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In this paper, we present an approach for realizing a safe ezecution environment (SEE) that
enables users to “try out” new software (or configuration changes to existing software) without
the fear of damaging the system in any manner. A key property of our SEE is that it faithfully
reproduces the behavior of applications, as if they were running natively on the underlying (host)
operating system. This is accomplished via one-way isolation: processes running within the SEE
are given read-access to the environment provided by the host OS, but their write operations
are prevented from escaping outside the SEE. As a result, SEE processes cannot impact the
behavior of host OS processes, or the integrity of data on the host OS. SEEs support a wide
range of tasks, including: study of malicious code, controlled execution of untrusted software,
experimentation with software configuration changes, testing of software patches, and so on. It
provides a convenient way for users to inspect system changes made within the SEE. If these
changes are not accepted, they can be rolled back at the click of a button. Otherwise, the
changes can be “committed” so as to become visible outside the SEE. We provide consistency
criteria that ensure semantic consistency of the committed results. We develop two different
implementation approaches, one in user-land and the other in the OS kernel, for realizing a safe-
execution environment. Our implementation results show that most software, including fairly
complex server and client applications, can run successfully within our SEEs. It introduces low
performance overheads, typically below 10%.

Categories and Subject Descriptors: D.4Jpgrating Systems]: Security and Protection; H.4.0rfformation
Systems Applications]: General

General Terms: Systems, Security

Additional Key Words and Phrases: Isolation, One-way Isolation

1. INTRODUCTION

System administrators and desktop users often encoutuatisns where they need to ex-
periment with potentially unsafe software or system changehigh-fidelitysafe execution
environment (SEBhat can support these activities, while protecting théesgsfrom poten-
tially harmful effects, will be of significant value to theasers. Applications of such SEE
include:
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—Running untrusted softwaréften, users run downloaded freeware/shareware or mobile
code. The risk of damage to the user's computer system duettosted code is high,
yet a significant fraction of users seem to be willing to takis tisk in order to benefit
from the functionality offered by such code. An SEE can migersecurity risks without
negating the functionality benefits provided by such soféwa

—WVulnerability testing. System administrators may be interested in probing whetier
computer systems, in their specific configuration, are qigie to the latest email virus
or other attacks. A high-fidelity SEE can allow them to pariauch testing without the
risk of compromising production systems.

—Software updates/patche&pplication of security patches is routinely delayed irgkaen-
terprises in order to allow time for compatibility and irdperability testing. Such testing
is typically done after shutting down production systemssixtended periods, and hence
may be scheduled for weekends and holidays. In contrasghafldelity SEE can allow
testing of updates to be performed without having to shutdpmduction systems. These
concerns apply more generally to software upgrades oflliaistas as well.

—System reconfigurationAdministrators may need to reconfigure software systemd, a
would ideally like to “test out” these changes before dejpigythem on production sys-
tems. This is currently accomplished manually, by savingkbp copies of all files that
may be modified during reconfiguration. An SEE will automéiis process, and more-
over, avoid pitfalls such as overlooking to backup some efrttodified files.

1.1 SEE Requirements and the Need for New Approach

Consider an untrusted application that scans specifiedtdiies for image files and gener-
ates photo album files that are written to the same directoKiBeveral freeware programs
(e.g., [Picturepages ]) exist that provide this functiitggl The program also generates
thumbnail pictures from these files (for creating index jilaad has the ability to mod-
ify/resize these files. Additionally, the program is unteds therefore may modify security
critical files of the user (e.g/ihome/joe/.ssh/authorized keys2) . In order to support this
application, an SEE must provide the following features:

—Confinement without undue restrictions on functionalltye untrusted photo album pro-
gram needs to be confined. On one hand, the effects of thisgmogunning within an
SEE should not “escape” the SEE and become visible to nonpmédications running out-
side. Otherwise, one cannot rule out the possibility of ghisgram altering the operation
of other applications running on the same system or elsewinethe network. For in-
stance, inserting a public key into thethorized _keys2 file in the above example can
enable an attacker (who crafted this program) to login taife’s account without requir-
ing the user’s password. The system must therefore alettsdeto such security critical
changes. On the other hand, we cannot disallow file systenificattbns by the photo
album application; otherwise no album will be created.

—Accurate environment reproductiofror SEEs to be useful in the above application, it is
essential that the behavior of applications be identichktiver or not they operate within
the SEE. Specifically, the album program needs to accesephothe host system. Since
the behavior of an application is determined by its envirentfcontents of configuration
or data files, executables, libraries, etc.), it is necgsgareproduce, as accurately as
possible, the same environment within the SEE as the enwieah that exists outside
SEE.
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—Ability to commit resultsOnce a photo album is successfully generated by this apiplica
a user would like to retain it. Thus, the SEE must provide alhmaism to “commit” the
results of activities that took place within it, if the userdatisfied with the results. A
successful commit should have the same effect as if all ofleeations carried out within
the SEE actually took place outside.

Most existing approaches for safe execution do not satigfge requirements. For instance,
sandboxing techniques [Goldberg et al. 1996; Dan et al. 188&Tarya and Raje 2000; Prev-
elakis and Spinellis 2001; Scott and Davidson 2002; Pro@@8Pintercept security-critical
operations made by a program, and disallow those operdtiahgiolate users’ security poli-
cies. Sandboxing achieves confinement, but does so by $evesgicting functionality of
the sandboxed program.

File versioning systems [Santry et al. 1999; Zhu and Chiu@®B2 Muniswamy-Reddy
et al. 2004; Chutani et al. 1992; Quinlan and Dorward 2002yrR® 1991; Soules et al.
2002; Peterson and Burns 2003] can provide rollback cafiabjlbut they don't provide a
mechanism to discriminate among changes made by differenepses, and hence cannot
support selective rollback of the effects of untrusted pesaexecution. For the same reason,
it is also hard to commit the “net” effect of the observed pearg back to host environment.

Virtual machines (VMs) and related approaches [Chen and Rob1; Whitaker et al.
2002; Malkhi and Reiter 2000; Chiueh et al. 2000] executgrams in environments iso-
lated from users’ host system, so that access restrictiande relaxed. As discussed in
detail in our related work section, VM approaches face diffies in several areas. It is dif-
ficult to reproduce the exact host environment in the VM. VN dave the difficulty to
isolate changes made to external file systems (such as N&®)eFmore, tracking changes
made by untrusted processes from within is unreliable agmtirdonment in a VM may be
compromised.

The concept ofsolation has been proposed as a way to address the problem of effect
containment for compromised processes in [Jajodia et 818;19u et al. 2000; Sekar et al.
1998]. Liu et al. [2000] proposedne-way isolatioras an effective means to isolate the
effects of running processes from the point they are comfzenn(or suspected of being
compromised). But they do not consider the full range of impfibns of safe execution
environment described above. Moreover, their work is fedusn high-level protocols for
realizing one-way isolation, and does not consider implaatén issues that are central to
our approach, such as application transparency, efficiamgythe subtleties in defining and
implementing consistency criteria. We address thesessmue present an efficient and easy-
to-use safe-execution environment caliddatrazthat can support the range of applications
discussed above.

1.2 Approach Overview

Our Alcatraz SEE is based on the concept of one-way isolatMdrereas VMs generally em-
ploy two-way isolation between the host environment ancetharonment that exists within
a VM, one-way isolation makes the host environment visikiteiwthe SEE. In this way, Al-
catraz processes see the environment of their host systehiyeace accurate reproduction
of environmentis assured. However, the effects of Alcgtrazesses cannot escape Alcatraz
and interfere with the operation of processes outside Pdzat

In our approach, an SEE is created to run a process whosésedfecto be shielded from
the rest of the system. One or more such SEEs may be activedmoth OS. Any children
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created by processes within an SEE will also be confined t&&ER, and will share the same
consistent view of system state. Typically, users createvaSEE and carry out their tasks
within it. Our SEE presents users with the changes mademiitie SEE. Users examine the
changes from the host system, using helper applicationb,aslimage or document viewers,
or arbitrary utility applications. Users can not only accte states inside an SEE, but also
the states in the host system, which is unaffected by theepsas in the SEE. For example,
users can compare file modified in an SEE and the same file inatesiistem to see the
modification details. Finally, if users want to accept tharmies made within the SEE, they
can commit the results. The commit process causes the systée) as viewed inside the
SEE, to be merged with the state of the host OS. We presenistemsy criteria aimed at
ensuring the correctness of the results of the commit psoces

Two distinct implementation approaches are describedignghper. The first approach
is implemented entirely at the user-level. The resultingtesyn has several benefits from an
end-user perspective. First, it empowers ordinary useith@wt administrative privileges)
so that they can benefit from safe execution of untrusted.c8deond, the absence of OS-
resident components has the added benefit that it may be sadiyrported, and more easily
adopted by users that may be concerned about the impact ofdd&ications to system sta-
bility. However, in order to achieve these benefits, the apgin has to trade-off performance
and flexibility. In particular, it typically introduces oxeeads of the order of 100%. More-
over, a user-level implementation makes it difficult to aately reproduce the semantics of
certain operations involving directories, file permissi@amd ownerships. To overcome these
drawbacks, a complementary approach based on kernel+stgplémentation is described,
allowing accurate reproduction of isolation semanticsl @ducing performance overheads
to under 10%.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2gmtssan overview of our ap-
proach. Section 3 presents the implementation detailsisfatproach. Specifically, Sec-
tion 3.2 presents the user-land tool that implements thisagrh, and Section 3.3 describes
our kernel-land approach. Section 4 discusses the crigedbalgorithms for committing
changes made to the file system. A comparison of the two imgrations as well as other
aspects of our approach are discussed in Section 5. Sectwavéles an evaluation of
the functionality and the performance of our implementatidrelated work is discussed
in Section 7, followed by concluding remarks in Section 8.e Wicatraz tool is available
for download athttp://seclab.cs.sunysb.edu/ in the software download section of the
website.

