected" by V ari need to be considered while solving
ϕi. As an example suppose f is x > y∧ y > 10∧ z > w∧w > 0
and ψ1 is x > 100. While solving ϕ1 = f ∧ ¬ψ1 we can then
only solve for x > y ∧ y > 10 ∧ ¬(x > 100) to get the new solu-
tions for x, y from the solver. The solutions for the other variables

(in this case z, w) are unchanged — these are obtained from the
failing test input which generated the path condition f in the first
place. The optimization mentioned here substantially cuts down
the size of formulae submitted to the solver, and the solution space
that needs to be explored by solver.

Why Trace Comparison is Necessary. If our symbolic ex-
ecution engine maintained traceability links between the path con-
dition sub-formulae and the program fragments contributing such
sub-formulae, we could simply construct the bug report as follows
— (i) solve the m formulae {ϕi | 0 ≤ i < m}, (ii) for all
0 ≤ i < m if ϕi is satisfiable — put the branch contributing to
the ith primitive constraint of path condition f ′ into the bug report.
However, we cannot relate the sub-formulae of a path condition to a
branch in the program. Hence we need to construct alternate inputs
and align their traces with the trace of the buggy input.

3.2 Comparing Traces
In the second phase of our method, we compare the traces of

two program inputs. The two test inputs are (a) the test input under
examination t, and (b) an alternate test input t′ generated in the first
phase.

Comparison of program traces has been widely studied in soft-
ware debugging, and various distance metrics have been proposed.
Usually, these metrics choose an important characteristic, compute
this characteristic for the two traces and report their difference as
the bug report. Commonly studied characteristics (for purposes of
debugging via trace comparison) include set of executed statements
in a trace, set of executed basic blocks in a trace, sequence of exe-
cuted branches in a trace, and so on. A sequence-based difference
metric (which captures sequence of event occurrences in an execu-
tion trace) may distinguish execution traces with relatively greater
accuracy. In our work, we adopt a difference metric focusing on
sequence of executed branches in a trace, but apply it for traces at
the instruction level. After collecting and comparing the traces at
the instruction level, we can report back the instructions appearing
in the “difference” between the two traces at the source-code level
for the convenience of the programmer.

We represent each trace as a string of instructions executed. In
practice, we need not record every instruction executed; storing the
branch instruction instances (and their outcomes as captured by the
immediate next instruction) suffices. Given test inputs t and t′, a
comparison of the traces for these two inputs amounts to finding
branches which are executed with similar history in both the traces,
but are evaluated differently. In order to find branches with similar
history in both the traces, we employ string alignment algorithms
employed on DNA sequences in computational biology (e.g., see
[9]). These methods produce an alignment between two strings by
computing their “minimum edit distance”.

To illustrate the details of our trace comparison method, consider
the program fragment in Figure 4. This program is taken from a
faulty version of the replace program from Software-artifact in-
frastructure repository (SIR) [13], simplified here for illustration.
This piece of code changes all substrings s1 in string lin match-
ing a pattern to another substring s2. Here variable i represents the
index to the first un-processed character in string lin, variable m
represents the index to the end of a matched substring s1 in string
lin, and variable lastm records variable m in the last loop itera-
tion. The bug in the code lies in the fact that the branch condition
in line 3 should be if (m >= 0) && (lastm != m). At the
ith iteration, if variable m is not changed at line 2, line 3 is wrongly
evaluated to true, and substring s2 is wrongly returned as output,
deemed by the programmer as an observable error.

1. while (lin[i] != ENDSTR) {

2. m= ...

3. if (m >= 0) {

4. ...

5. lastm = m;

6. }

7. if ((m == -1) || (m == i)){

8. ...

9. i = i + 1;

10. }

11. else{

12. i = m;

13. }

14. ...

15. }

Figure 4: An example program fragment from SIR suite.
1 2 3 4 5 7 8 9

1 22 3 7
88 9

Figure 5: Conceptual view of aligning two execution traces.
The traces are taken from the program fragment in Figure 4.

An execution trace exhibiting the above-mentioned observable
error will execute 〈1, 2, 3, 4, 5, 7, 8, 9〉 in the ith loop iteration. An
execution trace not exhibiting the error will execute 〈1, 2, 3, 7, 8, 9〉
in the ith loop iteration. Now, let us consider the alignment of these
two execution traces — for simplicity we only show the alignment
of their ith loop iterations.

