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Abstract. Signature-based input filtering is an important and widedpldyed defense. But cur-
rent signature generation methods have limited coveragdtangenerated signatures often can
be easily evaded by an attacker with small variations of #tpoét message. In this paper, we
proposeprotocol-level constraint-guided exploratioa new approach towards generating high
coverage vulnerability-based signatures. In particalar,approach generates high coverage, yet
compact,vulnerability point reachability predicatesvhich capture many paths to the vulner-
ability point. In our experimental results, our tod|canq generates compact, high coverage
signatures for real-world vulnerabilities.

1 Introduction

Automatic signature generation remains an important opeolem. According to Syman-
tec’s latest Internet Security Threat Report hundreds wfsexurity-critical vulnerabil-
ities were discovered in the second half of 2007 [1]. For mafrihese vulnerabilities,
the exploit development time is less than a day, while thetpdevelopment time is
often days or months [1]. In addition, the patch deploymanetcan be long due to
extensive testing cycles.

To address these issusgynature-based input filterinigas been widely deployed in
Intrusion Prevention (IPS) and Intrusion Detection (ID$tems. Signature-based in-
put filtering matches program inputs against a set of sigeatand flags matched inputs
as attacks. It provides an important means to protect vabiethosts when patches are
not yet available or have not yet been applied. Furthernfordegacy systems where
patches are no longer provided by the vendor, or criticalesys where any changes to
the code might require a lengthy re-certification procagsaure-based input filtering
is often the only practical solution to protect the vulndegirogram.

The key technical challenge to effective signature-baséeitse is to automatically
and quickly generate signatures that have both low falséiypesand low false nega-
tives. In addition, it is desirable to be able to generataatgres without access to the
source code. This is crucial to wide deployment since it tgsthird-parties to generate
signatures for commercial-off-the-shelf (COTS) programishout relying on software
vendors, thus enabling a quick response to newly found vahilgies.

Due to the importance of the problem, many different appneador automatic sig-
nature generation have been proposed. Early work proposgéreratexploit-based
signaturesusing patterns that appeared in the observed exploits,umlt signatures



can have high false positive and negative rates [2—10]. Megently, researchers pro-

posed to generataulnerability-based signatureshich are generated by analyzing the
vulnerable program and its execution and the actual carditheeded to exploit the

vulnerability and can guarantee a zero false positive retel2].

Automatic vulnerability signature generation. A vulnerability is a point in a program
where execution might “go wrong”. We call this point thelnerability point A vulner-
ability is only exploited when a certain condition, thelnerability condition holds on
the program state when the vulnerability point is reachénulisT to exploit a vulnerabil-
ity, the input needs to satisfy two conditions: (1) it neemletad the program execution
to reach the vulnerability point; (2) the program state rsetedsatisfy the vulnerability
condition at the vulnerability point. We call the conditithrat denotes whether an input
message will make the program execution reach the vulrlgygimint thevulnerability
point reachability predicat§VPRP). Thus, the problem of automatically generating a
vulnerability-based signature can be decomposed intoitleatifying the vulnerability
condition and identifying the vulnerability point reacliléip predicate. A vulnerability-
based signature is simply the conjunction of the two. Whaétproblems are impor-
tant, the space limitations makes trying to cover both imglsi paper unrealistic. Thus,
in this paper we focus on how to generate vulnerability poéatchability predicates
with high coverage and compact size, and we refer the read&si for details on the
vulnerability condition extraction. In this paper, we usgtimal signatureo refer to a
vulnerability signature that has no false positives andatgef negatives.

Coverage is a key challengeOne important problem with early vulnerability-based
signature generation approaches [11, 12] is that the sigestonly capture a single
path to the vulnerability point (i.e., their VPRP containdyoone path). However, the
number of paths leading to the vulnerability point can bg/\arge, sometimes infinite.
Thus, such signatures are easy to evade by an attacker wathremdifications of the
original exploit message, such as changing the size ofbarength fields, changing
the relative ordering of the fields (e.g., HTTP), or chandietd values that drive the
program through a different path to the vulnerability pqi, 15].

Acknowledging the importance of enhancing the coverageudrfierability-based
signatures, recent work tries to incorporate multiple patio the VPRP either by static
analysis [16], or by dynamic analysis [17,18]. Howeverfpening precise static anal-
ysis on binaries is hard due to issues such as indirectiontgye and loops.

ShieldGen takes a probing-based approach using protatoatanformation [18]—
using the given protocol format, it generates differentivi@med variants of the orig-
inal exploit using various heuristics and then checks wére#ny of the variants still
exploits the vulnerability. The advantage of this approiadhat by using protocol for-
mat information, the final signature is expressed at theogaitlevel (which we call
protocol-levelsignature) instead of the byte level. Compared to signataté¢he byte-
level (which do not understand the protocol format), protdevel signatures have two
advantages: they are more compact and they naturally car@anis of the exploits
caused by variable-length fields and field re-ordering (Seeerdetail in Section 2.2).
The disadvantage of the approach used by ShieldGen is thakfgioration uses heuris-
tics to figure out what test inputs to generate. Such hecsistn introduce false pos-
itives and do not use the information from the execution efghogram, which would



increase the coverage of the program execution space. Asu#t,rhe exploration is
inefficient and has various limitations (See Section 2.3).

Bouncer extends previous approaches using symbolic erecia generate sym-
bolic constraints on inputs as signatures [17]. Even thdBghncer makes improve-
ments in increasing the coverage of the generated sigsattistill suffers from sev-
eral limitations. First, it generates byte-level signatiinstead of protocol-level signa-
tures. As a result, it is difficult for Bouncer to handle ewmshattacks using variable-
length fields and field re-ordering. Second, Bouncer’s engtion is inefficient and
largely heuristic-based. As mentioned in their paper, thtbars tried to use symbolic-
constraint-guided exploration to explore the program atea space to identify dif-
ferent paths reaching the vulnerability point, but coutdnake the approach scale to
real-world programs and thus had to resort to heuristich agauplicating or removing
parts of the input message or sampling certain field valuéy to discover new paths
leading to the vulnerability point. Thus, a key open probfengenerating accurate and
efficient signatures is how to generate vulnerability po@gchability predicates with
high coverage.

