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Fig. 1: The ratio of missed HH using interval-reset algorithms
with unbounded hash tables (c.f. §IV) on different real-world
traffic traces from CAIDA. In every second, the number of HH
within the last interval size (of 8 sec) is obtained as ground
truth, and compared to the algorithm’s report.

The rise of programmable switches, commonly known as
PISA (Protocol Independent Switch Architecture) switches,
has enabled faster and more accurate methods to monitor
all packets entirely in the data plane [16], while maintaining
terabits per second packet processing performance [17]–[19].

However, designing and implementing data plane algorithms
and data structures for PISA switches are challenging. These
switches have limited hardware resources, restricted set of
operations they can perform, and stringent memory access
rules, hindering any ideal but complicated and resource-hungry
application to run. Therefore, several recently proposed in-
network heavy-hitter detection algorithms rely on probabilistic
data structures [20]–[22], [22]–[26] to provide an acceptable
trade-off between performance and resource consumption. Un-
fortunately, this trade-off leads to several major shortcomings.

First, most of these algorithms use an interval-reset ap-
proach, i.e., flow monitoring is divided into static time in-
tervals and flow statistics are reset at the end of each interval.
A consequence of this approach is that certain heavy flows
spanning across intervals can go undetected. An analysis on
three traffic traces collected from ISP backbone links shows
(cf. Fig. 1) that the ratio of missed HHs when using an interval-
reset algorithm is significant. Here a flow is considered heavy
if it exceeds τ percent of the total number of packets within
an interval of 8 seconds. Observe that the ratio of heavy flows
going undetected can be up to 10%, 16% and 22% when τ is
set at 0.01%, 0.05% and 0.1%1. HHs that go undetected can
compromise the goal of the control applications. For instance,

1These thresholds are commonly used for heavy-hitter detection [22], [23],
[26], and, in this case, they mean ∼700 HHs (cf. §IV).

Abstract—Existing in-network heavy-hitter detection algo-
rithms suffer from several shortcomings. On the one hand, most 
of the algorithms perform monitoring in intervals and reset the 
data structures in between; consequently, a notable amount of 
heavy hitters (HH) spanning across the intervals go undetected. 
On the other hand, the algorithms consume substantial hardware 
resources, potentially hindering other data plane functionalities 
to be integrated on the same device.

In this work, we revisit the state-of-the-art in-network ap-
proaches in this regard and identify that they fall short in over-
coming the aforementioned issues. In particular, we investigate 
whether it is possible to design a heavy-hitter detection algorithm 
that provides high accuracy without consuming substantial re-
sources, thereby making it feasible to integrate with concurrent 
applications. To this end, we propose dSketch, a time-decaying 
algorithm for in-network heavy-hitter detection. Trace-driven 
simulations and evaluations on the Intel Tofino-based commodity 
switches show that dSketch significantly improves the detection 
rate of HHs by 5-10% while being resource- and operation-
efficient in contrast to s tate-of-the-art approaches. Moreover, we 
show that dSketch can be integrated with standard switch 
functionalities such as switch.p4 with additional resources 
spared, offering itself as a compelling solution for switch data 
plane designers.

Index Terms—Heavy-hitter detection, in-network monitoring, 
time-decay, resource efficient

I. INTRODUCTION

Due to the ever-increasing traffic and application demands,
the capability of real-time per-flow monitoring has become an
indispensable requirement for network management. Timely
detection of heavy hitters (HH) — flows contributing propor-
tionally high amounts to the overall network traffic — is useful
for a wide variety of network applications such as traffic en-
gineering [1], [2], caching specific flow table entries [3], load
balancing (of latency-critical applications) [4], per-flow inter-
packet metrics gathering [5], network anomaly [6], [7] and
attack detection [8], [9]. Once HHs are detected, corresponding
actions, e.g., rerouting the relevant flows, c an b e promptly
carried out.

Traditionally, heavy-hitter detection relies on coarse-grained
metrics sampled via protocols such as NetFlow [10] or via
intelligent gathering of per-flow s tatistics [ 11]–[13] using
remote controllers. The goal is to identify deviations from
average traffic behavior, e.g., by means of historical data, and
to make timely decisions accordingly. To avoid a huge control
plane overhead, the sampling rate is usually set to low (e.g.,
1 out of 1000 packets [14]); however, this is insufficient to
obtain fine-grained metrics [15] in a timely manner.
978-1-6654-0522-5/21/$31.00 ©2021 IEEE
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a load balancer would fail to distribute the network load
properly, leading to persistent congestion in the network (see
more details in §II-B).

Second, existing in-network algorithms are pushing the
limits of switch resource consumption in exchange for better
results. The number of pipeline stages and memory accesses,
and the amount of (per-stage) memory required, however,
directly affect the feasibility of integrating an application into
today’s programmable switches [27]. For instance, a fully
functional data plane program designed for standard L2/L3
switching and routing (e.g., switch.p4) can easily take 10
or more stages (of the typically available 12 [28]). Moreover,
more than half of the stages are densely utilized, leaving
little available resources (e.g., memory) for other application
logic to be merged in those stages. Unfortunately, synthe-
sizing the state-of-the-art in-network HH detection algorithm
PRECISION [21] alone requires at least 11 pipeline stages
with substantial resource consumption, rendering integration
of switch.p4 with PRECISION infeasible (see details
in §II-B). From a network operational perspective, the bread-
and-butter switch functionalities always get prioritized over
further extensions, making PRECISION impractical in any real
network deployment.

