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Abstract. Signature-based input filtering is an important and widely deployed defense. But cur-
rent signature generation methods have limited coverage and the generated signatures often can
be easily evaded by an attacker with small variations of the exploit message. In this paper, we
proposeprotocol-level constraint-guided exploration, a new approach towards generating high
coverage vulnerability-based signatures. In particular,our approach generates high coverage, yet
compact,vulnerability point reachability predicates, which capture many paths to the vulner-
ability point. In our experimental results, our tool,Elcano, generates compact, high coverage
signatures for real-world vulnerabilities.

1 Introduction

Automatic signature generation remains an important open problem. According to Syman-
tec’s latest Internet Security Threat Report hundreds of new security-critical vulnerabil-
ities were discovered in the second half of 2007 [1]. For manyof these vulnerabilities,
the exploit development time is less than a day, while the patch development time is
often days or months [1]. In addition, the patch deployment time can be long due to
extensive testing cycles.

To address these issues,signature-based input filteringhas been widely deployed in
Intrusion Prevention (IPS) and Intrusion Detection (IDS) systems. Signature-based in-
put filtering matches program inputs against a set of signatures and flags matched inputs
as attacks. It provides an important means to protect vulnerable hosts when patches are
not yet available or have not yet been applied. Furthermore,for legacy systems where
patches are no longer provided by the vendor, or critical systems where any changes to
the code might require a lengthy re-certification process, signature-based input filtering
is often the only practical solution to protect the vulnerable program.

The key technical challenge to effective signature-based defense is to automatically
and quickly generate signatures that have both low false positives and low false nega-
tives. In addition, it is desirable to be able to generate signatures without access to the
source code. This is crucial to wide deployment since it enables third-parties to generate
signatures for commercial-off-the-shelf (COTS) programs, without relying on software
vendors, thus enabling a quick response to newly found vulnerabilities.

Due to the importance of the problem, many different approaches for automatic sig-
nature generation have been proposed. Early work proposed to generateexploit-based
signaturesusing patterns that appeared in the observed exploits, but such signatures



can have high false positive and negative rates [2–10]. Morerecently, researchers pro-
posed to generatevulnerability-based signatures, which are generated by analyzing the
vulnerable program and its execution and the actual conditions needed to exploit the
vulnerability and can guarantee a zero false positive rate [11,12].

Automatic vulnerability signature generation. A vulnerability is a point in a program
where execution might “go wrong”. We call this point thevulnerability point. A vulner-
ability is only exploited when a certain condition, thevulnerability condition, holds on
the program state when the vulnerability point is reached. Thus, to exploit a vulnerabil-
ity, the input needs to satisfy two conditions: (1) it needs to lead the program execution
to reach the vulnerability point; (2) the program state needs to satisfy the vulnerability
condition at the vulnerability point. We call the conditionthat denotes whether an input
message will make the program execution reach the vulnerability point thevulnerability
point reachability predicate(VPRP). Thus, the problem of automatically generating a
vulnerability-based signature can be decomposed into two:identifying the vulnerability
condition and identifying the vulnerability point reachability predicate. A vulnerability-
based signature is simply the conjunction of the two. While both problems are impor-
tant, the space limitations makes trying to cover both in a single paper unrealistic. Thus,
in this paper we focus on how to generate vulnerability pointreachability predicates
with high coverage and compact size, and we refer the reader to [13] for details on the
vulnerability condition extraction. In this paper, we useoptimal signatureto refer to a
vulnerability signature that has no false positives and no false negatives.

Coverage is a key challenge.One important problem with early vulnerability-based
signature generation approaches [11, 12] is that the signatures only capture a single
path to the vulnerability point (i.e., their VPRP contains only one path). However, the
number of paths leading to the vulnerability point can be very large, sometimes infinite.
Thus, such signatures are easy to evade by an attacker with small modifications of the
original exploit message, such as changing the size of variable-length fields, changing
the relative ordering of the fields (e.g., HTTP), or changingfield values that drive the
program through a different path to the vulnerability point[14,15].

Acknowledging the importance of enhancing the coverage of vulnerability-based
signatures, recent work tries to incorporate multiple paths into the VPRP either by static
analysis [16], or by dynamic analysis [17,18]. However, performing precise static anal-
ysis on binaries is hard due to issues such as indirection, pointers and loops.

ShieldGen takes a probing-based approach using protocol format information [18]—
using the given protocol format, it generates different well-formed variants of the orig-
inal exploit using various heuristics and then checks whether any of the variants still
exploits the vulnerability. The advantage of this approachis that by using protocol for-
mat information, the final signature is expressed at the protocol level (which we call
protocol-levelsignature) instead of the byte level. Compared to signatures at the byte-
level (which do not understand the protocol format), protocol-level signatures have two
advantages: they are more compact and they naturally cover variants of the exploits
caused by variable-length fields and field re-ordering (See more detail in Section 2.2).
The disadvantage of the approach used by ShieldGen is that the exploration uses heuris-
tics to figure out what test inputs to generate. Such heuristics can introduce false pos-
itives and do not use the information from the execution of the program, which would



increase the coverage of the program execution space. As a result, the exploration is
inefficient and has various limitations (See Section 2.3).

Bouncer extends previous approaches using symbolic execution to generate sym-
bolic constraints on inputs as signatures [17]. Even thoughBouncer makes improve-
ments in increasing the coverage of the generated signatures, it still suffers from sev-
eral limitations. First, it generates byte-level signatures instead of protocol-level signa-
tures. As a result, it is difficult for Bouncer to handle evasion attacks using variable-
length fields and field re-ordering. Second, Bouncer’s exploration is inefficient and
largely heuristic-based. As mentioned in their paper, the authors tried to use symbolic-
constraint-guided exploration to explore the program execution space to identify dif-
ferent paths reaching the vulnerability point, but couldn’t make the approach scale to
real-world programs and thus had to resort to heuristics such as duplicating or removing
parts of the input message or sampling certain field values totry to discover new paths
leading to the vulnerability point. Thus, a key open problemfor generating accurate and
efficient signatures is how to generate vulnerability pointreachability predicates with
high coverage.

