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Abstract. Kernel rootkits are among the most insidious threats to computer security today. By
employing various code injection techniques, they are able to maintain an omnipotent presence in
the compromised OS kernels. Existing preventive countermeasures typically employ virtualization
technology as part of their solutions. However, they are still limited in either (1) requiring modi-
fying the OS kernel source code for the protection or (2) leveraging software-based virtualization
techniques such as binary translation with a high overhead to implement a Harvard architecture
(which is robust to various code injection techniques used by kernel rootkits). In this paper, we in-
troduce hvmHarvard, a hardware virtualization-based Harvard architecture that transparently pro-
tects commodity OS kernels from kernel rootkit attacks and significantly reduces the performance
overhead. Our evaluation with a Xen-based prototype shows that it can transparently protect legacy
OS kernels with rootkit resistance while introducing< 5% performance overhead.
Keywords: Virtualization, Harvard Architecture, Split Memory

1 Introduction

Kernel rootkits are among the most insidious threats to computer security today. Embedding
themselves within the operating system kernel, these rootkits enjoy unfetteredaccess to the
entire system and adopt various techniques to make themselves stealthy and “sticky,” thus
preventing them from being detected and removed. Given the effectiveness of this approach,
it is not surprising that there has been explosive growth in the number of new rootkit families
over recent years [2,4].

Kernel rootkit countermeasures have attracted a commensurate amount ofattention in the
research community. In particular, there are two main categories of existing efforts. The first
category aims to detect the rootkit presence by looking for abnormalities or symptoms of
rootkit infection. For example, Copilot [28] uses a special PCI card to grab a memory image
of the kernel and then scans for any possible manipulation of kernel code or system-critical
data structures. The follow-up efforts [29,30] extend it to detect any violation from semantic
specifications of static and dynamic kernel data or deviation from the normalkernel control
flow graph. However, these systems by design are all based on detectingrootkits after they
have already installed themselves in the kernel.

In contrast, the second category strives to prevent rootkit infection in the first place by en-
forcing some security property. For example, SecVisor enforces aW ⊕X property on kernel
memory pages. TheW ⊕X property states that a given memory page can be either writable or
executable, but not both at the same time.W⊕X enforcement is complicated by legacy OS ker-
nels that contain mixed kernel pages with both code and data [20,21,22]. Tohandle such pages,



SecVisor modifies the kernel source code to make the OS kernel memory layout conform to
theW ⊕X property. From another perspective, NICKLE [31] takes a softwarevirtualization
(i.e., binary translation) approach to emulate a Harvard architecture on x86, which essentially
creates a separate memory space to reliably store authorized kernel code. By transparently
redirecting kernel instruction fetches to the separate memory space, NICKLE is able to sup-
port unmodified kernels and guarantee their kernel code integrity, whicheffectively defeats
most existing rootkits. However, from another perspective, the presence of a dedicated code
memory and the need for transparent redirection of kernel instruction fetches require inter-
cepting and redirecting every single kernel instruction execution, which unfortunately causes
significant performance overhead [31].

In this paper, we introducehvmHarvard, a hardware virtualization-based Harvard architec-
ture on x86 that can not only transparently support commodity OSs without modification, but
also effectively reduce the performance overhead. Specifically, we observe that the high per-
formance overhead of implementing software-based Harvard architecture is mainly caused by
instruction-levelinterception and redirection (of kernel instruction fetches) to the code mem-
ory. As such, we proposepage-levelredirection in hvmHarvard so that the performance over-
head can be significantly reduced without unnecessarily sacrificing the security guarantee.

There are two main challenges involved in changing from instruction-level redirection to
page-level redirection of kernel instruction fetches. The first one comes from the fact that x86 is
not designed to support the Harvard architecture. To address that, wemake an unconventional
use of split code and data TLBs on x86 in combination with recent hardware-based tagged
TLB support [3]. In particular, with separate code and data TLBs, we can dynamically adjust
the page table to virtualize the Harvard architecture on top of x86 (so that code and data each
have its own memory address space). The tagged TLB support is essential here as it avoids
flushing the code/data TLBs in a virtualized environment (e.g., VM exits – Section 3.1), thus
allowing the hypervisor to safely intervene and manipulate the guest page table in use for
the Harvard architecture creation. With the separation of code memory and data memory, our
Harvard architecture can naturally handle the mixed code and data pages incommodity OS
kernels while still strictly enforcingW⊕X. In the meantime, we also observe that the majority
of existing kernel memory pages are not mixed. As a result, there is no needfor hvmHarvard
to keep a shadow copy of these pages, nor does it need to intervene on instruction fetches
from them. By doing so, no processing overhead will be incurred on these pages and no extra
memory space will be wasted, as they no longer need to be shadowed [31].

The second challenge stems from the need to performmode-sensitivepage-level redirec-
tion since we are interested in redirecting kernel instruction fetches only. In other words, we
need to first determine the current running mode and then decide whether the corresponding
instruction fetch should be redirected or not. This imposes a strict requirement to intercept
every mode-switching event (e.g., including system calls) in the redirection logic. Intercepting
these events at the hypervisor will cause significant performance overhead. Our solution to this
problem involves altering the guest’s view of memory at each privilege level(or mode): all of
user memory becomes non-executable when a process is executing at the kernel mode, and
vice versa. For brevity, we call this a mode-sensitive view (Section 3.2). During the normal



operation of the guest, hvmHarvard does not intercept and mediate the change between dif-
ferent views of memory. Instead, our system injects trampoline code to switchbetween these
two views of memory upon the mode-switching event inside the guest. The trampoline mech-
anism leverages an Intel hardware virtualization extension called theCR3 Target Value List
(Section 3.2) to avoid being trapped by the hypervisor and to achieve betterperformance.