In this work, we investigate the challenges of designing and
implementing an in-network heavy-hitter detection algorithm
that (i) reduces the number of HHs that current interval-
reset solutions miss by design, and (ii) significantly reduces
the overall hardware resource consumption (e.g., pipeline
stages, memory) to enable integration with common switch
functionalities, i.e., with switch.p4.

To this end, we propose dSketch, a novel time-decaying
algorithm for accurate HH detection in the data plane, and
implement it in the P4 language [17]. To address (i), dSketch
decays the counts instead of resetting them (§III-A). With
a decaying function, dSketch retains a portion of histor-
ical counts for potential heavy flows throughout the time,
while inactive/small flows are garbage-collected automatically
(§III-B). We carry out trace-driven simulations and evaluations
on Intel Tofino-based programmable switches (§IV) and show
that dSketch significantly reduces the number of undetected
HHs (i.e., high true positive rate) by 5− 10% over the state-
of-the-art approaches (§IV-A). Addressing (ii), dSketch uses
only 4 pipeline stages and 4.7% of the switch SRAM (§III-C).
This leaves ample resources for other concurrent data plane
applications (§IV-B). Besides open-sourcing dSketch [29],
we show its feasibility by integrating with the state-of-the-art
switching function, switch.p4.

This paper makes the following contributions:
• We identify and elaborate on the shortcomings of existing

heavy-hitter detection approaches (§II).
• We carefully design dSketch to overcome these limi-

tations (§III).
• We evaluate the performance of dSketch and compare

it to the state-of-the-art proposals (§IV). We show that
dSketch can detect 5-10% more HH, with low false-
positive rate and negligible packet recirculation (1-2%).
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Fig. 2: Heavy flows A and C spanning across intervals go
undetected with interval-reset algorithms. Here, τ = 0.05%
corresponds to 50 packets.

• We implement dSketch on an Intel Tofino-based pro-
grammable switch in P4 and make the code publicly
available [29]. Furthermore, we show that our resource-
efficient dSketch can be easily integrated with a
complex, fully functional data plane program, such as
switch.p4, positioning itself as an attractive network
monitoring extension to already deployed in-network
switching functions.

II. MOTIVATIONS

Only a small number of flows account for the predominant
proportion of the network traffic [30], and these important
elephant flows or heavy hitters (HH) define some important
network characteristics. The detection and identification of
these flows are crucial to provide a high Quality of Service
(QoS) and efficient load-balancing (see more details below).

Next, we discuss why and to what extent the interval-reset-
based algorithms fall short of keeping track of the HH accu-
rately. Then, we elaborate on further shortcomings of existing
approaches designed explicitly for commodity programmable
switches and define our design objectives accordingly.

A. Missing Heavy Hitters

Consider Fig. 2, where three different flows A,B, and C are
shown as time passes within two intervals. In the network, an
interval-reset algorithm is deployed, which resets the counts
periodically at every ti (i = 2k, k ∈ N). The network
operator’s aim is to detect all heavy flows and carry out the
necessary actions, e.g., rerouting. A flow is considered heavy,
if the number of packets reaches the threshold τ = 0.05%
within an interval, i.e., within 2t. Observe, in the first interval
(t0−t2), only flow B reaches the threshold, and the algorithm
correctly reports it. Then, in the second interval (t2− t4), both
flows A and C go completely undetected due to the reset at t2,
however, they both exceed the threshold within a period of an
interval size, i.e., within (t1 − t3). This renders interval-reset
algorithms to be inefficient even in this simple use case.

On the other hand, every monitoring algorithm trying to
realize patterns in a non-deterministic, forever-changing traffic
inevitably misses some important observations (e.g., not de-
tecting a HH) and/or can draw false conclusions (e.g., falsely
reporting a small flow as heavy). Here, we argue that in the
scope of heavy-hitter detection, while keeping the number of
falsely reported small flows (i.e., false positives) at a tolerable
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level, minimizing the missing HH (i.e., false negatives) is a
superior aim for effectiveness. To underpin this claim, we
briefly elaborate on some use cases for which heavy-hitter
detection algorithms are typically deployed.
Anomaly detection. Since anomaly detection identifies pos-
sible threats based on the deviations from actual patterns and
traffic load, detecting heavy hitters is a critical part of any
security system. When heavy flows are detected (e.g., port
scanners, DDoS attack), they are sent towards a network
scrubber (e.g., IDS/IPS, firewall) that further processes the
corresponding flows (e.g., filters out the ones found to be
malicious [31]). Clearly, accidentally double-checking some
benign small flows is acceptable (as they will not be filtered
anyway), however, letting a significant amount of malicious
flows simply pass through the network can pose serious
security issues.
Load-balancer. HH can easily cause congestion that signifi-
cantly reduces the overall QoS. Hence, we need to detect all
heavy flows and carefully reroute them to optimize network
utilization. Similarly to the anomaly detection, accidentally
rerouting some small flows (e.g., false positives) does not
introduce any negative side-effects, however, not rerouting a
significant amount of HH may let the congestion remain.

