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Abstract—Deep learning models are increasingly utilized on
resource-constrained edge devices for real-time data analytics.
Recently, Vision Transformer and their variants have shown ex-
ceptional performance in various computer vision tasks. However,
their substantial computational requirements and low inference
latency create significant challenges for deploying such models on
resource-constrained edge devices. To address this issue, we pro-
pose a novel framework, ED-ViT, which is designed to efficiently
split and execute complex Vision Transformers across multiple
edge devices. Our approach involves partitioning Vision Trans-
former models into several sub-models, while each dedicated to
handling a specific subset of data classes. To further reduce
computational overhead and inference latency, we introduce a
class-wise pruning technique that decreases the size of each sub-
model. Through extensive experiments conducted on five datasets
using three model architectures and actual implementation on
edge devices, we demonstrate that our method significantly cuts
down inference latency on edge devices and achieves a reduction
in model size by up to 28.9 times and 34.1 times, respectively,
while maintaining test accuracy comparable to the original Vision
Transformer. Additionally, we compare ED-ViT with two state-
of-the-art methods that deploy CNN and SNN models on edge
devices, evaluating metrics such as accuracy, inference time, and
overall model size. Our comprehensive evaluation underscores
the effectiveness of the proposed ED-ViT framework.

Index Terms—Distributed Inference, Edge Computing, Model
Splitting, Vision Transformer

I. INTRODUCTION

In recent years, deep learning models have been increasingly
deployed on resource-constrained edge devices to meet the
growing demand for real-time data analytics in industrial sys-
tems [1]-[3] and have demonstrated remarkable capabilities in
various applications such as video image analysis and speech
recognition. Convolutional Neural Networks (CNNs) [4] like
VGGNet [5] and ResNet [6], as well as Spike Neural Networks
(SNNs) [7], have achieved satisfactory performance in many
edge computing scenarios. As the field progresses, researchers
are exploring the deployment of more complex structured
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models on edge devices to further improve performance.
Transformer architecture [8], which has revolutionized nat-
ural language processing (NLP) tasks, has inspired similar
advancements in computer vision. Vision Transformer (ViT)
models [9] and their variants have shown outstanding re-
sults across various computer vision tasks, including image
classification [10], [11], object detection [12]-[14], semantic
segmentation [15], [16] and action recognition [17], [18] and
audio spectrogram recognition [19]. The success of ViTs
has sparked interest in leveraging their capabilities for edge
computing applications.

However, the rapid advancement in machine learning tech-
nologies has increased the demand for computational re-
sources and memory, given the complexity of these model
configurations. Achieving higher accuracy with ViT requires
substantial computational power and memory, which poses
challenges for deployment on edge devices. For instance, ViT-
Base [9] consists of over 86.7 million parameters and requires
approximately 330MB of memory. Researchers now face the
dilemma of deploying such complex models while dealing
with resource-constrained resources.

Previous studies aiming to reduce the deployment overhead
primarily focus on compressing Vision Transformer models.
These approaches can be classified into three major categories:
(1) architecture and hierarchy restructuring [20], [21], (2)
encoder block enhancements [22]-[27], and (3) integrated
approaches [28], [29]. However, these methods often suffer
from either poor inference accuracy or high inference latency
as they attempt to compress a large model to fit into a memory-
constrained edge device.

To develop a solution that mitigates accuracy drop and
enables efficient deployment of the Vision Transformer on
resource-constraint edge devices, we aim to utilize the col-
laboration of multiple edge devices and propose a Vision
Transformer splitting framework named Edge Device Vision
Transformer, shorten as ED-ViT. As illustrated in Fig. 1, ED-
ViT first partitions the original Vision Transformer into several
smaller sub-models, inspired by the concept of split learning
(SL). However, unlike traditional SL, which does not consider
edge device constraints, each of these small sub-models is
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Fig. 1: The overview of ED-ViT, including four steps: Model Splitting, Model Pruning, Model Assignment and Model Fusion.

responsible for detecting a specific subset of the classes and
is deployed on resource-constrained edge devices. ED-ViT
then employs model pruning techniques to further alleviate the
computational load and processing requirement for each sub-
model. To optimize model assignment, we design a greedy
assignment algorithm that takes into account both the model
computational resources and memory resources. Besides inte-
grating the previous steps, ED-ViT uses a multilayer percep-
tron (MLP) model to fuse the results from all the sub-models.
We conduct experiments across five datasets to evaluate the
effectiveness of ED-ViT framework on edge devices, partic-
ularly in low-power video analytics. The results, measured
across three key metrics—accuracy, inference latency, and
model size—consistently demonstrate the significant benefits
of ED-ViT. Additionally, we compare ED-ViT with methods
that split CNN and SNN, highlighting the great potential of
deploying Vision Transformer on resource-constrained edge
devices to achieve high accuracy while maintaining small
model sizes and low inference latency. Our main contributions
are summarized as follows:

o This is the first study focusing on combining pruning
and splitting, deploying Vision Transformer onto edge
devices. We propose a framework that leverages the
capabilities of Vision Transformer, allowing for the col-
laboration of multiple edge devices to achieve distributed
inference in practical applications.