Note to the reviewers. This journal submission is a combined and revised version of
citations [Liang et al. 2003], which described the usedlapproach, and [Sun et al. 2005],
which describes a kernel-land approach. In addition tesiers to these papers, section 4 has
been completely rewritten so as to provide a significantlyemefined and detailed treatment
of commit criteria. A detailed comparison with virtual mawods has also been included.
Additional experimental study has been performed, anddbelts are included in this paper.

2. OVERVIEW OF APPROACH FOR IMPLEMENTING SAFE EXECUTION ENVI-
RONMENT

The two functions of our SEE are (a) to provide one-way isotatand (b) to support commit
operations. These two aspects of SEE are described in miziélmow.
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Fig. 1. Architecture of Alcatraz SEE. Alcatraz is a layentetn the isolated program and operating system. It uses
restriction and redirection to achieve one-way isolation.

2.1 Achieving One-way Isolation

Figure 1 illustrates the overview of our Alcatraz SEE. Ataatis a layer between the iso-
lated program and the operating system, which is based ercejiting and manipulating the
requests made by the isolated program. The primary goaloisthiation layer ieffect con-
tainment:preventing the effects processes in SEE from affecting fiegation (or outcome)
of processes executing outside the $EEhis means that any “read” request (i.e., one that
gueries the system state but does not modify it) may be padgdiby SEE processes. It also
means that “write” requests should not be permitted to kgefem state from being affected.
There are two options in this context: one iséstrictthe request, i.e., disallow its execution.
The second option is tedirectthe request to a different resource that is invisible oete
SEE. Once a write request is redirected, it is importantshsequent read requests on the
same resource be redirected as well. This is handled bycsespiecific proxies.

By restriction, we mean that a request is prevented from execution. An eoae may
be returned to the process, or the request may be silentiyrasged and a success code
returned. In either case, restriction is easy to implemenve-need only know the set of
requests that can potentially alter system state. In AeeBEE, restriction is achieved using
theconfinemeninodule, as is shown in Figure 1. The main drawback of regirids that it
will likely prevent applications from executing succedsfu-or instance, if a program writes
to a file, it expects to get back the same content at a latet poihe program when the file
is read. However, an approach based on restriction canrtbisi@and hence most nontrivial
applications will fail to run successfully under such rigsion. For this reason, restriction is
a choice of last resort in our approach.

By redirection,we mean that any request that modifies some component of gteehe

INote that we are interested in confinement [Lampson 1978) tre point of view of system integrity, rather than
confidentiality. As such, we do not deal with issues such asrt@hannels.
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vironment is instead redirected to a different componesitinot accessed by the host OS
processes. Alcatraz SEE handles redirection by servieefgpproxies, which redirect all
modifications to the system to components inifidated resourceshown in Figure 1). For
instance, in the file system proxy, when an SEE process triewodify a file, a copy of the
original file may be created in a “private” area of the file syst and the modification request
redirected to this copy. Redirection is intended to proddmnsistent view of system state
to processes in SEE, thereby allowing them to complete sstudy.

Redirection can batatic or dynamic. Static redirection requires the source and target
objects to be specified beforehand. It is ideal for networrapions. For instance, one may
statically specify that requests to bind a socket to a pshould be redirected to an alternate
portp’. Similarly, one may specify that requests to connect to &gpon hosth should be
redirected to hosk’ (which may be the same &3 and portp’. By using such redirection,
we can builddistributed SEEswhere processes executing within SEEs on multiple hosts
can communicate with each other. Such distributed SEEs atecylarly useful for safe
execution of a network server application, whose testingld/typically require accesses by
nonlocal client applications. (Note, however, that thipraach for distributed SEEs works
only when all cross-SEE communications take place dirdmtiyveen the SEE processes,
and not through other means, e.g., indirect communicalicyugh a shared NFS directory.)

Static redirection becomes infeasible if the number of fsdargets is too large to be
enumerated in advance. For instance, it is hard to predicfilths that may be accessed
by an arbitrary application. Moreover, there are depenigsramong requests on different
file objects, e.g., a request to create a file has the indifestteof changing the contents of
the directory in which the file is created. Simply rediregten access on the file, without
correspondingly modifying accesses of the directory, véfiult in an inconsistent file sys-
tem state. To handle such complexities, our approach stgabgramic redirectionwhere
the target for redirection is determined automaticallyimiyithe execution of SEE processes.
However, the possibility of hidden dependencies meanglieatnplementation of dynamic
redirection may have to be different for different kinds tffects. That is why redirection
is supported by service-specific proxies. The key challengmplementing such proxies
(including file system proxies and network proxies) is theen though they buffer cer-
tain requests, they should provide a consistent view oksystate to the SEE applications.
Specifically, if an SEE process “writes” to such a proxy anosaguently performs a “read”
request, the proxy should return the result that would haemlveturned if the write request
had actually been carried out.

In our current implementations, system call interposit®nsed to implement restriction
and static redirection. We restrict all modification redaegher than those that involve the
file system and the network. In the case of file system requatsccesses to normal files
are permitted, but accesses to raw devices and specialgaurpguests such as mounting file
systems are disallowed. In terms of network operations, evenjt any network access for
which static redirection has been set up. In addition, s the name server and X-server
are permitted. (In reality, SEE processes should not getstiricted access to X-server. Our
current implementation solves this problem by staticatigirecting X requests to a separate
X-server that nested in the host X-server.)

Dynamic redirection is currently supported in our impletagion only for file system
accesses by a proxy layer, called the Isolation File Systéi®)( In our user-land imple-
mentation, it is implemented using system call interposgitidescribed in Section 3.2). In
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our kernel implementation, this proxy is implemented atuliial file system layer, as de-
scribed in detail in Section 3.3.

2.2 Committing Changes

Modifications made by Alcatraz processes are held in isplasources. Users can check the
“net” results of SEE processes using their security padici@ompared to traditional sandbox-
ing approaches, Alcatraz SEE facilitates access to a rathss of information, e.g., detailed
list of modifications, system states before and after exaculf the modifications are desir-
able, they need to be committed to the original operatingesysso that they are visible to
other processes. There are two key challenges in commitiimgis to ensureonsistencyf
the resulting system state; the otheefficiency— to reduce the space and time overheads
for logging and re-running of operations to a level that jideg good performance.

Some systems expertise is required in making these comgdgcisions. For users with
the expertise, such as system administrators, our SEE satfo@m to base their decisions
on more details about modifications inside SEE, such as sheflimodified resources and
details of each modification. In addition, the system als® dra option that prompts users
to select a subset of files from all those that were modifielénSEE and export them to a
specified directory, (e.g., a removable disk) without myidif) original system files. In this
way, users keep results of an SEE session without propagéitase changes to the main
system.

We now provide a high-level overview of the issues involved@ddmmitting results. The
key problem in terms of consistency is that a resource aedesghin the SEE may have
been independently accessed outside of the SEE. This porrés to concurrent access on
the same resource by multiple processes, some within SEE@nd outside. One possi-
ble consistency criterion is the serializability criteriosed in databases. Other consistency
criteria may be appropriate as well, e.g., for some text,fitemay be acceptable to merge
the changes made within the SEE with changes made outsibsgas the changes involve
disjoint portions of the file. A detailed discussion of thsuss involved in defining commit
criteria is presented in Section 4.1.

There may be instances where the commit criteria may nottisfied. In this context, we
make the following observations:

—There is no way to guarantee that results can be committenratically and produce
consistent system state, unless we are willing to delaysalldiv execution of some ap-
plications on the host OS. Introducing restrictions or gelan host OS processes will
defeat the purpose of SEE, which is to shield the host OS ftarattions of SEE pro-
cesses. Hence this option is not considered in our approach.

—If the results are not committed, then the system state éhamged by tasks carried out
within the SEE. This means that these tasks can be rerun, ginthest likely have the
same desired effect. Hopefully, the conflicts were the tesilinfrequent activities on the
host OS, and won't be repeated this time, thus enabling thétseto be committed.

—If retrying isn’t an option, the user can manually resoleafticts, deciding how the files
involved in the conflict should be merged. In this case, thamoit criteria identifies the
files and operations where manual conflict resolution is seargy.

As a final point, we note that if a process within an SEE commated with another pro-
cess executing within a different SEE, then all such comiativig SEEs need to be com-
mitted as if they were part of a single distributed trangactCurrently, our implementation
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Fig. 2. lllustration of IFS Layout on Modification Operat®n

does not support distributed commits. Our approach for cittimgnthe results of operations
performed within a single SEE is described in Section 4.

3. IMPLEMENTATION OF IFS
3.1 High-Level Overview

An intuitive way to realize dynamic redirection is to use gam-write: when a node in the
original file system is about to be modified, a copy of this nidereated in a “private”
area of the file system, callédmporary storagewhich is part of the isolated resources in
Figure 1. The write operation, as well as all other subsegoperations on this node, are
then redirected to this copy. By doing so, the modificatiothboperating system is actually
cached in the temporary storage, and the main file systemimemachanged. The isolated
program’s view of the file system is a combined view of the nfigénsystem and the changes
in the temporary storage.

We illustrate the operation of IFS using the example showFigiire 2. Suppose that ini-
tially (i.e., step 1 in this figure), there is a directarand a fileb under the root directory in
the main file system, with files andd within directorya. Step 2 of this figure illustrates the
result of modifying the filga/c within the SEE. The copy-on-write operationfare copies
the file/asc  from the main file system to the temporary storage, and rereethb relation-
ship between the two files, we call the unchanged directoiisipathstuls. Subsequent
accesses are redirected to this copy in temporary storage.