Further applications such as traffic prioritization [32], [33],
flow caching [3], in-network key-value stores [34], etc. share
the same basic findings, i.e., minimizing false-negatives is
crucial for efficient operation.

Accordingly, we define our first objective as follows.

OBJECTIVE 1. Minimize the heavy flows going undetected
while keeping the false-positives reasonably low.

B. Hardware Resource Limitations

Besides the accuracy of an algorithm, we have further cru-
cial requirements to satisfy to realize in-network heavy-hitter
detection. Today’s commodity programmable switches are
PISA [35] switches based on the RMT [27] architecture, which
enforces strict regulations due to the nature of its feed-forward
packet processing pipeline. This can be described by having
(i) fixed number of pipeline stages (e.g., 12 [28]), (ii) fixed
amount of memory (SRAM) per stage (e.g., ∼1.4MB [27]),
(iii) fixed number of parallel memory accesses per stage, and
(iv) single-stage memory access [21], [35]. Next, we discuss
(i)-(iii) in more detail. We later address (iv) in §III-C.

In a nutshell, the number of pipeline stages (i) required by
an algorithm can be correlated with its length of the chain of
dependencies. For instance, consider the canonical Count-Min
Sketch (CMS [25]) with 4 rows for heavy-hitter detection.
Fig. 3 depicts the mapping of CMS to the PISA switches’
pipeline stages. First, whenever a packet arrives, we hash its
flow ID (e.g., 5-tuple, source IP) in order to get 4 indexes to
access the counters in every row (Stage 1). Next, in Stage 2, we
update (i.e., increase) the corresponding counters in every row,
and the new values are returned. Then, in Stage 3, we compare
each pair of returned values [36] to get minimums, while in
Stage 4, we calculate the real minimum out of the two obtained

Fig. 3: The required number of different pipeline stages to
keep track of heavy hitters with a CMS with four rows.

counts from Stage 3. Lastly, the obtained minimum count is
checked against the threshold (Stage 5) to decide whether a
flow is heavy (and to perform corresponding actions).

Whenever an algorithm (ii) requires more memory than a
stage has, or (iii) performs more parallel lookups or memory
accesses that allowed within one stage, the program will
need to be split across multiple stages. For instance, if CMS
in Fig. 3 (i) needs more counters per row and/or (ii) requires
6 rows, then, we need to split Stage 2 into further stages.
Moreover, we may need more than two steps in order to get
the final minimum count, resulting in at least 6 stages in total.
On top of that, applications that depend on the output of the
CMS further increases the length of the chain of dependency,
requiring more stages to realize.

Therefore, HH detection algorithms have to be carefully
designed to not consume excessive amount of resources single-
handedly in order to enable integration with other data plane
functionalities (e.g., switching and routing, anomaly-detection,
DDoS defense). As a common baseline, we look at integrat-
ing algorithms with the commodity switch implementation,
switch.p4, which eventually leads to our second objective.

OBJECTIVE 2. Minimize resource consumption to foster in-
tegration with standard switch functionalities.

III. DSKETCH : DESIGN AND IMPLEMENTATION

Next, we discuss in detail how the above-mentioned ob-
jectives can be satisfied. First, we introduce time-decaying
algorithms and how they can overcome the limitations of
interval-reset algorithms. Then, we formalize our novel al-
gorithm dSketch and discuss in detail its implementation
complying with the restrictions of PISA switches.

A. Time-decaying Algorithms

As discussed in §II, the fundamental cause of interval-
reset algorithms missing the HHs is the periodical resets.
To overcome this, we have to maintain the individual states
(i.e., flow counts) across intervals. Consequently, we have to
introduce the notion of time to the algorithm and carefully
maintain the flows and their counts as time passes, i.e.,
preferring counts in the most recent interval over older ones.

One particular trick is to employ sliding windows. Some
recent proposals for heavy-hitter detection (e.g., [37], [38]),
however, are designed for software-based approaches only.
This is due to the need for dynamic memory allocation, as well
as requiring excessive memory accesses in order to obtain the
heavy flows (e.g., iterating through the whole sliding window
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to retrieve the counts). Thus, none of them is realizable on
current commodity programmable switches [18], [19].

On the other hand, there already exist approaches like Con-
Quest [24] (originally designed for micro-burst detection, but
we adapt it for heavy-hitter detection (§IV)) that attempts to
realize sliding windows in the dataplane. ConQuest maintains
multiple instances of the same data structure for different in-
tervals and aggregates the counts accordingly. While satisfying
OBJECTIVE 1, due to the significantly increased resource
consumption, it goes against OBJECTIVE 2 (§IV-B). Thus,
while interval-reset algorithms are inaccurate because of the
periodic loss of information, sliding window-based approaches
naïvely operating on top of multiple (data structure instances
for multiple) intervals easily ends up in significant resource
consumption.