We have implemented a Xen[9]-based proof-of-concept prototype. The prototype can trans-
parently support a number of commodity systems including legacy Red Hat 8.0 (with a Linux
2.4.18 kernel) and recent Ubuntu 9.04 (running Linux 2.6.30-5). Our evaluation shows that
our system is effective in preventing eight kernel attacks (including six real-world rootkits and
two synthetic attacks) against legacy OS kernels that do not have theW ⊕ X support. Such
protection is achieved with only a small performance overhead (i.e.,< 5%). To summarize,
our paper has the following contributions:

– We propose a hardware virtualization-based Harvard architecture to effectively protect
commodity OS kernels from kernel rootkit attacks. Compared with existing approaches,
our system can not only achieve a similar protection guarantee, but also significantly re-
duce the performance overhead suffered by previous approaches.

– The first key technique in our approach ispage-levelredirection of instruction fetches,
which departs from prior efforts that perform instruction-level redirection. Our technique
significantly reduces the performance overhead in the creation of the Harvard architecture
on top of x86.

– The second key technique enablesmode-sensitiveredirection by redirectingonly kernel
instruction fetches. In this way, we can effectively avoid hypervisor intervention in the
guest’s mode-switching events. As these events occur frequently inside the guest, this tech-
nique also contributes to reducing the overall performance overhead.

– Finally, we present a Xen-based system prototype. The evaluation results with the proto-
type confirmed the practicality and effectiveness of our approach.

The rest of the paper is structured as follows. We briefly describe necessary background
on the Harvard architecture and hardware virtualization in Section 2. Our system design and
implementation are then presented in Section 3 and Section 4, respectively. After that, we
present the evaluation results in Section 5, which is followed by the discussion on possible
limitations and their improvement in Section 6. Finally, we discuss related work in Section 7
and conclude our paper in Section 8.

2 Background

In this section, we briefly review some key concepts that are essential to our system but may
be unfamiliar to some readers: the Harvard architecture and shadow paging in virtualization.
Readers with sufficient background can safely skip this section.

2.1 Harvard Architecture

Modern computers use a single address space to refer to working memory.This model of
memory is commonly known as the von Neumann architecture. Interestingly, someof the very



Fig. 1.The Harvard architecture
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earliest computers used two utterly separate working memories, one for instructions and one
for data. This arrangement is known as the Harvard architecture (Figure 1). In a pure Harvard
architecture machine, data accesses and instruction accesses are treated as accessing totally
distinct address spaces. From a security standpoint, this addressing scheme eliminates code
injection attacks. For example, some buffer overflow attacks use an overlong memory copy
operation to overwrite memory that will be executed as code. A pure Harvard architecture
machine is not vulnerable to this class of attacks, as their addressing schemedoes not allow
code and data to be referred to interchangeably.

This work focuses on a widely deployed processor family,x86, which has a unified address
space for main memory and is thus a von Neumann architecture. However, x86 processors typi-
cally have separate caches for instructions and data. When executing from cache, the processor
behaves like a Harvard architecture machine1. Only when main memory must be consulted,
does x86 look like a von Neumann architecture. This observation is the foundation of our page-
level redirection technique for the creation of the Harvard architecture on top of x86 (Section
3.1).

2.2 Virtualization and Shadow Paging

Virtualization involves running a guest operating system in an environment that provides the
illusion of complete access to a physical machine. All the resources used to construct such
an illusory machine constitute a Virtual Machine (VM), while the software that maintains one
or more VMs is known variously as a hypervisor or a Virtual Machine Monitor (VMM). The
hypervisor is commonly considered to be part of Trusted Computing Base (TCB) as it is strictly
isolated from the VMs it manages and is often much smaller than modern operatingsystems.

There are several ways to virtualize a guest operating system. Since ourwork is based on
hardware virtualization, we focus on its operation here. In particular, based on certain proces-
sor extensions, hardware virtualization operates a “trap-and-emulate” model. When a guest OS
wishes to perform a privileged operation, the hardware has two options:either it can handle the
request based on the processor extension for hardware virtualization, or if that is not possible,

1 This hybrid architecture is known as amodifiedHarvard architecture; many processors with the caching feature
use such an arrangement today.



it can pass control to the hypervisor for handling. Handling the latter caseconstitutes a goodly
portion of the hypervisor’s workload and is typically an involved process.

Shadow paging is one such example. To better describe it, we first review how mem-
ory management works on an un-virtualized machine. Recall that x86 supports two memory
protection mechanisms: segmentation and paging. They protect memory in a similar way by
essentially permitting a higher-privilege piece of software to put blinders ona lower-privilege
program, thus restricting its view of memory to only those things it is supposed to be able
to access. Since segmentation support is being phased out in the new 64-bit long mode, we
focus on the paging protection mechanism. In essence, paging uses pagetranslation tables, or
page tables for short, to remap memory for a given process. Virtual addresses are translated
into physical addresses by these tables. These tables are also used by the hardware to enforce
certain permissions policies (e.g., NX [1]) on the types of accesses allowed.