We compute the smallest edit distance between the two traces
— the minimum cost edits with which one string can be trans-
formed to another. The edit operations are insert/delete/change of
one symbol, and the cost of each of these operations need to be
suitably defined. Conceptually this is achieved by constructing a
two-dimensional grid. The rows of the grid are symbols in the first
execution trace, and the columns of the grid are the symbols in
the second execution trace. Finding the best alignment between
the traces now involves finding the lowest cost path from the top-
left corner of the grid to the bottom right corner of the grid. In
each cell of the grid, we have choice of taking a horizontal, verti-
cal or diagonal path. Horizontal path means insertion of a symbol
in the first execution trace, vertical path means deletion of symbol
from the first execution trace, and a diagonal path means compar-
ing the corresponding symbols in the two traces. If we have to
insert/delete a symbol we incur some penalty (say α > 0). More-
over, if we compare two symbols of the two traces and record a mis-
match we also incur some penalty (say β, where typically β > α).
Thus, 0 < α < β. Of course, if we compare two symbols of
the two traces and record a match, zero penalty is incurred. A
least-cost alignment then corresponds to finding the path with min-
imum penalty from the top left corner to bottom right corner of the
grid. Figure 5 shows the grid for the two traces 〈1, 2, 3, 7, 8, 9〉 and
〈1, 2, 3, 4, 5, 7, 8, 9〉 taken from the program in Figure 4.1 A least-
cost alignment found for these two traces (assuming α = 1, β = 2)
is shown in Figure 5 via arrows. This corresponds to the following
(expected) alignment.

1We are explaining our example by presenting the traces at the level
of statements. However, in our implementation they will be cap-
tured at the level of instructions.

1 2 3 _ _ 7 8 9
1 2 3 4 5 7 8 9

Having found the alignment between two traces, we simply record
the aligned branches in the two traces which have been evaluated
differently. The sequence of these branches then constitute the trace
“difference”. In the preceding example, only the branch 3 will
appear in the trace difference.

We have now explained our trace alignment and comparison.
The trace alignment can be computed by dynamic programming
methods operating on the above-mentioned two-dimensional grid –
where for each cell [i,j] of the grid we keep track of the low-
est cost path from the top left corner (cell [0,0]) to cell [i,j].
However, a straightforward application of dynamic programming
will involve space proportional to the product of the lengths of two
traces being compared. In practice, this can lead to huge blow-
up. For this reason, we have integrated existing linear-space string
alignment methods into our trace comparison. Given two traces
of length m, n respectively, we will never construct the entire two-
dimensional grid. Instead, we compute the least cost alignment in
a divide-and-conquer fashion by finding least cost paths on smaller
sub-grids. The reader is referred to [9] for more details.

3.3 Putting it All Together
Given an input t and two program versions P, P ′ — we compute

the path conditions f, f ′ of input t in program P, P ′ respectively.
First we try to solve f ∧ ¬f ′. Instead of directly solving the for-
mula (which may have many solutions), we choose the solutions
as follows. Let f ′ = ψ1 ∧ ψ2 ∧ . . . ∧ ψm where ψi are primitive
constraints. We solve the m formulae {ϕi | 0 ≤ i < m}

ϕi
def
= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1

We take only one solution (if one exists) for each ϕi. This gives us
at mostm alternate inputs. These alternate inputs are then validated
— we check whether the alternate inputs indeed follow the same
path as that of test t in P and a different path as that of t in P ′.
Thus, we get at most m validated alternate inputs; let this set be
Inputsvalidate(t, P, P

′). For each t′ ∈ Inputsvalidate(t, P, P
′),

• we construct the concrete trace π′ of t′ in P ′,

• we align and compare π′ with π (the trace of input t in
P ′) to get a sequence of branches capturing their difference
diff(t, t′), and

• get the first branch bfirst(t, t′) from the sequence diff(t, t′).

Our bug report is the set of branches

{bfirst(t, t′) | t′ ∈ Inputsvalidate(t, P, P
′)}

On the other hand, if f ∧ ¬f ′ is unsatisfiable we replicate the
above steps for solving f ′ ∧ ¬f . Again, we do not solve f ′ ∧ ¬f
directly but instead solve k formulae (f ′ ∧ θ1 ∧ . . .∧ θi ∧¬θi+1),
where f = (θ1 ∧ . . .∧ θk) and θi are primitive constraints. Again,
we get a set of at most k validated alternate inputs. By aligning
and comparing the traces of these inputs in P (the old program)
with the trace of the input t in P — we obtain at most k branch
sequences. By taking the first branch from these branch sequences,
we get a bug report of size at most k.

Finally, if we still obtain a large number of alternate inputs (and
hence a large bug report), we prioritize them as follows. We choose
the alternate inputs which are “successful”, that is, produce same
outputs in both the program versions. Since such successful inputs
exhibit bug-free behavior (in terms of program output), by compar-
ing their traces with the buggy input’s trace we hope to localize the

error cause. The branch instruction contributed by each “success-
ful” alternate input is thus investigated first, before investigating
other branch instructions in the bug report.

4. COMMON PROGRAMMING ERRORS
We now explain the suitability of our debugging methodology

for different common kind of programming errors — branch errors,
assignment errors and code-missing errors.

Branch errors. We believe that our methodology is naturally
suited for localizing branch errors — errors in branch conditions.
Since our approach for synthesizing and comparing tests is based
on control flow, our approach is ideally suited to bugs that cause a
change in the control flow. Branch condition errors cause a change
in control flow and hence are easily root-caused using our approach.