So, how do we track flow information across multiple inter-
vals without maintaining extra state? — We decay the counts
as time passes instead. There have been several works on
efficiently answering streaming queries using time-decaying
algorithms, from which, exponential decay has been widely
used in the domain of streaming data aggregation [39]–[42].
As time-decaying functions rely on floating point operations,
to the best of our knowledge, they have yet to be explored
in the realm of commodity programmable switches. This is
mainly due to the lack of support for floating point operations
in PISA switches [35], [36]. Hence, we attempt to achieve
approximate time-decaying functions in the dataplane by uti-
lizing the available primitive arithmetic and logical operations
available; we found that binary shifting is the closest approxi-
mation to exponential decay. Hence, we propose Approximate
Exponential Decay (AED) as a possibility to realize the
basics of time-decaying in commodity programmable switches
(initially presented briefly in [43]). Note, by decaying we
approximate the operation of a canonical sliding window.
Particularly, we dynamically manage an independent sliding
window for each flow, i.e., a heavy flow will be retained as
long as its count is sufficiently high and new, but at the price
of introducing a slight estimation error in the true counts.

With time-decaying, we satisfy OBJECTIVE 1 (see in §IV)
by letting only a negligible amount of HH go undetected.

1) Keeping Track of Time: Since for time-decaying we need
to be aware of the time, first, we discuss how we can keep track
of time in the data plane. High-resolution clocks (typically up
to 48-bit timestamps with ns precision [44]) are available in
PISA switches and can be accessed during packet processing,
thereby making it possible to introduce the notion of time to
our algorithms. Instead of the explicit timestamps, however, we
define broader observation phases to keep track of intervals
for which we extract n bits of the timestamps, e.g., 8 bits
(bit 40 to 33) to obtain ∼8.6-second periods. By having these
explicit but shortened timestamps, we can easily keep track of
the intervals.

B. dSketch: The Algorithm

Following our findings in §III-A, we select Count-Min
Sketch [25] as our foundation due to its lightweight property,

Algorithm 1 Update in dSketch, Input: incoming packet’s
data F , set of independent hash functions He, Ω actual
discretized timestamp, γ interval difference after garbage
collection kicks in.

1: procedure UPDATE(F,Ω)
2: F.count←∞ # init count for flow F
3: for i← 1 to e do # for each row
4: c, ω ← DSKETCH[Hi(F )] # get counter and timestamp
5: ∆Ω ← Ω− ω # timestamp difference
6: if ∆Ω 6= 0 then # not updated recently
7: if ∆Ω ≥ γ then # counter is too old
8: c← GC(c) # garbage collection
9: else

10: c← AED(c,∆Ω) # decay counter
11: end if
12: end if
13: c← c+ 1 # Increment counter
14: DSKETCH[Hi(F )]← c,Ω # update counter
15: F.count← MIN(c, F.count) # get min count for F
16: end for
17: return F.count # estimated count for F
18: end procedure

and propose dSketch (time-decaying sketch) on top.
Instead of merely focusing on a sole observation phase

(i.e., an interval) or maintaining multiple instances of the
same sketch, we decay the (true) counts of the flows as time
passes. To reach this, first, we introduce the notion of time
by augmenting every counter with an 8-bit auxiliary field
to maintain discretized timestamps (cf. §III-A1). The stored
timestamps keep track of in which interval the counter was last
updated. To retain counts for the most recent intervals only, we
perform the approximate exponential decay function whenever
the discretized timestamp advances. If a particular counter has
not been updated for a while, i.e., within the last 2 intervals,
then the garbage-collection process will zero it out. This
mechanism protects the data structure from overestimation.

In Alg. 1, we discuss how dSketch works; F is the flow
ID of the actual packet, Ω marks the actual interval (i.e., the
current global discretized timestamp), while γ equals to the
maximum timestamp difference to Ω within a certain flow’s
count is not zeroed out but decayed. To put it briefly, the
function DSKETCH in this algorithm reads and writes the
sketch data structure (like in CMS [25]). For every row in
dSketch (line 3-16), we retrieve the corresponding counter
value (c) and its last updated timestamp (ω) by hashing F
(line 4). Then, we compare Ω and ω (line 6) and apply
the corresponding actions, i.e., either garbage-collection or
applying the approximate exponential decay function (AED)
accordingly to the timestamp difference (line 6-12). Flows
that have not been updated within the last γ intervals will
be garbage collected. Lastly, we increment c by 1 and update
the counter together with the latest global timestamp, Ω (line
13-14). While updating every row, we keep track of the
minimum counts which will represent the actual count of flow
F . Depending on the outcome of UPDATE, HH are reported
to the control plane via push-based mechanisms [45], [46].
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C. dSketch: The Implementation

Next, we discuss in detail how the proposed algorithm
of dSketch (§III-B) can be implemented in P4 and what
necessary steps we need to make to satisfy OBJECTIVE 2.

Taking a closer look at Alg. 1, we can immediately iden-
tify that line 6-14 violates the memory access patterns of
PISA [21], [27], [35]. For an easier comprehension, we break
down line 4-14 into separate parts for analysis by arranging
them into stages2 as follows.
Stage n: First, we retrieve c and ω (and its difference from
Ω) from the memory. This takes one pipeline stage (line 4-5).
Stage n + 1: Then, based on the difference, ∆Ω, we apply
different conditional actions to the counter value c (line 6-12).