Virtualization has not changed this picture of the process; it has merely added another
layer underneath it. By leveraging paging, the hypervisor divides the machine’s memory into
distinct logical machine memories. The guest OS in a VM then treats the memory it is given
in the traditional way, dividing it up between the applications running in the guest. Under
hardware virtualization, however, the OS itself does not know thereal machine addresses that
make up its allotted memory. With shadow paging, the hypervisor solves this problem by
introducing an extra layer of indirection. In particular, a shadow table is created for a guest
and maintained in the hypervisor. An unsuspecting guest OS kernel is allowed to maintain its
own page tables, but they are not actually used by the hardware. Instead, the hypervisor marks
these guest page tables read-only. Any attempt to write to them therefore generates a page
fault, which is trapped by the hypervisor. The hypervisor, in turn, emulates the write request,
eventually outputting the equivalent entry into the “real” page table used by the hardware. The
guest can never see this real page table, which is assiduously kept synchronized with the one
it can see – thus the name “shadow page table.”

This arrangement is illustrated graphically in Figure 2. In the diagram, a virtual address
(VA) is translated through both the guest’s and the hardware’s page tables. The guest’s page
tables eventually lead to a guest physical address (GPA) – the address the guest thinks of as
being a hardware address. The shadow page tables instead translate thesame virtual address
into the real machine address (MA). The tables are kept synchronized by the hypervisor; this
synchronization is represented by the dotted lines in the figure.

3 Design

In this work, we aim to develop a hardware virtualization-based Harvard architecture that
can efficiently support unmodified legacy OS kernels and protect them from kernel rootkit
attacks. Specifically, the presence of two distinct memory spaces for codeand data in a Harvard
architecture is useful for blocking code injection attacks and enforcing the W ⊕ X property.
In this work, we propose to take a step further by enforcing mode-sensitive W ⊕ X, also
known asW ⊕KX. Due to our focus on OS kernel protection,W ⊕KX requires that a user-
level memory page will not be executable from the kernel mode and vice versa. Commodity
hardware by default allows the execution of user-level memory pages atkernel privilege, which



opens up “interesting” opportunities for kernel rootkit infection. As ourdefense,W ⊕KX is
proposed to effectively block this infection vector.

Threat Model and System Assumption In this paper, we assume an adversary model
where attackers or kernel rootkits are able to exploit software vulnerabilities in an OS kernel
to launch code injection attacks. Accordingly, we also assume kernel rootkits have the highest
privilege level inside the victim VM (e.g., theroot privilege in a UNIX system) and have full
access to the VM’s memory space (e.g., through/dev/mem in Linux). However, the goal of
a kernel rootkit is to stealthily maintain and hide its presence in the victim system; to do so,
it will need to execute its own (malicious) code in the kernel space. We note that such a need
exists in most kernel rootkits today, and we will discuss possible exceptionsin Section 6.
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Fig. 3. Page-level mode-sensitive redirection
enables an efficient implementation of the Har-
vard architecture on top of x86.

In the meantime, our system assumes
a trustworthy hypervisor as the neces-
sary trusted computing base (TCB) to pro-
vide strict VM isolation. This assumption
is shared by many other hypervisor-based
security research efforts [13,14,17,25,43]
and being hardened by existing hypervisor-
protection solutions [26,41]. We will discuss
possible attacks (e.g., VM escape) in Sec-
tion 6. With this assumption, we consider
the threat from layer-below attacks launched
from physical hosts outside of the scope of
this work.2

3.1 Page-Level Redirection forW ⊕ X

The central scheme of our approach is to ef-
ficiently create a Harvard architecture (Fig-
ure 3) on x86 by virtualizing one mem-
ory space for code and another for data. To
achieve our goal, we observe the presence of separate TLBs for instruction fetches and data
accesses. Note that each TLB entry caches the translation result from avirtual address to a
physical address. When a memory access or an instruction fetch occurs, the virtual address
lookup will go through the corresponding TLB first. Should that TLB not contain an entry
for the requested translation (called a TLB miss), the hardware walks through the page table
entries in main memory to do the lookup, then constructs such an entry. As a result, from the
TLB’s perspective, the hardware itself thinks in terms of two address spaces. However, in nor-
mal operation, these address spaces are kept synchronized and thusdescribe a unified memory
space. Fortunately, to our benefit, there is no hardware requirement that this must be the case.

2 There exists another type of layer-below or specifically hardware DMA attack that is initiated from within a
guest VM. However, since the hypervisor itself virtualizes or mediates guest DMA operations, recent hardware
support for IOMMU can be readily adopted to intercede and block them. Therefore, we do not consider them in
this paper.



In other words, to emulate a pure Harvard architecture, we can take advantage of these two
TLBs by desynchronizing and loading them with two different page table entries for the same
virtual address, thus creating two distinct memory spaces for code and data.

Unfortunately, the de-synchronization of these two TLBs is a delicate process, which is
complicated by the fact that a TLB entry has a relatively limited lifespan. First, the TLBs are
not large enough to cache all translation results at the same time, which means that older entries
are eventually overwritten by newly-requested translations. Second, when an OS kernel either
alters a page table or switches address contexts, these caches are implicitly flushed. Third,
x86 provides very few instructions for interacting with the TLBs. In fact, after enabling the
paging mode, the provided instructions are mainly used for removing one or all entries from
bothTLBs, which means the only way for us to populate a TLB entry will be by performing
an address translation that eventually winds up in that cache.