Assignment errors. Bugs that do not influence the program’s
control flow, such as errors in assignment statements (say that cause
the program to generate wrong output) cannot be directly root-
caused using our approach. We now describe a strategy that can
translate such bugs into those that influence control flow. Inspired
by ideas in statistical debugging [21, 20], we instrument the pro-
gram with a pre-defined family of predicates. These predicates are
instrumented as branch conditions at various points in the program.
The predicates we instrument are (i) checks for null and the sign of
return values at each function return site and (ii) checks for equality
of two program variables of the same type (inserted prior to assign-
ment statements). These predicates provide our DARWIN tool with
additional opportunities to find new tests that reveal the difference
between the actual and the expected control flow of the failing test.
On the flip side, the instrumentation can increase the cost of tracing
and the complexity of constraint solving.

Code-missing errors. Code missing errors correspond to por-
tions of code being left out during the change of a program. Such
code will be missing in the new program version, but is present in
the old program version. Whether the missing code chunk contains
assignments (which, if they were present would have affected con-
trol flow via instrumented branches) or branches (which directly
affect control flow) — the old program P can be expected to have
more paths than the new program P ′. Given a failing test input t,
and f , f ′ being the path condition of t in P , P ′ — we can thus
expect f ′ ∧ ¬f to yield a solution. This will be a test input t′ fol-
lowing the path of t in P ′, but following a different path than t in P
(the code missing in P ′ is present in P , leading to more branches
and more paths). Thus, the traces of t′ and t in P will be aligned
and compared to yield a bug report. No extension is needed in our
methodology to handle code missing errors.

5. IMPLEMENTATION
We now describe our implementation setup. Our debugging tool

is called DARWIN — since it explains bugs introduced by soft-
ware evolution. The overall architecture of our DARWIN toolkit is
summarized in Figure 6.

5.1 Generating Alternate Inputs
Within the DARWIN tool, we use a symbolic execution engine

for computing the path condition of a given program execution.
Our execution engine is a part of the BitBlaze platform [28], which
works on x86 binaries. Given an input, the platform concretely exe-
cutes the program on the specific input and records the trace. It then
performs symbolic execution to compute the path condition of the
concrete trace recorded. The path condition represents a constraint
denoting the set of inputs which execute the concrete trace.

Old Program P New Program P’ Test Input t

Concrete execution +

Path cond. of t in P Path cond. of t in P’

Concrete execution +
Symbolic execution

f f’

f f’ f' ff ∧ ¬ f’

STP solving
& i lid ti

f' ∧ ¬ f

STP solving
& i lid ti& pgm. inp. validation

Test Input tAlternate Input t1 Alternate Input t2Program P Program P’

& pgm. inp. validation

Concrete Trace
Alignment & Comparison

Concrete Trace
Alignment & Comparison

Bug Report (Assembly level) Bug Report (Source level)Reverse
translate

Figure 6: Architecture of our DARWIN toolkit. It takes an old
program P , a new program P ′ and a test input t which passes
in P but fails in P ′. The output is a bug report explaining the
behavior of test t. The entire flow is automated.

The concrete execution is carried out by the TEMU component,
which is a whole-system emulator based on QEMU [4]. TEMU
can run Windows and Linux as its guest operating system, enabling
us to analyze both Windows and Linux binaries. After the con-
crete execution, TEMU generates a trace of instructions executed
by the program. The trace is also annotated with input dependence
information, for example, whether the operand of an instruction is
dependent on input. TEMU allows users to specify several types of
inputs, such as network inputs, files, and keyboard inputs.

The path condition calculation is performed by the VINE com-
ponent of BitBlaze. It first defines the bytes in the program in-
put as symbolic variables: each byte in the input is a distinct vari-
able. Then, it makes a forward pass through the trace recorded
by TEMU, considering only “relevant” instructions — instructions
whose operands are (directly or transitively) dependent on the pro-
gram input. Note that such input dependence information is present
as annotations in the trace recorded by TEMU. Finally, VINE per-
forms a backwards traversal of the trace in the intermediate lan-
guage. During this backwards traversal, a weakest pre-condition
calculation (w.r.t. the formula true) is performed thereby produc-
ing the path condition.

Given program versions P , P ′ and a test input t which passes
in P and fails in P ′ — we compute the path conditions f , f ′ of
input t in programs P , P ′. In fact, the symbolic execution en-
gine in BitBlaze constructs these path conditions as formulae in
the STP solver [15]. STP is an automated satisfiability checker
for first-order logic with built-in theories for bit-vectors and arrays.
The STP checker serves as a decision procedure for satisfiability of
quantifier-free first order logic formula. Indeed this is the case for
us, since our formulas do not have universal quantification and any
variable is implicitly existentially quantified.