Note, there is a dependency between the operations on c
resulting in the two different pipeline stages n and n + 1
(cf. Fig. 3 in §II-B). This becomes a problem when we incre-
ment and assign the new value back to the counter with the
latest global timestamp (c, ω) later in a subsequent stage n+2
(line 13-14) as we would access the same memory region again
but from a different stage, i.e., first at stage n, then at n+ 2.
This violates the single-stage memory access property of the
PISA switches [21], [27], [35] making Alg. 1 infeasible to be
implemented directly on commodity programmable switches.

To overcome this, we utilize packet recirculations (similarly
to [21]) to update the counters with the decayed values (i.e.,
for line 14). The revised algorithm is shown in Alg. 2, and
the corresponding stages are discussed below.
Stage n: When regular packets are processed, we increment
counter c of flow F immediately, and retrieve c and ω (and its
difference from Ω) from the memory (line 8-11). On the other
hand, if we receive a recirculated packet (containing the new
and decayed values as metadata) we update the corresponding
counter and timestamp values accordingly (line 4-5).
Stage n+ 1: If we need to decay a particular count (line 13-
20), instead of trying to write it back to the memory (which we
cannot), we use the new values as metadata (stored in form
of an additional custom header), clone the packet, and then
recirculate the cloned copy. Note, by cloning we avoid packet
reordering, and we maintain application-level performance as
the original packets are routed as usual, while the cloned
packet is dropped after it finishes its second round (line 6).

Observe that recirculation is only needed if a particular
flow’s count needs to be decayed or zeroed out. Therefore,
the number of recirculations dSketch needs is equal to the
number of different flows within an interval in the worst-case,
i.e., if all flows needs to be decayed or zeroed out.

Packet recirculation is a common practice for applications
to access a given memory region more than once. For instance,
HH detection [20], [21], packet scheduling [47], payload
parking for network functions [48] or even as simple as
MPLS packet processing recirculate packets (multiple times)
to re-access specific memory blocks. However, this ultimately
penalizes the available switch backplane capacity; hence, it

2For brevity, we do not discuss the previous and subsequent stages that do
not violate any restriction.

Algorithm 2 Update in dSketch, Input: same as Alg. 1
1: procedure UPDATE(F,Ω)
2: F.count←∞ # init count for flow F
3: for i← 1 to e do # for each row
4: if F.recirculated then
5: DSKETCH[Hi(F )]← F.tmpci,Ω
6: DROP(F ) # drop cloned packet
7: else
8: c, ω ← DSKETCH[Hi(F )] # get counter and timestamp
9: c← c+ 1 # increment counter

10: DSKETCH[Hi(F )]← c, ω # update counter
11: ∆Ω ← Ω− ω # timestamp difference
12: F.count← MIN(c, F.count) # get min count for F
13: if ∆Ω 6= 0 then # not updated recently
14: if ∆Ω ≥ γ then # counter is too old
15: tmpci ← GC(c) # garbage collection
16: else # counter is not fresh
17: tmpci ← AED(c,∆Ω) # decay counts
18: end if
19: CLONE_AND_RECIRCULATE(F, tmp)
20: end if
21: end if
22: end for
23: return F.count # estimated count for F
24: end procedure

has to be minimized to maintain line-rate throughput. We find
that dSketch recirculates only 2.3%, 2.6%, and 1.8% of
the packets on CAIDA16, CAIDA18, and CAIDA19 traces,
respectively in contrast to the already negligible amount of
∼3% of PRECISION [21]. Note, under full network load of
6.4 Tbps, recirculating 2% of the packets only consume ∼50%
of the switch’s shared recirculation port’s throughput, which
we believe to be reasonable. Hence, for brevity, we do not
discuss recirculation further in §IV.

To summarize, we successfully implemented Alg. 2, and
verified that dSketch works as intended on the Intel Tofino-
based commodity programmable switch, and in §IV we show
that it satisfies OBJECTIVE 2. In §IV-B, we also show
that dSketch leaves ample resources to be integrated with
standard switch functionalities, i.e., with switch.p4. All
technical details on the implementation are available at [29].