To deal with the above challenges, we need to effectively intercept the hardware’s attempts
to re-populate TLBs. In particular, for the virtual addresses of interest, when there is a TLB
miss, the hardware consults the page table and checks the permission bits of the entry it loads.
If those permissions are violated, a page fault (or#PF) exception will be thrown. When there
is a TLB hit, the cached entry’s permissions are directly checked without consulting the page
table. As a result, in the case of a TLB miss, we need to carefully prepare thepage table in a
way that will load the desired translation results as well as related permissionsinto respective
TLBs.

There are three permission bits that can cause useful faults: theUSER bit, thePRESENT
bit and theNX bit. TheUSER bit only faults when a user-mode instruction fetch references
a kernel page. With our focus on kernel protection, we are not interested in using this bit.
ThePRESENT bit, if not set, trapsanyaccess – which would lead to many expensive world
switches. TheNX bit causes a fault on any instruction fetch from pages with this bit set. In our
system, we naturally leverage theNX bit.

In particular, to use theNX bit to cause one virtual address to map to two context-sensitive
memory pages, we map the address to its data memory page and set itsNX bit. If execution
branches to an address within the page, the page fault handler substitutesits entry to code
memory page and clears theNX bit. In order to load the entry into the instruction TLB (ITLB),
the page fault handler must allow the guest to execute an instruction using thisentry. However,
once the code page entry has been loaded, the system needs to regain control to restore the map
back to the data memory page. If this is not done, the data TLB (DTLB) may windup being
populated with the code page entry, routing data reads to the code page andthus violating the
Harvard architecture. Note that the code page entry is marked asread-onlyand there is no way
to cause a page to be executable yet not readable on thex86architecture.

To ensure that the page table is restored to the corresponding data entry as soon as pos-
sible, our design relies on the x86 single-step execution feature. Specifically, by setting the
trap flag (orTF) of theEFLAGS register, the processor will generate an exception after every
instruction. This feature allows us to execute one instruction, and then restore the data page
entry in theTF handler. The process is shown in pseudo-code in Algorithm 1.



Algorithm 1 : TLB de-synchronization algorithm.
Input : Redirected Page Address (addr), Page table Entry for addr (pte)

/* handling NX-based page fault */ ; /* handling TF-based fault */ ;
pte =the code page (addr); pte =the data page (addr) ;
set trap flag (); unset trap flag ();
return to guest (); return to guest ();

In this way, our design can populate the ITLB with one record and DTLB withanother
record without interfering each other. Here, we point out that if by trapping the execution of
a guest VM to the hypervisor, a VM exit (orVMEXIT) occurs. In some processors, VM exits
will flush the TLBs, which defeat our purpose of de-synchronizing TLBs. In our prototype,
we leverage a hardware feature called tagged TLB [3] that is available in all recent hardware-
virtualized AMD processors as well as Intel processors based on the new Nehalem architecture.
This hardware feature essentially adds an extra field or an identification “tag” to each TLB
entry that specifies the VM context within which the entry is valid. When a VM exit occurs,
these entries will not be flushed. More details about our system will be presented in Section 4.1.

3.2 Mode-Sensitivity forW ⊕ KX

By effectively creating a Harvard architecture on x86, our page-level redirection technique is
able to enforceW ⊕X while accommodating mixed kernel pages in commodity OS kernels.
However, theW ⊕X enforcement is still insufficient due to the need to block the execution of
user-level pages from the kernel level. In other words, we need to enforce a strongerW ⊕KX

policy. As mentioned earlier, this is necessary as commodity OS kernels disallowthe access
of kernel memory pages from user mode, but do permit the execution of user memory pages
from kernel mode.

To elaborate on this, thex86architecture has two related concepts in this vein: theUSER
page table permission bit and the Current Privilege Level (CPL) bits in theCS register. The
CPL simply determines what instructions are valid – including access right checking on in-
struction fetches. The most-privileged CPL (or ring 0 where the kernel runs) has all the ca-
pabilities of the least-privileged CPL (or ring 3 where user-level applications run). Therefore,
while it is illegal for a program executing at the ring 3 privilege to access kernel space, it is
perfectly acceptable for a ring-0 kernel to branch its execution to user space.

With W ⊕ KX, we aim to define a new Kernel eXecute (KX) mode of operation. In
this mode, instruction fetches only succeed if the privilege level of the machine matches the
privilege level of the page table entry. In other words, ifUSER is cleared for a page table entry,
it is only executable at CPL=0, and whenUSER is set, it is only executable at CPL=3.

To achieve this, we propose maintainingtwo shadow page tables instead of one in the
normal situation: one for user-privilege (or mode) execution and one for kernel-privilege exe-
cution. Each has theNX bit set for the opposite privilege’s pages. A straightforward approach
would require the hypervisor to intervene and swap the shadow page tableupon every mode
switch, from user to kernel and vice versa. Unfortunately, this scheme would induce a large



number of costlyVMEXITs – two for every system call. To reduce this overhead, note that mod-
ern processors introduce special instructions –sysenter/sysexit to enable fast transfers
between user and kernel. As these instructions use registers to point to theentry point of the
system call handler, by redirecting that register to our trampoline code, wecan handle a large
number of mode switches in a performance-efficient fashion. More specifically, our approach
leverages a hardware feature known as the “CR3 Target Value List.”[5] This feature is designed
to allow a hypervisor to whitelist a set of expectedCR3 values: when a guest changesCR3 to
one of these values, the hypervisor is not consulted, saving a significant number of cycles that
would be wasted on a world switch. In our prototype, our system injects a trampoline into the
guest that simply switches page tables upon each mode switch, before the actual OS system
call handler is invoked. Similarly, we use this trampoline to switch the page tables again before
the system call handler returns back to user mode.