5.2 Constructing Bug Report
Given the solutions of f∧¬f ′ we validate them, that is, we check

whether the concrete traces for these inputs are the same as the trace
of the failing input in the old/stable program version P , and differ-
ent from the failing input’s trace in the new/buggy program version
P ′. We then generate the execution traces of each of these validated
test inputs in P ′. Each such trace is aligned and compared with the
execution trace of the failing test t in P ′. This yields a sequence
of branches. As mentioned in Section 3.3, we take the first branch
from each sequence and put it in our bug report. In case we find

f ∧ ¬f ′ to be unsatisfiable or none of the solutions of f ∧ ¬f ′ can
be validated, we solve f ′ ∧¬f in a similar fashion. Again, this can
yield many solutions which we then validate. For the validated so-
lutions, we align/compare their traces in the old program version P
with the trace of t in P . Each such trace comparison produces a se-
quence of branch instructions — branches which are aligned in the
two traces, but have different outcomes. From each of these branch
sequences, we take the first branch and put it in the bug report.

For the trace comparison experiments, we need to set two con-
stants (i) α the cost of inserting/deleting a symbol, and (ii) β, the
cost of changing a symbol. Note that we need to choose these pa-
rameters in such a way that 0 < α < β. In our experiments, we
used α = 1, β = 2.

By following the steps mentioned in the preceding (solving ei-
ther f∧¬f ′ or f ′∧¬f), we obtain a set of branches at the assembly
level as bug report. Using standard compiler level debug informa-
tion, these can be reverse translated back to the source code level,
allowing use of the bug report by the programmer.

Bug Report Size. Finally, we highlight certain low-level issues
which make a substantial difference to the utility of our bug reports.
Given the path conditions f and f ′, let f ′ = (ψ1 ∧ψ2 ∧ . . .∧ψm)
where ψi are primitive constraints. As mentioned in the last sec-
tion, to solve for f ∧ ¬f ′ we solve the m formulae {ϕi | 0 ≤ i <

m} where ϕi
def
= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1 Further, we take only

one solution for each ϕi (if one exists). Our VINE symbolic execu-
tion engine ensures that the path conditions contain only constraints
from branches which are dependent on the program input. In prac-
tice, this greatly cuts down on the number of ψi constraints, and
hence the number of ϕi formulae that need to be dispatched to the
STP solver. Since eachϕi formula contributes at most one alternate
input — this reduces the number of alternate inputs. Moreover, the
bug report is constructed by taking one branch from the alignment
of each alternate input with the buggy input (the first branch where
the traces of the two inputs differ). Since the size of the bug re-
port is equal to the number of alternate inputs, we get a smaller
sized bug report by reducing the number of alternate inputs. If the
bug report size is still high (due to large number of alternate in-
puts), we can prioritize the examination of the branches in the bug
report, via a prioritization of the alternate inputs generated by our
method. As mentioned in Section 3.3, we investigate the branch in-
structions contributed by “successful” alternate inputs first, before
investigating other branch instructions in the bug report. The suc-
cessful inputs are those which exhibit same output in both old and
new program. Since the observable behavior of successful inputs
is bug-free, in our debugging we prefer to investigate the deviating
branch instruction contributed by these inputs first.

6. DEBUGGING EXPERIENCE
We report our experience in using DARWIN for locating error

causes in real-life case studies.

6.1 Experience with libPNG

We first describe our experience in debugging the libPNG open
source library [2], a library for reading and writing PNG images.
We used a previous version of the library (1.0.7) as the buggy ver-
sion. This version contains a known security vulnerability, which
was subsequently identified and fixed in later releases. A PNG im-
age that exploits this vulnerability is also available online. As the
reference implementation or stable version, we used the version in
which the vulnerability was fixed (1.2.21). Assuming this vulnera-
bility was a regression bug, we used our tool to see if the vulnera-
bility could be accurately localized.

The bug we localized is a remotely exploitable stack-based buffer
overrun error in libPNG. Under certain situations, the libPNG
code misses a length check on PNG data prior to filling a buffer on
the stack using the PNG data. Since the length check is missed,
the buffer may overrun. What is worse, such a bug may be re-
motely exploited by emailing a bad PNG file to another user who
uses a graphical e-mail client for decoding PNGs with a vulnerable
libPNG. In Figure 7, we show a code fragment of libPNG show-
ing the error in question. If the first condition !(png_ptr->mode
& PNG_HAVE_PLTE) is true, the length check is missed, leading
to a buffer overrun error. A fix to the error is to convert the else
if in Figure 7 to an if. In other words, whenever the length check
succeeds, the control should return.

if (!(png_ptr->mode & PNG_HAVE_PLTE))
{

png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette)
{

png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;

}

Figure 7: Buggy code fragment from libPNG

We now explain some of the issues we face in localizing such a
bug using approaches other than ours. Suppose we have the buggy
libPNG program and a bad PNG image which causes a crash due
to the above error. If we want to perform program differencing
methods (such as source code “diff”) to localize the bug, there are
1589 differences in 28 files. Manually inspecting these differences
requires a lot of effort.