Our approach. In this paper, we propog@otocol-level constraint-guided exploration
a new approach to automatically generate vulnerabilityhpoeachability predicates
with high coverage, for a given vulnerability point and aitiai exploit message. Our
approach has 3 main characteristics: 1) @asistraint-guidedi.e., instead of heuristics-
based exploration as in ShieldGen and Bouncer), 2) the @nsguided exploration
works at theprotocol-leveland generates protocol-level signatures at the end, antd 3) i
effectivelymergesexplored execution paths to remove redundant explorafioa three
points seamlessly weave together and amplify each othensfii. By using constraint-
guided exploration, our approach significantly increakesffectiveness and efficiency
of the program execution space exploration. By lifting thmbolic constraints from the
byte level to the protocol level, our constraint-guidedlexgtion is done at the protocol
level, which makes the exploration feasible for real-wagoldgrams, addressing the
problem that Bouncer couldn’t solve. By merging paths inéRploration, we further
reduce the exploration space.

Elcano. We have designed and developgltang realizing the aforementioned ap-
proach. We have evaluated the effectiveness of our systerg tesal-world vulnerable
programs. In our experiments, Elcano achieved optimal @sesto-optimal results in
terms of coverage. In addition, the generated signatues@mpact. In fact, most of
the signatures are so compact that they can be understoodibyan.

Compared to Bouncer, Elcano produces higher coveragetsigisa For example,
for the GHttpd vulnerability Bouncer run for 24 hours, exjphg only some fraction of
all possible paths, and produced a partial signature withiicant false negatives. In
contrast, Elcano generates an optimal signature for the saimerability in 55 seconds.
Compared to ShieldGen, Elcano produces more accuratetgigsaboth in terms of
less false negatives (i.e., higher coverage) and lesspalsitives.

In addition to signature generation, extracting a high cage vulnerability point
reachability predicate is useful for other applicationstsas exploit generation [19]
and patch testing. For example, the Microsoft patch MS0&+issed some paths to
the vulnerability point and as a result left the vulnerapiktill exploitable after the



patch [20]. This situation is not uncommon. A quick searchltenCVE database re-

turns 13 vulnerabilities that were incorrectly or incontplg patched [21]. Our tech-

nigue could assist software developers to build more ateyratches. Furthermore,
our protocol-level constraint-guided approach can inseghe effectiveness of gener-
ating high-coverage test cases and hence be very valuabtdétieare testing and bug

finding.

2 Problem Definition and Approach Overview

In this section, we first introduce the problem of automaéoeyation of protocol-level
vulnerability point reachability predicates, then presmir running example and finally
give the overview of our approach.

2.1 Problem Definition

Automatic generation of protocol-level vulnerability point reachability predicates.
Given a parser implementing a given protocol specificatio@ yulnerability point, and

an input that exploits the vulnerability at the vulneralifpoint in a program, the prob-
lem of automatic generation of protocol-level vulnerdbifioint reachability predicates

is to automatically generate a predicate functionsuch that when given some input
mapped into field structures by the parsErevaluates over the field structures of the
input: if it evaluates tdrue, then the input is considered to be able to reach the vulner-
ability point, otherwise it is not.

Parser availability and specification quality. The problem of automatic generation of
protocol-level vulnerability point reachability predies assumes the availability of a
parser implementing a given protocol or file specificatianctsrequirement is identical
to previous approaches such as ShieldGen [18]. The pargsm gome input data can
map it into fields, according to the specification, or faihiétinput is malformed. In the
latter case, the IDS/IPS could opt to block the input or lgitthrough while logging
the event or sending a warning. Such parser is availabledomeon protocols (e.g.,
Wireshark [22]), and many commercial network-based IDSR8 have such a parser
built-in. In addition, recent work has shown how to createneyic parser that takes as
input multiple protocol specifications written in an intexdiate language [23, 24].

The quality of the specification used by the parser mattefsld/dbtaining a high
quality specification is not easy, this is a one time effottjck can be reused for mul-
tiple signatures, as well as other applications. For examplour experiments we ex-
tracted a WMF file format specification. According to the CVEtBbase [21] the WMF
file format appears in 21 vulnerabilities, where our speatfan could be reused. Sim-
ilarly, an HTTP specification could be reused in over 150etdbilities. Also, recent
work has proposed to automatically extract the protocatiigation from the program
binary [25-28]. Such work can be used when the protocol ugetidvulnerable pro-
gram has no public specification.

Exploit availability. Similarly to all previous work on automatic generation ofrver-
ability signatures [11,12,17,18], our problem definiti@sames that an initial exploit
message is given.
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voi d service() { 17 voi d doRequest (char =*IineBuf){

char msgBuf[4096] ; 18 char vul Buf [ 128], uri [ 256];
char 1ineBuf[4096]; 19 char ver[256], nethod[256];
int nb=0, i=0, sockfd=0; 20 int is_cgi = 0;
nb=r ecv(sockfd, msgBuf, 4096, 0); 2 sscanf (| i neBuf,
for(i = 0; i < nb; i++) { 22 "o@55s 9255s 9%@55s",
if (megBuf[i] == "\n") 23 nmet hod, uri, ver);
br eak; 24 if (strcnp(method, " GET")==0 ||
el se 25 strcnmp( et hod, "HEAD") ==0) {
lineBuf[i] = nmegBuf[i]; 2 if strncnp(uri,"/cgi-bin/",
27 9) == is_cgi = 1;
if (lineBuf[i-1] == "\r") 28 else is_cgi = 0;
lineBuf[i-1] = "\0’ 29 if (uri[O0] '="/") return;
else lineBuf[i] = "\0"; 30 strcpy(vul Buf, wuri);
doRequest (| i neBuf) ; 3 }
} 2}

Fig. 1. Our running example.