We assert that this optimization does not harm theW ⊕KX security guarantee offered by
our system. Specifically, the trampoline code is located on a page that the hypervisor prevents
the guest from modifying. Also, if the guest invokes the trampoline code in anunintended
way, it will always wind up either transferring control to thesysenter/syscall handler or
executing the corresponding return instruction. From the OS kernel’s perspective, theW ⊕X

property is not violated. More detailed discussion will be presented in Section 6.
Finally, it is worth mentioning that our system follows the same steps proposed inNICKLE

to support loadable kernel modules (LKMs) [31]. In particular, we simplyverify the hash
signature of such drivers (and the main kernel) when they are being loaded. For example,
for Linux kernels, we leverage the fact that the kernel’s module loader calls theinit()
method of a module when it is being loaded. As this will cause a page fault due toour page-
redirection technique, we can check the instruction pointer (IP register) to see if it matches
an address within the kernel’s module loader. If it does, the system can locate the module
definition structure and use that information to determine how to verify the module. Falsifying
the module structure information would inevitably result in a hash signature inconsistent with
the trusted version of the module, causing the falsified module to be simply rejected by our
system. Note that we do not need to modify the guest operating system; our system simply
needs to know how to find the information it needs in the guest operating system’s memory.
Such knowledge can be provided in a number of ways, e.g., either directly compiled into the
hypervisor, loaded in the VM’s metadata or indirectly hinted to the hypervisorfrom a hypercall
within the VM.

4 Implementation

We have developed a proof-of-concept prototype on top of Xen 3.3.1,targeting fully-virtualized
32-bit legacy guests running under a 32-bit PAE hypervisor. Our development was tested
against a Red Hat 8.0 image (running a Linux 2.4.18 kernel) and an Ubuntu 9.04 image (run-
ning a Linux 2.6.30-5 kernel). Our development machine had a Core i7-930Nehalem processor
with recent hardware virtualization support. Our current prototype onlysupports a single vir-
tual CPU for one guest and the support of SMPs are left to future work. In the following, we
present additional implementation details for the two key techniques in our approach.



4.1 Page-Level Redirection

As mentioned earlier, our scheme virtualizes a pure Harvard architecture machine on x86 by
using a hypervisor to desynchronize the processor’s TLBs. Naturally, our prototype mainly
deals with various particulars of the x86 paging mechanism and related TLB operations. In
particular, our experience indicates that there is a strong correlation between the frequency
with which the TLBs must be fixed up and the performance overhead of the system as a whole.
Note the process of de-synchronizing or splitting a page’s TLB entries is acostly operation.
Each time a page needs to be split, there are two associatedVMEXITs: one caused by the
NX-based page fault to populate the ITLB, and another from the single step fault handler to
populate the DTLB. Because of that, it is critical to avoid generating these events if possible.

In our prototype, we implement an optimization that is akin to the traditional copy-on-write
(COW) technique. Recall that one main purpose of our system is to ensureW ⊕X. As such, if
some kernel pages in commodity OSs are already amenable forW ⊕X enforcement, we can
simply enforce it without needing to create two separate copies (one for code and one for data)
in the first place. By doing so, we can not only avoid allocating additional memory spaces in
storing copies, but also reduce the number ofVMEXITs that would otherwise be needed to
maintain the separate presence of code and data copies.

To further elaborate that, consider the impact of splitting a kernel page3. If the kernel page
is never used as code, the additional overhead will be incurred when generating and main-
taining the two copies, though there is little or no performance impact. However,if the kernel
page is never used as data, then we will be splitting the page every time it is executed and the
translation is not cached in the ITLB (or already flushed from the ITLB).As mentioned earlier,
this process will involve the hypervisor and causeVMEXITs, resulting in a high performance
overhead.

In our prototype, to determine the liveness of a kernel page, we perform basic reference-
counting and dynamically track the number of times a given kernel page is referenced by the
guest’s page tables. In addition, by counting the number of writable mappingsto a given kernel
page, our system can intelligently choosenot to split the page if that count is zero. In this way,
we can further avoid unnecessaryVMEXITs for better performance.

4.2 Mode-Sensitivity Support

To make the page-level redirection mode-sensitive, we implement two shadowpages tables:
one for guest user-mode and another for guest kernel-mode. As a result, every time the guest
OS wishes to make a change to its page tables, the hypervisor intercepts the change and syn-
chronizes it with the two shadow pages. As synchronization will require thehypervisor to
walk through the shadow page tables and make the corresponding hardware-visible change,
the presence of two shadow page tables will double the cost of synchronization. To reduce the
cost, our prototype opts to interleave two page tables; this allows a single walk through them to

3 Xen’s concept of kernel pages can be different than the guest OS’. For example, Xen does not internally use 2M
or 4M “superpages”; if the guest OS allocates these, Xen treats them as alarge number of normal 4K pages.



find both entries related to a particular page table update. Specifically, for each page table bi-
furcated in this way, twice the normal amount of memory for shadow page tables is allocated.
The low-order version of the page table is used for the guest kernel mode, and the high-order
version is for the guest user mode. With that, one walk is needed to find the location to alter,
followed by a privilege-level check that determines which changes to makeand where to look
for the second copy of that page.