The third step of Figure 2 shows the result of an operatioictteates a filea/e  within the
SEE. Since this changes the directarlpy adding another file to it, the directory is marked
changed. Next, the file is created within the temporary storage under that dirgctéhe
combined view of IFS reflects all these changes: accesséstocdfi and/ae are redirected
to the corresponding copies in the temporary storage, valitesses to file/d  will still go
to the version in the main file system.

3.2 User-Level Implementation of IFS

3.2.1 Underlying mechanismOur user-level IFS is based on a system call interceptor.
The system call interceptor is designed to be easily partabbther Unix variants. The
architecture of our interceptor is based on the design ptedean [Jain and Sekar 2000],
which is implemented by Linux’strace  system callpirace mechanism allows one process
to monitor another process. Monitoring capabilities in@uthe ability to intercept system
calls made by the process in SEE, and examination or modiificef its virtual memory.
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Read Only Modification Operations
Operations Regular Files Directories Inodes
execve, chdir, open, creat, link, chmod, Ichown,
access, chroot, truncate, unlink, mknod, utime, oldistat,
readlink, uselib, truncate64 rename, mkdir, chown, Ichown32,
statfs, stat, rmdir, acct, chown32
Istat, stat64, symlink, open
Istat64, oldstat,
getdents,
getdents64,
readdir

Fig. 3. Classification of file system related system calls.

3.2.2 Challenges and solutionsThe key challenge in implementing the IFS to maintain
a consistent file system view to SEE processes after file mystguests that affect other
requests implicitly. This is a challenging task becausenhefdifferent kinds of file system
objects (regular files, directories, symbolic links, etarjd the large number of file system
related operations (34 out of the 243 system calls in Linuxd&keversion 2.4.18). To tackle
this complexity, we aim to reduce the number of cases to bsidered by classifying file
system objects and related system calls. We made the folipabservations about the types
of file system objects that need to be considered: regulay; filieectories, symbolic links,
and Inodes. (Inodes contain meta data about files, such adgsén, ownership etc.) Mod-
ification requests may be different across these file types. ekample, regular files are
viewed as a stream of bytes, and can be modified by seeking/ttmeation (expressed as
a byte offset) within the file, and performingssite system call. Directories, on the other
hand, are viewed as a sequence of directory entries, whiateaords containing information
about the files within the directory. For symbolic links, trely modification is that of file
deletion, which is actually a directory modification. Thug need only consider three types
of objects of the file system: regular files, directories, hatles.

Now consider the system call operations on the file systemthiédsolation operation, we
need to consider mostly those system calls that are relatpdth names. System calls that
operate on file descriptors (e.gead , write  andmmag can be handled automatically by the
operating system once path-related calls are taken carehef.classification of those calls
are shown in Figure 3, based on how they modify file systemst,Me describe how IFS is
achieved in each category.

Regular file modifications.Consider a process that opens a filéor writing. A natural
way to isolate the execution of the process is to create a npw £ of f thatis stored in the
temporary storage. All future accessegtavhether they be modifications or reads, will be
redirected tof’. To enable this redirection, a map associatingith f’ is remembered by
the temporary storage. As an optimization, we avoid copgirfdes when a file is truncated
to zero length.

As a side effect, copying regular files may change its owngrsbonsider the case when
the isolated process modifies a file that it does not own butheasrite permission. The IFS
will copy the file into the temporary storage before makingst changes. During copying
process, the operating system will automatically set theesghip of the copy to that of the
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owner of the isolated process. It would be preferable to ghahe ownership back to the
owner of the original file, but this may be disallowed by thenat because the user may not
necessarily be the superuser. Therefore, if there is a ehiangwnership, then the related
operations, such as permission checking, need to be iptetand performed in IFS.

Directory modifications. We observe that unlike a regular files, directories are aetks
in a structured manner using specialized directory opmratsuch askdir andgetdents
Thus, our approach is to modify these operations in a mamagraichieves copy-on-write
semantics without having to perform actual copies of dosctontents. In particular, mod-
ifications to directories, such as creation/deletion of filag or directories, are recorded in
the temporary storage, without copying the affected dinées.

When the contents of such modified directories are read ubigetdents operation,
we can apply the modification information recorded by terappstorage to the returned
directory entries. For each returned directory entry, IR8cks whether it is marked as
deleted in the temporary storage. If so, the entry is remdn@d the result. It is possible
that all the entries returned lytdents may be deleted in this step. If, as a result of this,
no entries are returned to the isolated process, it wouldlude that the end of the directory
has been reached. To solve this problem, IFS first retrieNed the directory entries in
the directory, and applies the above changes to the diseetdries. We then append new
directory entries that are recorded in the temporary seobag not present in the rest of the
file system. The result is returned to the SEE process.

Inode modification. Modification can also be made to Inodes which store file systeta
data. Inodes are associated with files and cannot be coppedately. Therefore, if the
modification is made to a file that has already been copied:ttetmporary storage (i.e., just
created or modified file), we can redirect this operationga@@unterpart in the temporary
storage. If the modification is made to an unchanged regldamfe can again copy the file
into the temporary storage and proceed as in the previoes t¢ahe Inode to be changed
belongs to a directory, Alcatraz stores the new Inode infdiom in the temporary storage
to avoid copying the directory. One limitation of this apacb is that the Inode data is not
visible to the system. Therefore, even if a permission isg@to a process, such as entering
a directory, the operation will still be denied as the oréidirectory is not permitted for
access. This limitation is addressed in our kernel implaatem.

Since the latest Inode information is held within the tengpgrstorage, system calls to
access or manipulate meta data, suchaas, need to be intercepted to reflect the side effects
of previous Inode modifications.

The focus of user-level IFS is to facilitate applicabilitysituations where the user does not
have administrative privileges. However, as is discussgatévious section, the underlying
mechanism has difficulties in maintaining consistency oteas privileges of file system
objects. Consequently, some tasks traditionally perfarbyethe kernel were reimplemented
in user-level IFS, and as discussed this can be prone tseffoaddress these problems with
the user-land implementation we discuss a kernel-levddampntation of IFS, where IFS has
access to internal file system objects.

3.3 Kernel Implementation of IFS

3.3.1 Underlying mechanismOur kernel IFS is implemented by interposing file system
operations within the OS kernel at the Virtual File Systenk®Y layer. VFS is a common
abstraction in Unix across different file systems, and efieysystem request goes through
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this layer. Hence extensions to functionality provided BSMayer can be applied uniformly
and transparently to all underlying file systems suckxas, ext3 and NFS.

We realize VFS layer interposition using the stackable fistesm approach described in
[Zadok et al. 1999]. In effect, this approach allows one @lire a new file system that is
“layered” over existing file systems. Accesses to the nevsfilgem are first directed to this
top layer, which then invokes the VFS operations providedheylower layer. In this way,
the new file system extends the functionality of existinggitfstems without the need to deal
with file-system-specific details.

3.3.2 Challenges and solutionsThe description in Section 3.1 presented a simplified
view of the file system, where the file system has a tree-strei@nd consists of only plain
files and directories. In reality, UNIX file systems have a Ddirected acyclic graph)
structure due to the presence of hard links. In addition,sfjistems contain other types
of objects, including symbolic links and special devicesfildFS usually does not allow
accesses to special device files. An exception to this ruteide forpty 's andtty s, as well
as pseudo devices likagevizero , /devinull , etc. In these cases, access is redirected to the
corresponding device files on the main file system. A symbwiicis simply a plain file,
except that the content of the file is interpreted as the patierof another file system object.
For this reason, they don’t need any special treatment. , Mreiseed only describe how IFS
deals with hard links (and the DAG structure that can resudt th their use.)

When the file system is viewed as a DAG, its internal nodesspond to directories, and
the leaves correspond to files. IFS does not look into thenatestructure of files, and hence
we treat them as leaf objects in the DAG. All nodes in the DA& identified by a unique
identifier called thdnode number (The inode number remains unique across deletion and
recreation of file objects.) The edges in the DAG bimks, each of which is identified by
a name and the Inode number of the object pointed by the lirks distinction between
nodes and links in the file system plays a critical role in gwspect of IFS design and
implementation, in particular, the implementation of IF8rmit operation as described in
Section 4.2.

IFS layer contains a table that maintains additional infation necessary to correctly
support IFS operation. This table, which we calliasde table is indexed by the inode
numbers of file system objects. It has a field indicating thiag¢tlver the inode corresponds
an object in temporary storage (temp) or an object the marsfistem (main). Further, if
it is an object in the temporary storage, the flag indicatestidr it is a stub object (stub).
A stub object is simply a reference to the version of the sabjecd stored in the main file
system. In addition, auxiliary information needed for tlenenit operation is also present,
as described in Section 4.2.

In our IFS implementation, copy-on-write of regular filesngplemented using normal file
copy operations. In particular, when a plain fflds modified for the first time within the
SEE, a stub version of all its ancestor directories is cteastéemporary storage (if they are
not already there). Then the fijeis copied into temporary storage. From this point on, all
references to the original file will be redirected to this gaptemporary storage.

After creating a copy off, we create an entry in the inode table corresponding to the
original version off on the main file system. This is done so as to handle hard liksctly.

In particular, consider a situation when there is a secondl livik to the same file object, and
this link has not yet been accessed within IFS. When this$iskbsequently accessed, it will
be referencing a file in the main file system. It is necessargdirect this reference to the
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copy of f in temporary storage, or otherwise, the two links within tR& originally referred
to the same file object will now refer to different objectsrby leading to inconsistencies.