Our approach. In this paper, we proposeprotocol-level constraint-guided exploration,
a new approach to automatically generate vulnerability point reachability predicates
with high coverage, for a given vulnerability point and an initial exploit message. Our
approach has 3 main characteristics: 1) it isconstraint-guided(i.e., instead of heuristics-
based exploration as in ShieldGen and Bouncer), 2) the constraint-guided exploration
works at theprotocol-leveland generates protocol-level signatures at the end, and 3) it
effectivelymergesexplored execution paths to remove redundant exploration.The three
points seamlessly weave together and amplify each other’s benefit. By using constraint-
guided exploration, our approach significantly increases the effectiveness and efficiency
of the program execution space exploration. By lifting the symbolic constraints from the
byte level to the protocol level, our constraint-guided exploration is done at the protocol
level, which makes the exploration feasible for real-worldprograms, addressing the
problem that Bouncer couldn’t solve. By merging paths in theexploration, we further
reduce the exploration space.

Elcano. We have designed and developedElcano, realizing the aforementioned ap-
proach. We have evaluated the effectiveness of our system using real-world vulnerable
programs. In our experiments, Elcano achieved optimal or close-to-optimal results in
terms of coverage. In addition, the generated signatures are compact. In fact, most of
the signatures are so compact that they can be understood by ahuman.

Compared to Bouncer, Elcano produces higher coverage signatures. For example,
for the GHttpd vulnerability Bouncer run for 24 hours, exploring only some fraction of
all possible paths, and produced a partial signature with significant false negatives. In
contrast, Elcano generates an optimal signature for the same vulnerability in 55 seconds.
Compared to ShieldGen, Elcano produces more accurate signatures, both in terms of
less false negatives (i.e., higher coverage) and less falsepositives.

In addition to signature generation, extracting a high coverage vulnerability point
reachability predicate is useful for other applications such as exploit generation [19]
and patch testing. For example, the Microsoft patch MS05-018 missed some paths to
the vulnerability point and as a result left the vulnerability still exploitable after the



patch [20]. This situation is not uncommon. A quick search onthe CVE database re-
turns 13 vulnerabilities that were incorrectly or incompletely patched [21]. Our tech-
nique could assist software developers to build more accurate patches. Furthermore,
our protocol-level constraint-guided approach can increase the effectiveness of gener-
ating high-coverage test cases and hence be very valuable tosoftware testing and bug
finding.

2 Problem Definition and Approach Overview

In this section, we first introduce the problem of automatic generation of protocol-level
vulnerability point reachability predicates, then present our running example and finally
give the overview of our approach.

2.1 Problem Definition

Automatic generation of protocol-level vulnerability point reachability predicates.
Given a parser implementing a given protocol specification,the vulnerability point, and
an input that exploits the vulnerability at the vulnerability point in a program, the prob-
lem of automatic generation of protocol-level vulnerability point reachability predicates
is to automatically generate a predicate functionF , such that when given some input
mapped into field structures by the parser,F evaluates over the field structures of the
input: if it evaluates totrue, then the input is considered to be able to reach the vulner-
ability point, otherwise it is not.

Parser availability and specification quality.The problem of automatic generation of
protocol-level vulnerability point reachability predicates assumes the availability of a
parser implementing a given protocol or file specification. Such requirement is identical
to previous approaches such as ShieldGen [18]. The parser given some input data can
map it into fields, according to the specification, or fail if the input is malformed. In the
latter case, the IDS/IPS could opt to block the input or let itgo through while logging
the event or sending a warning. Such parser is available for common protocols (e.g.,
Wireshark [22]), and many commercial network-based IDS or IPS have such a parser
built-in. In addition, recent work has shown how to create a generic parser that takes as
input multiple protocol specifications written in an intermediate language [23,24].

The quality of the specification used by the parser matters. While obtaining a high
quality specification is not easy, this is a one time effort, which can be reused for mul-
tiple signatures, as well as other applications. For example, in our experiments we ex-
tracted a WMF file format specification. According to the CVE Database [21] the WMF
file format appears in 21 vulnerabilities, where our specification could be reused. Sim-
ilarly, an HTTP specification could be reused in over 1500 vulnerabilities. Also, recent
work has proposed to automatically extract the protocol specification from the program
binary [25–28]. Such work can be used when the protocol used by the vulnerable pro-
gram has no public specification.

Exploit availability. Similarly to all previous work on automatic generation of vulner-
ability signatures [11,12,17,18], our problem definition assumes that an initial exploit
message is given.



1 void service() {
2 char msgBuf[4096];
3 char lineBuf[4096];
4 int nb=0, i=0, sockfd=0;
5 nb=recv(sockfd,msgBuf,4096,0);
6 for(i = 0; i < nb; i++) {
7 if (msgBuf[i] == ’\n’)
8 break;
9 else

10 lineBuf[i] = msgBuf[i];
11 }
12 if (lineBuf[i-1] == ’\r’)
13 lineBuf[i-1] = ’\0’
14 else lineBuf[i] = ’\0’;
15 doRequest(lineBuf);
16 }

17 void doRequest(char *lineBuf){
18 char vulBuf[128],uri[256];
19 char ver[256], method[256];
20 int is_cgi = 0;
21 sscanf(lineBuf,
22 "%255s %255s %255s",
23 method, uri, ver);
24 if (strcmp(method,"GET")==0 ||
25 strcmp(method,"HEAD")==0){
26 if strncmp(uri,"/cgi-bin/",
27 9)==0 is_cgi = 1;
28 else is_cgi = 0;
29 if (uri[0] != ’/’) return;
30 strcpy(vulBuf, uri);
31 }
32 }

Fig. 1. Our running example.