If we want to localize the error by an analysis of the erroneous
execution trace starting from the observable error — it is very hard
to even define the observable error. Even if the buffer being over-
run is somehow defined as the observable error, tracking program
dependencies from the observable error can be problematic for the
following reason. The libPNG library is used by a client which
inputs an image, performs computation and outputs to a buffer (the
one that is overrun due to error inside libPNG). In this case, we
are debugging the sum total of the client along with the libPNG
library. Since almost all statements in the client program and many
statements in libPNG involve manipulation of the buffer being
overrun itself — a dynamic slicing approach seems to highlight al-
most the entire client program as well as large parts of the libPNG
library.

If we want to employ statistical bug isolation methods (which
instrument predicates and correlate failed executions with predi-
cate outcomes), the key is to instrument the “right predicate”. In
this case, the predicates in question (such as !(png_ptr->mode
& PNG_HAVE_PLTE)) contain pointers and fields. Hence they
would be hard to guess using current statistical debugging meth-
ods which usually consider predicates involving return values and
scalar variables.

If we want to perform debugging by trace comparison, we must
compare the trace of the bad PNG image (which exposes the er-
ror) with the trace of a good PNG image (which does not show the
error). The question then is how do we get the good PNG image?
Even if we have a pool of good PNG images from which we choose
one – making the “right” choice becomes critical to the utility of the
bug report.

In our debugging method, given the bad PNG image — we con-
struct an alternate PNG image via semantic analysis of the exe-
cution traces of the bad PNG image in the two program versions.

This image is a “minimal modification” of the bad PNG image —
our analysis only minimally changes the bad PNG image to get a
“good” image as alternate program input.

Employing DARWIN to the debugging task, we first compute the
path conditions of the bad PNG image on the two libPNG versions
1.0.7 and 1.2.21. Let these be fbuggy and ffixed respectively. We
find that ffixed∧¬fbuggy is unsatisfiable, so we solve for fbuggy∧
¬ffixed. By solving this formula we get nine (9) alternate inputs
from the STP solver. These nine alternate inputs are in reality nine
PNG images. We align and compare the traces of these nine PNG
images with the trace of the bad PNG image in libPNG version
1.2.21 (the fixed version). This gives us nine branch sequences. We
take the first instruction from each of these nine branch sequences,
thereby getting a bug report containing nine (9) instructions.

We can now prioritize the examination of the bug report as fol-
lows. Among the nine alternate inputs contributing to the bug re-
port, we find out which of them are “successful”, that is, their
observable behavior is as expected by the programmer. In other
words, the program output for a successful program input should
be the same in both the program versions. Only one of our nine al-
ternate inputs is found to be successful. The branch instruction con-
tributed (to the bug report) by this input corresponds to the branch

length > (png_uint_32)png_ptr->num_palette

thereby pinpointing the error cause.

Discovering New Errors. Interestingly, in the process of this
debugging we found other potential problems in the libPNG code.
As mentioned earlier, our DARWIN tool obtained nine alternate in-
puts, only one of which exhibits bug-free behavior, and pointed us
to the error. Interestingly, the branch instructions contributed to
the bug report by the other eight alternate inputs point us to other
deviations between the two versions of libPNG. For example, by
following one of these eight instructions we find that the two ver-
sions of libPNG use different functions to retrieve the length field
of a chunk from the input. In version 1.0.7, we have

length = png_get_uint_32(chunk_length);

while in version 1.2.21 we have

length = png_get_uint_31(chunk_length);

In particular, the code for png_get_uint_31 is as follows.

png_get_uint_31(png_structp png_ptr, png_bytep buf)
{

png_uint_32 i = png_get_uint_32(buf);
if (i > PNG_UINT_31_MAX)
png_error(png_ptr, "PNG unsigned integer

out of range.");
return (i);

}

Thus, png_get_uint_31 first uses png_get_uint_32 and
then performs a length check. If png_get_uint_32 is directly
used to find the length of a chunk, a length check w.r.t. the con-
stant PNG_UINT_31_MAX is missing. Our bug report contains
the branch instruction containing this missing length check, thereby
pointing to another potential error in libPNG.

6.2 Experience with miniweb-apache
In our second case study, we study the web-server miniweb

[3], an optimized HTTP server implementation which focuses on
low resource consumption. The input query whose behavior we
debugged was a simple HTTP GET request for a file, the specific
query being “GET x”. Ideally, we would expect miniweb to re-
port an error as x is not a valid request URI (a valid request URI

should start with ‘/’). However, miniweb does not report any er-
rors, and returns the file index.html. We then attempt to local-
ize the root cause of this observable error.

We found that even the latest version of miniweb contains the
error. Therefore, we cannot choose another version of miniweb as
the reference implementation or stable program. We chose another
HTTP server apache [1] as the reference implementation or stable
program. The apache is a well-known open-source secure HTTP
server for Unix and Windows. Since both apache and miniweb
implement the HTTP protocol — they should behave “similarly”
for any input accepted by both implementations. Further, apache
does not exhibit the bug we are trying to fix — indeed it reports an
error on encountering the input query “GET x”.