The copy-on-write operation on directories is implemerited manner similar to that
of files. Specifically, a stub version of the directory’s astoe nodes are first created in
temporary storage. Next, the directory itself is copied.isTdopy operation is ghallow
copyoperation, in that only a stub version of the objects listethe directory are created.
By performing this, the directory in temporary storage wilve the same meta data and
directory content as its main file system counterpart. Sod¢d&ected operation performed
on this directory will exhibit the same behavior. In prineipone can use shallow-copy on
files as well, thus avoiding the overhead of copying disk kdothat may not be changed
within the IFS. However, the internal organization of filespecific to particular file system
implementations, whereas we want to make IFS to be file-sysidependent. Hence files
are chosen to be copied in their entirety.

4. IMPLEMENTATION OF IFS COMMIT OPERATION

At the end of SEE execution, the user may decide either tadisthe results or commit
them. In the former case, the contents of IFS are destroybithwneans that we simply
delete the contents of temporary storage and leave therdsrdéthe main file system “as
is.” In the latter case, the contents of the temporary storaged to be “merged” into the
main file system.

When merging the contents of temporary storage and mairyikems, note that conflict-
ing changes may have taken place within and outside the LS tke same file may have
been madified in different ways within and outside the SEEuch cases, it is unclear what
the desired merge result should be. Thus, the first probldwe tddressed in implementing
the commit operation is that of identifyingpmmit criteriathat ensure that the commit oper-
ation can be performed fully automatically (i.e., withoayaiser input) and is guaranteed to
produce meaningful results. We describe possible comiitétrzr in Section 4.1. Following
this, we describe an efficient algorithm for committing lésin Section 4.2.

If the commit criteria is not satisfied, then manual recaation of conflicting actions that
took place inside the SEE and outside will be needed. The dboniteria will also identify
the set of conflicting files and operations. At this point, tiser can decide to:

—abort, i.e., discard the results of SEE execution. This course tidrmgvould make sense
if the activities performed inside SEE are longer be releyanuseful) in the context of
changes to the main file system.

—retry, i.e., discard the results of SEE execution, create a neweEonment, redo the
actions that were just performed within the SEE, and thertdrgommit again. If the
conflict were due to activities on the host OS that are redgtiinfrequent, e.g., the result
of a cron job or actions of other users that are unlikely todpeated, then the retry has a
high probability of allowing a successful commit. (Notettttee retry will likely start with
the same system state as the first time and hence will havahe set effect as the first
time.)

—resolve conflictsi.e., the user manually examines the files involved in theflaca (and
their contents) and determines if it is safe to commit; argbifwhat is the merged con-
tents of the files involved in the conflict. The commit crigewill identify the list of files
involved in the conflict and the associated operations, irést of the steps need to be
performed manually.
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In addition to committing all changes made in an IFS to the Bgstem, our approach also
allows users to select a set of modified files, and export tleeandpecified directory (e.qg.,
a removable disk). In this way, users can have the advanfageosing the modifications
they want without worrying about security or making systesde changes.

4.1 Commit Criteria

The commit criteria is a set of rules which determine whetherresults of changes made
within an SEE can be committed automatically, and lead toresistent file system state.
Since the problem of consistency and committing has beelest@xtensively in the context
of database transactions, it is useful to formulate the ciiqmrmblem here in the terms used
in databases. However, note that there is no well-definedmof transactions in the context
of IFS. We therefore identify the entire set of actions tlaktplace within SEE in isolation
as atransactiofi; and the entire set of actions that took place outside of the (BHt limited
to the actions that took place during the lifetime of the SE&Eanother transactidh,.

There are several natural choices for commit criteria:

—Noninterference. This requires that the actions contained7in be unaffected by the
changes made iff;, and vice-versa. More formally, |RS(T) andW S(T) denote re-
spectively the set of all filesystem objects read and writtea transactiofi’, respectively.
Then, noninterference requires that

RS(T;) N WS(Ty) = ¢
RS(Th) NWS(T;) = ¢

WS(T;) N WS(Th) = &

The advantage of this criteria is that it leads to very prdiile and understandable results.
Its drawback is that it is too restrictive. For instance,sidar a conflict that arises due to

a single filef that is written in7T}, and read irfil;. Also suppose thaf was read within
the SEE after the time of the last modification operationfdan 7},. Then it is clear that

T; used the modified version gfin its computation, and hence it need not be aborted, yet
the noninterference criteria will not pernii} to be committed.

—Serializability. This criteria requires that the effect of concurrent tratisas be the same
as if they were executed in some serial order, i.e., an ordetich there was no inter-
leaving of operations from different transactions. In thatext of IFS, there are only two
possible serial orders, nameW,T};, andT},T;. Serializability has been used very success-
fully in the context of database transactions, so it is anahttandidate here. However,
its use in SEE can lead to unexpected results. For instanosider a situation where a
file f is modified inT; and is deleted iff},. At the point of commit, the user would be
looking at the contents of within the SEE and would expect this result to persist after
the commit, but if the serial ordér; T}, were to be permitted, thefiwould no longer be
available! Even worse, its contents would not be recoveralius, serializability may be
too general in the context of SEE: if results were committetbmatically wherl; and
T}, were serializable, then there is no guarantee that thetiregglystem state would be as
expected by the user of the SEE.

—Atomic execution of SEE activities at commit tini¢he state of main file system after the
commit were as if all of the SEE activities took place atorihycat the point of commit,

ACM Journal Name, Vol. V, No. N, Month 20YY.



14

then it leads to a very understandable behavior. This isusecthe contents of the main
file system after the commit operation will match the corgeritthe IFS on every file that
was read or written within the IFS. The atomic executiorecid (AEC) is a restriction of
serializability criterion in that only the ord&®,T; is permitted, and the ord&k T}, which
led to unexpected results in the example above, is not peanit

Based on the above discussion, we use AEC as the criteriaifomatic commits in SEE.
In all other cases, the user will be presented with a set &f §ifed directories that violate the
AEC, and the user will be asked to resolve the conflict using afithe options discussed
earlier (i.e., abort, redo, or manually reconcile).

In addition to providing consistent results, a commit e¢i&teshould be amenable to effi-
cientimplementation. In this context, note that we donitddetailed information about the
actions withinT},. In particular, the UNIX file system maintains only the lasad time and
write time for each file system object, so there is no way taiobthe list of all read and
write actions that took place withify,, or their respective timestamps. We could, of course,
maintain such detailed information if we intercepted a# fiperations on the main file sys-
tem and recorded them, but this conflicts with our design twstl operations of processes
outside SEE should not be changed in any way. On the other, sara we do intercept
all file accesses within the IFS, we can (and do) maintain rdetailed information about
the timestamps of the read and write operations that tootepléthin the SEE. Thus, an
ideal commit criteria, from an implementation perspectiél be one that leverages the de-
tailed time stamp information we have abdytwhile being able to cope with the minimal
time stamp information we have abdljt. It turns out that AEC satisfies this condition, and
hence we have chosen this criteria as the basis for fullynaatied commits in IFS.

In order to determine whether AEC is satisfied, we need toreabout the timestamps of
operations ifil;, andT; and show that their orders can be permuted so that all opesaiti
T}, occur before the operationsTn, and that this permutation does not change the semantics
of the operations. We make the following observations ia tegard:

—Any changes made within the SEE are invisible on the mairsfiltem, so the results of
operations irl};, would not be changed if all’; operations were delayed to the point of
commit.

—A read operatiom?(f) performed inT; can be delayed to the point of commit and still
be guaranteed to produce the same results, provided thet fawgas unchanged between
the time R was executed and the time of commit. This translates to reguihat the
last modification time off in the main file system precede the timestamp of the first read
operation onf in 7.

—The results of a write operatidi’(f) performed inT; is unaffected by any read or write
operation inT}, and hence it can be delayed to commit time without changegegman-
tics.

Based on the observations, we conclude that AEC is satigfied i

the earliest read-time of an object within the IFS occureiathe last modifica-
tion time of the same object on the main file system.

Note that the latest modification time of an object on the nfiéénsystem is given by the
mtime andctime fields associated with that object. In addition, we need tintaa the
earliest read-time of every object within the IFS in ordeetaluate this criteria.
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A slight explanation of the above criteria is useful in thenext of append operations
on files. Consider a file that is appended by an SEE procesb$eguently appended by
an outside process. Both appends look like a write operasiod hence the above commit
criteria would seem to indicate that it is safe to commit lssuBut if this were done, the
results of the append operation performed outside IFS woeildst, which is an unexpected
result. Clearly, if the SEE process were run at the time ofrod@nthen no information would
have been lost. However, this apparent problem is clarifiesave realize that an append
operation really involves a read and then a write. Once ¢hiaken into account, a conflict
will be detected between the time the file was read within IR& the time it was modified
outside, thereby causing the AEC criteria to be violatedréMgenerally, whenever a file is
modified within IFS without completely erasing its origiraintents (which is accomplished
by truncating its length to zero), we treat this as a reaad¥edld by a write operation for the
purposes of committing, and handle the above situatiorecty

4.1.1 Improvements to AECThe above discussion of AEC classifies operations into two
kinds: read and write. The benefit of such an approach isntplaiity. Its drawback is that
it can raise conflicts even when there is a meaningful way toro. We illustrate this with
two examples:

—System log files are appended by many processes. Basedlien é@cussion about ap-
pend operations on files, the AEC criteria won't be satisfidetmever an SEE process
appends an entry; to the log file and an outside process subsequently appeidsesn
entry e, to the same file. Yet, we see that the results can easily beemdngappending
bothe; ande; to the log file.

—Directories close to the root of the file system are almosags examined by SEE process
as part of looking up a file name in the directory tree. Thuany changes were to be
made in such directories by outside processes, it will lea®EC being violated. Yet, we
see that a name lookup operation does not conflict with a #atn operation unless the
name being looked up is identical to the file created.