Vulnerability point availability. Finally, our problem definition assumes that the vul-
nerability point is given. Identifying the vulnerability point is part of a parallel project
that aims to accurately describe the vulnerability condition [13]. Such vulnerability
point could also be identified using previous techniques [17,29].

2.2 Running Example

Figure 1 shows our running example. We represent the examplein C language for clar-
ity, but our approach operates directly on program binaries. Our example represents
a basic HTTP server and contains a buffer-overflow vulnerability. In the example, the
service function copies one line of data received over the network into linebuf
and passes it to thedoRequest function that parses it into several field variables (lines
21-23) and performs some checks on the field values (lines 24-31). The first line in the
exploit message includes the method, the URI of the requested resource, and the proto-
col version. If the method is GET or HEAD (lines 24-25), and the first character of the
URI is a slash (line 29), then the vulnerability point is reached at line 30, where the size
of vulBuf is not checked by thestrcpy function. Thus, a long URI can overflow the
vulBuf buffer.

In this example, the vulnerability point is at line 30, and the vulnerability condi-
tion is that the local variablevulBuf will be overflowed if the size of the URI field in
the received message is greater than 127. Therefore, for this example, the vulnerabil-
ity point reachability predicate is:(strcmp(FIELD METHOD,"GET") == 0 ||
strcmp(FIELD METHOD,"HEAD") == 0) && FIELD URI[0] 6= ’/’while
the vulnerability condition is:length(FIELD URI) > 127, and the conjunction of
the two is an optimal protocol-level signature.

2.3 Approach

In this paper we propose a new approach to generate high coverage, yet compact, vul-
nerability point reachability predicates, calledprotocol-level constraint-guided explo-



ration. Next, we give the motivation and an overview of the three characteristics that
comprise our approach.

Constraint-guided.As mentioned in Section 1, previous approaches such as ShieldGen
and Bouncer use heuristics-based exploration [17,18]. Heuristic-based exploration suf-
fers from a fundamental limitation: the number of probes needed to exhaustively search
the whole space is usually astronomical. In addition, an exhaustive search is inefficient
as many probes end up executing the same path in the program. Thus, such approaches
often rely on heuristics that are not guaranteed to significantly increase the signature’s
coverage and can also introduce false positives.

For example, ShieldGen [18] first assumes that fields can be probed independently,
and then for fixed-length fields it samples just a few values ofeach field, checking
whether the vulnerability point is reached or not for those values. Probing each field in-
dependently means that conditions involving multiple fields cannot be found. Take the
conditionSIZE1 + SIZE2 ≤ MSG SIZE, whereSIZE1 andSIZE2 are length
fields in the input, andMSG SIZE represents the total length of the received message.
The authors of ShieldGen acknowledge that their signaturescannot capture this type of
conditions, but such conditions are commonly used by programs to verify that the input
message is well-formed and failing to identify them will introduce either false positives
or false negatives, depending on the particular heuristic.Probing only a few sample val-
ues for each field is likely to miss constraints that are satisfied by only a small fraction
of the field values. For example, a conditional statement such asif (FIELD==10)
|| (FIELD==20) then exploit, else safe, where FIELD is a 32-bit in-
teger, creates two paths to the vulnerability point. Finding each of these paths would
require2

30 random probes on average to discover. Creating a signature that covers both
paths is critical since if the signature only covers one path(e.g.,FIELD == 10), the
attacker could easily evade detection by changing FIELD to have value 20.

To overcome these limitations, we propose to use a constraint-guided approach by
monitoring the program execution, performing symbolic execution to generate path
predicates, and generating new inputs that will go down a different path. This constraint-
guided exploration is similar in spirit to recent work on using symbolic execution for au-
tomatic test case generation [30–32]. However, simply applying those techniques does
not scale to real-world programs, given the exponential number of paths to explore.
In fact, in Bouncer [17] the authors acknowledge that they wanted to use a constraint-
guided approach but failed to do so due to the large number of paths that need to be
explored and thus had to fall back to the heuristics-based probing approach.

To make the constraint-guided exploration feasible and effective we have incorpo-
rated two other key characteristics into our approach as described below.

Protocol-level constraints.Previous symbolic execution approaches generate what we
call stream-level conditions, i.e., constraints that are evaluated directly on the stream
of input bytes. Such stream-level conditions in turn generate stream-level signatures,
which are also specified at the byte level. However, previouswork has shown that sig-
natures are better specified at the protocol-level instead of the byte level [6,18]. We call
such signaturesprotocol-level signatures.

Our contribution here is to show that, by lifting stream-level conditions toprotocol-
level conditions, so that they operate on protocol fields rather than on the input bytes, we



can make the constraint-guided approach feasible, as usingconstraints at the protocol-
level hugely reduces the number of paths to be explored compared to using stream-level
conditions. The state reduction is achieved in two ways. First, the parsing logic often
introduces huge complexity in terms of the number of execution paths that need to be
analyzed. For example, in our experiments, 99.8% of all constraints in the HTTP vul-
nerabilities are generated by the parsing logic. While suchparsing constraints need to be
present in the stream-level conditions, they can be removedin the protocol-level condi-
tions. Second, the stream-level conditions introduced by the parsing logic fixes the field
structure to be the same as in the original exploit message, for example fixing variable-
length fields to have the same size as in the original exploit message, and fixing the
field sequence to be the same as in the exploit message (when protocols such as HTTP
allow fields to be reordered). Unless the parsing conditionsare removed the resulting
signature would be very easy to evade by an attacker by applying small variations to
the field structure of the exploit message. Finally, the vulnerability point reachability
predicates at the protocol level are smaller and easier to understand by humans.

