Transparent Protection of Commodity OS Kernels Using
Hardware Virtualization

Michael Gracé, Zhi Wangd, Deepa SrinivasdnJinku Lif, Xuxian Jiand, Zhenkai Liand, Siarhei Liakh

fDepartment of Computer Science #School of Computing
North Carolina State University ~ National University of Singapore

Abstract. Kernel rootkits are among the most insidious threats to computer secudiy. tBy
employing various code injection techniques, they are able to maintain aipatemt presence in
the compromised OS kernels. Existing preventive countermeasuiesllygmploy virtualization
technology as part of their solutions. However, they are still limited in eithergquiring modi-
fying the OS kernel source code for the protection or (2) leveragiftyvare-based virtualization
techniques such as binary translation with a high overhead to implementvarti@rchitecture
(which is robust to various code injection techniques used by kerntit®)o In this paper, we in-
troduce hvmHarvard, a hardware virtualization-based Harvardtecthre that transparently pro-
tects commodity OS kernels from kernel rootkit attacks and significardlyoes the performance
overhead. Our evaluation with a Xen-based prototype shows that itarasptrently protect legacy
OS kernels with rootkit resistance while introduciagh% performance overhead.

Keywords: Virtualization, Harvard Architecture, Split Memory

1 Introduction

Kernel rootkits are among the most insidious threats to computer security. toadedding
themselves within the operating system kernel, these rootkits enjoy unfetteceds to the
entire system and adopt various techniques to make themselves stealthstiakg’“thus
preventing them from being detected and removed. Given the effeesisasf this approach,
it is not surprising that there has been explosive growth in the numbeavofootkit families
over recent years [2,4].

Kernel rootkit countermeasures have attracted a commensurate amaiteinddbn in the
research community. In particular, there are two main categories of existortseThe first
category aims to detect the rootkit presence by looking for abnormalitiegnoptems of
rootkit infection. For example, Copilot [28] uses a special PCI card ab grmemory image
of the kernel and then scans for any possible manipulation of kernel @odystem-critical
data structures. The follow-up efforts [29,30] extend it to detect anfatim from semantic
specifications of static and dynamic kernel data or deviation from the ndwna&l control
flow graph. However, these systems by design are all based on detewtikds after they
have already installed themselves in the kernel.

In contrast, the second category strives to prevent rootkit infectioreifirst place by en-
forcing some security property. For example, SecVisor enford&sa X property on kernel
memory pages. ThB” & X property states that a given memory page can be either writable or
executable, but not both at the same timé&s X enforcement is complicated by legacy OS ker-
nels that contain mixed kernel pages with both code and data [20,21,224n@ite such pages,

SecVisor modifies the kernel source code to make the OS kernel memony aytform to
the W @ X property. From another perspective, NICKLE [31] takes a softwatealization
(i.e., binary translation) approach to emulate a Harvard architecture omwkd¢h essentially
creates a separate memory space to reliably store authorized kerneBgottansparently
redirecting kernel instruction fetches to the separate memory space,LEl@&<able to sup-
port unmodified kernels and guarantee their kernel code integrity, véifebtively defeats
most existing rootkits. However, from another perspective, the pceseiha dedicated code
memory and the need for transparent redirection of kernel instructichefe require inter-
cepting and redirecting every single kernel instruction execution, wmébrwnately causes
significant performance overhead [31].

In this paper, we introdudevmHarvard a hardware virtualization-based Harvard architec-
ture on x86 that can not only transparently support commodity OSs withadificagion, but
also effectively reduce the performance overhead. Specificallybseree that the high per-
formance overhead of implementing software-based Harvard archiggstomainly caused by
instruction-levelinterception and redirection (of kernel instruction fetches) to the code mem-
ory. As such, we propoggage-leveledirection in hvmHarvard so that the performance over-
head can be significantly reduced without unnecessarily sacrificingtheity guarantee.

There are two main challenges involved in changing from instruction-l@détection to
page-level redirection of kernel instruction fetches. The first ongesdfrom the fact that x86 is
not designed to support the Harvard architecture. To address thatalean unconventional
use of split code and data TLBs on x86 in combination with recent hardiased tagged
TLB support[3]. In particular, with separate code and data TLBs, avedynamically adjust
the page table to virtualize the Harvard architecture on top of x86 (so tdatard data each
have its own memory address space). The tagged TLB support is eshentias it avoids
flushing the code/data TLBs in a virtualized environment (e.g., VM exits — Se8tib), thus
allowing the hypervisor to safely intervene and manipulate the guest palgeitiabse for
the Harvard architecture creation. With the separation of code memoryaaaadngmory, our
Harvard architecture can naturally handle the mixed code and data pagesinodity OS
kernels while still strictly enforcingV @ X . In the meantime, we also observe that the majority
of existing kernel memory pages are not mixed. As a result, there is noforelednHarvard
to keep a shadow copy of these pages, nor does it need to intervenstietion fetches
from them. By doing so, no processing overhead will be incurred orethages and no extra
memory space will be wasted, as they no longer need to be shadowed [31].

The second challenge stems from the need to perfoode-sensitivpage-level redirec-
tion since we are interested in redirecting kernel instruction fetches onbthier words, we
need to first determine the current running mode and then decide whetheortesponding
instruction fetch should be redirected or not. This imposes a strict requiteiméntercept
every mode-switching event (e.g., including system calls) in the redirectipn lotercepting
these events at the hypervisor will cause significant performancheagrOur solution to this
problem involves altering the guest’s view of memory at each privilege (evehode): all of
user memory becomes non-executable when a process is executing atrtbbrkode, and
vice versa. For brevity, we call this a mode-sensitive view (Section 3.@)nB the normal

operation of the guest, hvmHarvard does not intercept and mediate thgechatween dif-
ferent views of memory. Instead, our system injects trampoline code to shataleen these
two views of memory upon the mode-switching event inside the guest. The tliampwech-

anism leverages an Intel hardware virtualization extension calle@R®B8eTarget Value List

(Section 3.2) to avoid being trapped by the hypervisor and to achieve petfermance.

We have implemented a Xen[9]-based proof-of-concept prototypepiidtotype can trans-
parently support a number of commodity systems including legacy Red Haw0a(Linux
2.4.18 kernel) and recent Ubuntu 9.04 (running Linux 2.6.30-5). Oaluation shows that
our system is effective in preventing eight kernel attacks (includingesikworld rootkits and
two synthetic attacks) against legacy OS kernels that do not havé theX support. Such
protection is achieved with only a small performance overhead {..%). To summarize,
our paper has the following contributions:

— We propose a hardware virtualization-based Harvard architecturdectieély protect
commodity OS kernels from kernel rootkit attacks. Compared with existingoappes,
our system can not only achieve a similar protection guarantee, but atsficsigtly re-
duce the performance overhead suffered by previous approaches

— The first key technique in our approachpage-levelredirection of instruction fetches,
which departs from prior efforts that perform instruction-level retics. Our technique
significantly reduces the performance overhead in the creation of thvatdaarchitecture
on top of x86.