Vulnerability point availability. Finally, our problem definition assumes that the vul-
nerability point is given. Identifying the vulnerabilityomt is part of a parallel project
that aims to accurately describe the vulnerability cooditj13]. Such vulnerability
point could also be identified using previous techniquesZeF.

2.2 Running Example

Figure 1 shows our running example. We represent the exam@ldanguage for clar-
ity, but our approach operates directly on program binai@sr example represents
a basic HTTP server and contains a buffer-overflow vulnditghin the example, the
ser vi ce function copies one line of data received over the networl in nebuf
and passes it to troRequest function that parses it into several field variables (lines
21-23) and performs some checks on the field values (linex124% he first line in the
exploit message includes the method, the URI of the reqdess®urce, and the proto-
col version. If the method is GET or HEAD (lines 24-25), and fiist character of the
URI is a slash (line 29), then the vulnerability point is read at line 30, where the size
of vul Buf is not checked by thet r cpy function. Thus, a long URI can overflow the
vul Buf buffer.

In this example, the vulnerability point is at line 30, ané tulnerability condi-
tion is that the local variableul Buf will be overflowed if the size of the URI field in
the received message is greater than 127. Therefore, ®eka@mple, the vulnerabil-
ity point reachability predicate ig:st r cnp( FI ELD.METHOD, " GET") == 0 ||
strenp( FI ELD.METHOD, "HEAD') == 0) && FIELD.URI[0] # '/’ while
the vulnerability conditionis: engt h( FI ELD.URI ) > 127, and the conjunction of
the two is an optimal protocol-level signature.

2.3 Approach

In this paper we propose a new approach to generate highamseyet compact, vul-
nerability point reachability predicates, callpbtocol-level constraint-guided explo-



ration. Next, we give the motivation and an overview of the threerabieristics that
comprise our approach.

Constraint-guided. As mentioned in Section 1, previous approaches such agi&eal
and Bouncer use heuristics-based exploration [17, 18]rist&tbased exploration suf-
fers from a fundamental limitation: the number of probesdeekto exhaustively search
the whole space is usually astronomical. In addition, araagtive search is inefficient
as many probes end up executing the same path in the proghars, Juch approaches
often rely on heuristics that are not guaranteed to sigmifigancrease the signature’s
coverage and can also introduce false positives.

For example, ShieldGen [18] first assumes that fields candiseprindependently,
and then for fixed-length fields it samples just a few valuegaxdh field, checking
whether the vulnerability point is reached or not for thoatues. Probing each field in-
dependently means that conditions involving multiple Setdnnot be found. Take the
conditionSI ZE1 + SI ZE2 < MSG.SI ZE, whereSI ZE1 and Sl ZE2 are length
fields in the input, and/SG.SI ZE represents the total length of the received message.
The authors of ShieldGen acknowledge that their signattaeeot capture this type of
conditions, but such conditions are commonly used by progri@ verify that the input
message is well-formed and failing to identify them willrimduce either false positives
or false negatives, depending on the particular heurBtiabing only a few sample val-
ues for each field is likely to miss constraints that are Batidy only a small fraction
of the field values. For example, a conditional statementt s1s¢ f ( FI ELD==10)
|| (FIELD==20) then exploit, else safe, where FIELD is a 32-bit in-
teger, creates two paths to the vulnerability point. Figdéach of these paths would
require23® random probes on average to discover. Creating a signdtaredvers both
paths is critical since if the signature only covers one (fatp.,FI ELD == 10), the
attacker could easily evade detection by changing FIELDateetvalue 20.

To overcome these limitations, we propose to use a consgaided approach by
monitoring the program execution, performing symbolic @k&n to generate path
predicates, and generating new inputs that will go downfadint path. This constraint-
guided exploration is similar in spirit to recent work onngisymbolic execution for au-
tomatic test case generation [30—-32]. However, simplyyapglthose techniques does
not scale to real-world programs, given the exponential Inemof paths to explore.
In fact, in Bouncer [17] the authors acknowledge that thepted to use a constraint-
guided approach but failed to do so due to the large numbeatbispthat need to be
explored and thus had to fall back to the heuristics-baselipg approach.

To make the constraint-guided exploration feasible anelcgiffe we have incorpo-
rated two other key characteristics into our approach asritesi below.

Protocol-level constraints.Previous symbolic execution approaches generate what we
call stream-level conditions.e., constraints that are evaluated directly on the sirea
of input bytes. Such stream-level conditions in turn getesstream-level signatures
which are also specified at the byte level. However, preweark has shown that sig-
natures are better specified at the protocol-level insté#dtbdyte level [6,18]. We call
such signaturegrotocol-level signatures

Our contribution here is to show that, by lifting streameéégonditions tgrotocol-
level conditionsso that they operate on protocol fields rather than on thet ioytes, we



can make the constraint-guided approach feasible, as osimgraints at the protocol-
level hugely reduces the number of paths to be explored credpa using stream-level
conditions. The state reduction is achieved in two waysstfFihe parsing logic often
introduces huge complexity in terms of the number of executiaths that need to be
analyzed. For example, in our experiments, 99.8% of all tamgs in the HTTP vul-
nerabilities are generated by the parsing logic. While garsing constraints need to be
present in the stream-level conditions, they can be remvéied protocol-level condi-
tions. Second, the stream-level conditions introducedhbypiarsing logic fixes the field
structure to be the same as in the original exploit messagexample fixing variable-
length fields to have the same size as in the original explegsage, and fixing the
field sequence to be the same as in the exploit message (wht@cqis such as HTTP
allow fields to be reordered). Unless the parsing conditemesremoved the resulting
signature would be very easy to evade by an attacker by apgpfmall variations to
the field structure of the exploit message. Finally, the gtaibility point reachability
predicates at the protocol level are smaller and easierdenstand by humans.