With the two shadow page tables in place, our prototype further takes another optimization.
Considering the fact that page tables are laid out in a layered hierarchy,we can trade granularity
for ease of updating, simply by having two distinct top-level page tables map down to the same
set of level-1 page tables (see Figure 4). The top levels of the page table are not altered as
frequently as the lower levels are, leading to disproportionately less updateoverhead. They are
also smaller (as there are fewer such top-level entries), leading to less cache pressure when
compared to the case where all entries had to be maintained separately. Usinga 32-bit Linux
guest as an example, the Linux kernel occupies the top one gigabyte of address space. As the
shadow page tables are 32-bit PAE tables, this neatly corresponds to oneof the four top-level
entries. Though the top-level entries do not have theNX permission bit, we can maintain two
sets of the level-2 page tables instead that have theNX permission bit.

Hardware CR3
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Level 1

Top−level

Level 2
Top−level

User−mode page table

Kernel−mode page table (USER−>NX)

Fig. 4. Two shadow page tables: the user-mode page table
and the kernel-mode page table share the same level-1 en-
tries, butnot top-level and level-2 entries.

Afterwards, the two shadow
pages will be switched based
on the current running mode of
the guest VM. In our proto-
type, we hook the handler for the
sysenter instruction (by de-
touring the corresponding Model
Specific Register or MSR con-
tent) to capture the user-to-kernel
mode switch. Similarly, we also
detour thesysexit execution
by performing a kernel-to-user
switch. We point out that such de-
touring happens inside the guest
context with a trampoline without involving the hypervisor, thus avoiding unnecessary
VMEXITs. However, from another perspective, our prototype can still function properly with-
out hijacking them because the hypervisor will simply step in and switch page tables itself,
though at a lower pace.

An astute reader may observe that the trampoline code will essentially changeCR3, the
page table base address register. Changes toCR3 will typically be trapped by the hypervisor.
Fortunately, a recent hardware feature, i.e., theCR3 Target Value List, allows our page table
switch without being trapped by the hypervisor if the newCR3 value is on the target value
list. However, theCR3 update is still considered a context switch, which unfortunately causes
an unnecessary TLB flush – purging any split entries from the instructionTLB. Interestingly,



Table 1.Effectiveness of our system

Rootkit Attack VectorPrevented? Result
adore-ng 0.56 LKM Yes Module fails to load

superkit /dev/kmem Yes Crashes
mood-nt 2.3 /dev/kmem Yes Crashes

sk2rc2 /dev/kmem Yes Crashes
eNYeLKM 1.2 LKM Yes Module fails to load

Phalanx b6 /dev/mem Yes Crashes
synthetic-1 LKM Yes Module fails to modify itself
synthetic-2 LKM Yes insmod crashes

the related level-1 page table entries contain aGLOBAL bit that can prevent a TLB flush from
purging a particular entry.

There is a subtle issue in the interplay between theCR3 Target Value List and theGLOBAL
bit. By definition, the hypervisor is not alerted ifCR3 is changed to a value on the list. Like-
wise, if a split entry in the TLB is not purged, the page tables will not be consulted upon an
instruction fetch to its virtual address. Therefore, if our user-modeCR3 value is loaded from
a page that is markedGLOBAL, execution could branch to user land while still at high privi-
lege! Fortunately, there are only two ways thatCR3 can take a new value: via hardware task
switching (ltr) or through the explicit assignment (mov cr3, <general register>).
Hardware task switching is not used by either Windows or Linux.4 For the more commonmov
cr3 operation, we ensure that the instruction pointer, after amov cr3, <register> op-
eration, will always point to a virtual address that does not map to a TLB entry with the
GLOBAL bit set. To assure that, we can scan each page as it is being split, ensuringthat the
opcode for this dangerous operation does not occur. In other words, we look for that string
of bytes throughout the split page. If it is found, the split code will ensure that upon every
insertion to the ITLB, that split page’s entry will not have theGLOBAL permission bit set.5

5 Evaluation

To test the effectiveness of our prototype, we run six real-world rootkits and two synthetic
exploits (both violateW ⊕ KX) against a default Ubuntu 9.0.4 system. These attacks were
selected as representative of the infection vectors used by existing kernel rootkits. In every
case, our system was able to defeat the infection and protect the system. In the following, we
present details of two representative experiments.

4 Note that even if it is used, theltr operation acts on tables that are privileged and hardware virtualization allows
for trapping theltr operation. In other words, we can still prevent hardware task switchingfrom breaking our
W ⊕ KX guarantee.

5 Note that there are a few corner cases worth mentioning. Themov cr3, <register> instruction is trans-
lated to0f 22 d? in machine code. If the split page ends neatly with0f 22 d?, then it would put the
instruction pointer onto the next page, whoseGLOBAL property is uncertain. Fortunately, that case does not
occur in the Linux kernels we have examined. Such a special case can also be handled upon insertion into the
TLB, by proactively re-populating the next page’s TLB entry as¬GLOBAL.