— The second key technique enabtesde-sensitiveedirection by redirectingnly kernel
instruction fetches. In this way, we can effectively avoid hypervisomuatation in the
guest’'s mode-switching events. As these events occur frequently insidadist, this tech-
nique also contributes to reducing the overall performance overhead.

— Finally, we present a Xen-based system prototype. The evaluatioltsrestln the proto-
type confirmed the practicality and effectiveness of our approach.

The rest of the paper is structured as follows. We briefly describesaagebackground
on the Harvard architecture and hardware virtualization in Section 2. y3tem design and
implementation are then presented in Section 3 and Section 4, respectively.tist, we
present the evaluation results in Section 5, which is followed by the discuesipossible
limitations and their improvement in Sectioh 6. Finally, we discuss related workdtoBe?
and conclude our paper in Section 8.

2 Background

In this section, we briefly review some key concepts that are essentiat tystem but may
be unfamiliar to some readers: the Harvard architecture and shadowgpagiintualization.
Readers with sufficient background can safely skip this section.

2.1 Harvard Architecture

Modern computers use a single address space to refer to working merhigymodel of
memory is commonly known as the von Neumann architecture. Interestingly,afaheevery

Processor

Instruction
Memory

Shadow Page Table

Fig. 1. The Harvard architecture Fig. 2. Guest page table vs. shadow page table

earliest computers used two utterly separate working memories, one farciistis and one
for data. This arrangement is known as the Harvard architecture @Figum a pure Harvard
architecture machine, data accesses and instruction accesses atedseateessing totally
distinct address spaces. From a security standpoint, this addreskgmgeseliminates code
injection attacks. For example, some buffer overflow attacks use an ngememory copy

operation to overwrite memory that will be executed as code. A pure Hhar@hitecture

machine is not vulnerable to this class of attacks, as their addressing sdbesaot allow

code and data to be referred to interchangeably.

This work focuses on a widely deployed processor famBg which has a unified address
space for main memory and is thus a von Neumann architecture. Howeggmo@ssors typi-
cally have separate caches for instructions and data. When execotimgdche, the processor
behaves like a Harvard architecture madEjr@nIy when main memory must be consulted,
does x86 look like a von Neumann architecture. This observation is thd#tion of our page-
level redirection technique for the creation of the Harvard architectutemof x86 (Section

3.1).
2.2 Virtualization and Shadow Paging

Virtualization involves running a guest operating system in an environmanptbvides the
illusion of complete access to a physical machine. All the resources usexhstruct such
an illusory machine constitute a Virtual Machine (VM), while the software thahtams one
or more VMs is known variously as a hypervisor or a Virtual Machine MarttMM). The
hypervisor is commonly considered to be part of Trusted Computing B&®)@s it is strictly
isolated from the VMs it manages and is often much smaller than modern opesysilegns.
There are several ways to virtualize a guest operating system. Sineeduis based on
hardware virtualization, we focus on its operation here. In particulaedan certain proces-
sor extensions, hardware virtualization operates a “trap-and-emulat&Invdhen a guest OS
wishes to perform a privileged operation, the hardware has two opgaher it can handle the
request based on the processor extension for hardware virtualizatibthat is not possible,

! This hybrid architecture is known aswodifiedHarvard architecture; many processors with the caching feature
use such an arrangement today.

it can pass control to the hypervisor for handling. Handling the lattercasstitutes a goodly
portion of the hypervisor's workload and is typically an involved process

Shadow paging is one such example. To better describe it, we first rexewrtem-
ory management works on an un-virtualized machine. Recall that x8@®s&sgwo memory
protection mechanisms: segmentation and paging. They protect memory in a siayléyw
essentially permitting a higher-privilege piece of software to put blindeis lower-privilege
program, thus restricting its view of memory to only those things it is supposed tble
to access. Since segmentation support is being phased out in the newd¥ybnode, we
focus on the paging protection mechanism. In essence, paging usetsgreggtion tables, or
page tables for short, to remap memory for a given process. Virtuakssiel are translated
into physical addresses by these tables. These tables are also usedbydtare to enforce
certain permissions policies (e.g., NX [1]) on the types of accesses allowed

Virtualization has not changed this picture of the process; it has merebldaaidother
layer underneath it. By leveraging paging, the hypervisor divides théimals memory into
distinct logical machine memories. The guest OS in a VM then treats the memorywérs g
in the traditional way, dividing it up between the applications running in thestgudgnder
hardware virtualization, however, the OS itself does not knowadheEmachine addresses that
make up its allotted memory. With shadow paging, the hypervisor solves thiteprdiy
introducing an extra layer of indirection. In particular, a shadow tabledated for a guest
and maintained in the hypervisor. An unsuspecting guest OS kernel isallmamaintain its
own page tables, but they are not actually used by the hardware.dngtednypervisor marks
these guest page tables read-only. Any attempt to write to them therefoeeates a page
fault, which is trapped by the hypervisor. The hypervisor, in turn, emsiiéie write request,
eventually outputting the equivalent entry into the “real” page table usedgyatdware. The
guest can never see this real page table, which is assiduously kepteyized with the one
it can see — thus the name “shadow page table.”

This arrangement is illustrated graphically in Figure 2. In the diagram, a viatigress
(VA) is translated through both the guest’s and the hardware’s pagestdiiie guest’s page
tables eventually lead to a guest physical address (GPA) — the addeegsetst thinks of as
being a hardware address. The shadow page tables instead transkamheirtual address
into the real machine address (MA). The tables are kept synchronyzégbthypervisor; this
synchronization is represented by the dotted lines in the figure.

3 Design

In this work, we aim to develop a hardware virtualization-based Harverhitacture that
can efficiently support unmodified legacy OS kernels and protect them kernel rootkit
attacks. Specifically, the presence of two distinct memory spaces foeocod#ata in a Harvard
architecture is useful for blocking code injection attacks and enforciagitho X property.
In this work, we propose to take a step further by enforcing mode-sensiti & X, also
known asi¥ @& K X . Due to our focus on OS kernel protectidif,® K X requires that a user-
level memory page will not be executable from the kernel mode and visavE&ommaodity
hardware by default allows the execution of user-level memory pagesrad! privilege, which

opens up “interesting” opportunities for kernel rootkit infection. As defense}V @& K X is
proposed to effectively block this infection vector.

Threat Model and System Assumption In this paper, we assume an adversary model
where attackers or kernel rootkits are able to exploit software vuliigiesin an OS kernel
to launch code injection attacks. Accordingly, we also assume kerneltb#ve the highest
privilege level inside the victim VM (e.g., th@ot privilege in a UNIX system) and have full
access to the VM’s memory space (e.g., throtudev/ memin Linux). However, the goal of
a kernel rootkit is to stealthily maintain and hide its presence in the victim systeno; $o0,d
it will need to execute its own (malicious) code in the kernel space. We ndtsubh a need
exists in most kernel rootkits today, and we will discuss possible excepti@®ection 6.