Merging execution paths.The combination of protocol-level conditions with constraint-
guided exploration is what we callprotocol-level constraint-guided exploration, an iter-
ative process that incrementally discovers new paths leading to the vulnerability point.
Those paths need to be added to the vulnerability point reachability predicate. The sim-
plistic approach would be to blindly explore new paths by reversing conditions and at
the end create a vulnerability point reachability predicate that is a disjunction (i.e., an
enumeration) of all the discovered paths leading to the vulnerability point. Such ap-
proach has two main problems. First, blindly reversing conditions produces a search
space explosion, since the number of paths to explore becomes exponential in the num-
ber of conditions, and much larger than the real number of paths that exist in the pro-
gram. We explain this in detail in Section 4. In addition, merely enumerating the dis-
covered paths generates signatures that quickly explode insize.

To overcome those limitations, we utilize the observation that the program execution
may fork at one condition into different paths for one processing task, and then merge
back to perform another task. For example, a task can be a validation check on the input
data. Each independent validation check may generate one ormultiple new paths (e.g.,
looking for a substring in the HTTP URL generates many paths), but if the check is
passed then the program moves on to the next task, which usually merges the execution
back into the original path. Thus, in our exploration, we useaprotocol-level exploration
graph to identify such potential merging points. This helps alleviate the search space
explosion problem, and allows our exploration to quickly reach high coverage.

2.4 Architecture Overview

We have implemented our approach in a system called Elcano. The architecture of El-
cano is shown in Figure 2. It comprises of two main components: the constraint ex-
tractor and theexploration module, and two off-the-shelf assisting components: the
execution monitorandthe parser.

The overall exploration process is an iterative process that incrementally explores
new execution paths. In each iteration (that we also call test), an input is sent to the
program under analysis, running inside the execution monitor. The execution monitor
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produces an execution trace that captures the complete execution of the program on
the given input, including which instructions were executed and the operands content.
The execution monitor also logs the test result, i.e., whether the vulnerability point was
reached or not during the execution. In addition, the parserextracts the message format
for the input, according to the given protocol specification.

Then, given the execution trace and the message format, the constraint extractor ob-
tains thefield constraint chain. The field constraint chain is conceptually similar to the
path predicateused in previous work on automatic test case generation, butthe condi-
tions are at the protocol-level and each condition is taggedwith additional information.
We detail the field constraint chain and its construction in Section 3.

The exploration module maintains theprotocol-level exploration graph, which stores
the current state of the exploration, i.e., all the execution paths that have been so far ex-
plored. Given the field constraint chain, the exploit message and the test result, the ex-
ploration module merges the new field constraint chain into the current protocol-level
exploration graph. Then, the exploration module uses the protocol-level exploration
graph to select a new path to be explored and generates a new input that will lead the
program execution to traverse that path. Given the newly generated input, another iter-
ation begins. We detail the exploration module in Section 4.

The process is started with the initial exploit message and runs iteratively until there
are no more paths to explore or a user-specified time-limit isreached. At that point the
exploration module outputs the VPRP. The VPRPs produced by Elcano are written
using the Vine language [33] with some extensions for stringoperations [34]. The Vine
language is part of the Bitblaze binary analysis infrastructure [35].

3 Extracting the Protocol-Level Path-Predicate

In this section we present the constraint extractor, which given an execution trace, pro-
duces a field constraint chain. The architecture of the constraint extractor is shown in
Figure 3. First, given the execution trace thepath predicate extractorperforms symbolic
execution with the input represented as a symbolic variableand extracts thepath pred-
icate, which is essentially the conjunction of all branch conditions dependent on the
symbolic input in the execution captured in the execution trace. The concept of sym-
bolic execution, the path predicate and how to compute it arewell understood and have
been widely used in previous work including vulnerability signature generation [11,12]
and automatic test case generation [30,31]. Thus, we refer the interested reader to these
previous work for details.
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The path predicate generated by previous work is at the stream-level, i.e., the con-
ditions are on raw bytes of the input. To enable constraint-guided exploration, Elcano
needs to lift the path predicate from the stream-level to theprotocol-level, where the
conditions are instead on field variables of the input. To make the distinction clear, we
refer to the path predicate at the stream-level thestream-level path-predicate, and the
path predicate at the protocol-level theprotocol-level path-predicate. In addition, the
constraint extractor needs to remove the parsing conditions, which dramatically reduces
the exploration space and makes the constraint-guided exploration feasible.

To accomplish this, first thefield condition generatorlifts the stream-level path-
predicate to the protocol-level, and then thefield condition generalizergeneralizes it
by removing the parsing conditions and outputs thefield constraint chain, which is
essentially the protocol-level path-predicate, where each condition is annotated with
some additional information and conditions are ordered using the same order as they
appeared in the execution.

3.1 The Field Condition Generator

Given the stream-level path-predicate generated by the path predicate extractor and
the message format of the input given by the parser, the field condition generator out-
puts a protocol-level path-predicate. It performs this in two steps. First, it translates
each byte symbolINPUT[x] in the stream-level path-predicate into a field symbol
FIELD fieldname [x - start(fieldname)] using the mapping produced
by the parser. Second, it tries to combine symbols on consecutive bytes of the same
field. For example, the stream-level path-predicate might include the following con-
dition: (INPUT[6] << 8 | INPUT[7]) == 0. If the message format states that
inputs 6 and 7 belong to the same 16-bitID field, then the condition first gets trans-
lated to(FIELD ID[0] << 8 | FIELD ID[1]) == 0 and then it is converted
to FIELD ID == 0 whereFIELD ID is a 16-bit field symbol.