We generate the path conditions of “GET x” in both apache
and miniweb. Let these be fapache and fminiweb respectively.
We find fapache ∧ ¬fminiweb to be unsatisfiable. However, by
solving fminiweb ∧ ¬fapache we can get alternate input queries.
By following our methodology described in Section 3.1, we get
exactly five alternate inputs:

GET /, GET \, GET *, GET . and GET %

By aligning and comparing the traces of each alternate input with
the trace of “GET x” in apache, we get five branch sequences.
As per our methodology, we choose only the first branch instruction
(the first place of deviation) from these five branch sequences. This
gives us a bug report containing only five instructions. We can
immediately localize the bug — miniweb does not check for ’/’
in GET queries and treats the query “GET x” similar to “GET /”
thereby returning the file index.html.

Discovering New Errors. Only one of our five alternate in-
puts was “successful”, exhibiting same output in both program ver-
sions. The branch instruction contributed to the bug report by this
input pointed us to the missing check for ’/’. The other alternate
inputs (and the branch instruction contributed by each of them to
the bug report) pointed us to other missing checks in miniweb.
Indeed, we can locate that apache contains checks for each of
these five characters while miniweb misses the check for all five
of them — leading to potential errors.

In a Broader Perspective. Our experiments with apache-
miniweb also give us a broader perspective on the applicability
of our method. Even if all versions of a program exhibit a given
error (as was the case with miniweb), we can still use DARWIN
to localize the error. We only need a reference program which is
intended to behave similarly to the program being debugged, and
does not exhibit the bug being localized. In our experiments, the
apache web-server was the reference program.

6.3 Experience with savant-apache
Finally, we discuss our study of savant [5], a full-featured

open-source web-server for Windows. We notice that savant
does not report any errors when faced with an input query of the
form “GOT /index.html”, a typo from the valid HTTP GET
request “GET /index.html”. We cannot choose another ver-
sion of savant as the reference program — the latest version of
savant also exhibits this error. As reference program, we again
choose the apache webserver, which reports an error for the input
query “GOT /index.html”. Both savant and apache im-
plement the HTTP protocol, and are expected to behave similarly.

In this case study, DARWIN found forty-six (46) alternate in-
puts. Out of these only one (1) is successful, that is, produces
same output in both savant and apache. This is the input “GET
/index.html”. Using the branch instruction contributed (to the

Programs Time in Time in Time in
step 1 step 2 step 3

libPNG(v1.0.7-v1.2.21) 16m 40s 9m 15s 6.5s
Miniweb-Apache 11s 2.4s 1.3s
Savant-Apache 17m 43s 5m 11s 55s

Table 1: Performance of DARWIN (m=minutes, s=seconds)

Programs LOC Trace size # Branches
(# instructions) in trace

libPNG v1.0.7 31,164 87,336 13,635
libPNG v1.2.21 36,776 108,769 15,472

Miniweb 2,838 270,856 26,201
Savant 8,730 121,714 16,212
Apache 358,379 60,380 5,388

(miniweb) (miniweb)
74,002 (savant) 9,672 (savant)

Table 2: Properties of the subject programs

bug report) by this alternate input, DARWIN pinpointed the error
to missing checks in savant — the savant program does not
check for all the three letters ‘G’, ‘E’, ‘T’ in HTTP GET requests
for HTTP protocol version HTTP/0.9 (which is the default assumed
since we do not explicitly specify a HTTP protocol version in the
query “GOT /index.html”). Indeed, we found that savant
reports an error if we provide “GOT /index.html HTTP/1.0”
as input. In HTTP/0.9 there is only one command, namely GET.
The error lies in the fact that savant does not check for the string
“GET”, and assumes any given string to be the GET command.

In a Broader Perspective. Our experiments with savant
also illustrate another additional feature of DARWIN — the ability
of rectify program inputs. The process of alternate input generation
in DARWIN can help correct errors in an almost correct program
input — such as the input “GOT /index.html”. In this case,
the input rectification was easy and could have been done manually
as well. In future, we plan to conduct experiments with programs
like web browsers to see if an almost correct HTML file (where the
incorrectness in the file is hard-to-see) can get “rectified” through
DARWIN’s alternate input generation.

6.4 Performance
Our method involves: (i) constructing and composing the path

conditions, (ii) solving formulae, and (iii) comparing traces. Table
1 summarizes the time taken in these steps by DARWIN. In the first
step, we construct the path conditions in the two program versions,
and then construct several formulae as detailed in Section 3.1. The
time taken in this step was less than 18 minutes in all the case stud-
ies. In the second step, we solve the various formulae constructed
in the first step, thereby producing alternate program inputs. The
time taken by the STP solver was less than 10 minutes in all the
case studies. In the third step, we align and compare the traces
of the alternate inputs with the trace of the buggy input. The time
taken by this step was less than 1 minute in all the case studies. The
lines of code and trace sizes for the case studies appear in Table 2.

Overall, our DARWIN tool took less than 30 minutes in all the
case studies. This time can be significantly reduced by using a more
efficient solver than STP — in future we are planning to migrate our
tool to the Z3 solver [12]. Moreover, given the times developers
usually spend in debugging (hours and days), we believe the time
taken by our tool is very reasonable. At the end of the debugging
process, our DARWIN tool not only pinpointed the error root cause
being investigated, but also found sources of other potential errors.