In the meantime, our system assumes
a trustworthy hypervisor as the neces-
sary trusted computing base (TCB) to pro-
vide strict VM isolation. This assumption
is shared by many other hypervisor-based
security research efforts [13,14,17,25,43]
and being hardened by existing hypervisor- |
protection solutions [26,41]. We will discusi ‘ Page-level, mode-sensitive redirec*ion
possible attacks (e.g., VM escape) in Se
tion [6. With this assumption, we consid

' Guest VM
Applications

Guest OS

~ Other memory acce/ss/es \G\uest kernel instruction fetch

bl

» 4
the threat from layer-below attacks launched kernel data ot kool code
from physical hosts outside of the scope of kernel data

kernel data Auth. kernel code

data memory code memory

this WorkE

3.1 Page-Level Redirection foWW @& X

The central scheme of our approach is to &fig. 3. Page-level mode-sensitive redirection
ficiently create a Harvard architecture (Figenables an efficient implementation of the Har-
ure[3) on x86 by virtualizing one mem-~ard architecture on top of x86.

ory space for code and another for data. To

achieve our goal, we observe the presence of separate TLBs fardiistr fetches and data
accesses. Note that each TLB entry caches the translation result fvotoa address to a
physical address. When a memory access or an instruction fetch otteeirgrtual address
lookup will go through the corresponding TLB first. Should that TLB nohtain an entry
for the requested translation (called a TLB miss), the hardware walksghrie page table
entries in main memory to do the lookup, then constructs such an entry. Aslg fiesn the
TLB’s perspective, the hardware itself thinks in terms of two addressesp&lowever, in nor-
mal operation, these address spaces are kept synchronized addshbribe a unified memory
space. Fortunately, to our benefit, there is no hardware requiremethigmust be the case.

2 There exists another type of layer-below or specifically hardware Ditdch that is initiated from within a
guest VM. However, since the hypervisor itself virtualizes or mediatestgDMA operations, recent hardware
support for OMMU can be readily adopted to intercede and block thérarefore, we do not consider them in
this paper.

In other words, to emulate a pure Harvard architecture, we can takatadeaof these two
TLBs by desynchronizing and loading them with two different page taltigesrfor the same
virtual address, thus creating two distinct memory spaces for code #&nd da

Unfortunately, the de-synchronization of these two TLBs is a delicateepsyavhich is
complicated by the fact that a TLB entry has a relatively limited lifespan. FirstTttBs are
not large enough to cache all translation results at the same time, which maiawidéh entries
are eventually overwritten by newly-requested translations. Secorah atnOS kernel either
alters a page table or switches address contexts, these caches are impliithdfIThird,
x86 provides very few instructions for interacting with the TLBs. In fafteraenabling the
paging mode, the provided instructions are mainly used for removing orleeasrtaes from
both TLBs, which means the only way for us to populate a TLB entry will be bygrenfing
an address translation that eventually winds up in that cache.

To deal with the above challenges, we need to effectively intercept tdevhee’s attempts
to re-populate TLBs. In particular, for the virtual addresses of intevasen there is a TLB
miss, the hardware consults the page table and checks the permission latgiatihit loads.
If those permissions are violated, a page faultf{BF) exception will be thrown. When there
is a TLB hit, the cached entry’s permissions are directly checked withaguiting the page
table. As a result, in the case of a TLB miss, we need to carefully prepapatestable in a
way that will load the desired translation results as well as related permisstorrespective
TLBs.

There are three permission bits that can cause useful faultsliSEER bit, the PRESENT
bit and theNX bit. The USER bit only faults when a user-mode instruction fetch references
a kernel page. With our focus on kernel protection, we are not ingtés using this bit.
The PRESENT bit, if not set, trapsany access — which would lead to many expensive world
switches. Thé\X bit causes a fault on any instruction fetch from pages with this bit set.rin ou
system, we naturally leverage theX bit.

In particular, to use thsIX bit to cause one virtual address to map to two context-sensitive
memory pages, we map the address to its data memory page andibebits If execution
branches to an address within the page, the page fault handler subst#gagy to code
memory page and clears th& bit. In order to load the entry into the instruction TLB (ITLB),
the page fault handler must allow the guest to execute an instruction usirgthjisHowever,
once the code page entry has been loaded, the system needs to ragairt@oestore the map
back to the data memory page. If this is not done, the data TLB (DTLB) may wpngeing
populated with the code page entry, routing data reads to the code patieiamiblating the
Harvard architecture. Note that the code page entry is markegdsonlyand there is no way
to cause a page to be executable yet not readable o@@6wrchitecture.

To ensure that the page table is restored to the corresponding data £strgraas pos-
sible, our design relies on the x86 single-step execution feature. Sp#ygiflay setting the
trap flag (or TF) of the EFLAGS register, the processor will generate an exception after every
instruction. This feature allows us to execute one instruction, and themedbtodata page
entry in theTF handler. The process is shown in pseudo-code in Algorithm 1.

Algorithm 1: TLB de-synchronization algorithm.
Input: Redirected Page Address (addr), Page table Entry for addr (pte)

/* handling NX-based page fault */ ; /* handling TF-based fault */ ;
pte =t he_code_page (addr); pte =t he_dat a_page (addr) ;
set trap_flag(); unset trap_flag();
return_to_guest (); return_to_guest ();

In this way, our design can populate the ITLB with one record and DTLB waitbther
record without interfering each other. Here, we point out that if bygtirag the execution of
a guest VM to the hypervisor, a VM exit (MVEXI T) occurs. In some processors, VM exits
will flush the TLBs, which defeat our purpose of de-synchronizin@¥LIn our prototype,
we leverage a hardware feature called tagged TLB [3] that is availablergcant hardware-
virtualized AMD processors as well as Intel processors based orthBlahalem architecture.
This hardware feature essentially adds an extra field or an identificatigh ttieeach TLB
entry that specifies the VM context within which the entry is valid. When a VM @ocurs,
these entries will not be flushed. More details about our system will lsepted in Section 4.1.

3.2 Mode-Sensitivity forW @ KX

By effectively creating a Harvard architecture on x86, our page-tedkrection technique is
able to enforcdV @ X while accommodating mixed kernel pages in commodity OS kernels.
However, thdV @ X enforcement is still insufficient due to the need to block the execution of
user-level pages from the kernel level. In other words, we needidocena strongeW” & K X
policy. As mentioned earlier, this is necessary as commodity OS kernels dighBoaccess

of kernel memory pages from user mode, but do permit the executioreofusmory pages
from kernel mode.