Table 2.Software configuration for performance evaluation

Item Version Configuration
Ubuntu 9.0.4 Using Linux 2.6.30
Apache 2.0.59 Using the default high-performance configuration file
Kernel 2.6.30 Standard kernel compilation
ApacheBench2.0.40-devab -c3 -t 60 <url/file>
LMbench 3.0alpha Using the default configuration

Mood-NT Rootkit Experiment Some rootkits install themselves by directly writing to
mixed pages in kernel memory. In this experiment, themood-ntrootkit [31] uses the/dev/kmem
interface to access kernel memory through the file system. Specifically, the rootkit uses the in-
terface to copy its resident logic into kernel memory, and then overwrites function pointers to
hijack the kernel’s control flow.

When the test system is protected under our prototype, code injection appears to work
fine as the injected content is directly written into the data page. However, when one of the
rootkit’s function pointers is called, our page-level redirection techniqueimmediately causes
the resulting instruction fetch to a code page,not the data page that contained the injected
content. As a result, instead of fetching the rootkit’s code, the processorattempts to execute
whatever is in the code page, eventually leading to a crash in our experiment.

Synthetic Attacks In this experiment, we intentionally play with theW⊕KX protection
by redirecting kernel control flow to user-space code. Since we do not have a rootkit sample
that was developed in this way, we simply synthesize an attack that would execute user code
at kernel privilege.

Specifically, we implemented a branch-to-userspace exploit as a loadable kernel module.
In the module’s initialization function, we create a pointer to an address withininsmod’s
address space. This address in user space contains an instruction sequence that copies the top
of the stack intoEBX and then returns. Therefore, after successfully executing it,EBX should
equate toEIP. Running under hvmHarvard, the execution faults to the hypervisor whenthe
first user instruction is fetched. From the page fault handler, it reportsthe fault as aNX violation
and relays it to the guest OS kernel, which then terminates theinsmod process.

Performance Overhead To evaluate the impact on system performance, we have per-
formed benchmark-based measurements. In particular, we use two application-level bench-
marks and one microbenchmark to evaluate the system. They are (1) a normalcompilation
of the Linux 2.6.30 kernel, (2) network throughput test on the Apache web server using the
ApacheBench [8], and (3) a standard system benchmark toolkit called LMbench [24]. Our tests
were performed on a Dell Optiplex, which runs the Ubuntu 8.04 system and has an Intel Core
i7-920 (2.66GHz) CPU and 4GB RAM. The guest VM runs Ubuntu 9.04 with Linux kernel
2.6.30-5 and 1GB of memory. For comparison, we run the guest VM on Xen 3.3.1 twice, with
and without protection. The software configuration for our evaluation is shown in Table 2. The
benchmark programs were run ten times and averaged. Our results are shown in Table 3.

In our first application benchmark, we compiled our guest VM’s kernel with the command
‘make kernel‘, usingtime to measure how long the process took. The system under
protection takes44.275 seconds to complete, which is4.9% longer than the compilation time



Table 3.Application benchmark results. Formake, lower is better; for Apache, higher is better.

Benchmark Without protectionwith protectionOverhead
make kernel 41.289 s 43.312 s 4.9%
ApacheBench 11728.68 req/s 11497.24 req/s 2.0%

in an unprotected system. In our next application benchmark, we set up anApache [7] web
server. The ApacheBench program,ab, was run against a small (15K) html file on that server.
We then collected the network throughput and the results show a2.0% slowdown. We also
evaluated our system with LMbench [24], which is a micro-benchmark for OS kernel perfor-
mance. The tasks include process creation, basic arithmetic operations, context switching, file
system operation, local communication, and memory latency. Among these results, the max-
imum overhead of our system is4.70% when doing context switching. The overhead comes
from updating theCR3 Target Value List that is used for later switching of the two shadow
page tables. Other tasks such as performing basic arithmetic or floating-point operations incur
the lowest overhead, which is nearly zero.

6 Discussion

In this section, we discuss several issues related to our system. First, ourgoal here is to effi-
ciently create a Harvard architecture on x86 and enableW ⊕ KX for kernel code integrity
protection. As a result, our system is not able to protect the kernel control-flow integrity. In
other words, an attacker could possibly launch a “return-into-libc” style attack or the so-called
return-oriented attack [10,16,37] within the kernel by leveraging only the existing authenti-
cated kernel code. Fortunately, solutions exist for protecting control flows [6,15,30,42] and
data flow integrity [11] for user-level applications, which could be potentially extended to
complement our system for kernel protection.

Second, as with existing systems for kernel code integrity, our current implementation
does not support self-modifying kernel code. This limitation can be removed by intercepting
the self-modifying behavior (e.g., by trapping and validating the self-modification behavior)
and re-authenticating and updating the kernel code in the code memory afterthe modification.

Third, our system currently does not support kernel page swapping.Linux does not swap
out kernel pages, but Windows does have this capability when under heavy memory pressure.
Supporting kernel page swapping would require intercepting swap-outand swap-in events and
ensuring that the page being swapped in has not been maliciously tampered with.

Fourth, hvmHarvard cannot take advantage of the hardware-assistedpaging mechanisms
built into modern AMD and Intel processors [3,5]. These schemes do notrequire the hypervisor
to intervene when the guest wishes to alter its page table (as in shadow paging), resulting in
superior performance. Unfortunately, our page-level redirection scheme requires page table
updates be registered with the hypervisor. Consequently, further workwould be required to
adapt our scheme to use hardware-assisted paging.