IV. EVALUATION

Next, we evaluate the performance of dSketch and com-
pare it against the state-of-the-art. In line with OBJECTIVE 1,
we focus on the true-positive rate of the algorithms as a
performance indicator, i.e., we investigate how many of the
true HH are indeed detected without falsely reporting too
many small flows (low false-positive rate). Note, due to the
resets, interval-reset algorithms inevitably reduce the chances
to falsely report a small flow as heavy. Correspondingly, we
expect the interval-reset algorithms to have the lowest false-
positive rates. Then, we turn to OBJECTIVE 2.
Methodology. For evaluation purposes, we implement a
Python-based trace-driven simulator (similarly to [20]–[23],
[26]) which mimics the behavior of the P4 implementations of
all evaluated algorithms. This allows us to tune and configure
the algorithms easily for each use case. Furthermore, we also
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implement dSketch in P4, and present results when running
it on an Intel Tofino-based commodity programmable switch.
In this regard, for the other algorithms, we rely on the available
source-codes [49], [50].
Defining Heavy Hitters. The problem of heavy-hitter detec-
tion is considered well-known, however, it is easy to be lost
among the different definitions. HH can mean the top-k flows
by size, however, from a network engineering point of view,
being in the top-k does not necessarily mean they are really
heavy flows; they can simply be greater than others, but the
magnitude may be negligible. In contrast to such a predefined
static threshold, HH can also mean the elephant flows that
are proportionally larger (in number of packets/bytes) than a
fraction τ of the total traffic. Here, we focus on the latter
definition, and we choose τ = 0.05%, i.e., a flow is considered
to be heavy if its size (in terms of packets) exceeds 0.05% of
the overall number of packets. As a reference, this percentage
results in (on average) ∼700, ∼650, ∼750 HH in CAIDA16,
CAIDA18, and CAIDA19 traces, respectively.
Groundtruth. We define the groundtruth as the set of flows
that exceeds threshold τ , at any point of time within the last
t = 8 seconds, which is the closest approximate discrete
timestamp we can obtain from the high-resolution clocks of
today’s commodity programmable switches (cf. §III-A1). We
use the IP 5-tuple as the flow IDs.
Traffic Traces. We utilize three 1-hour-long anonymized
ISP backbone traces from CAIDA collected in 2016
(CAIDA16 [51]), 2018 (CAIDA18 [52]), and 2019
(CAIDA19, [53]). In general, the CAIDA16, CAIDA18,
and CAIDA19 consist of ∼1.7 billion packets, ∼1.5 billion
packets, and ∼2.3 billion packets, respectively. Within one
second, the traces contain ∼464k packets (∼12k unique
flows), ∼424k packets (∼20k unique flows), and ∼635k
packets (∼40k unique flows), respectively.
Algorithms to Compare. To analyze the performance of
dSketch, we compare it against the state-of-the-art in-
network solutions, i.e., we only consider algorithms designed
for PISA switches that can indeed run in the data plane and do
not require any third-party (e.g., collaborative end-hosts [54])
for operation. In particular, we compare dSketch to its basis,
CMS [25] and to FCM-Sketch [23], [50] the most recent
sketch-based approach for in-network heavy-hitter detection
that outperforms other state-of-the-art, e.g., UnivMon [26],
ElasticSketch [22]. Furthermore, we also compare dSketch
to PRECISION [21], [49], the state-of-the-art hash table-based
proposal. Finally, we adapt the sliding window-based Con-
Quest [24], [49], originally proposed for microburst detection,
to HH detection (HH-CQ) and compare it against dSketch.
Algorithm Configurations. We fix ∼600kB3 of memory for
each of the algorithms and find the maximal data plane config-
uration that can best approximate the allocated memory. This
is because the number of counters required have to be in the
power of 2 (e.g., 215 = 32K) in order to efficiently utilize the

3Note, we also analyzed the algorithms with more allocated memory (e.g.,
1MB, 2MB), however, the overall performance did not changed significantly.
Hence, for brevity, we omit to discuss this in detail.

available hardware resources, and different algorithms manage
the data structures in different ways (e.g., PRECISION stores
flow IDs, HH-CQ uses multiple instances of the same data
structure). Accordingly, this setting results in the following
configurations for each algorithm:

• CMS: 2 rows, 64K counters per stage, 32 bits per counter
(512kB).

• PRECISION: 2-stage data structure, 16K entries for per
stage, 136 bits per entry (544kB).

• FCM-Sketch: 8-ary variant4 of the algorithm with 256K,
32K, 4K 8, 16, 32-bit counters, respectively (672kB).

• HH-CQ: 4 instances5, 32K counters per instance, and
32 bits per counter (512kB).

• dSketch: 2 rows, 64K counters per stage, 32 bits per
counter and 8-bit timestamps for each counter (640kB).

A. OBJECTIVE 1: Detection Rate of True Heavy Hitters

In this section, we focus OBJECTIVE 1, i.e., we analyse
the true-positive rate (Recall) of all algorithms in all traces
mentioned above.
Trace-driven simulations. The results are depicted in Fig. 4.
Note, the Recall on the y axis shows the ratio of all true HH
detected by each algorithm (cf. Fig. 4a). Accordingly, 1-Recall
means the actual percentages of the missed HH, e.g., FCM-
sketch misses 15% of the HH on the CAIDA16 trace. Observe,
all state-of-the-art interval-reset-based algorithms miss around
10−15% of the heavy hitters. On the other hand, the adapted
sliding window-based HH-CQ has 0% missing HH, while
dSketch provides a reasonable high recall of more than 95%
irrespective of the traces. Later, in §IV-B, we show that the
outstanding recall rate of HH-CQ pays a huge penalty in terms
resource consumption, which violates OBJECTIVE 2.

In terms of falsely reported small flows, all algorithms have
a negligible false-positive rate. In particular, we confirm that
due to the resets, on average, the sketch-based algorithms
FCM, CMS have the lowest values in the scale of 10−6.
In contrast, the hash table-based PRECISION and the slid-
ing window-based HH-CQ are in the scale of 10−3. Lastly,
dSketch lies in the middle with an FPR rate in the scale of
10−4.
Evaluation on Hardware. Next, we evaluate how dSketch
performs on the Intel Tofino-based programmable switch. The
purpose of this study is to verify the results we obtained via our
trace-driven simulator while the other algorithms have been
verified on hardware in their respective studies.