7. RELATED WORK
Validation of evolving programs is an important problem, since

any large software moves from one version to another. Among the
established efforts in this direction are the works on regression test-
ing which focus on which tests need to be executed for a changed
program. Even though regression testing in general refers to any
testing process intended to detect software regressions (where a
program functionality stops working after some change), often re-
gression testing amounts to re-testing of tests from existing test-
suite. In the past, there have been several research directions which
go beyond re-testing all of the tests of an existing test-suite. One
stream of work has espoused test selection [10, 24] — selecting
a subset of tests from existing test-suite (before program modifi-
cation) for running on the modified program. Another stream of
works propose test prioritization [14, 30] — ordering tests in exist-
ing test suite to better meet testing objectives of the changed pro-
gram. Finally, most recently [25] has proposed test-suite augmen-
tation — developing new tests to stress the effect of the program
changes. We note that our technique is complementary to regres-
sion testing since regression testing seeks to detect or uncover soft-
ware regressions, whereas we primarily seek to explain (already
detected) software regressions.

The issues in comprehending program changes for an evolv-
ing code base have been articulated in [27]. Program differencing
methods [18, 6, 22] try to identify changes across two program ver-
sions. Indeed, this can be the first step towards detecting errors in-
troduced due to program changes — identifying the changes them-
selves! The works on change impact analysis are often built on such
program differencing methods (e.g., see [22] — where the analy-
sis identifies not only the changes, but also which tests are affected
by which changes). Overall, the works on program differencing
try to identify (via static analysis) possible software regressions,
rather than finding the root-cause of a given software regression.
Dynamic analysis based change detection methods have also been
studied (e.g., [16], which analyzes via regression testing the change
in dependencies between parts of a program). These works focus
on qualitative code measures and the possible impact of program
changes. Instead we focus on the specific issue of root-causing a
bug that has surfaced due to program changes.

In the area of computer security, deviation detection of various
protocol implementations have been studied (e.g., see [8]). This
problem involves finding corner test inputs in which two imple-
mentations of the same protocol might “deviate” in program out-
put. We note that finding such deviating program inputs bears sim-
ilarities with uncovering software regressions, whereas our work
is focused on explaining already uncovered software regressions.
Even though superficially [8] appears to employ techniques sim-
ilar to ours — the goal of [8] is to generate a deviating program
input which can demonstrate the behavior difference between two
programs, while the goal of our work is to explain such a behavior
difference. Thus, the deviating program input generated by [8] can
be fed as an input to our debugging method.

Turning now to works on software debugging, the last decade
has seen a spurt of research activity in this area. Some of the works
are based on static analysis to locate common bug patterns in code
(e.g., [19]), while others espouse a combination of static and dy-
namic analysis to find test inputs which expose errors (e.g., [11]).
Another section of works address the problem of software fault lo-
calization (typically via dynamic analysis) — given a program and
an observable error for a given failing program input, these works
try to find the root cause of the observable error. Our work solves
this problem of fault localization, albeit for evolving programs. We
now discuss the works on fault localization.

The works on software fault localization proceed by either (a)
dynamic dependence analysis of the failing program execution (e.g.,
[29, 34, 35]), or (b) comparison of the failing program execution
with the set of all “correct” executions (e.g., see [7]), or (c) com-
parison of the failing program execution with one chosen program
execution which does not manifest the observable error in question
(e.g., [32, 23, 17]). Our work bears some resemblance to works
which proceed by comparing the failing program execution with
one chosen program execution. The first phase of our approach tries
to construct an alternate input with whose trace we compare the
failing program execution, and the second phase of our approach
involves a trace alignment/comparison. However, the main novelty
in our approach lies in its ability to consider two different programs
in the debugging methodology.

Comparing with delta debugging [33], we find that it cannot be
used in general to construct alternate inputs for evolving program
debugging. Consider a test input t showing a regression bug (fail-
ing in one program version, passing in another). Delta-debugging
generates alternate inputs by deleting certain fields of t which are
irrelevant to the bug. However, it cannot generate new test inputs
by modifying certain fields of t; this is done in our method. For
example, in our libPNG case study, the “bad” PNG image con-
tains a chunk (a PNG file is divided into “chunks”) with an incor-
rect length field. To make the bug disappear, we need to correct
the length field, rather than delete fields in the PNG input. More-
over, arbitrary deletion in the PNG input will create illegal PNG
inputs since the checksum will not match. In contrast, the semantic
analysis supported by our path conditions (where the relationship
between the checksum and the other fields is captured in the path
condition) ensures that we generate an alternate test input which is
a legal PNG image and avoids the bug in question.