To elaborate on this, the86 architecture has two related concepts in this vein:USER
page table permission bit and the Current Privilege Level (CPL) bits itC8$eegister. The
CPL simply determines what instructions are valid — including access riglkkictgeon in-
struction fetches. The most-privileged CPL (or ring 0 where the kemme)rhas all the ca-
pabilities of the least-privileged CPL (or ring 3 where user-level applination). Therefore,
while it is illegal for a program executing at the ring 3 privilege to accesaedespace, it is
perfectly acceptable for a ring-0 kernel to branch its execution to psees

With W @& KX, we aim to define a new Kernel eXecute (KX) mode of operation. In
this mode, instruction fetches only succeed if the privilege level of the machatches the
privilege level of the page table entry. In other word$J8ERis cleared for a page table entry,
it is only executable at CPL=0, and whE)BERis set, it is only executable at CPL=3.

To achieve this, we propose maintainitwjo shadow page tables instead of one in the
normal situation: one for user-privilege (or mode) execution and onkefmel-privilege exe-
cution. Each has theX bit set for the opposite privilege’s pages. A straightforward apgroac
would require the hypervisor to intervene and swap the shadow pageufadiheevery mode
switch, from user to kernel and vice versa. Unfortunately, this scheouddwnduce a large

number of costiWMEXI Ts —two for every system call. To reduce this overhead, note that mod-
ern processors introduce special instructiorsy/sent er /sysexi t to enable fast transfers
between user and kernel. As these instructions use registers to pointeotiigoint of the
system call handler, by redirecting that register to our trampoline codeawéandle a large
number of mode switches in a performance-efficient fashion. Morefg@ly, our approach
leverages a hardware feature known as Bfe3‘ Target Value List.”[5] This feature is designed
to allow a hypervisor to whitelist a set of expect@d3 values: when a guest chandgelRk3 to
one of these values, the hypervisor is not consulted, saving a sighificarber of cycles that
would be wasted on a world switch. In our prototype, our system injectsrgptine into the
guest that simply switches page tables upon each mode switch, beforaubb@8 system
call handler is invoked. Similarly, we use this trampoline to switch the page taipés laefore
the system call handler returns back to user mode.

We assert that this optimization does not harmWhe> K X security guarantee offered by
our system. Specifically, the trampoline code is located on a page that theikgp@revents
the guest from modifying. Also, if the guest invokes the trampoline code inramended
way, it will always wind up either transferring control to thgsent er /syscal | handler or
executing the corresponding return instruction. From the OS kernebpeetive, thél @ X
property is not violated. More detailed discussion will be presented in $&8tio

Finally, it is worth mentioning that our system follows the same steps propoddCKLE
to support loadable kernel modules (LKMs) [31]. In particular, we simmyify the hash
signature of such drivers (and the main kernel) when they are beingdo&w®r example,
for Linux kernels, we leverage the fact that the kernel’s module loadks thei nit ()
method of a module when it is being loaded. As this will cause a page fault due fmage-
redirection technique, we can check the instruction poiritérregister) to see if it matches
an address within the kernel's module loader. If it does, the system catelttte module
definition structure and use that information to determine how to verify the madeailsifying
the module structure information would inevitably result in a hash signaturesistent with
the trusted version of the module, causing the falsified module to be simply bjecteur
system. Note that we do not need to modify the guest operating system;stemsgimply
needs to know how to find the information it needs in the guest operatingrsgstemory.
Such knowledge can be provided in a number of ways, e.g., either directlgited into the
hypervisor, loaded in the VM’'s metadata or indirectly hinted to the hyperfisor a hypercall
within the VM.

4 Implementation

We have developed a proof-of-concept prototype on top of Xen 3&8dkting fully-virtualized
32-bit legacy guests running under a 32-bit PAE hypervisor. Oueldpment was tested
against a Red Hat 8.0 image (running a Linux 2.4.18 kernel) and an Ubwi#turBage (run-
ning a Linux 2.6.30-5 kernel). Our development machine had a Core iN8B&lem processor
with recent hardware virtualization support. Our current prototype sapports a single vir-
tual CPU for one guest and the support of SMPs are left to future viotke following, we
present additional implementation details for the two key techniques in ounagpr

4.1 Page-Level Redirection

As mentioned earlier, our scheme virtualizes a pure Harvard architectuf@imaaon x86 by
using a hypervisor to desynchronize the processor’s TLBs. Natumllyprototype mainly
deals with various particulars of the x86 paging mechanism and related peEatons. In
particular, our experience indicates that there is a strong correlatiorebettkie frequency
with which the TLBs must be fixed up and the performance overhead oy#tens as a whole.
Note the process of de-synchronizing or splitting a page’s TLB entriec@sidy operation.
Each time a page needs to be split, there are two associdEX| Ts: one caused by the
NX-based page fault to populate the ITLB, and another from the singbefatdt handler to
populate the DTLB. Because of that, it is critical to avoid generating themg®if possible.

In our prototype, we implement an optimization that is akin to the traditional copyite
(COW) technique. Recall that one main purpose of our system is to eisarel. As such, if
some kernel pages in commodity OSs are already amenabll& forX enforcement, we can
simply enforce it without needing to create two separate copies (onederazal one for data)
in the first place. By doing so, we can not only avoid allocating additional mgispmces in
storing copies, but also reduce the numbeldEXI Ts that would otherwise be needed to
maintain the separate presence of code and data copies.

To further elaborate that, consider the impact of splitting a kernelﬁ)agthe kernel page
is never used as code, the additional overhead will be incurred whasrajeng and main-
taining the two copies, though there is little or no performance impact. Howétes, kernel
page is never used as data, then we will be splitting the page every time it igexend the
translation is not cached in the ITLB (or already flushed from the ITIAB)mentioned earlier,
this process will involve the hypervisor and cad8éEXI Ts, resulting in a high performance
overhead.

In our prototype, to determine the liveness of a kernel page, we petfasic reference-
counting and dynamically track the number of times a given kernel pagesiensied by the
guest’s page tables. In addition, by counting the number of writable mapipilaggven kernel
page, our system can intelligently choos®to split the page if that count is zero. In this way,
we can further avoid unnecessafiyEXI Ts for better performance.

4.2 Mode-Sensitivity Support

To make the page-level redirection mode-sensitive, we implement two shaalpss tables:
one for guest user-mode and another for guest kernel-mode. Asilg ®very time the guest
OS wishes to make a change to its page tables, the hypervisor interceptarige eimd syn-
chronizes it with the two shadow pages. As synchronization will requirenyipervisor to
walk through the shadow page tables and make the corresponding hewdsible change,
the presence of two shadow page tables will double the cost of synzation. To reduce the
cost, our prototype opts to interleave two page tables; this allows a single waligththem to

3 Xen's concept of kernel pages can be different than the guestf@Bexample, Xen does not internally use 2M
or 4M “superpages”; if the guest OS allocates these, Xen treats thetamgaumber of normal 4K pages.

find both entries related to a particular page table update. Specificallyad¢brgage table bi-
furcated in this way, twice the normal amount of memory for shadow pagestesddiocated.
The low-order version of the page table is used for the guest kernel,randehe high-order
version is for the guest user mode. With that, one walk is needed to find thetaalter,
followed by a privilege-level check that determines which changes to aradkevhere to look
for the second copy of that page.