The results depicted in Fig. 5 shows the Recall for
dSketch obtained on the Tofino switch via the green bars
(grid pattern). We also show the simulated results via the red
bars (hrz. line pattern) for comparison. Besides, in Fig. 5b,
the TNR (1-FPR) values are depicted for reference. Observe,
the accuracy metrics are very close to each other with around
1 − 1.5% difference on average for recall, and around 10−5

difference for the false-positive rates.

4The authors recommend the 8-ary variant for heavy-hitter detection [23].
5Four is the bare-minimum for snapshot instances as it needs to be in the

form of 2x : x ≥ 2 [24].
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Fig. 5: Verifying dSketch on the Intel Tofino hardware using
different traffic traces.

The reason for the slight difference is that, due to the
timestamped pcap file, the trace-driven simulation can be
very accurate compared to the ground truth. Whereas the real-
world evaluations are affected by several further factors. First,
the traffic trace is replayed from a server (directly connected
to the Tofino switch), and the processing is done on the Tofino
switch inducing a slight processing [55] and transmission
delay. Second, the trace is replayed via the tool tcpreplay,
which cannot precisely follow the timestamps in the pcap
file6. Therefore, for each trace we select a certain packet-
per-second rate which makes tcpreplay to replay the trace
within 60 seconds. However, this constant rate makes the inter-
packet arrival times uniform.

B. OBJECTIVE 2: Resource Consumption

Table I shows the hardware resource consumption of all
algorithms when implemented and run on Tofino7. As a
baseline, we also show how much resources switch.p4,
the standard switch functionality, consumes. We conclude the
following. Since dSketch is based on CMS, dSketch
obviously requires more resources than CMS, however, not
that much (on average, only ∼1.5% more). On the other
hand, when compared to its other counterparts, dSketch on
average requires much less resources in all aspects. Finally,

6In our testbed having Intel Xeon Gold 6230-based servers and Mellanox
ConnectX-5 100G NICs, it takes ∼80 seconds for tcpreplay to replay the
60-second trace without specifying explicit pace.

7All P4 programs are compiled using Intel P4 Studio (Version 9.3.0) with
the default flags.

TABLE I: Hardware resource consumption on Tofino.

Resource switch.p4 CMS FCM PREC. HH-CQ. dSketch

SRAM 43.50% 3.80% 5.20% 5.60% 5.10% 4.70%
Match Xbar 21.30% 1.10% 2.90% 7.60% 3.20% 2.50%

TCAM 34.00% 0.70% 0.70% 3.50% 0.70% 0.70%
SALU 14.60% 4.17% 12.50% 20.83% 16.67% 8.33%

Hash Bits 27.30% 1.20% 2.60% 7.10% 4.30% 3.50%
VLIW Actions 18.00% 1.30% 2.60% 7.30% 6.80% 3.10%
Pipeline Stages 10 4 6 11 8 4

and most importantly, dSketch requires the same small
number of pipeline stages as CMS making it a good candidate
to be integrated with other concurrent applications, such as
switch.p4 (see later). Besides dSketch, FCM requires
the least number of pipelines stages (6), while HH-CQ and
PRECISION need 8 and 11, respectively.

Next, we scrutinize the integration aspects of all algo-
rithms, i.e., whether they can co-exists with the fundamental
switching application switch.p4 on the same Tofino device.
To reach this end, we use the reference commodity switch
implementation provided in the Intel P4 Studio, switch.p4
and the source codes available for the heavy-hitter detection
applications [49], [50]. After analyzing packet processing
logic of both applications, we try to integrate them together.
However, this is a challenging and error-prone task [56],
[57] due to the monolithic nature of P4 programs. Note,
while none of the individual resource groups (e.g., SALU)
is fully utilized by each algorithm, the length of the chain of
dependency, i.e., the number of pipeline stages plays a vital
role in determining whether the integration with switch.p4
is possible at all. Accordingly, upon integration, we found that
HH-CQ and PRECISION cannot be merged with switch.p4
as the resulting application would require much more than 12
stages. On the other hand, dSketch, CMS and FCM-sketch
were successfully integrated; all three still leaving 1 extra stage
and free resources for additional applications (e.g., packet
marking, load-balancing). The detailed results are shown in
Table II. Note that considering only the applications satisfy-
ing OBJECTIVE 2 (i.e., CMS, FCM-sketch, and dSketch),
dSketch detects 5−10% more HH than the other solutions.

C. Summary

We summarize the results obtained for all algorithms w.r.t.
the OBJECTIVES (cf. §II) in Table III. The first column shows
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TABLE II: Hardware resource consumption after integration.