The work of [31] studies debugging of evolving programs and
proposes to identify failure inducing changes. However, this is re-
stricted to only reporting the changes as error causes. Errors present
in the old version which get manifested due to changes cannot be
explained using such an approach. Moreover, suppose during pro-
gram evolution we encounter a bug for the first time (a test input
which was ignored during the testing of the past versions). Such
bugs are not regression bugs. Our approach can still be applied,
provided a reference implementation is available; this was demon-
strated in our experiments with web-servers. In such a situation,
searching among changes across implementations is unlikely to
work since the reference implementation is a completely different
program, often with different algorithms / data structures.

In summary, existing works on program analysis based software
debugging have not studied the debugging of evolving programs.
In particular, the possibility of exploiting stable implementations
(which were thoroughly tested) for finding the root-cause of an ob-
servable error in a buggy implementation has not been studied. This
indeed is the key observation behind our approach. Moreover, ex-
isting works on evolving software testing/analysis primarily focus
on finding tests which show differences in behavior of different pro-
gram versions. These works do not prescribe any method for ex-
plaining or debugging a failed test — an issue that we study here.

8. CONCLUSION
In this paper, we have presented a debugging methodology and

tool for evolving programs. Our DARWIN toolkit takes in two pro-
grams and explains the behavior of a test input which passes in the
stable program, while failing in the buggy program. Our experience
with real-life case studies demonstrate the utility of our method for
localizing real bugs. The alternate inputs generated by our method
can also help detect new errors, apart from localizing a given ob-

servable error. We believe that this ability to detect new errors can
be a useful feature of our method in practice.

Acknowledgments. This work was partially supported by a De-
fense Innovative Research Programme (DIRP) grant from Defense
Science and Technology Agency (DSTA), Singapore.

9. REFERENCES
[1] Apache webserver. http://httpd.apache.org/.
[2] libPNG library. http://www.libpng.org.
[3] Miniweb webserver. http://miniweb.sourceforge.net/.
[4] QEMU emulator. http://www.qemu.org.
[5] Savant webserver. http://savant.sourceforge.net/info.html.
[6] T. Apiwattanapong, A. Orso, and M. Harrold. A differencing algorithm for

object-oriented programs. In ASE, 2004.
[7] T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing errors

in counterexample traces. In POPL, 2003.
[8] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song. Towards

automatic discovery of deviations in binary implementations with applications
to error detection and fingerprint generation. In USENIX Security Conf., 2007.

[9] K.-M. Chao, R. Hardison, and W. Miller. Recent developments in linear space
alignment methods: A survey. Journal of Computational Biology, 1, 1994.

[10] Y. Chen, D. Rosenblum, and K. Vo. Testtube: a system for selective regression
testing. In ICSE, 1994.

[11] C. Csallner and Y. Smaragdakis. DSD-Crasher: a hybrid analysis tool for bug
finding. In ISSTA, 2006.

[12] L. de Moura and N. Bjorner. Z3: An efficient SMT solver. In TACAS, 2008.
[13] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering, 2005.
http://www.cse.unl.edu/~galileo/sir.

[14] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases for
regression testing. In ISSTA, 2000.

[15] V. Ganesh and D. Dill. A decision procedure for bit-vectors and arrays. In CAV,
2007.

[16] O. Giroux and M. Robillard. Detecting increases in feature coupling using
regression tests. In FSE, 2006.

[17] L. Guo, A. Roychoudhury, and T. Wang. Accurately choosing execution runs
for software fault localization. In CC, 2006.

[18] S. Horowitz. Identifying the semantic and textual differences between two
versions of a program. In PLDI, 1990.

[19] D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA Onward!, 2004.
[20] B. Liblit. Cooperative Bug Isolation. PhD thesis, UC Berkeley, 2005.
[21] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scalable statistical bug

isolation. In PLDI, 2005.
[22] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley. Chianti: a tool for change

impact analysis of java programs. In OOPSLA, 2004.
[23] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In

ASE, 2003.
[24] G. Rothermel and M. J. Harrold. A safe efficient regression test selection

technique. TOSEM, 6, 1997.
[25] R. Santelices, P. Chittimalli, T. Apiwattanapong, A. Orso, and M. Harrold.

Test-suite augmentation for evolving software. In ASE, 2008.
[26] R. Seacord, D. Plakosh, and G. Lewis. Modernizing Legacy Systems: Software

Technologies, Engineering Processes, and Business Practices. Addison-Wesley,
2003.

[27] J. Sillito, G. Murphy, and K. De Volder. Questions programmers ask during
software evolution tasks. In FSE, 2006.

[28] D. Song et al. Bitblaze: A new approach to computer security via binary
analysis. In ICISS (Keynote Invited Paper), 2008.
http://bitblaze.cs.berkeley.edu.

[29] M. Sridharan, S. Fink, and R. Bodik. Thin slicing. In PLDI, 2007.
[30] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in a development

environment. In ISSTA, 2002.
[31] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In

ESEC/FSE, 1999.
[32] A. Zeller. Isolating cause-effect chains from computer programs. In FSE, 2002.
[33] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.

IEEE Transactions on Software Engineering, 28:2002, 2002.
[34] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. In

PLDI, 2006.
[35] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards locating execution

omission errors. In PLDI, 2007.