The message format provided by the parser is a hierarchical tree, where one field
may contain different subfields, with the root of the tree representing the whole mes-
sage. For example, thelinebuf variable in our running example represents the
Request-Line field, which in turn contains 3 subfields:Method, Request-URI,
andHTTP-Version. Thus, a condition such as:strstr(linebuf,"../") 6=
0 would be translated asstrstr(FIELD Request-Line,"../") 6= 0. A con-
dition on the whole message would translate into a conditionon the specialMSG field.

Benefits.This step lifts the stream-level path-predicate to the protocol-level, breaking
the artificial constraints that the stream-level path-predicate imposes on the position of



fields inside the exploit message. For example, protocols such as HTTP allow some
fields in a message (i.e., all except the Request-Line/Status-Line) to be ordered dif-
ferently without changing the meaning of the message. Thus,two equivalent exploit
messages could have the same fields ordered differently and abyte-level vulnerability
point reachability predicate generated from one of them would not flag that the other
also reaches the vulnerability point. In addition, if variable-length fields are present in
the exploit message, changing the size of such fields changesthe position of all fields
that come behind it in the exploit message. Again, such trivial variation of the exploit
message could defeat stream-level signatures. Thus, by expressing constraints using
field symbols, protocol-level signatures naturally allow afield to move its position in
the input.

3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protocol-level path-predicate gener-
ated by the field condition generator, the protocol specification and the input that was
sent to the program and outputs a field constraint chain wherethe parsing-related con-
ditions have been removed.

First, the field condition generalizer assigns a symbolic variable to each byte of the
input and processes the input according to the given protocol specification. This step
generates symbolic conditions that capture the constraints on the input which restrict
the message format of the input to be the same as the message format returned by the
parser on the given input. We term these conditions the parsing conditions. Then, the
field condition generalizer removes the parsing conditionsfrom the protocol-level path-
predicate by using a fast syntactic equivalence check. If the fast syntactic check fails,
the field condition generalizer uses a more expensive equivalence check that uses a
decision procedure.

Benefits.The parsing conditions in the protocol-level path-predicate over-constrain the
variable-length fields, forcing them to have some specific size (e.g., the same as in the
exploit message). Thus, removing the parsing conditions allows the vulnerability point
reachability predicate to handle exploit messages where the variable-length fields have a
size different than in the original exploit message. In addition, for some protocols such
as HTTP, the number of parsing conditions in a single protocol-level path-predicate
can range from several hundreds to a few thousands. Such a huge number of unneces-
sary conditions would blow up the size of the vulnerability point reachability predicate
and negatively impact the exploration that we will present in Section 4. Note that the
parsing conditions are enforced by the parser, so we can safely remove them from the
protocol-level path-predicate while still having the conditions enforced during the sig-
nature matching time. We refer the reader to the extended version for more details [36].

The field constraint chain. To assist the construction of the protocol-level explo-
ration graph (explained in Section 4), the constraint extractor constructs thefield con-
straint chainusing the generalized protocol-level path-predicate (after the parsing con-
ditions have been removed). A field constraint chain is an enhanced version of the
protocol-level path-predicate where each branch condition is annotated with the in-
struction counter and an MD5 hash of the callstack of the program at the branching



point, and these annotated branch conditions are put in an ordered chain using the same
order as they appear in the execution path.

4 Execution-Guided Exploration

In this section we present the exploration module, which adds the given field constraint
chain to the protocol-level exploration graph, selects a new path to be explored and
generates an input that will traverse that path. That input is used to start a new iteration
of the whole process by sending it to the program running in the execution monitor.
Once there are no more paths to explore or a user-specified time-limit is reached, the
exploration module stops the exploration and outputs the VPRP.

Our exploration is based on aprotocol-level exploration graph, which makes it sig-
nificantly different from the traditional constraint-based exploration used in automatic
test case generation approaches [30, 31, 37]. Using a protocol-level exploration graph
provides two fundamental benefits: 1) the exploration spaceis significantly reduced, and
2) it becomes easy to merge paths, which in turn further reduces the exploration space,
and reduces the size of the vulnerability point reachability predicate. In this section,
we first introduce the protocol-level exploration graph, next we present our intuition
for merging paths, and then we describe the exploration process used to extract the
vulnerability point reachability predicate.

4.1 The Protocol-Level Exploration Graph

The explorer dynamically builds aprotocol-level exploration graphas the exploration
progresses. In the graph, each node represents an input-dependant branching point (i.e.,
a conditional jump) in the execution, which comprises the protocol-level condition and
some additional information about the state of the program when the branching point
was reached, which we explain in Section 4.2. Each node can have two edges repre-
senting the branch taken if the node’s condition evaluated to true (T) or false (F). We
call the node where the edge originates thesource nodeand the node where the edge
terminates thedestination node. If a node has anopen edge(i.e, one edge is missing),
it means that the corresponding branch has not yet been explored.

4.2 Merging Execution Paths

When a new field constraint chain is added to the protocol-level exploration graph, it is
important to merge all conditions in the field constraint chain that are already present
in the graph. Failure to merge a condition creates a duplicate node, which in turn effec-
tively doubles the exploration space because all the subtree hanging from the replicated
node would need to be explored as well. Thus, as the number of duplicated nodes in-
creases, the exploration space increases exponentially.