With the two shadow page tables in place, our prototype further takes aogtimization.
Considering the fact that page tables are laid out in a layered hierarelogn trade granularity
for ease of updating, simply by having two distinct top-level page tables map tb the same
set of level-1 page tables (see Figure 4). The top levels of the page tebi®taltered as
frequently as the lower levels are, leading to disproportionately less updatieead. They are
also smaller (as there are fewer such top-level entries), leading to lelss peessure when
compared to the case where all entries had to be maintained separatelyal3&qgt Linux
guest as an example, the Linux kernel occupies the top one gigabytdresadspace. As the
shadow page tables are 32-bit PAE tables, this neatly corresponds &b tveefour top-level
entries. Though the top-level entries do not haveNKgermission bit, we can maintain two
sets of the level-2 page tables instead that havélkhpermission bit.

Afterwards, the two shadow
pages will be switched based
on the current running mode of

the guest VM. In our proto- W
type, we hook the handler for the / Topevel |

EUser—mode page table

sysent er instruction (by de- S Fl Levelt
touring the corresponding Mode e I e [
Specific Register or MSR con- / |

tent) to capture the user-to-kernel ' Kernel-mode page table (USER->Nx)

mode switch. Similarly, we also
detour thesysexit execution Fig.4.Two shadow page tables: the user-mode page table
by performing a kernel-to-userand the kernel-mode page table share the same level-1 en-
switch. We point out that such detries, butnottop-level and level-2 entries.

touring happens inside the guest

context with a trampoline without involving the hypervisor, thus avoiding cessary
VMEXI Ts. However, from another perspective, our prototype can still fungroperly with-

out hijacking them because the hypervisor will simply step in and switch péadestaself,
though at a lower pace.

An astute reader may observe that the trampoline code will essentially cR&R3gehe
page table base address register. Chang€R3owill typically be trapped by the hypervisor.
Fortunately, a recent hardware feature, i.e.,@R8 Target Value List, allows our page table
switch without being trapped by the hypervisor if the n€R3 value is on the target value
list. However, theCR3 update is still considered a context switch, which unfortunately causes
an unnecessary TLB flush — purging any split entries from the instru@iiéh Interestingly,

Table 1. Effectiveness of our system

Rootkit |Attack VectorPrevented[? Result
adore-ng 0.56 LKM Yes Module fails to load
superkit |/ dev/ kmem Yes Crashes
mood-nt 2.3 |/ dev/ kmem Yes Crashes
sk2rc2 / dev/ kmem| Yes Crashes
eNYeLKM 1.2 LKM Yes Module fails to load
Phalanx b6 | / dev/ nem Yes Crashes
synthetic-1 LKM Yes |Module fails to modify itself
synthetic-2 LKM Yes i nsnod crashes

the related level-1 page table entries conta(BL&@BAL bit that can prevent a TLB flush from
purging a particular entry.

There is a subtle issue in the interplay betweerdR@ Target Value List and th€L OBAL
bit. By definition, the hypervisor is not alerted@R3 is changed to a value on the list. Like-
wise, if a split entry in the TLB is not purged, the page tables will not be wbed upon an
instruction fetch to its virtual address. Therefore, if our user-mo&® value is loaded from
a page that is marke@LOBAL, execution could branch to user land while still at high privi-
lege! Fortunately, there are only two ways tiR3 can take a new value: via hardware task
switching (t r) or through the explicit assignmemiv cr 3, <general regi ster>).
Hardware task switching is not used by either Windows or LihEer the more commonov
cr 3 operation, we ensure that the instruction pointer, aftepa cr 3, <regi st er > op-
eration, will always point to a virtual address that does not map to a TULB evith the
GLOBAL bit set. To assure that, we can scan each page as it is being split, ertbatinige
opcode for this dangerous operation does not occur. In other ward$ook for that string
of bytes throughout the split page. If it is found, the split code will eeghat upon every
insertion to the ITLB, that split page’s entry will not have BeOBAL permission bit set.

5 Evaluation

To test the effectiveness of our prototype, we run six real-world itsodnd two synthetic
exploits (both violatdV & K X) against a default Ubuntu 9.0.4 system. These attacks were
selected as representative of the infection vectors used by existingl keatkits. In every
case, our system was able to defeat the infection and protect the systéma following, we
present details of two representative experiments.

4 Note that even if itis used, te r operation acts on tables that are privileged and hardware virtualizatiovsallo
for trapping thd t r operation. In other words, we can still prevent hardware task switdhing breaking our
W & K X guarantee.

® Note that there are a few corner cases worth mentioningnlve cr 3, <r egi st er > instruction is trans-
lated toOf 22 d? in machine code. If the split page ends neatly with 22 d?, then it would put the
instruction pointer onto the next page, whadeOBAL property is uncertain. Fortunately, that case does not
occur in the Linux kernels we have examined. Such a special casdstabeahandled upon insertion into the
TLB, by proactively re-populating the next page’s TLB entry-&3_ OBAL.

Table 2. Software configuration for performance evaluation

Iltem Version |Configuration

Ubuntu 9.0.4 Using Linux 2.6.30

Apache 2.0.59 Using the default high-performance configuration|file
Kernel 2.6.30 Standard kernel compilation
ApacheBenc|2.0.40-deyab -c3 -t 60 <url/file>

LMbench 3.0alpha |Using the default configuration

Mood-NT Rootkit Experiment Some rootkits install themselves by directly writing to
mixed pages in kernel memory. In this experimentttomd-ntrootkit [31] uses thé dev/ kmem
interface to access kernel memory through the file system. Specificallpdtiétuses the in-
terface to copy its resident logic into kernel memaory, and then overwritegiéun pointers to
hijack the kernel’s control flow.

When the test system is protected under our prototype, code injectioarappework
fine as the injected content is directly written into the data page. Howeven aie of the
rootkit’s function pointers is called, our page-level redirection techniqumeediately causes
the resulting instruction fetch to a code paget the data page that contained the injected
content. As a result, instead of fetching the rootkit’s code, the proces®mnpts to execute
whatever is in the code page, eventually leading to a crash in our experiment.

Synthetic Attacks In this experiment, we intentionally play with th& ¢ K X protection
by redirecting kernel control flow to user-space code. Since we tbaw@ a rootkit sample
that was developed in this way, we simply synthesize an attack that wouldtexeser code
at kernel privilege.