Resource switch.p4+CMS switch.p4+FCM switch.p4+dSketch
SRAM 46.8% 50.1% 49%

Match Xbar 21.4% 23.3% 23.8%
TCAM 34.7% 34.7% 34.7%
SALU 18.8% 27.1% 22.9%

Hash Bits 28.5% 28.4% 30.1%
VLIW Actions 20.1% 19.5% 19.5%
Pipeline Stages 11 11 11

TABLE III: Summary

Algorithm OBJECTIVE 1 OBJECTIVE 2
CMS 12.7% 3 (Low)

PRECISION 10.7% 7 (High)
FCM-Sketch 13.0% 3 (Medium)

HH-CQ 0% 7 (High)
dSketch 4.7% 3 (Low)

the ratio of the missed heavy hitters, the second column shows
whether the algorithm can be integrated with switch.p4 as
well as the overall resource consumption in the scale of Low,
Medium, and High. Here, we mostly focus on the number
of pipeline stages and the resource consumption for the data
structure itself (SALU in Table I). If the former is within
the third of the available pipeline stages, and the memory
footprint for the SALU is below 10%, the algorithm’s resource
consumption is considered Low. Accordingly, if an algorithm
requires more than 4 but less than 6 pipeline stages, and
less than 20% utilization of SALU, it is considered Medium.
Anything above these numbers are considered High.

We conclude that the current state-of-the-art interval-reset
algorithms fall short in satisfying OBJECTIVE 1. Furthermore,
the hash-table-based PRECISION cannot be integrated with
further applications due to its substantial resource consump-
tion. While the sliding window-based HH-CQ is the most
accurate heavy-hitter detection algorithm, it also does not leave
sufficient space for other applications. This renders our time-
decaying algorithm, dSketch as a decent solution for in-
network heavy-hitter detection that not only captures almost
all HH (OBJECTIVE 1) but can also be integrated with
switch.p4 (OBJECTIVE 2).

V. RELATED WORK

Commodity Programmable Switches. The emergence of
programmable commodity switches (or commonly known as
PISA switches [18], [19]) introduce new possibilities for real-
izing fine-grained network monitoring approaches in the data
plane. However, the restricted programming model [27] brings
up a new set of challenges (e.g., limited hardware resources,
strict memory access patterns) in materializing them.
Entirely in the data plane. Recent works [45], [46] have
demonstrated the significance of performing detection entirely
in the data plane to achieve low-latency reactions upon net-
work events. Instead of relying on the control plane for peri-
odic statistics retrieval, [45] proposes a push-based approach
that leverages data plane programmability that interacts with

the control plane whenever certain network event conditions
are triggered. [46] has highlighted that in order to reduce
the network event detection to nano-second scale, many net-
working tasks have to be offloaded to the data plane. In this
paper, we build upon the same line of thought in designing
in-network monitoring solutions, however, besides detecting
almost all heavy hitters, we put additional emphasis on the
resource consumption, leaving ample resources for other net-
working tasks, such as for the common switch funtionality
(switch.p4) to be realized in parallel.
Interval-resets. In-network monitoring solutions, like Uni-
vMon [26], HashParallel [20], PRECISION [21], FCM-
Sketch [23] are designed to be reset periodically by using the
control plane. We discussed the issues (i.e., the heavy hitters
that span across intervals going undetected) with interval-
resets in §I and §II. Former literature have also highlighted
this concern [58]. This motivates the need for designing data
structures that can keep track of time and maintain counts
longer in a more sophisticated way.
Sliding windows. Sliding window-based approaches, such as
WCSS [37] and its successor, the probabilistic Memento [38],
can be used to detect HH quickly and accurately. However,
both are designed for software implementations with dynamic
memory allocations and accesses in mind, thus ruling out their
realizations in commodity programmable switches. Sequential
Zeroing [59] and ConQuest [24] realize sliding windows-
alike data structures on hardware using multiple instances
of sketches [25] that are being read, written, cleared from
time to time. However, Sequential Zeroing is designed for
SmartNICs [60] which more relaxed constraints than PISA
switches while ConQuest was specifically designed for micro-
bursts detection in data centers using PISA switches. We adapt
ConQuest by scaling the memory and timescales for heavy-
hitter detection in our evaluations.
Time-decay. There have been several related works on the
topic for efficiently answering streaming queries using time
decays (e.g. polynomial, finite and exponential), for which,
exponential decay was widely used in the domain of stream-
ing data aggregation [39]–[42]. However, due to the lack
of support for floating point operations and the restricted
programming model [27], such decay functions have yet to be
explored. Hence, our proposed dSketch with approximate
exponential decaying represents one of its first realization in
existing commodity programmable switches.

VI. CONCLUSION

In this paper, we analyze the state-of-the-art in-network
heavy-hitter detection algorithms, and identify two major
traits: most of them being an interval-reset algorithm, i.e.,
they let a significant amount of heavy hitters spanning across
interval go undetected, and do not leave sufficient resources
for concurrent applications. Taking them into consideration,
we design a lightweight, time-decaying algorithm, dSketch,
likened to an approximate sliding window, for online heavy-
hitter detection entirely in the data plane.
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Extensive experiments using real-world traffic traces on both
simulation and hardware show that dSketch significantly
increases (on average, by 5-10%) the detection rate of true
heavy hitters as compared to the state-of-the-art without a
notable false-positive rate. Moreover, dSketch offers an at-
tractive alternative for data plane designers due to its resource
and operational efficiency, and feasibility to be integrated with
existing data plane programs, such as the commodity switch
implementation, switch.p4.
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