The key intuition behind why merging is necessary is that it is common for new
paths generated by taking a different branch at one node, to quickly merge back into
the original path. This happens because programs may fork execution at one condition
for one processing task, and then merge back to perform another task. One task could
be a validation check on the input data. Each independent check may generate one or
multiple new paths (e.g., looking for a substring in the URI generates many paths), but if
the check is passed then the program moves on to the next task (e.g., another validation
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check), which usually merges the execution back into the original path. For example,
when parsing a message the program needs to determine if the message is valid or not.
Thus, it will perform a series of independent validity checks to verify the values of the
different fields in the message. As long as checks are passed,the program still considers
the message to be valid and the execution will merge back intothe original path. But, if
a check fails then the program will move into a very differentpath, for example sending
an error message.

The intuition on the merging is that two nodes can be merged ifthey represent
the same program point and they are reached with the same program state. To identify
the program point, each condition in the field constraint chain is annotated with the
program’s instruction counter (eip) and an MD5 hash of the callstack, both taken at
the time the condition was executed. To identify the programstate we use a technique
similar to the one introduced in [38] where we compute the setof all values (both
concrete and symbolic) written by the program during the execution up to the point
where the condition is executed. Thus, we merge nodes that satisfy 4 conditions: same
eip, same callstack hash, equivalent conditions, and same program state, where Elcano
queries the decision procedure to determine if two conditions are equivalent.

4.3 The Exploration Process

Figure 4 shows the architecture of the exploration module. It is comprised of three
components: theexplorer, theprioritization engine, and theinput generator, plus an off-
the-shelfdecision procedure. The exploration process is comprised of 3 steps: (1) given
the field constraint chain, the explorer adds it to the current protocol-level exploration
graph producing an updated graph; (2) given the updated protocol-level exploration
graph, the prioritization engine decides which node’s openedge to explore next; (3) for
the selected node’s open edge, theinput generatorgenerates a new input that will lead
the program execution to reach that node and follow the selected open edge.

The new input is then used to start another iteration of the whole process as shown
in Figure 2, that is, the new input is replayed to the program running in the execution
monitor and a new field constraint chain is generated by the constraint extractor, which
is passed to the explorer and so on. The prioritization engine is in charge of stopping
the whole process once there are no more paths to explore or a user-specified time-limit
is reached. When the exploration stops, the explorer outputs the VPRP.

Next, we detail the 3 steps in the exploration process and howto extract the VPRP.
We illustrate the different steps using Figure 5 which represents the graph for our run-
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Fig. 5.Building the protocol-level exploration graph for our running example.

ning example. Note that, the A–F node labels are not really part of the protocol-level
exploration graph but we add them here to make it easier to refer to the nodes.

Adding the new path to the exploration graph.To insert a new field constraint chain
into the protocol-level exploration graph, the explorer starts merging from the top until
it finds a node that it cannot merge, either because it is not inthe graph yet, or because
the successor in the new field constraint chain is not the sameone as in the graph. To
check if the node is already in the graph, the explorer checksif the node to be inserted
is equivalent (same EIP, same callstack hash, equivalent condition, and same state) to
any other node already in the graph. We call the last node thatcan be merged from the
top thesplit node.

Once a split node has been identified the explorer keeps trying to merge the rest
of the nodes in the new field constraint chain until it finds a node that it can merge,
which we term thejoin node. At that point, the explorer adds all the nodes in the new
field constraint chain between the split node and the join node as a sequence of nodes
in the graph hanging from the split node and merging at the join node. The process of
looking for a split node and then for a join node is repeated until the sink of the new
field constraint chain is reached. At that point, if the explorer was looking for a join
node then all nodes between the last split node and the sink are added to the graph as a
sequence that hangs from the last split node and ends at the sink.

For example, in Figure 5A the graph contains only the original field constraint chain
generated by sending the starting exploit message to the program, which contains the
three nodes introduced by lines 24, 26, and 29 in our running example (since the parsing
conditions have already been removed). The sink of the original field constraint chain
is the vulnerability point node (VP). Figure 5B shows the second field constraint chain
that is added to the graph, which was obtained by creating an input that traverses the
false branch of node A. When adding the field constraint chainin Figure 5B to the graph
in Figure 5A, the explorer merges node A and determines that Ais a split node because
A’s successor in the new field constraint chain is not A’s successor in the graph. Then,
at node B the explorer finds a join node and adds node D between the split node and
the join node in the graph. Finally node C is merged and we showthe updated graph in
Figure 5C.



Selecting the next node to explore.Even after removing the parsing conditions and
merging nodes, the number of paths to explore can still be large. Since we are only
interested in paths that reach the vulnerability point, we have implemented a simple
prioritization scheme that favours paths that are more likely to reach it. The prioriti-
zation engine uses a simple weight scheme, where there are three weights 0, 1, and 2.
Each weight has its own node queue and the prioritization engine always picks the first
node from the highest weight non-empty queue. The explorer assigns the weights to the
nodes when adding them to the graph. Nodes that represent loop exit conditions get a
zero weight (i.e., lowest priority). Nodes in a field constraint chain that has the VP as
sink get a weight of 2 (i.e., highest priority). All other nodes get a weight of 1. We favor
nodes that are in a path to the VP because if a new path does not quickly lead back to the
VP node, then the message probably failed the current check or went on to a different
task and thus it is less likely to reach VP later. We disfavor loop exit conditions to de-
lay unrolling the same loop multiple times. Such heuristic helps achieve high coverage
quickly.

Generating a new input for a new branch.We define anode reachability predicate
to be the predicate that summarizes how to reach a specific node in the protocol-level
exploration graph from theStart node, which includes all paths in the graph from the
Start to that node. Similarly, we define abranch reachability predicateto be the predi-
cate that summarizes how to traverse a specific branch of a node. A branch reachability
predicate is the conjunction of a node reachability predicate with the node’s condition
(to traverse the true branch), or the negation of the node’s condition (to traverse the false
branch). To compute a new input that traverses the specific branch selected by the pri-
oritization engine, the explorer first computes the branch reachability predicate. Then,
the input generator creates a new input that satisfies the branch reachability predicate.