Merging execution paths.The combination of protocol-level conditions with congtta
guided exploration is what we cadfotocol-level constraint-guided exploratipan iter-
ative process that incrementally discovers new pathsiegidi the vulnerability point.
Those paths need to be added to the vulnerability point edality predicate. The sim-
plistic approach would be to blindly explore new paths byersing conditions and at
the end create a vulnerability point reachability prediddiat is a disjunction (i.e., an
enumeration) of all the discovered paths leading to the enalbility point. Such ap-
proach has two main problems. First, blindly reversing d¢towls produces a search
space explosion, since the number of paths to explore bexerponential in the num-
ber of conditions, and much larger than the real number digpttat exist in the pro-
gram. We explain this in detail in Section 4. In addition, elgrenumerating the dis-
covered paths generates signatures that quickly explosieen

To overcome those limitations, we utilize the observatiwt the program execution
may fork at one condition into different paths for one praieg task, and then merge
back to perform another task. For example, a task can bedat@lin check on the input
data. Each independent validation check may generate ameltiple new paths (e.g.,
looking for a substring in the HTTP URL generates many paths) if the check is
passed then the program moves on to the next task, whichlyisugiges the execution
back into the original path. Thus, in our exploration, we apeotocol-level exploration
graphto identify such potential merging points. This helps abé® the search space
explosion problem, and allows our exploration to quicklgak high coverage.

2.4 Architecture Overview

We have implemented our approach in a system called Elcdmaiichitecture of El-
cano is shown in Figure 2. It comprises of two main componehtsconstraint ex-
tractor and theexploration modulgand two off-the-shelf assisting components: the
execution monitoandthe parser

The overall exploration process is an iterative processitttmementally explores
new execution paths. In each iteration (that we also cal),tas input is sent to the
program under analysis, running inside the execution monithe execution monitor
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Fig. 2. Elcano architecture overview. The darker color modulesgaren, while the lighter color
components have been designed and implemented in this work.

produces an execution trace that captures the completeitexeof the program on
the given input, including which instructions were execudad the operands content.
The execution monitor also logs the test result, i.e., wiethe vulnerability point was
reached or not during the execution. In addition, the pagsgacts the message format
for the input, according to the given protocol specification

Then, given the execution trace and the message formattistraint extractor ob-
tains thefield constraint chainThe field constraint chain is conceptually similar to the
path predicataused in previous work on automatic test case generatiorthbutondi-
tions are at the protocol-level and each condition is tagg#uadditional information.
We detail the field constraint chain and its constructionect®n 3.

The exploration module maintains thmtocol-level exploration graplwhich stores
the current state of the exploration, i.e., all the execugpiaths that have been so far ex-
plored. Given the field constraint chain, the exploit messagd the test result, the ex-
ploration module merges the new field constraint chain ihteodurrent protocol-level
exploration graph. Then, the exploration module uses tlmopol-level exploration
graph to select a new path to be explored and generates a patwtirat will lead the
program execution to traverse that path. Given the newleggad input, another iter-
ation begins. We detail the exploration module in Section 4.

The process is started with the initial exploit message and iteratively until there
are no more paths to explore or a user-specified time-limmgashed. At that point the
exploration module outputs the VPRP. The VPRPs producedltgnB are written
using the Vine language [33] with some extensions for stopgrations [34]. The Vine
language is part of the Bitblaze binary analysis infragtrcee[35].

3 Extracting the Protocol-Level Path-Predicate

In this section we present the constraint extractor, whighrgan execution trace, pro-
duces a field constraint chain. The architecture of the caim$textractor is shown in
Figure 3. First, given the execution trace piagh predicate extractquerforms symbolic
execution with the input represented as a symbolic variabteextracts thpath pred-
icate, which is essentially the conjunction of all branch corati§ dependent on the
symbolic input in the execution captured in the executiacdr The concept of sym-
bolic execution, the path predicate and how to compute invaleunderstood and have
been widely used in previous work including vulnerabilityrsature generation [11,12]
and automatic test case generation [30, 31]. Thus, we tedenterested reader to these
previous work for details.
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The path predicate generated by previous work is at therattewel, i.e., the con-
ditions are on raw bytes of the input. To enable constraintked exploration, Elcano
needs to lift the path predicate from the stream-level toptatocol-level, where the
conditions are instead on field variables of the input. To enthle distinction clear, we
refer to the path predicate at the stream-leveldtieam-level path-predicatand the
path predicate at the protocol-level theotocol-level path-predicatdn addition, the
constraint extractor needs to remove the parsing conditiohich dramatically reduces
the exploration space and makes the constraint-guidedtjan feasible.

To accomplish this, first théeld condition generatolifts the stream-level path-
predicate to the protocol-level, and then firdd condition generalizegeneralizes it
by removing the parsing conditions and outputs fieéd constraint chainwhich is
essentially the protocol-level path-predicate, wherehemandition is annotated with
some additional information and conditions are orderedgithe same order as they
appeared in the execution.

3.1 The Field Condition Generator

Given the stream-level path-predicate generated by thie pedicate extractor and
the message format of the input given by the parser, the fa@idition generator out-
puts a protocol-level path-predicate. It performs thisviro tsteps. First, it translates
each byte symbol NPUT[ x] in the stream-level path-predicate into a field symbol
FI ELDfi el dname [x - start(fieldnane)] using the mapping produced
by the parser. Second, it tries to combine symbols on cotisedoytes of the same
field. For example, the stream-level path-predicate migbluide the following con-
dition: (I NPUT[ 6] << 8 | INPUT[7]) == 0. If the message format states that
inputs 6 and 7 belong to the same 164bi field, then the condition first gets trans-
lated to( FI ELDJ1 D[ 0] << 8 | FIELD.I D[ 1]) == 0 and thenitis converted
toFI ELD.I D == 0 whereFl ELD.I Dis a 16-hit field symbol.