These examples suggest that AEC will permit commits moendftwe distinguished among
operations at a finer level of granularity, as opposed tditrgghem as read and write oper-
ations. However, we are constrained by the fact that we d@vé a complete record of the
operations executed by outside processes. Thereforeppwrach is to try tanfer the oper-
ations by looking at the content of the files. In particulat.fl, denote the (original) content
of a file system object at the point it was copied into temppséorage, and, and f; denote
the content of the same file in the main file system and the IRBegpoint of commit. We
can then compute the diﬁeren&,& betweenf, andf;, and the differencéif betweenf, and
fi- From these differences, we can try to infer the changeswéig made within and outside
SEE. For instance, if both ands/ consist of additions to the end of the file, we can infer
that append operations took place, and we can apply theéseati€es tof,.

In the case of directories, the situation is a bit simpler.e Do the nature of directory
operationsé,f will consist of file (or subdirectory) creation and deletioperations. Lef},
denote the set of files created or deleted,fjnand letF; be the set of names in this directory
that were looked up iff;. This information, as well as the time of first lookup on ea€h o
these names, are maintained within the IFS. Eet= F}, N F;. Now, we can see that the
AEC criteria will be satisfied if either one of the followingditions hold:

—F.=¢,0r
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—the modification time off, precedes all of the lookup times on any of the filegin

In the first case, none of the names looked up (i.e., “readthiwithe SEE were modified
outside, thus satisfying AEC. In the second case, confliesagain avoided since all of
the lookups on conflicting files took place after any of the ification operations involving
them in the main file system.

We point out that inferring operations from the state of theedy/stem can be error-prone.
For instance, it is not possible to distinguish from systéseswhether a file was deleted
or if it was first renamed intd and then deleted. For this reason, we restrict the use of this
approach to log files and directories. In other cases, gpdates of text files, we can use this
technique with explicit user input.

4.2 Efficient Implementation of Commit

After making a decision on whether it is safe to commit, thetséep is to apply the changes
to the main file system. One naive solution is to maintain amleta log of all successful
modifications operations that were performed within the Sl replay them on the main
file system at the point of commit. This approach has the beoklieing simple and be-
ing correct in terms of preserving the AEC semantics. Howete drawback is that it is
inefficient, both in terms of space and time. In the worst ctse storage overhead can be
arbitrarily high. For instance, consider an applicatioat treates and deletes many (tempo-
rary) files. In this case, a log-based approach will needi@stll information about the write
operations that were performed, including those on filewieae subsequently deleted.

We notice that the desired file system state is already adetiedLin the temporary storage
of the SEE. It saves both time and space by simply copying thvéen to the host system.
However, this simple solution will treat a hard link as a stalone file. Therefore, we need
to treat links separately. For files, the commit action usedur approach involves simply
renaming (or copying) the file into the main file system. Foemaions related to links, it
records a minimal set of link-related operations that cagstthe set of links associated with
each file system object. In this sense, one can think of theoaph as state-based, that main-
tains “condensed” logs that were discussed above, whetmdaat information is pruned
away. For instance, there is no need to remember operatioadi if it is subsequently
deleted. Similarly, if a file is renamed twice, then it woukldnough to remember the net ef-
fect of these two renames. To identify such redundanciesesifly, our approach partitions
the logs based on the objects to which they apply. This logrinétion is kept in the inode
table described earlier.

Operations that modify the contents of a file or change médaaich as permissions)
on any file system object are not maintained in the logs, lmplsi applied to the object.
In effect, the state of the object captures the net effectl@uah operations, so there is no
need to maintain them in a log. Thus, only information abdatdt directory creation and
deletion, and those that concern addition or removal ofsliake maintained in the log. In
addition, to simplify the implementation, we separate tfieats of creating or deleting file
system objects from the effect of adding or deleting linkkisTmeans that the creation of
a file would be represented in our logs by two operations: orerdate the file object, and
another to link it to the directory in which the object is aexh Similarly, a rename operation
is split into an operation to add a link, another to removenl, land a third (if applicable)
to delete the file originally referenced by the new name. Asrevious sections, file objects
involved in these operations are identified by inode numtsgteer than path names.
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Specifically, the log contains one of the following operaip

—createanddeleteoperations denote respectively the creation of a file or ectbry, and
are associated with the created file system object.

—addlinkandrmlink operations denote respectively the addition and delefiariok from
a directory to a file system object. These operations areceded with the file system
object that is the target of the link, and have two operand first is the inode number
of the parent directory and the second is the name assoeidtethe link.

The effect of some of these operations is superseded by offegations, in which case
only latter operations are maintained. For instance, atel@peration supersedes a create
operation. An rmlink operation cancels out a precedingialldiith the same operands.

In addition to removing redundant operations from the logs,also reorder operations
that do not interfere with each other in order to further difpghe log. In this context,
note that two valid addlink operations in the log associatét any file system object are
independent. Similarly, any addlink operation on the objedndependent of an rmlink
operation. (Both these statements are true only when weresthat operations that are
superseded or canceled by others have already been remmowrethe log.)

Based on this discussion, we can see that a condensed lagagsdovith a file system
object can consist of operations in the following order:

—zero or one create operation. Since the file system objext dot exist before creation,
this must be the first operation in the log, if it exists.

—zero or more rmlink operations. Note that multiple rmlirgenations are possible if the file
system object was originally referenced by multiple linkreover, the parent directories
corresponding to these rmlink operations must all havetexiat the time of creation of
SEE, or otherwise an addlink operation (to link this objecthte parent directory) must
have been executed before the rmlink. In that case, therdddtid rmlink operations
would have cancelled each other out and hence won't be priesére condensed log.

—zero or more addlink operations. Note that multiple addliperations are possible if
the object is being referenced by multiple links. Also, thetust be at least one addlink
operation if the first operation in the log is a create operati

—zero or one delete operation. Note that when a delete apeiiatpresent, there won't be
any addlink operations, but there may be one or more rmlirgtatpons in the log.

Given the condensed logs maintained with the objects inrtbdd table, it seems straight-
forward to carry out the commit operation. The only catchhit we only have the relative
ordering of operations involving a single file system ohjéett lost information about the
global ordering of operations across different objectds Thises the question as to whether
the meanings of these operations may change as a results leotitext, we make the fol-
lowing observations:

—Creation and deletion operations do not have any depeieteacross objects. Hence the
loss of global ordering regarding these operations doesffett the semantics of these
operations.

—Rmlink operation depends upon the existence of parenttding but nothing else. This
means that as long as it is performed prior to the deletioraodmt directory, its meaning
will be the same as is it was executed in the global order ickvitivas executed originally.
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—Addlink operation depends on the creation of the paremctiiry (i.e., the directory in
which the link will reside) and the target object. Moreowar,addlink operation involving
a given parent directory and link name has a dependency owntaey rmlink operation
involving the same parent directory and link names. Thieisaoise the addlink operation
cannot be performed if a link with the same name is presertamparent directory, and
the execution of rmlink affects whether such a link is prés@hus, the effect of addlink
operations will be preserved as long as any parent direct@gtion, as well as relevant
rmlink operations are performed before.

Among operations that have dependency, one of the two pgessitlers is allowable. For
instance, an rmlink operation cannot precede the existeheiher the parent directory or
the target of the link. Similarly, an addlink operation cahprecede an rmlink operation
with the same parent directory and name components. (Rbealve have decomposed a
rename operation into rmlink (if needed), addlink and aobilelete (if needed) operations,
so it cannot happen that an addlink operation is invoked ocararp directory when there is
already another link with the same name in that directoryhjs Tneans that even though
the global ordering on operations has been lost, it can sticted. Our approach is to
traverse the file system within the temporary storage, anthgoe the condensed logs while
respecting the above constraints, and then execute thendén to implement the commit
step.

Atomic Commits.As mentioned before, the committing of modifications shdutddone
atomically in order to guarantee file system consistency fidtural way to do atomic op-
erations is through file-locking: to prevent access to alfite system objects that are to be
modified by the committing process. We use Linux mandatazkddo achieve this. Imme-
diately before the committing phase, a lock is applied tdigtef to-be-committed files, so
that other processes do not gain access to these files. Oalytive committing is completely
done, the locks on these files are released.

5. DISCUSSION
5.1 Implementing Restriction at System Call Layer.

The actions of SEE processes are regulated by a policy emfanet engine that operates
usingsystem call interpositianThis enforcement engine generally enforces the following
policies in order to realize SEEs:

—File accessesEnsure that SEE processes can access only the files withilfr&eAc-
cess to device special files are not allowed, except for “lessi devices likaty 's and
/dev/null

—Network accessNetwork accesses for which an explicit (static) rediratti@s been set
up are allowed. The redirection may be to another procesefeutes within a differ-
ent SEE, or to an intelligent proxy for a network service. {@that network file access
operations do not fall in this category — they are treatedla®fierations.)

—Interprocess communication (IPGQPCs are not allowed to prevent an SEE process from
affecting host processes.

—Signals and process controA humber of operations related to process control, such as
sending of signals, are restricted so that a process insi®&E& cannot interfere with the
operation of outside processes.
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—Miscellaneous “safe” operationsMost system calls that query system state (timers and
clocks, file system statistics, memory usage, etc.) areiffethwithin the SEE. In addi-
tion, operations that modify process-specific resourcels ag timers are also permitted.

—Privileged operationsA number of privileged operations, such as mounting fileeayst,
changing process scheduling algorithms, setting systam ind loading/unloading mod-
ules are not permitted within SEE.