To compute the branch reachability predicate, the explorerfirst computes the node
reachability predicate. The node reachability predicate is essentially the weakest pre-
condition (WP) [39] of the source node of the open edge over the protocol-level explo-
ration graph—by definition, the WP captures all paths in the protocol-level exploration
graph that reach the node. Then, the explorer computes the conjunction of the WP with
the node’s condition or with the negated condition depending on the selected branch.
Such conjunction is the branch reachability predicate, which is passed to the input gen-
erator.

For example, in Figure 5C if the prioritization engine selects the false branch of node
D to be explored next, then the branch reachability predicate produced by the explorer
would be:A && D. Similarly, in Figure 5D if the prioritization engine selects the false
branch of node B to be explored next, then the branch reachability predicate produced
by the explorer would be:(A||(A && D)) && B.

The input generator generates a new input that satisfies the branch reachability pred-
icate using a 3-step process. First, it uses a decision procedure to generate field values
that satisfy the branch reachability predicate. If the decision procedure returns that no
input can reach that branch, then the branch is connected to theUnreachable node.
Second, it extracts the values for the remaining fields (not constrained by the decision
procedure) from the original exploit message. Third, it checks the message format pro-
vided by the parser to identify any fields that need to be updated given the dependencies



Program CVE Protocol Type Guest OS Vulnerability Type
gdi32.dll (v3159) CVE-2008-1087 EMF file Binary Windows XP Buffer overflow
gdi32.dll (v3099) CVE-2007-3034WMF file Binary Windows XP Integer overflow
Windows DCOM RPCCVE-2003-0352 RPC Binary Windows XP Buffer overflow
GHttpd CVE-2002-1904 HTTP Text Red Hat 7.3 Buffer overflow
AtpHttpd CVE-2002-1816 HTTP Text Red Hat 7.3 Buffer overflow
Microsoft SQL ServerCVE-2002-0649ProprietaryBinary Windows 2000 Buffer overflow

Table 1.Vulnerable programs used in the evaluation.

on the modified values (such as length or checksum fields). Using all the collected field
values it generates a new input and passes it to the replay tool. We refer the reader to
our extended version [36] for our handling of field conditions that depend on a memory
read from a symbolic address.

Extracting the vulnerability point reachability predicat e.Once the exploration ends,
the protocol-level exploration graph contains all the discovered paths leading to the
vulnerability point. To extract the VPRP from the graph the explorer computes the
node reachability predicate for the VP node. For our runningexample, represented in
Figure 5E the VPRP is:(A||(A && D)) && C. Note that, a mere disjunction
of all paths to the VP, would generate the following VPRP:(A && B && C)||(A

&& D && B && C)||(A && B && C)||(A && D && B && C). Thus,
Elcano’s VPRP is more compact using 4 conditions instead of 14.

5 Evaluation

In this section, we present the results of our evaluation. Wefirst present the experiment
setup, then the constraint extractor results and finally theexploration results.

Experiment setup.We evaluate Elcano using 6 vulnerable programs, summarizedin
Table 1. The table shows the program, the CVE identifier for the vulnerability [21],
the protocol used by the vulnerable program, the protocol type (i.e., binary or text), the
guest operating system used to run the vulnerable program, and the type of vulnerability.
We select the vulnerabilities to cover file formats as well asnetwork protocols, multi-
ple operating systems, multiple vulnerability types, and both open-source and closed
programs, where no source code is available. In addition, the older vulnerabilities (i.e.,
last four) are also selected because they have been analyzedin previous work, and this
allows us to compare our system’s results to previous ones.

5.1 Constraint Extractor Results

In this section we evaluate the effectiveness of the constraint extractor, in particular of
the field condition generalizer, at removing the parsing conditions from the protocol-
level path-predicate. For simplicity, we only show the results for the protocol-level path-
predicate produced by the field condition generator from theexecution trace generated
by the original exploit. Note that, during exploration thisprocess is repeated once per
newly generated input. Table 2 summarizes the results. TheOriginal column represents
the number of input-dependent conditions in the protocol-level path-predicate and is
used as the base for comparison. TheNon-parsing conditionscolumn shows the number
of remaining conditions after removing the parsing conditions.



Program Original Non-parsing
conditions

Gdi-emf 860 65
Gdi-wmf 4 4
DCOM RPC 535 521
GHttpd 2498 5
AtpHttpd 6034 10
SQL Server 2447 7

Table 2.Constraint extractor results for the
first test, including the number of condi-
tions in the protocol-level path-predicate
and the number of remaining conditions af-
ter parsing conditions have been removed.

Program All branches
explored VPRP

Gdi-emf no 72
Gdi-wmf yes 5
DCOM RPC no 1651
GHttpd yes 3
AtpHttpd yes 10
SQL Server yes 3

Table 3. Exploration results, including
whether all open edges in the protocol-level
exploration graph were explored and the
number of conditions remaining in the vul-
nerability point reachability predicate.

The removal of the parsing conditions is very successful in all experiments. Over-
all, in the four vulnerable programs that include variable-length strings (i.e., excluding
Gdi-wmf and DCOM-RPC), the parsing conditions account for 92.4% to 99.8% of all
conditions. For formats that include arrays, such as DCOM RPC, the number of pars-
ing conditions is much smaller but it is important to remove such conditions because
otherwise they constrain the array to have the same number ofelements as in the ex-
ploit message. By removing the parsing conditions, each field constraint chain repre-
sents many program execution paths produced by modifying the format of the exploit
message (e.g., extending variable-length fields or reordering fields). This dramatically
decreases the exploration space making the constraint-guided exploration feasible.