Specifically, we implemented a branch-to-userspace exploit as a loadahkd knodule.
In the module’s initialization function, we create a pointer to an address withgnod’s
address space. This address in user space contains an instructiencethat copies the top
of the stack int&eBX and then returns. Therefore, after successfully executitiBi, should
equate tcEl P. Running under hvmHarvard, the execution faults to the hypervisor wieen
first user instruction is fetched. From the page fault handler, it reffertmult as &NX violation
and relays it to the guest OS kernel, which then terminatesitiserod process.

Performance Overhead To evaluate the impact on system performance, we have per-
formed benchmark-based measurements. In particular, we use two Hpplieael bench-
marks and one microbenchmark to evaluate the system. They are (1) a mommgilation
of the Linux 2.6.30 kernel, (2) network throughput test on the Apache seever using the
ApacheBench [8], and (3) a standard system benchmark toolkit callisethch [24]. Our tests
were performed on a Dell Optiplex, which runs the Ubuntu 8.04 system amdrhnintel Core
i7-920 (2.66GHz) CPU and 4GB RAM. The guest VM runs Ubuntu 9.04 witluk kernel
2.6.30-5 and 1GB of memory. For comparison, we run the guest VM on X3&h 8vice, with
and without protection. The software configuration for our evaluatiohasvs in Table 2. The
benchmark programs were run ten times and averaged. Our result®areishTable 3.

In our first application benchmark, we compiled our guest VM's kern#i the command
‘make kernel ‘', usingti ne to measure how long the process took. The system under
protection taked4.275 seconds to complete, which49% longer than the compilation time

Table 3.Application benchmark results. Foake, lower is better; for Apache, higher is better.

Benchmark [Without protectionwith protectionOverhead
make ker nel [41.289 s 43.312s 4.9%
ApacheBench[11728.68 req/s|11497.24 req/s 2.0%

in an unprotected system. In our next application benchmark, we set Apahe [7] web
server. The ApacheBench prograa, was run against a small (15K) html file on that server.
We then collected the network throughput and the results sh2w% slowdown. We also
evaluated our system with LMbench [24], which is a micro-benchmark ®ké&rnel perfor-
mance. The tasks include process creation, basic arithmetic operatintextewitching, file
system operation, local communication, and memory latency. Among thedes rése max-
imum overhead of our system 4s70% when doing context switching. The overhead comes
from updating theCR3 Target Value List that is used for later switching of the two shadow
page tables. Other tasks such as performing basic arithmetic or floatingspenations incur
the lowest overhead, which is nearly zero.

6 Discussion

In this section, we discuss several issues related to our system. Firgipaurere is to effi-
ciently create a Harvard architecture on x86 and en#lbley K’ X for kernel code integrity
protection. As a result, our system is not able to protect the kernel ¢dlotnointegrity. In
other words, an attacker could possibly launch a “return-into-libc” styéek or the so-called
return-oriented attack [10,16,37] within the kernel by leveraging only #istieg authenti-
cated kernel code. Fortunately, solutions exist for protecting conbwisf[6,15,30,42] and
data flow integrity [11] for user-level applications, which could be potégtiextended to
complement our system for kernel protection.

Second, as with existing systems for kernel code integrity, our currereingmtation
does not support self-modifying kernel code. This limitation can be rethbyantercepting
the self-modifying behavior (e.g., by trapping and validating the self-motidicdoehavior)
and re-authenticating and updating the kernel code in the code memorthaftaodification.

Third, our system currently does not support kernel page swaplpimgx does not swap
out kernel pages, but Windows does have this capability when undey meemory pressure.
Supporting kernel page swapping would require intercepting swapralswap-in events and
ensuring that the page being swapped in has not been maliciously tampered with

Fourth, hvmHarvard cannot take advantage of the hardware-aspeg@ety mechanisms
builtinto modern AMD and Intel processors [3,5]. These schemes deqoire the hypervisor
to intervene when the guest wishes to alter its page table (as in shadow)pagsudfing in
superior performance. Unfortunately, our page-level redirectibierse requires page table
updates be registered with the hypervisor. Consequently, further woukd be required to
adapt our scheme to use hardware-assisted paging.

Finally, we point out that our scheme assumes a trustworthy hypervisofdece W &
K X. This assumption is needed because it essentially establishes the raataof-the entire
system and secures the lowest-level system access. We also aclgettiatia VM environ-

ment can potentially be fingerprinted and exploited [18,33] by attackerturkely, recent
solutions on hypervisor protection [19,23,41] can be employed to thwase thgacks. Also
notice that as virtualization continues to gain popularity, the concern oved#telction may
become less significant as attackers’ incentive and motivation to targeintsase.

7 Related Work

Kernel Rootkit Detection. A number of systems have been proposed to detect the presence of
kernel rootkits. Some of them passively validate kernel code and exdeinel data for signs

of infection. For example, System Virginity Verifier [34] validates the integoitthe Windows
instance that it runs within. As running inside a compromised operating systeéamgerous,
Copilot [28] copies operating system memory onto a PCI card for analysisdedicated co-
processor. Further extensions allow it to detect breaches of keateesdmantic integrity [29]

and state-based control flow integrity [30]. Strider GhostBuster [40\&watcher [17] aim

to look for discrepancies between an internal and external view oftarayte detect the hiding
behavior from rootkits.

Recently, Lares [27] and its in-VM equivalent, SIM [38], attempt to createure kernel
hooks that can be used to monitor system events. In particular, SIM ibleaplinstalling
hooks into a virtualized guest that run code safeithout hypervisor intervention. SIM uses
the same InteCR3 Target Value List feature that our work does, but uses it to creatéea sa
introspection environment instead of a new paging feature as in our system.

Kernel Rootkit Prevention. Rather than detecting rootkits already resident in an OS ker-
nel, other systems attempt to protect the kernel from being infected in thplfice. Livewire
[14] is among the first in using virtualization techniques for this purposeighadhe system
mainly focuses on the protection of static kernel code and data strucBee¥isor [36] is a
small security hypervisor that aims to securely enfor¢& & X guarantee over memory but
it requires modifying the OS kernel for the support. In other words, ibisable to support
legacy OSs such as Redhat 8.0. Also note that SecVisor implemented a similpad{xg
mode, but its shadow page table implementation uses a single page table esispvauich
leads to considerable performance overhead [36]. Instead, ouambpproposes two page
tables. Further, with th€R3 Target Value List hardware virtualization feature, our system
allows a guest running under our system to switch between these two jpéeeuwdthout hy-
pervisor intervention. In the same vein, NICKLE [31] aims to protect the iittegf the kernel
code with a software-based implementation of the Harvard architecturesoftveare imple-
mentation is based on instruction-level redirection, which has a high psafare overhead. In
comparison, our approach proposes a page-level, mode-sendilirection that substantially
reduces the performance overhead.