Note that the exact set of rules mentioned above may notlsajplications. For instance,
one may want to disallow all network accesses for an untiuesgelication, but may be will-
ing to allow some accesses (e.g, DNS and WWW) for applicattbat are more trusted.
To support such customization, we use a high-level, exwepslicy specification language
called BMSL [Sekar and Uppuluri 1999; Uppuluri 2003] in oordlementation. This lan-
guage enables convenient specification of policies thabedrased on system call names as
well as arguments. The kinds of policies that can be expdaastide simple access control
policies, as well as policies that depend on history of pestsses and/or resource usage. In
addition, the language allows response actions to be lashehen policies are violated. For
instance, it can be specified that if a process tries to opéa 4, fihen the request should be
redirected to open another fifé. Efficient enforcement engines are generated by a compiler
from these policy specifications. More details about thigyleage and its compiler can be
found in [Uppuluri 2003].

In our experience, we have been able to specify and enfolozgsthat allow a range of
applications to function without raising exceptions, ameléxperimentation section describes
some of our experiences in this regard.

5.2 Support for Network Operations.

Support for network access can be provided while ensurimgvealy isolation semantics in
the following cases:

—access to services that only provide query (and no update}ibnality, e.g., access to
domain name service and informational web sites, can beifitechby configuring the
enforcement engine so that it permits access to certainomnkefports on certain hosts.

—communication with processes running within other SEEstEasupported by redirecting
network accesses appropriately. This function is alsoigeal/by the enforcement engine.

—accesses to any service can be allowed, if the access isttmadgh an intelligent proxy
that can provide isolation semantics.

Currently, our implementation supports the first two catks® of distributed SEESs provides
an easy way to permit isolated process to access any locadrser one can simply run
the server in isolation, and redirect accesses by the &blatocess to this isolated server.
However, for servers that operate in a different adminiisgalomain, or servers that in turn
access several other network functions, running the sémvisplation may not always be
possible. In such cases, use of an intelligent proxy thaighgremulates the server function
may be appropriate.

Intelligent proxies may function in two ways. First, they ynatilize service-specific
knowledge in filtering requests to ensure that only “read®ragions are passed on to a server.
Second, they may provide some level of support for “writeigtions, while containing the
effects within themselves, and propagating the resultegaeal server only at the point of
commit. For instance, an email proxy may be implemented vkimply accepts email for
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delivery, but does not actually deliver them until commit¢i. Naturally, such an approach
won't work in the case when a response to an email is expected.

Another limitation of our current implementation is thadibes not provide support for
atomic commits across distributed SEEs.

5.3 User Interface.

Typically, an SEE is created with an interactive shell rugninside it. This shell is used
by the user to carry out the tasks that he/she wishes to dieitise SEE. At this point, the
user can use arbitrary helper applications to analyze, eoeppr check the validity of the
results of these tasks. For instance, if the applicationifiesdust text files, utilities like
diff can point out the differences between the old and new vessibdocuments, images,
video or audio files are modified, then corresponding doctmemultimedia viewers may
be used. More generally, users can employ the full rangeeafid multimedia utilities or
customized applications that they use everyday to exarhmessults of SEE execution and
decide whether to commit.

Before the user makes a final decision on committing, a cotgo@emary of files modified
within the SEE is provided to the user. If the user does nogptcihe changes, she can just
roll them back at a click of button. If she accepts the chantjesn the commit criteria is
checked. If it is satisfied, then the commit operation prdsees described earlier. If not, the
user may still decide to proceed to commit, but this is suggabonly in certain cases. For
instance, if the whole structure of the file system has beang#d outside the SEE during its
operation, there won't be a meaningful way to commit. Fog thson, overriding of commit
criteria is permitted only when the conflict involves a pléle.

Optionally, the user can use a shell that has access to the isafation context as the
untrusted process, and also has access to the original §tersy Moreover, the children
of this shell are permitted to access X-windows, so thatiaty helper applications (e.g.,
image viewers) can be launched by the user to view the modikesd

5.4 Attacks on SEEs

Attacks by modifying helper application inp&ecall that SEEs may be used to run untrusted
and/or malicious software. In such cases, additional ptémas need to be taken to ensure
that this software does not interfere with the helper apfibims, subverting them into pro-
viding a view of system state that looks acceptable to the #=@ instance, the untrusted
process may interfere with the execution of the helper apptin. One way for the untrusted
program to accomplish this is to insert an alias into Haehrc  or a similar shell startup
file, and have the untrusted program execute its own vergithredelper application (which
presumably will present false results to the user). The alsitwation illustrates the need
to ensure that untrusted processes cannot interfere wétbpkration of helper application
processes, or modify the executables, libraries or cordtg files used by them. To en-
sure this, helper applications can be run outside of the $HBEhaving a read-only access
to the file system view within the IFS using a special path nahiés approach ensures that
the helper application gets its executable, libraries amdig files from the host file system
which is unaffected. Another advantage of doing this is #mgt modifications to the system
state made by helper applications do not clutter the userfate that reports file modifica-
tions that were carried out within the SEE. (While it may sebat helper applications are
unlikely to modify files, this is not true. For instance, rimgthe bash shell causes it to
update thebash _history file; running a browser updates its history and cache filed;san
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on.)

Attacks on system call interceptio8ystem call interception techniques can be points of
targets of subversion due to some of the pitfalls[Garfinkéi3 in implementation. The user-
level interposition approach is more vulnerable to attdbksugh race conditions, which are
addressed as follows.

—Rogue processes may cause the interceptor to terminatealidious process may try to
terminate the process that is monitoring it. For instantceamn send a kill signal to the
monitoring process. However, this must again be done thraugystem call, which will
be intercepted and aborted by the monitoring process.

—Fork/clone race condition. When a monitored process arscafork system call, the
child process is not traced automatically. The monitoringcpss must explicitly request
tracing of the child process by invokingace with the child PID (process identifier) as
an argument. However, the child PID is unavailable untilithe system call returns to
the parent. By then, it is possible that the child process hee started running, and
executed system calls that the monitoring process woulgermhit. To solve this problem
we adopt a clever trick that was originally devised in thece [Strace ] program. A
description of this idea can be found in [Liang et al. 2003].

—Argument race condition. There is a delay between the tirhenathe arguments of a
system call is checked by the monitoring process and the wilmen the arguments are
actually read by the kernel. If the arguments are stored iemaony region shared by sev-
eral processes or threads, it is possible for these praddssads to modify the arguments
during that time delay. We address this problem by movingsgecritical arguments to
a random location on the stack [Jain and Sekar 2000]. In dodehe attack to succeed
in spite of this change, collaborating threads (or prosseed to scan the entire stack
to find the location where the argument is stored, and this susst be completed within
the short interval between the time when arguments are elddnkthe monitoring process
and the time they are used by the kernel. If the random numlodidsen over a reasonably
large range, e.g107 or 102, then the likelihood of successful attacks becomes veryisma

A completely in-kernel based approach does prevent sonfeeétvulnerabilities from aris-
ing in the first place (such as argument copying related racéitons), and that is being
used in our kernel land approach.

Attacks through resource exhausticknother point of attack may be through exhaustion
of resources used by the SEE. For instance, SEEs make usepiri@ry storage to save the
modified/created version of files, directories, etc. Silmigtemporary storage is itself a part
of the main file system, there is a potential chance for astézkntentionally exhaust the disk
space resources on a system. In general, such resourcestghaitacks are usually dealt
with resource usage control or resource accounting. In dngcplar instance of the above
attack, a quota can be allocated for temporary storage amthevier disk space overuse
occurs, the user will be issued a warning. Our policy spedtifion language [Sekar and
Uppuluri 1999; Uppuluri 2003] is capable of specifying suebource usage policies.

Attacks through kernel vulnerabilityAlcatraz relies on the underlying operating system
to serve redirected requests, and assumes its interfabe wperating system is robust. If
the operating system kernel that Alcatraz runs on has a ralbilgy, a malicious program
can exploit it to escape the SEE environment. This is trualfasolation approaches, which
assume their lower layer services to be robust. If the cogdeimenting devices of vir-
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tual machines contains vulnerabilities, they can be eigaiidio escape the isolation environ-
ment [Ormandy ]. Similarly, when using our approach, no gasres about integrity can be
made when the lower layer is already compromised [King €2@06]. In this case, the host
system cannot detect malicious actions of the layer berieaftherefore, the host system
running Alcatraz SEE relies on a clean lower layer kernehwhe latest patches that address
known vulnerabilities.

Detecting SEE Environmen©Our SEE is not designed to be undetectable, i.e., it is pos-
sible for an untrusted program to detect that it is runningnnfSEE. However, this doesn’t
affect our goal of protecting system integrity. If a maliegoprogram detects the SEE and
don’t show its malicious behavior, it cannot harm the hostey even after its results are
committed. However, users should never trust a programdbaséts behavior in an SEE,
which is not designed to “certify” untrusted programs. Arirusted program should never
be executed outside an SEE.

6. EVALUATION
6.1 Implementation and Evaluation Environments

The user-land version of Alcatraz was implemented on thentoperating system [Alcatraz
]. The implementation has been tested on Red Hat Linux 7. RaadHat Linux 8.0 distribu-

tions. The performance figures given below were obtained BE aunning Red Hat Linux
7.2 on a 1.7GHz P4 processor with 1GB memory.

The in-kernel version of Alcatraz was implemented in theuximperating system kernel
version 2.4.18-3. Performance results reported in thiepagre obtained from a laptop
running Red Hat Linux 7.3 with a 1.0GHz AMD Athlon4 proces€t2MB memory and a
20GB, 4200rpm IDE hard disk.