5.2 Exploration Results

Table 3 shows the results for the exploration phase. We set a user-defined time-limit of 6
hours for the exploration. If the exploration has not completed by that time Elcano out-
puts the intermediate VPRP and stores the current state of the exploration. This state can
later be loaded to continue the exploration at the same pointwhere it was interrupted.
The first column indicates whether the exploration completes before the specified time-
limit. The second column presents the number of conditions in the intermediate VPRP
that is output by the exploration module once there are no more paths to be explored or
the time-limit is reached.

The results show that in 4 out of 6 experiments Elcano explored all possible paths,
thus generating a complete VPRP. For the DCOM RPC and Gdi-emfexperiments, the 6
hour time-limit was reached, thus the VPRPs are not complete. They also show that the
number of conditions in the VPRP is in most cases small. The small number of condi-
tions in the VPRP and the fact that in many cases those conditions are small themselves,
makes the signatures easy for humans to analyze, as opposed to previous constraint-
based approaches where the large number of conditions in thesignature made it hard
to gain insight on the quality of the signature. We do that by labeling the nodes in the
graph with the full protocol-level conditions.

Performance.Table 4 summarizes the performance measurements for Elcano. All mea-
surements were taken on a desktop computer with a 2.4GHz Intel Core2 Duo CPU and
4 GB of memory. The first column presents the VPRP generation time in seconds. For



Gener. Ave. testTrace
Program time # tests time size
Gdi-emf 21600 502 43.0 28.8
Gdi-wmf 98 6 16.3 3.0
DCOM RPC 21600 235 92.0 3.5
GHttpd 55 6 9.1 3.0
AtpHttpd 282 12 23.5 8.6
SQL Server 1384 11 125.8 27.5

Table 4. Performance evaluation. The genera-
tion time and the average test time are given
in seconds, and the trace size is given in
Megabytes.
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the Gdi-emf and DCOM RPC examples, the 6 hour time-limit on generation time is
reached. For the rest, the generation time ranges from underone minute for the GHttpd
vulnerability up to 23 minutes for the Microsoft SQL vulnerability. Most of the time
(between 60% and 80% depending on the example) is spent by theconstraint extractor.
Thus, we plan to parallelize the exploration by having a central explorer, which spawns
multiple copies of the constraint extractor and the execution monitor, each testing a
different input and reporting back to the explorer. The remaining columns show the
number of tests in the exploration, the average time per testin seconds, and the average
size in Megabytes of the execution trace.

Compared to Bouncer, where the authors also analyze the SQL Server and GHttpd
vulnerabilities, the signatures produced by Elcano have higher coverage (i.e., less false
negatives) and are smaller. For example, Bouncer spends 4.7hours to generate a signa-
ture for the SQL Server vulnerability, and the generated signature only covers a frac-
tion of all the paths to the vulnerability point. In contrast, Elcano spends only 23 min-
utes, and the generated signature covers all input-dependnt branches to the vulnerability
point. Similarly, for the GHttpd vulnerability the authorsstop the signature generation
after 24 hours, and again the signature only covers a fraction of all input-dependent
branches to the vulnerability point, while Elcano generates a complete signature that
covers all input-dependent branches to the vulnerability point in under one minute.

SQL server. The parser returns that there are two fields in the exploit message: the
Command (CMD) and the Database name (DB). The original protocol-level path-predicate
returned by the constraint extractor contains 7 conditions: 4 on the CMD field and the
other 3 on the DB field. The exploration explores the open edges of those 7 nodes and
finds that none of the newly generated inputs reaches the vulnerability point. Thus, no
new paths are added to the graph and the VPRP is:(FIELD CMD==4) &&

(strcmp(FIELD DB,"") 6=0)&& (strcasecmp(FIELD DB,"MSSQLServer") 6=0).

Note that, the vulnerability condition for this vulnerability states that the length of
the DB field needs to be larger than 64 bytes. Thus, the last twoconditions in the VPRP
are redundant and the final protocol-level signature would be:(FIELD CMD == 4) &&



length(FIELD DB) > 64 . According to the ShieldGen authors, who had access to
the source code, this signature would be optimal.

Gdi-wmf. Figure 5 shows on the left the field structure for the exploit file and on
the right the VPRP. The original protocol-level path-predicate contained the 4 aligned
nodes on the left of the graph, while the exploration discovers one new path leading to
the vulnerability point that introduces the node on the right. The graph shows that the
program checks whether theVersion field is 0x300 (Windows 3.0) or 0x100 (Win-
dows 1.0). Such constraint is unlikely to be detected by probing approaches, since they
usually sample only a few values. In fact, in ShieldGen they analyze a different vulner-
ability in the same library but run across the same constraint. The authors acknowledge
that they miss the second condition of the disjunction. Thus, an attacker could easily
avoid detection by changing the value of the Version field. Since we have no access to
the source we cannot verify if our VPRP is optimal, though we believe it to be.

Other experiments.Due to space constraints we refer the reader to our extended ver-
sion [36] for details on the Atphttpd, GHttpd and DCOM RPC examples. For the At-
phttpd and GHttpd vulnerabilities, where we have access to the source code, the ex-
tended version contains the optimal signatures that we manually extracted for the vul-
nerability. The results show that Elcano’s VPRPs exactly match or are very close to the
optimal ones that we manually extracted from the source code.

6 Conclusion

In this paper we propose protocol-level constraint-guidedexploration, a novel approach
to automatically generate high coverage, yet compact, vulnerability point reachability
predicates, with application to signature generation, exploit generation and patch veri-
fication. Our experimental results demonstrate that our approach is effective, generates
small vulnerability point reachability predicates with high coverage (optimal or close
to optimal in cases), and offers significant improvements over previous approaches.
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