More recently, Overshadow [12] is another related system. Its basicigeds that the
kernel cannot be trusted with sensitive user data, even if it is not camged or actively ma-
licious. Like our system, Overshadow captures the mode-switching changéter the view
of memory inside a protected VM. However, the differences are twofd)dFirst, our sys-
tem switches between user and kernel page tables on each mode switith rimit attempt
to encrypt user memory pages. In comparison, Overshadow makesethenemory appear

encrypted to the operating system kernel, yet acts as normal whenr girivilege; (2) Sec-
ond, the goal of our system is to protect the kernel from malicious usgicapons while
Overshadow does the exact reverse.

In addition to these techniques, there have been attempts to use lightweigat wigu
chines in place of processes. For example, the Qubes [35] operasiegsyses Xen to manage
AppVMs each containing an application and a small Linux environment. App&idsreated
analogously to processes, instead of as full-on virtual machines: fusdicch as storage and
networking are handled centrally in dedicated, hardened virtual macMfgke the isolation
guarantees from such methods are potentially very strong, they arednop-dn solution for
legacy systems, due to their radically different interface.

TLB Manipulation. Finally, the presence of separate TLBs has been recognized and ex-
ploited in other contexts for different applications. For example, Wurstal. §44] proposes
using different ITLB and DTLB mappings to attack self-checksumming cétlaost simul-
taneously, Sparks and Butler [39] shows a rootkit prototype calledd@®hsidalker that could
elude existing detection using the de-synchronized TLB. Later, Roserdtlal. [32] demon-
strates a system that used a modified version of Xen to instrument a tarsi@tareprocess
within a VM. While the version of Xen used is unclear, it appears that thetesy operated
on para-virtualized guests. In contrast, our system is mainly conceritiedully-virtualized
guests and aims to defeat existing kernel rootkits. To the best of oudé&dge; no other sys-
tem has exploited recent hardware virtualization features to efficiently impleime Harvard
architecture on x86, including the use of tagged TLBs to manipulate the TL8guwest from
outside as well as the unique hardware feature oOR® Target Value List.

8 Conclusion

In this paper, we present hvmHarvard, a hardware virtualizationdha&sicient implemen-
tation of the Harvard architecture on top of x86. The Harvard architedtas two memory
spaces (one for code and one for data) and is thus inherently robusdéanjection attacks
employed by most existing kernel rootkits. Different from prior effortasing the instruction-
level redirection to virtualize the Harvard architecture, our approacpgses a page-level,
mode-sensitive scheme to achieve the same goal but with a significantledepeidormance
overhead. We have implemented a Xen-based prototype. Our evaluativa gtad it allows
for transparent support of legacy OSs (without modification) as thet@guel protects them
from existing kernel rootkit attacks with a small performance overheadf).

Acknowledgments The authors would like to thank the anonymous reviewers for their nu-
merous, insightful comments that greatly helped improve the presentation piihes. This
work was supported in part by the US Army Research Office (ARO) ugdant W911NF-
08-1-0105 managed by NCSU Secure Open Systems Initiative (SOSthandS National
Science Foundation (NSF) under Grants 0852131, 0855297, 0858@B0767, and 0952640.
Any opinions, findings, and conclusions or recommendations expré@sshis material are
those of the authors and do not necessarily reflect the views of the ABtha NSF.

References

=

© N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

WX, http://en.w ki pedi a. org/w ki /W xor _X

Rootkit Numbers Rocketing UP, McAfee Says (2008}t p:// news. cnet.com 2100- 7349 _
3-6061878. ht ni

AMD Virtualization (AMD-V) Technology (2009),http://sites.and. com us/ busi ness/

i t-solutions/usage- nodel s/virtualization/Pages/ and- v. aspx

Cooperation Grows in Fight Against Cybercrime (20H3)t p: / / ww. aver t| abs. com r esear ch/

bl og/ i ndex. php/ cat egory/ rootKkits- and- st eal t h- mal war e/

Intel 64 and IA-32 Architectures Software Developers Manual, M&WBB: System Programming Guide
(2010),ht t p: / / wwv. i nt el . conT asset s/ pdf / manual / 253669. pdf

Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow IntégrPrinciples, Implementations, and
Applications. ACM Transactions on Information and System Security)12(40 (2009)

Apache Http Server Projedtt t p: / / ht t pd. apache. or g/

ab - Apache Benchmarking Todlt t p: // ht t pd. apache. or g/ docs/ 2. 2/ progr ans/ ab. ht ni
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,, Hb, A., Neugebauer, R., Pratt, |., Warfield, A.: Xen
and the Art of Virtualization. In: SOSP '03: Proceedings of the 19th AGNMhSosium on Operating Systems
Principles. pp. 164-177. ACM, New York, NY, USA (2003)

Buchanan, E., Roemer, R., Shacham, H., Savage, S.: W&ah I@structions Go Bad: Generalizing Return-
Oriented Programming to RISC. In: CCS '08: Proceedings of the 15thl Monference on Computer and
Communications Security. pp. 27-38. ACM, New York, NY, USA (2008)

Castro, M., Costa, M., Harris, T.: Securing Software by Enmfgr®ata-Flow Integrity. In: OSDI '06: Pro-
ceedings of the 7th Symposium on Operating Systems Design and Imp&ioenpp. 147-160. USENIX
Association, Berkeley, CA, USA (2006)

Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., ¥aicger, C.A., Boneh, D., Dwoskin, J., Ports,
D.R.: Overshadow: A Virtualization-based Approach to Retrofitting Rtaia in Commodity Operating Sys-
tems. In: ASPLOS XIII: Proceedings of the 13th International Carfee on Architectural Support for Pro-
gramming Languages and Operating Systems. pp. 2—13. ACM, Neky Mot USA (2008)

Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, PREVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. In: OSDI'02: Proceedings ofatleSymposium on Operating Systems
Design and Implementation. pp. 211-224. ACM, New York, NY, USA020

Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection &h#\rchitecture for Intrusion Detection.
In: Proceedings of the Network and Distributed Systems Security Syimpopp. 191-206 (2003)

Grizzard, J.B.: Towards Self-Healing Systems: Re-establishingt Th Compromised Systems. Ph.D. thesis,
Georgia Institute of Technology (2006)

Hund, R., Holz, T., Freiling, F.C.: Return-Oriented Rootkits: Bygiag Kernel Code Integrity Protection
Mechanisms. In: Security '09: Proceedings of the 18th USENIX Sgc8ymposium (2009)

Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection throughM4idased “Out-of-the-Box” Semantic
View Reconstruction. In: CCS '07: Proceedings of the 14th ACM Carfee on Computer and Communica-
tions Security. pp. 128-138. ACM, New York, NY, USA (2007)

Klein, T.: ScoopyNG (2010ht t p: / / ww. t r apki t . de/ r esear ch/ vimi scoopyng/

Kortchinsky, K.: Honeypots: Counter Measures to VMware Fipigeting (2004),htt p: // secl i st s.
org/lists/honeypots/ 2004/ Jan- Mar/ 0015. ht

Liakh, S., Jiang, X.: [2/4,tip:x86/mm] Set First MB as RW+NX (2D10 t ps: / / pat chwor k. ker nel .