The message format provided by the parser is a hierarchiaa)| where one field
may contain different subfields, with the root of the treeresgnting the whole mes-
sage. For example, the nebuf variable in our running example represents the
Request - Li ne field, which in turn contains 3 subfieldsktt hod, Request - URI ,
andHTTP- Ver si on. Thus, a condition such astrstr(linebuf,"../") #

0 would be translated ast r st r (FI ELD.Request-Line,"../") # 0.Acon-
dition on the whole message would translate into a conddiothe specialVBGfield.

Benefits. This step lifts the stream-level path-predicate to theqaoklevel, breaking
the artificial constraints that the stream-level path-ja# imposes on the position of



fields inside the exploit message. For example, protocath sis HTTP allow some
fields in a message (i.e., all except the Request-Line/Stahe) to be ordered dif-
ferently without changing the meaning of the message. Thws,equivalent exploit
messages could have the same fields ordered differently agtedevel vulnerability
point reachability predicate generated from one of themld/owt flag that the other
also reaches the vulnerability point. In addition, if vatelength fields are present in
the exploit message, changing the size of such fields chahggmsition of all fields
that come behind it in the exploit message. Again, suchalrivariation of the exploit
message could defeat stream-level signatures. Thus, bessipg constraints using
field symbols, protocol-level signatures naturally alloiedd to move its position in
the input.

3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protéeed! path-predicate gener-
ated by the field condition generator, the protocol spetificaand the input that was
sent to the program and outputs a field constraint chain wiherparsing-related con-
ditions have been removed.

First, the field condition generalizer assigns a symbolitaide to each byte of the
input and processes the input according to the given prosmexification. This step
generates symbolic conditions that capture the conssraintthe input which restrict
the message format of the input to be the same as the messau# feturned by the
parser on the given input. We term these conditions the pgusdnditions. Then, the
field condition generalizer removes the parsing conditfom® the protocol-level path-
predicate by using a fast syntactic equivalence checkelfalst syntactic check fails,
the field condition generalizer uses a more expensive elgmga check that uses a
decision procedure.

Benefits. The parsing conditions in the protocol-level path-preticaver-constrain the
variable-length fields, forcing them to have some specifie &.g., the same as in the
exploit message). Thus, removing the parsing conditiclesvalthe vulnerability point
reachability predicate to handle exploit messages whereghable-length fields have a
size different than in the original exploit message. In &ddj for some protocols such
as HTTP, the number of parsing conditions in a single prdt®| path-predicate
can range from several hundreds to a few thousands. Suchearfungber of unneces-
sary conditions would blow up the size of the vulnerabilibimd reachability predicate
and negatively impact the exploration that we will presenSection 4. Note that the
parsing conditions are enforced by the parser, so we calysafaove them from the
protocol-level path-predicate while still having the cdimhs enforced during the sig-
nature matching time. We refer the reader to the extendesiiorefor more details [36].

The field constraint chain. To assist the construction of the protocol-level explo-
ration graph (explained in Section 4), the constraint ettmaconstructs théeld con-
straint chainusing the generalized protocol-level path-predicates(afte parsing con-
ditions have been removed). A field constraint chain is anaeoéd version of the
protocol-level path-predicate where each branch condisoannotated with the in-
struction counter and an MD5 hash of the callstack of the famogat the branching



point, and these annotated branch conditions are put indered chain using the same
order as they appear in the execution path.

4 Execution-Guided Exploration

In this section we present the exploration module, whictsdtd given field constraint
chain to the protocol-level exploration graph, selects & path to be explored and
generates an input that will traverse that path. That inpusid to start a new iteration
of the whole process by sending it to the program running édkecution monitor.
Once there are no more paths to explore or a user-specifiedlitinit is reached, the
exploration module stops the exploration and outputs thRR/P

Our exploration is based onpaotocol-level exploration graptwhich makes it sig-
nificantly different from the traditional constraint-basexploration used in automatic
test case generation approaches [30, 31, 37]. Using a pld®e@! exploration graph
provides two fundamental benefits: 1) the exploration spasignificantly reduced, and
2) it becomes easy to merge paths, which in turn further regltiee exploration space,
and reduces the size of the vulnerability point reachabgitedicate. In this section,
we first introduce the protocol-level exploration graphxinee present our intuition
for merging paths, and then we describe the explorationga®aised to extract the
vulnerability point reachability predicate.

4.1 The Protocol-Level Exploration Graph

The explorer dynamically builds jarotocol-level exploration graphs the exploration
progresses. In the graph, each node represents an inpediaput branching point (i.e.,
a conditional jump) in the execution, which comprises thet@eol-level condition and
some additional information about the state of the progrdremthe branching point
was reached, which we explain in Section 4.2. Each node canta edges repre-
senting the branch taken if the node’s condition evaluatedue (T) or false €). We
call the node where the edge originates soerce nodeand the node where the edge
terminates thelestination nodelf a node has aonpen edgdi.e, one edge is missing),
it means that the corresponding branch has not yet beenrexplo

4.2 Merging Execution Paths

When a new field constraint chain is added to the protocadtlexploration graph, it is
important to merge all conditions in the field constraintiohthat are already present
in the graph. Failure to merge a condition creates a duglicatle, which in turn effec-
tively doubles the exploration space because all the seihtaging from the replicated
node would need to be explored as well. Thus, as the numbargicdted nodes in-
creases, the exploration space increases exponentially.