Finally, we point out that our scheme assumes a trustworthy hypervisor to enforceW ⊕

KX. This assumption is needed because it essentially establishes the root-of-trust of the entire
system and secures the lowest-level system access. We also acknowledge that a VM environ-



ment can potentially be fingerprinted and exploited [18,33] by attackers. Fortunately, recent
solutions on hypervisor protection [19,23,41] can be employed to thwart these attacks. Also
notice that as virtualization continues to gain popularity, the concern over VMdetection may
become less significant as attackers’ incentive and motivation to target VMsincrease.

7 Related Work

Kernel Rootkit Detection. A number of systems have been proposed to detect the presence of
kernel rootkits. Some of them passively validate kernel code and examinekernel data for signs
of infection. For example, System Virginity Verifier [34] validates the integrityof the Windows
instance that it runs within. As running inside a compromised operating systemis dangerous,
Copilot [28] copies operating system memory onto a PCI card for analysis by a dedicated co-
processor. Further extensions allow it to detect breaches of kernel data semantic integrity [29]
and state-based control flow integrity [30]. Strider GhostBuster [40] and VMwatcher [17] aim
to look for discrepancies between an internal and external view of a system to detect the hiding
behavior from rootkits.

Recently, Lares [27] and its in-VM equivalent, SIM [38], attempt to createsecure kernel
hooks that can be used to monitor system events. In particular, SIM is capable of installing
hooks into a virtualized guest that run code safelywithouthypervisor intervention. SIM uses
the same IntelCR3 Target Value List feature that our work does, but uses it to create a safe
introspection environment instead of a new paging feature as in our system.

Kernel Rootkit Prevention. Rather than detecting rootkits already resident in an OS ker-
nel, other systems attempt to protect the kernel from being infected in the first place. Livewire
[14] is among the first in using virtualization techniques for this purpose, though the system
mainly focuses on the protection of static kernel code and data structures.SecVisor [36] is a
small security hypervisor that aims to securely enforce aW ⊕X guarantee over memory but
it requires modifying the OS kernel for the support. In other words, it is not able to support
legacy OSs such as Redhat 8.0. Also note that SecVisor implemented a similar KXpaging
mode, but its shadow page table implementation uses a single page table per process, which
leads to considerable performance overhead [36]. Instead, our approach proposes two page
tables. Further, with theCR3 Target Value List hardware virtualization feature, our system
allows a guest running under our system to switch between these two page tables without hy-
pervisor intervention. In the same vein, NICKLE [31] aims to protect the integrity of the kernel
code with a software-based implementation of the Harvard architecture. Thesoftware imple-
mentation is based on instruction-level redirection, which has a high performance overhead. In
comparison, our approach proposes a page-level, mode-sensitive redirection that substantially
reduces the performance overhead.

More recently, Overshadow [12] is another related system. Its basic premise is that the
kernel cannot be trusted with sensitive user data, even if it is not compromised or actively ma-
licious. Like our system, Overshadow captures the mode-switching changes to alter the view
of memory inside a protected VM. However, the differences are twofold: (1) First, our sys-
tem switches between user and kernel page tables on each mode switch butdo not attempt
to encrypt user memory pages. In comparison, Overshadow makes the user memory appear



encrypted to the operating system kernel, yet acts as normal when at user privilege; (2) Sec-
ond, the goal of our system is to protect the kernel from malicious user applications while
Overshadow does the exact reverse.

In addition to these techniques, there have been attempts to use lightweight virtual ma-
chines in place of processes. For example, the Qubes [35] operating system uses Xen to manage
AppVMs each containing an application and a small Linux environment. AppVMsare treated
analogously to processes, instead of as full-on virtual machines: functions such as storage and
networking are handled centrally in dedicated, hardened virtual machines. While the isolation
guarantees from such methods are potentially very strong, they are not adrop-in solution for
legacy systems, due to their radically different interface.

TLB Manipulation. Finally, the presence of separate TLBs has been recognized and ex-
ploited in other contexts for different applications. For example, Wurster et al. [44] proposes
using different ITLB and DTLB mappings to attack self-checksumming code. Almost simul-
taneously, Sparks and Butler [39] shows a rootkit prototype called Shadow Walker that could
elude existing detection using the de-synchronized TLB. Later, Rosenblum et al. [32] demon-
strates a system that used a modified version of Xen to instrument a tamper-resistant process
within a VM. While the version of Xen used is unclear, it appears that their system operated
on para-virtualized guests. In contrast, our system is mainly concerned with fully-virtualized
guests and aims to defeat existing kernel rootkits. To the best of our knowledge, no other sys-
tem has exploited recent hardware virtualization features to efficiently implement the Harvard
architecture on x86, including the use of tagged TLBs to manipulate the TLBs of a guest from
outside as well as the unique hardware feature of theCR3 Target Value List.

8 Conclusion

In this paper, we present hvmHarvard, a hardware virtualization-based, efficient implemen-
tation of the Harvard architecture on top of x86. The Harvard architecture has two memory
spaces (one for code and one for data) and is thus inherently robust tocode injection attacks
employed by most existing kernel rootkits. Different from prior efforts inusing the instruction-
level redirection to virtualize the Harvard architecture, our approach proposes a page-level,
mode-sensitive scheme to achieve the same goal but with a significantly reduced performance
overhead. We have implemented a Xen-based prototype. Our evaluation shows that it allows
for transparent support of legacy OSs (without modification) as the guest and protects them
from existing kernel rootkit attacks with a small performance overhead (< 5%).
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