6.2 Evaluation of Functionality

Untrusted applicationsWe describe two applications here: a file renaming utiligefr
ware calledta [Tiilikainen ], which traverses a directory tree and renaradarge number
of files based on rules specified on the command line, and & aiftmim organizer freeware
calledpicturepages  [Picturepages ]. These applications ran successfullyinvithr SEE.
Our implementation includes a GUI that summarizes files fiedlin the SEE so as to sim-
plify user’s task of deciding whether the changes made byagi@ication are acceptable.
Using this GUI, we checked that the modifications made byettegsplications were as in-
tended: renaming of many files, and creation of several filtd#oa directories. We were then
able to commit the results successfully.

To simulate the possibility that these programs could beamals, we inserted an attack
into picturepages  that causes it to append a new public keyo/authorized ~ keys . (This
attack would enable the author of the code to later log irgststem on whichicturepages
was run.) Using our GUI, it was easy to spot the change to tleis Tihe run was aborted,
leaving the file system in its original state.

Our user-level implementation was tested with Picturepagel we observed similar re-
sults. Another application that we tested wass , which takes a list of mp3 files and creates
a playlist sorted by artist, album, track, or title on thenstard output. A directory containing
various mp3 files was used as the input. After the programhi@sisexecution, the user-
interface presented a report that summarized that no ceamgre made to the file system.
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Malicious code.Email attachments and WWW links are a common source of \éraad
other malware. We used an SEE to protect systems from suckameal Specifically, we
modified the MIME type handler configuration file used by Mlaz#o that executables, as
well as viewers launched to process documents (ghgsiscript ~ andxpdf ) fetched over
the Internet, were run within SEE. We fetched sample mal&iBostScript and Perl code
over the network using this approach. This code was exednside the SEE. Using our
GUI, we were able to see that these programs were performiegpected actions, e.g.,
creating a huge file in the user’'s home directory. These a&ticere aborted. Also, recently,
there are several image flaw exploits (JPEG virus) that hapéuced the attention of many
researchers. Running such image viewers inside an SEE el éliminate this potential
danger, because any malicious activity from the exploitslve isolated from affecting the
main system.

Some kinds of malicious code are written to recognize ty@aadbox environments, and
if so, not display their malicious behavior. This can causgser to develop trust in the
code and then execute it outside of sandbox, when the malwdddeliver its payload.
With our approach, we point out that running the code insilE 8oes not incur significant
inconvenience for the user, thereby making it easy for tlee tosalways use it. In this case,
the code will always display benign behavior.

Software installation.Another experiment performed a trial installatiomakilla browser.
During the installation, an incorrect directory name/bin -~ was chosen as the location for
installation, instead of the default directangr/local/mozilla . Under normal circum-
stances, this causes Mozilla to copy a humber of files imiabin  , thereby “polluting”
the directory. After running the program in an SEE, the ustarface indicated that a large
number of files (some are non-executables) were addedrtign , which was not desir-
able. Aborting this installation, we ran the installatioogram a second time, this time with
fusr/local/mozilla as the location for installation. At the end of installatiove restarted
the browser, and visited several sites to make sure thartiygggm worked as expected. (For
this experiment, the system call restriction layer was tiedio allow all WWW accesses.)
Finally, we committed the installation, and from that paint we were able to use the new
installation of the browser successfully, outside of SEE.

We also tested the user-land implementation with the samedar installation. The pro-
gram modified three configuration files of a previous versionailla and installed all files
into a new directory. All these changes were captured byaalrand reported through the
user interface.

Upgrading and testing a serveSpecifically, we wanted to upgrade our web server so
that it can support SSL. We started a command shell under &ftEysed it to upgrade the
apache software installation. We then ran the new serveen@ble it to run, we used static
redirection for network operations, so that a bind operetiioport 80 was redirected to port
3080. We then ran a browser that accessed this server byaorq® this port. We verified
that the new server worked correctly. Meanwhile, the oagiserver was still accessible to
every one. Thus, SEE allowed the software upgrade to bedtestgly and conveniently,
without having to shutdown the original server.

After verifying the operation of the new server, we atterdpieecommit the results. Un-
fortunately, this produced conflicts on some files such asititess and error log files used
by the server. We chose to ignore updates to such outputfédésvere made within the SEE,
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Fig. 5. Performance Results for In-kernel Implementation

and commit only the rest of the files, which could be done ssxfody.

In all examples in the above categories, the isolation djperguaranteed the safety of the
user’s resources, as well as provided the convenience ofsssummaries on the outputs of
these executions.

6.3 Implementation Performance Results

In the results reported below, the primary metric was eldpisee.
For the user-land and in-kernel system performance evahsgtwe considered the fol-
lowing common classes of examples:

—Utility programs. In this category, we studieghostview andtar utilities. Specifically,
we ran ghostview on a 31M file, with no file modification opevas; andar to generate
a tarball from a 26M directory, and the only modification gggens involved was the
creation of this archive. From Figure 5, we can see a 3-12%hewael incurred for such
applications for in-kernel implementation, while higheechead (30-80%) overhead for
user-land implementaion from Figure 4.

—Servers. We measured the performance overhead for the two impleti@mgaon the
Apache web server using WebStone [Webstone ], a standarcevebr benchmark. We
used version 2.5 of this benchmark, and ran it on a separatputer that is connected
to the server through a 100Mbps network. We ran the benchmiginktwo, sixteen and
thirty clients. In the experiments, the clients were sirntedato access the web server
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Log-based Commit| State-based Commi|
Time Time Speedup
ghostview 0.03 0.03 1
tar 0.14 0.03 4.7
postmark 225 0.07 3214.3
Am-utils 16.9 0.35 48.3

Fig. 6. Comparison for Log-based Commit and State-basedn@brAll numbers are in seconds.

concurrently. They randomly fetch html files whose size @1fr500 bytes to 5M. The
benchmark was run for a duration of 30 minutes, and the eswdte averaged across
ten such runs. The results are shown in Figure 4 and Figure tsvéoimplementations.
On average, in-kernel implementation incurred a 2% dedi@dand the degradation for
user-land implementation is around 40%.

—File system benchmark$Ve usedrostmark [Katcher 1997] andim-utils  [Pendry et al.

] benchmarks to get the benchmark data for IFS. Postmark ie ayfstem benchmark to
measure the performance for file system used by Internetcagiphs, such as email. In
this experiment, we configurethstmark to create 500 files in a file pool, with file sizes
ranging from 500 bytes to 500KB. A total of 2000 file systemragiens were performed.
In total, 1515 files were created, 1010 files read, 990 filetenrjtand 1515 files deleted.
The tests were repeated ten times. Overall, a 18% perforndegradation is observed
for in-kernel implementaiton, while 34% degradation onrtlaed implementation, and
commit overheads for both are near zese-Utils  is a CPU-intensive benchmark result
by building the Am-Utils package, which contains 7.6M lird<C code and scripts. The
building process creates 152 files and 19 directories, aksased rename and 8 setattr
operations. We ran this experiment in both original file sgsaind IFS. The results, shown
in Figure 4 and Figure 5, indicate a low isolation overheadimder 2% for in-kernel
implementation and around 60% overhead for the user-landtegpart, and they both
incurred a negligible commit overhead.

In addition, we also collected results in Figure 6 to showdfiieiency of our state-based
commit approach. An implementation that used log based dtaimghwas compared with
our state based committing implementation, and the pedao® of both of the approaches
were compared for applications suchas, postmark andAam-uiils . The results project the
advantage of using a state based commit approach, parljcililsstrating the advantage of
having accumulative effects for file objects. For instarice Jarge number of temporary files
created then deleted in Am-utils compilation and all thesfileeated then deleted in Postmark
execution, are not considered in the committing stage adidates, while log-based commit
still needs to perform the whole set of operations (e.g.eytid all these files, so there is a
significant difference between the two approaches in tefraermmit time.

7. RELATED WORK
7.1 Sandboxing Approaches

Sandboxing based approaches [Goldberg et al. 1996; Dan £9%r; Acharya and Raje
2000; Prevelakis and Spinellis 2001; Scott and Davidsor2 2Bfbvos 2003] involve observ-
ing a program’s behavior and blocking actions that may camise the system'’s security.
Safe Virtual Execution (SVE) [Scott and Davidson 2002] uSefiware Dynamic Transla-
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tion, a technique for modifying binaries as they executesisd to implement sandboxing.

Systrace [Provos 2003] is a sandboxing system that notfisiser about all system calls
that an application tries to execute and then uses the resficmm the user to generate a pol-
icy for the application. SoftwarePot [Kato and Oyama 2008prporates a secure software
circulation model that confines the behavior of the untdigi®gram. In this case, the soft-

ware to be runis encapsulated with a file system. The userenaapsulate the complete list
of the file system resources needed by the program in ordeake ihexecute successfully.

Furthermore, all the operations to the files are confinedddpbt” archive.

The main drawback of sandboxing based approaches is theuttiffof policy selection
i.e, determining what actions are permissible for a givestgiof software. Note that ma-
licious behavior may not only involve accessing unauttesticesources, but also accessing
authorized resources in unauthorized ways. For instamegram that creates a compressed
version of a file may instead create a file that contains nauligeta, which is equivalent to
deleting the original file. It is unlikely that a practicalstgm can be developed that can allow
users to conveniently state policies that allow write as¢eghe file while ensuring that the
file is replaced with its compressed version. In contras§BE permits manual inspection,
aided by helper applications, to be used to determine if gnara behaved as expected. This
approach is much more flexible. Indeed, it is hard to imagdag tasks such as verifying
whether a software package has been installed properlyesmbe formally specified using
any sandbox-type policy.

Another technique is to extend sandboxing by allowing ofena to be disallowed silently,
i.e., by returning a success code to the program [Sekar #998; Fakebust ]. The goal here
is deception, i.e., making a malicious program believe ithatsucceeding in its actions so
as to observe its behavior. In our terminology, these amesuse restriction rather than
redirection. As we observed earlier, use of restrictioiksly to break many benign applica-
tions, as well as alert malicious applications very quidklyhe effect that their actions are
not succeeding. For instance, if a write operation is difesuppressed, the application can
easily detect this by reading back the contents.