The key intuition behind why merging is necessary is thas itémmon for new
paths generated by taking a different branch at one nodeyitklgy merge back into
the original path. This happens because programs may fedution at one condition
for one processing task, and then merge back to perform antabk. One task could
be a validation check on the input data. Each independexkahnay generate one or
multiple new paths (e.g., looking for a substring in the URhgrates many paths), but if
the check is passed then the program moves on to the nexetaskgnother validation
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Fig. 4. Exploration module architecture. The darker color modsigiven, while the lighter color
components have been designed and implemented in this work.

check), which usually merges the execution back into thgiral path. For example,
when parsing a message the program needs to determine ifetb&aige is valid or not.
Thus, it will perform a series of independent validity chett verify the values of the
different fields in the message. As long as checks are pabsep;ogram still considers
the message to be valid and the execution will merge backhetoriginal path. But, if
a check fails then the program will move into a very differpath, for example sending
an error message.

The intuition on the merging is that two nodes can be mergetdyf represent
the same program point and they are reached with the sameapnjate. To identify
the program point, each condition in the field constrainticha annotated with the
program'’s instruction counteeip) and an MD5 hash of the callstack, both taken at
the time the condition was executed. To identify the progstaite we use a technique
similar to the one introduced in [38] where we compute theddedll values (both
concrete and symbolic) written by the program during thecakien up to the point
where the condition is executed. Thus, we merge nodes thisflys& conditions: same
eip, same callstack hash, equivalent conditions, and saogegm state, where Elcano
queries the decision procedure to determine if two conaitiare equivalent.

4.3 The Exploration Process

Figure 4 shows the architecture of the exploration modulés tomprised of three
components: thexplorer, theprioritization engingeand thénput generatoyplus an off-
the-shelfdecision proceduteThe exploration process is comprised of 3 steps: (1) given
the field constraint chain, the explorer adds it to the curpeatocol-level exploration
graph producing an updated graph; (2) given the updatesgubtevel exploration
graph, the prioritization engine decides which node’s ogage to explore next; (3) for
the selected node’s open edge, itygut generatoigenerates a new input that will lead
the program execution to reach that node and follow the tedempen edge.

The new input is then used to start another iteration of thelevprocess as shown
in Figure 2, that is, the new input is replayed to the programming in the execution
monitor and a new field constraint chain is generated by thstcaint extractor, which
is passed to the explorer and so on. The prioritization enginn charge of stopping
the whole process once there are no more paths to exploresarapecified time-limit
is reached. When the exploration stops, the explorer osithetVPRP.

Next, we detail the 3 steps in the exploration process andtb@xtract the VPRP.
We illustrate the different steps using Figure 5 which repres the graph for our run-



stremp (
METHOD,
"GET") == 0

stremp (
VERSION ,
"HTTP /0.9")
=0

strncmp (URI,"/
cgi-bin/",9) == 0

Fig. 5. Building the protocol-level exploration graph for our ring example.

ning example. Note that, the A—F node labels are not reallygfahe protocol-level
exploration graph but we add them here to make it easier & tefthe nodes.

Adding the new path to the exploration graph.To insert a new field constraint chain
into the protocol-level exploration graph, the explorertt merging from the top until

it finds a node that it cannot merge, either because it is nibidrgraph yet, or because
the successor in the new field constraint chain is not the saraes in the graph. To
check if the node is already in the graph, the explorer chédke node to be inserted

is equivalent (same EIP, same callstack hash, equivaleitian, and same state) to
any other node already in the graph. We call the last nodecdrabe merged from the
top thesplit node

Once a split node has been identified the explorer keepsgttgirmerge the rest
of the nodes in the new field constraint chain until it finds a@ethat it can merge,
which we term thgoin node At that point, the explorer adds all the nodes in the new
field constraint chain between the split node and the joirerasla sequence of nodes
in the graph hanging from the split node and merging at the fjoide. The process of
looking for a split node and then for a join node is repeatetil thre sink of the new
field constraint chain is reached. At that point, if the exptowvas looking for a join
node then all nodes between the last split node and the strd&dated to the graph as a
sequence that hangs from the last split node and ends atthe si

For example, in Figure 5A the graph contains only the orified constraint chain
generated by sending the starting exploit message to tlgggomg which contains the
three nodes introduced by lines 24, 26, and 29 in our runniagwle (since the parsing
conditions have already been removed). The sink of themaldield constraint chain
is the vulnerability point nodevP). Figure 5B shows the second field constraint chain
that is added to the graph, which was obtained by creatingyaunt ithat traverses the
false branch of node A. When adding the field constraint cimaiilgure 5B to the graph
in Figure 5A, the explorer merges node A and determines thatafsplit node because
A's successor in the new field constraint chain is not A's sssor in the graph. Then,
at node B the explorer finds a join node and adds node D betvireesptit node and
the join node in the graph. Finally node C is merged and we gshewpdated graphin
Figure 5C.



Selecting the next node to exploreEven after removing the parsing conditions and
merging nodes, the number of paths to explore can still bgelaBince we are only
interested in paths that reach the vulnerability point, \vagehimplemented a simple
prioritization scheme that favours paths that are mordyike reach it. The prioriti-
zation engine uses a simple weight scheme, where thererae\eights 0, 1, and 2.
Each weight has its own node queue and the prioritizatiomeraways picks the first
node from the highest weight non-empty queue. The explasgas the weights to the
nodes when adding them to the graph. Nodes that represgneldbconditions get a
zero weight (i.e., lowest priority). Nodes in a field consttahain that has the VP as
sink get a weight of 2 (i.e., highest priority). All other neslget a weight of 1. We favor
nodes that are in a path to the VP because if a new path doesinklyjead back to the
VP node, then the message probably failed the current cheget on to a different
task and thus it is less likely to reach VP later. We disfaeopl exit conditions to de-
lay unrolling the same loop multiple times. Such heuristtpls achieve high coverage
quickly.