or g/ pat ch/ 90048/

Liakh, S., Jiang, X.: [3/4,tip:x86/mm] NX Protection for Kernel Dg2910), ht t ps: // pat chwor k.
ker nel . or g/ pat ch/ 90046/

Liakh, S., Jiang, X.: [4/4,tip:x86/mm] RO/NX Protection for Loadali&rnel Modules (2010t t ps: //
pat chwor k. ker nel . or g/ pat ch/ 90047/

Liston, T., Skoudis, E.: On the Cutting Edge: Thwarting Virtual Maehibetection (2006)http://
handl ers. sans. org/tliston/ Thwarti ngVMDet ecti on_Li st on_Skoudi s. pdf

LMbench - Tools for Performance Analysis (1998)t p: / / ww. bi t mover . cont | nbench/

http://en.wikipedia.org/wiki/W_xor_X
http://news.cnet.com/2100-7349_3-6061878.html
http://news.cnet.com/2100-7349_3-6061878.html
http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx
http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx
http://www.avertlabs.com/research/blog/index.php/category/rootkits-and-stealth-malware/
http://www.avertlabs.com/research/blog/index.php/category/rootkits-and-stealth-malware/
http://www.intel.com/assets/pdf/manual/253669.pdf
http://httpd.apache.org/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://www.trapkit.de/research/vmm/scoopyng/
http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
https://patchwork.kernel.org/patch/90048/
https://patchwork.kernel.org/patch/90048/
https://patchwork.kernel.org/patch/90046/
https://patchwork.kernel.org/patch/90046/
https://patchwork.kernel.org/patch/90047/
https://patchwork.kernel.org/patch/90047/
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://www.bitmover.com/lmbench/

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

Lombardi, F., Di Pietro, R.: KvmSec: A Security Extension for kifdernel Virtual Machines. In: SAC '09:
Proceedings of the 2009 ACM Symposium on Applied Computing. pp.-222%4. New York, NY (2009)
Murray, D.G., Milos, G., Hand, S.: Improving Xen Security ttgbuiDisaggregation. In: VEE '08: Proceedings
of the 4th ACM SIGPLAN/SIGOPS International Conference on Virtuaé&xion Environments. pp. 151—
160. ACM, New York, NY, USA (2008)

Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares:Aknhitecture for Secure Active Monitoring Using
Virtualization. In: Oakland '08: IEEE Symposium on Security and Pgv@&P 2008). pp. 233-247. IEEE
Computer Society, Los Alamitos, CA, USA (2008)

Petroni, Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A..pt - A Coprocessor-based Kernel Runtime
Integrity Monitor. In: Security '04: Proceedings of the 13th USENIX @&y Symposium. pp. 179-194.
USENIX Association, Berkeley, CA, USA (2004)

Petroni, Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.Ax: Architecture for Specification-based Detection
of Semantic Integrity Violations in Kernel Dynamic Data. In: Security '06odeedings of the 15th USENIX
Security Symposium. pp. 289-304. USENIX Association, Berkeley, (@3A (2006)

Petroni, Jr., N.L., Hicks, M.: Automated Detection of Persistemh&eControl-Flow Attacks. In: CCS '07:
Proceedings of the 14th ACM Conference on Computer and Commumiséiecurity. pp. 103—-115 (2007)
Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention ekl Rootkits with VMM-Based Memory
Shadowing. In: RAID '08: Proceedings of the 11th International Sysiyom on Recent Advances in Intrusion
Detection. pp. 1-20. Springer-Verlag, Berlin, Heidelberg (2008)

Rosenblum, N.E., Cooksey, G., Miller, B.P.: Virtual Machineyided Context Sensitive Page Mappings. In:
VEE '08: Proceedings of the 4th ACM SIGPLAN/SIGOPS Internationahfécence on Virtual Execution
Environments. pp. 81-90. ACM, New York, NY, USA (2008)

Rutkowska, J.: Red Pill (200/)t t p: / /i nvi si bl et hi ngs. or g/ papers/redpill.htn
Rutkowska, J.: System Virginity Verifier: Defining the Roadmap falWwéare Detection on Windows System
(2005),ht t p: / / ww. i nvi si bl et hi ngs. or g/ papers/ hitb05_virginity verifier. ppt
Rutkowska, J., Wojtczuk, R.: Qubes OS Architecture (20Hi0)p: / / qubes- os. or g/

Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypisor to Provide Lifetime Kernel code In-
tegrity for Commaodity OSes. In: SOSP '07: Proceedings of the 21st SDMOPS Symposium on Operating
Systems Principles. pp. 335-350. ACM, New York, NY, USA (2007)

Shacham, H.: The Geometry of Innocent Flesh on the Bone:mRigtia-libc without Function Calls (on the
x86). In: CCS '07: Proceedings of the 14th ACM Conference on Qdermnd Communications Security. pp.
552-561. ACM, New York, NY, USA (2007)

Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure In-VM Monitog Using Hardware Virtualization. In: CCS
'09: Proceedings of the 16th ACM Conference on Computer and Cormations Security. pp. 477-487.
ACM, New York, NY, USA (2009)

Sparks, S., Butler, J.: “Shadow Walker”: Raising the Bar fortRibBetection. In: Black Hat Japan (2005)
Wang, Y.M., Beck, D., Vo, B., Roussev, R., Verbowski, Ceté€rting Stealth Software with Strider Ghost-
Buster. In: DSN '05: Proceedings of the 2005 International Confe®n Dependable Systems and Networks.
pp. 368-377. IEEE Computer Society, Los Alamitos, CA, USA (2005)

Wang, Z., Jiang, X.: HyperSafe: A Lightweight Approach to Rie\Lifetime Hypervisor Control-Flow In-
tegrity. In: Oakland '10: IEEE Symposium on Security and PrivacyP32%10). pp. 380-398. IEEE Computer
Society, Los Alamitos, CA, USA (2010)

Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering Kernel Rootkiith Lightweight Hook Protection. In:
CCS '09: Proceedings of the 16th ACM Conference on Computer amih@mications Security. pp. 545—
554. ACM, New York, NY, USA (2009)

Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering Persisterrn&eRootkits through Systematic Hook
Discovery. In: RAID '08: Proceedings of the 11th International Sgsipm on Recent Advances in Intrusion
Detection. pp. 21-38. Springer-Verlag, Berlin, Heidelberg (2008)

Waurster, G., Oorschot, P.C.v., Somayaji, A.: A Generic AttaclChecksumming-Based Software Tamper
Resistance. In: Oakland '05: Proceedings of the 2005 IEEE SympamiuSecurity and Privacy (S&P 2005).
pp. 127-138. IEEE Computer Society, Los Alamitos, CA, USA (2005)

http://invisiblethings.org/papers/redpill.html
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://qubes-os.org/

	Transparent Protection of Commodity OS Kernels Using Hardware Virtualization
	