7.2 Two-way Isolation Approaches

Several approaches including those that involve virtuathirees employ the idea divo-
way isolation for security. The “playground” approaches depeld for Java programs in
[Malkhi and Reiter 2000; Chiueh et al. 2000] realizes two visglation by running un-
trusted programs on a physically isolated system, whilé ttieplay is redirected to the
user’s desktop. An important point to note here is that theedjilstem on the user’'s com-
puter cannot directly be accessed on the playground sysZewirt [Chen and Nobl 2001],
Denali [Whitaker et al. 2002] and Bochs [Bochs ] are reseaftirts that support running
applications inside two-way isolated virtual machines.mbeercial virtual machine soft-
ware such as VMWare [VMWare ] and VirtualPC [VirtualPC ] amngenient mechanisms
to realize two-way isolation.

Two-way isolation systems suffer from three main problem®alizing a SEE.

—Accurate environment reproductidior applications like system reconfiguration testing, it
is necessary to duplicate the exact host environmentiasithd. This introduces problems
in usability and performance. Although recent tools, sk islware Converter [VMware
], have been created to help user to duplicate host systenaiiM, the task still takes
a non-trivial amount of time for duplication, in addition tiee time required to boot the
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duplicated VM for use. Furthermore, to keep the softwarb@MM system in “sync” with
the host system, this step needs to be done for each chamea&software updates), in
the host environment.

—Difficulty in examining guest OS stakeirthermore, examining changes made in a VM
is not straightforward: on the one hand, it is not reliabldnspect the changes from
inside of a VM because the VM may already be compromised. Thermption is to
mount the file system from the VM in a trusted system and exartinHowever, this
process of examining guest OS state from “outside” will Bigghe changes made by
all processes running in the system (including system prosgsset just the untrusted
process, and therefore may result in loss of precision intiffgng changes made by a
piece of untrusted code.

—Difficulty in dealing with external file syster&sternal file systems (such as a user’'s home
directory on a NFS mount volume) cannot be used in conjunetith a two-way isolation
approach. If used, changes made to an external file systémswédpe the boundary of the
two-way isolation approach. Therefore the approach takghdse systems is to disallow
use of external file systems. However, a one-way isolatigmageh is extremely useful
here — changes made to files in an external file system can bared (and committed)
with ease.

7.3 Application Virtualization Approaches

Zap [Osman et al. 2002] creates a virtualization layer betwgrocesses and their operating
system to support process migration. File system virtatibn in Zap is similar to IFS in
SEE in that both intercept system calls and map logical pathes to physical ones. In
general, Zap is more comprehensive than our SEE in thattitalires a broader range of
system resources. However, SEE and Zap have different foewsipporting file system
operations. SEE prevents effects of SEE processes frorg kisiible to other processes, and
allows modifications in SEE to be committed to host systencalntrast, Zap’s file system
virtualization aims to provide the same file system view atadeson a different physical
machine. It is implemented by static redirection and dagmevent Zap session and the host
system (or two Zap sessions) from modifying the same file i@octibry.

There is also a recent line of products using software Jigaton to reduce conflicts
among installed software, such as Altiris’s Software \Atization Solution [SVS ] and Mi-
crosoft's SoftGrid [SoftGrid ]. The focus of these approaglis pure isolation. Also, the
documentation on these tools do not suggest that these agby@® allow users to commit
changes back to the host system.

7.4 One-way Isolation Approaches

Liu et al. [2000] presented a systematic development of timeept ofone-way isolatioras
an effective means to isolate the effects of running praxsegem the point they are compro-
mised. They developed protocols for realizing one-wayaisoh in the context of databases
and file systems. However, they do not present an implementaf their approach. As
a result, they do not consider the research challenges tisatdue to the nature of COTS
applications and commodity OSes. Moreover, they do notigeoa systematic treatment of
issues related to consistency of committed results. FVMgial. 2006] virtualizes resources
of Windows operating system. The file system resources #relized using copy-on-write,
similar to our file system proxy. But FVM aims to duplicateaasces without affecting the
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host operating system, instead of containing all effects pfogram. For example, network
operations are redirected without confinement. In conttastSEE ensures that the actions
of the isolated program cannot affect local or remote system

7.5 Recovery-Oriented Systems

The Recovery-Oriented Computing (ROC) project [ROC ] isedeping techniques for fast
recovery from failures, focusing on failures due to operawors. Brown and Patterson
[2003] presents an approach that assists recovery fronatmperrors in administering a net-
work server, with the specific example of an email server. fEgevery capabilities provided
by their approach are more general than those provided s/ dthre price to be paid for
achieving more general recovery capabilities is that tileflementation needs to be appli-
cation specific, and hence will have to be tailored for eaatiic application/service. In
contrast, we provide an application-independent approAnbther important distinction is
that with our approach, consistency of system state can sigexs whenever the commit
proceeds successfully. With the ROC approach, which doeestrict network operations,
there is no way to prevent the effects of network operatioosfbecoming so widely dis-
tributed in the network that they cannot be fully reversedthle case of email service, they
allow a certain level of inconsistency, e.g., redeliverangmail that was previously read and
deleted by a client, and expect the user to manually resbigértconsistency. This potential
for inconsistency is traded in favor of eliminating the rafkcommit failures.

7.6 File System Approaches

Elephant file system [Santry et al. 1999] is equipped withdbgct versioning support, and
supports flexible versioning policies. Several other apphes [Chutani et al. 1992; Quinlan
and Dorward 2002; Roome 1991; Soules et al. 2002; PetergbBams 2003] use check
pointing technique to provide data versioning. MuniswaRsddy et al. [2004] implements
VersionFS, a versatile versioning file system. They use ckatde template file system as
ours, and use a sparse file technique to reduce storageewauits for storing versions of
large files. While all of these approaches provide the bagialbility to rollback system state
to a previous time, such a rollback will discatil changes made since that time, regardless of
whether they were done by a malicious or benign process.rtrast, the one-way isolation
approach implemented in this paper guarantees selectildack of the actions of processes
run within the SEE without losing the changes made by benigongsses executing outside
of the SEE.

Repairable File System [Zhu and Chiueh 2003; Zhu 2003] makesof versioning file
system to bring repair facility to a compromised file servEhe Taser intrusion recovery
system [Goel et al. 2005] also has a similar objective and aselit analysis techniques
for recovery of a filesystem that is damaged due to an intruskastrek [Pilania and Chi-
ueh 2003] applies the similar approach to protect databdsesse approaches can attribute
changes to malicious or benign process executions, and allgser to rollback changes se-
lectively. However, since the changes made by (potenjialynpromised processes are not
contained within any environment, “cascading aborts” cacoe a problem. Specifically,
a benign process may access the data produced by a compilgmigess, in which case
the actions of the benign process may have to be rolled backgel as the actions of pro-
cesses that used the results of such a benign process and $oenisk of such cascaded
aborts should be weighed against the risk of not being alderamit in our approach. Thus,
these approaches as well as the ROC approach mentionedaeavere suitable when the
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likelihood of rollbacks is low, and commit failures cannet tolerated.

Loopback file system [Lofs ] can create a virtual file systeamfrexisting file system and
allow access to existing files using alternative path namet tBis approach provides no
support for versioning or isolation.

3D file system [Korn and Krell 1990] provides a convenient i@ysoftware developers
to work with different versions of a software package. Irstbénse, it is like a versioning
file system. It also introduces a technique cati@shsparent viewpathing/hich is based on
translating file names used by a process. It gives a unioneiasveral directory structures
thus allowing an application to transparently access orectiiry through another’s path.
As it is not designed to deal with untrusted applicationsieitds the cooperation from the
application for this mechanism to work. TFS [TFS ] is a fileteys in earlier distributions of
Sun’s operating system (SunOS), which allowed mountingvafitable file system on top of
a read-only file system. TFS also has a view similar to 3DF&rerthe modifiable layer sits
on top of the read only layers. Pendry and McKusick [1995Fkdbes a union file system
for BSD, that allows “merging” of several directories intoeg with the mounted file system
hiding the contents of the original directories. The uniooumt will show the merger of
the directories and only the upper layer can be modified. ese file systems are intended
for software development, with the UnionFS providing aidaial facilities for patching read
only systems. However, they do not address the problem ofisecthe original file system
from untrusted/faulty programs; nor do they consider pepts such as data consistency and
commit criteria.

8. SUMMARY

In this paper, we presented an approach and tool calledralcér realizing safe execution
environments. We showed that the approach is versatilegdntiusupport a wide range
of applications. A key benefit of our approach is that it pd®d strong consistency. In
particular, if the results of isolated execution are noegtable to a user, then the resulting
system state is as if the execution never took place. On ther dtand, if the results are
accepted, then the user is guaranteed that the effect atésbéxecution will be identical to
that of atomically executing the same program at the poirtosfimit. We also discussed
alternative commit criteria that exploit file semanticséduce commit failures.

We presented two different implementations of Alcatrazusar-landsolution and the
other employing an in-kernel approach. The user-land amrds a trade-off of stronger
commit guarantees and performance for the sake of usalaitity is implemented as a tool
that can be used by desktop users without requiring admatistrights. Our in-kernel ap-
proach makes minimal modifications to the kernel in the fofrmodules that provide file
system isolation and policy enforcement. It requires naglea to applications themselves.
Our functional evaluation illustrates the usefulness efapproach, while the performance
evaluation shows that the approach is efficient, and incuesheads typically less than 10%
for kernel implementation.
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