Generating a new input for a new branch.We define anode reachability predicate
to be the predicate that summarizes how to reach a specifie indtie protocol-level
exploration graph from th&t ar t node, which includes all paths in the graph from the
Start to that node. Similarly, we definebaanch reachability predicateo be the predi-
cate that summarizes how to traverse a specific branch ofe odranch reachability
predicate is the conjunction of a node reachability pre@igéth the node’s condition
(to traverse the true branch), or the negation of the noaeigition (to traverse the false
branch). To compute a new input that traverses the specditdhrselected by the pri-
oritization engine, the explorer first computes the braredthability predicate. Then,
the input generator creates a new input that satisfies thiebr@achability predicate.

To compute the branch reachability predicate, the explinstrcomputes the node
reachability predicate. The node reachability predicatessentially the weakest pre-
condition (WP) [39] of the source node of the open edge oveptiotocol-level explo-
ration graph—by definition, the WP captures all paths in tteeqzol-level exploration
graph that reach the node. Then, the explorer computes ttjeragion of the WP with
the node’s condition or with the negated condition depegdin the selected branch.
Such conjunction is the branch reachability predicatectviis passed to the input gen-
erator.

For example, in Figure 5C if the prioritization engine séddbe false branch of node
D to be explored next, then the branch reachability predipabduced by the explorer
would be:A && D. Similarly, in Figure 5D if the prioritization engine selsdhe false
branch of node B to be explored next, then the branch realiiygiredicate produced
by the explorer would be(: A| | (A && D)) && B.

The input generator generates a new input that satisfieganetreachability pred-
icate using a 3-step process. First, it uses a decision guoed¢o generate field values
that satisfy the branch reachability predicate. If the sieci procedure returns that no
input can reach that branch, then the branch is connectée tdntr eachabl e node.
Second, it extracts the values for the remaining fields (nastrained by the decision
procedure) from the original exploit message. Third, iteksethe message format pro-
vided by the parser to identify any fields that need to be wgmtigiven the dependencies



Program CVE Protocol | Type | Guest OS |Vulnerability Type
gdi32.dll (v3159) CVE-2008-1087 EMF file |Binary| Windows XP| Buffer overflow
gdi32.dll (v3099) CVE-2007-3034 WMF file |Binary| Windows XP| Integer overflow
Windows DCOM RP@CVE-2003-0352 RPC |Binary| Windows XP| Buffer overflow
GHttpd CVE-2002-1904 HTTP | Text | Red Hat7.3| Buffer overflow
AtpHttpd CVE-2002-1816 HTTP | Text | Red Hat7.3| Buffer overflow
Microsoft SQL ServerCVE-2002-0649ProprietaryBinary|Windows 2000 Buffer overflow
Table 1.Vulnerable programs used in the evaluation.

on the modified values (such as length or checksum fieldshd .l the collected field
values it generates a new input and passes it to the replayweorefer the reader to
our extended version [36] for our handling of field condisdhat depend on a memory
read from a symbolic address.

Extracting the vulnerability point reachability predicat e.Once the exploration ends,
the protocol-level exploration graph contains all the disered paths leading to the
vulnerability point. To extract the VPRP from the graph thelerer computes the
node reachability predicate for the VP node. For our runergmple, represented in
Figure 5E the VPRP ist A| | (A && D)) && C. Note that, a mere disjunction
of all paths to the VP, would generate the following VPR && B && O) || (A
&& D & & B && C)|| (A & & B && CO)||(A && D & & B && C).Thus,
Elcano’s VPRP is more compact using 4 conditions insteadtof 1

5 Evaluation

In this section, we present the results of our evaluationfik¥epresent the experiment
setup, then the constraint extractor results and finallyes#tpdoration results.

Experiment setup. We evaluate Elcano using 6 vulnerable programs, summaitzed
Table 1. The table shows the program, the CVE identifier fer\hlnerability [21],
the protocol used by the vulnerable program, the protoqa {y.e., binary or text), the
guest operating system used to run the vulnerable prograshihe type of vulnerability.
We select the vulnerabilities to cover file formats as welhasvork protocols, multi-
ple operating systems, multiple vulnerability types, athbopen-source and closed
programs, where no source code is available. In additianpttier vulnerabilities (i.e.,
last four) are also selected because they have been anatygezlious work, and this
allows us to compare our system'’s results to previous ones.

5.1 Constraint Extractor Results

In this section we evaluate the effectiveness of the coinsteatractor, in particular of
the field condition generalizer, at removing the parsingditions from the protocol-
level path-predicate. For simplicity, we only show the ttesfor the protocol-level path-
predicate produced by the field condition generator frometkecution trace generated
by the original exploit. Note that, during exploration tipigocess is repeated once per
newly generated input. Table 2 summarizes the resultsOrtggnal column represents
the number of input-dependent conditions in the protoewél path-predicate and is
used as the base for comparison. Nan-parsing conditionsolumn shows the number
of remaining conditions after removing the parsing coroais.



Program  |Original [Non-parsing Program  |All branches

conditions explored |VPRP
Gdi-emf 860 65 Gdi-emf no 72
Gdi-wmf 4 4 Gdi-wmf yes 5
DCOM RPQ 535 521 DCOM RPQ no 1651
GHttpd 2498 5 GHttpd yes 3
AtpHttpd 6034 10 AtpHttpd yes 10
SQL Server| 2447 7 SQL Server yes 3

Table 2. Constraint extractor results for the  Table 3. Exploration results, including

first test, including the number of condi- whether all open edges in the protocol-level
tions in the protocol-level path-predicate exploration graph were explored and the
and the number of remaining conditions af- number of conditions remaining in the vul-

ter parsing conditions have been removed. nerability point reachability predicate.

The removal of the parsing conditions is very successfulliex@eriments. Over-
all, in the four vulnerable programs that include varialgegth strings (i.e., excluding
Gdi-wmf and DCOM-RPC), the parsing conditions account ##496 to 99.8% of all
conditions. For formats that include arrays, such as DCOMC RRe number of pars-
ing conditions is much smaller but it is important to remouels conditions because
otherwise they constrain the array to have the same numbaleofents as in the ex-
ploit message. By removing the parsing conditions, eactl fiehstraint chain repre-
sents many program execution paths produced by modifyiaddimat of the exploit
message (e.g., extending variable-length fields or reorgdields). This dramatically
decreases the exploration space making the constraidedeixploration feasible.

5.2 Exploration Results

Table 3 shows the results for the exploration phase. We sstradefined time-limit of 6
hours for the exploration. If the exploration has not contgaleby that time Elcano out-
puts the intermediate VPRP and stores the current state ekgloration. This state can
later be loaded to continue the exploration at the same pdiste it was interrupted.
The first column indicates whether the exploration comglétfore the specified time-
limit. The second column presents the number of conditioribé intermediate VPRP
that is output by the exploration module once there are neermaths to be explored or
the time-limit is reached.

The results show that in 4 out of 6 experiments Elcano exgdlafepossible paths,
thus generating a complete VPRP. For the DCOM RPC and Gdegrpariments, the 6
hour time-limit was reached, thus the VPRPs are not compléiey also show that the
number of conditions in the VPRP is in most cases small. Tredlstamber of condi-
tions in the VPRP and the fact that in many cases those conditire small themselves,
makes the signatures easy for humans to analyze, as opmopeehvtous constraint-
based approaches where the large number of conditions isighature made it hard
to gain insight on the quality of the signature. We do thatdiyeling the nodes in the
graph with the full protocol-level conditions.

Performance.Table 4 summarizes the performance measurements for Elaéimoea-
surements were taken on a desktop computer with a 2.4GHzZ3ate2 Duo CPU and
4 GB of memory. The first column presents the VPRP generaitios in seconds. For
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Table 4. Performance evaluation. The gener‘*&I parameters |
tion time and the average test time are giverL i

in segonds, and the trace size is giVenTé.{E)IeS.Onthe left, the format of the Gdi-wmf
Megabytes. exploit file. On the right the vulnerability point
reachability predicate.

the Gdi-emf and DCOM RPC examples, the 6 hour time-limit onegation time is
reached. For the rest, the generation time ranges from wmeminute for the GHttpd
vulnerability up to 23 minutes for the Microsoft SQL vulnbiiity. Most of the time
(between 60% and 80% depending on the example) is spent lopiistraint extractor.
Thus, we plan to parallelize the exploration by having a @ mixplorer, which spawns
multiple copies of the constraint extractor and the exetuthonitor, each testing a
different input and reporting back to the explorer. The ramimg columns show the
number of tests in the exploration, the average time peiriessiconds, and the average
size in Megabytes of the execution trace.

Compared to Bouncer, where the authors also analyze the $@lefSand GHttpd
vulnerabilities, the signatures produced by Elcano haghdricoverage (i.e., less false
negatives) and are smaller. For example, Bouncer spend®4rs to generate a signa-
ture for the SQL Server vulnerability, and the generatedaigre only covers a frac-
tion of all the paths to the vulnerability point. In contraStcano spends only 23 min-
utes, and the generated signature covers all input-depbrairches to the vulnerability
point. Similarly, for the GHttpd vulnerability the authostop the signature generation
after 24 hours, and again the signature only covers a fraaifaall input-dependent
branches to the vulnerability point, while Elcano genesaecomplete signature that
covers all input-dependent branches to the vulnerabitiinin under one minute.

SQL server. The parser returns that there are two fields in the exploitsangs: the
Command (CMD) and the Database name (DB). The original pabtievel path-predicate
returned by the constraint extractor contains 7 conditidnan the CMD field and the
other 3 on the DB field. The exploration explores the open sdg¢hose 7 nodes and
finds that none of the newly generated inputs reaches therability point. Thus, no
new paths are added to the graph and the VPREFISELD CVD==4) &&
(strcnmp(FI ELD.DB, "") #0) && (st rcasecnp( Fl ELDDDB, " MSSQLSer ver ") #£0) .
Note that, the vulnerability condition for this vulnerabjlstates that the length of
the DB field needs to be larger than 64 bytes. Thus, the lastbnditions in the VPRP
are redundant and the final protocol-level signature woeld Bl ELD.CMD == 4) &&



I engt h(FI ELDDB) > 64 . According to the ShieldGen authors, who had access to
the source code, this signature would be optimal.

Gdi-wmf. Figure 5 shows on the left the field structure for the expldé &ind on
the right the VPRP. The original protocol-level path-preadé contained the 4 aligned
nodes on the left of the graph, while the exploration disc®ome new path leading to
the vulnerability point that introduces the node on the tidte graph shows that the
program checks whether théer si on field is 0x300 (Windows 3.0) or 0x100 (Win-
dows 1.0). Such constraint is unlikely to be detected by imgphpproaches, since they
usually sample only a few values. In fact, in ShieldGen thelyre a different vulner-
ability in the same library but run across the same condtrahre authors acknowledge
that they miss the second condition of the disjunction. Tlansattacker could easily
avoid detection by changing the value of the Version fieldc&8iwe have no access to
the source we cannot verify if our VPRP is optimal, though wkdve it to be.

Other experiments.Due to space constraints we refer the reader to our exteneted v
sion [36] for details on the Atphttpd, GHttpd and DCOM RPCrepées. For the At-
phttpd and GHttpd vulnerabilities, where we have acceshdcsburce code, the ex-
tended version contains the optimal signatures that we algnextracted for the vul-
nerability. The results show that Elcano’s VPRPs exactljcimar are very close to the
optimal ones that we manually extracted from the source.code

6 Conclusion

In this paper we propose protocol-level constraint-guiggaloration, a novel approach
to automatically generate high coverage, yet compact,eralility point reachability
predicates, with application to signature generation]Jakgeneration and patch veri-
fication. Our experimental results demonstrate that ouragah is effective, generates
small vulnerability point reachability predicates withghicoverage (optimal or close
to optimal in cases), and offers significant improvementr @vevious approaches.
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