« We introduce ED-ViT to address the Vision Transformer
splitting problem by decomposing the complex original
model into sub-models, and applying pruning techniques
to reduce the size of each sub-model. Using a combined
greedy method for model assignment, ED-ViT effectively
addresses the formulated problem by reducing model
sizes, minimizing inference latency, and maintaining high
accuracy, achieving a trade-off across these three metrics.

« We conduct extensive experiments with three computer
vision datasets and two audio recognition datasets across
three ViT structures. Besides, we implement our ED-ViT
on Raspberry Pi 4Bs, demonstrating that our framework
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significantly reduces inference latency on edge devices
and decreases overall memory usage with negligible
accuracy loss in various applications.

II. RELATED WORKS
A. General Vision Transformer Compression

Deploying Vision Transformer models in resource-
constrained environments poses significant challenges due to
their intensive computational and memory demands. These
approaches address Vision Transformer resource limitations
via pruning, encompassing both local and global strategies as
follows.

Local pruning techniques focus on removing redundant
components within specific layers of the model. For instance,
PVT [30] and its successor PVTv2 [31] introduce a pyramid
hierarchical structure to transformer backbones, achieving
high accuracy with reduced computation. [32] applies sparsity
regularization during training and subsequently prunes the
dimensions of linear projections, targeting less significant
parameters. [33] prunes multi-head self-attention (MHSA)
and feed-forward networks (FFN), which are often redundant
components. [34], [35] propose network pruning to elimi-
nate complexity and model sizes by reducing tokens. Other
noteworthy contributions include DToP [36], which enables
early token exits for semantic segmentation tasks. Conversely,
global pruning techniques adopt a comprehensive perspective
by evaluating and pruning the overall significance of neurons
or layers across the entire network. SAVIiT [37] purposes
structure-aware Vision Transformer pruning via collaborative
optimization. For instance, CP-ViT [38] systematically as-
sesses the importance of head and attention layers for the pur-
pose of pruning, while Evo-ViT [39] identifies and preserves
significant tokens, thereby discarding those of lesser impor-
tance. Moreover, the Skip-attention approach [40] facilitates
the omission of entire self-attention layers, thereby exempli-
fying a global pruning methodology. X-pruner [41] employs
explainability-aware masks to inform its pruning decisions,
thereby advancing a more informed global pruning strategy. In
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TABLE I: Performance characteristics for standard Vision Transformer models with their default parametrization at resolution
224 x 224: ViT-Small, ViT-Base and ViT-Large, all with patch size of 16 x 16. All the experiment results are obtained on

Raspberry Pi-4B devices.

Model | Depth Width Heads P(a;;‘ggj (Fxli’gg) L?::;‘)cy M‘(’;\“/IBS)'Z"
ViT-Small | 12 384 6 221 425 9628 83
ViT-Base | 12 768 12 86.6 1686 36940 327
VilLarge | 24 1024 16 3044  59.69 118828 1157

addition, UP-ViT [42] introduces a unified pruning framework
that leverages KL divergence to guide the decision-making
process for pruning, while LORS [43] optimizes parameter
usage by sharing the majority of parameters across stacked
modules, thereby necessitating fewer unique parameters.

Among existing pruning methods, UP-ViT [42] has the
closest resemblance to our approach. However, it is important
to note that these techniques cannot be directly applied to
edge devices: they often suffer from poor performance when
the pruning ratio is high or incur high computation overhead
when the pruning ratio is low, making them unsuitable for
resource-constrained edge environments. In contrast, our work
introduces a class-based global structured pruning method that
addresses these limitations. Our approach is orthogonal to most
previous methods and does not involve trainable parameters,
contributing to more stable performance.

B. Vision Transformer on Edge Devices

There are several methods focused on deploying Vision
Transformer on-edge devices, which can be classified into
three major categories.

Architecture and Hierarchy Restructuring: HVT [20]
compresses sequential resolutions using hierarchical pooling,
reducing computational cost and enhancing model scalability.
LeViT [21] is a hybrid model that combines the strengths
of CNNs and transformers. For image classification tasks, it
utilizes the hierarchical structure of LeNet [4] to optimize the
balance between accuracy and efficiency, and uses average
pooling in the feature map stage. MobileViTv3 [44] propose
changes to the fusion block, which addresses the scaling and
simplifies the learning tasks.

Encoder Block Enhancements: ViL [22] introduces a
multiscale vision longformer that lessens computational and
memory complexity when encoding high-resolution images.
Poolformer [23] deliberately replaces the attention module
in transformers with a simple pooling layer. LiteViT [24]
introduces a compact transformer backbone with two new
lightweight self-attention modules (self-attention and recur-
sive atrous self-attention) to mitigate performance loss. Dual-
ViT [26] reduces feature map resolution, consisting of two
dual-block and two merge-block stages. MaxViT [25] divides
attention into local and global components and decomposes
it into a sparse form with window and grid attention. Slide-
Transformer [27] proposes a slide attention module to address
the problem that computational complexity increases quadrat-
ically with the attention modules, while EdgeViT [45] enables

attention-based vision models to compete with the best light-
weight CNNs when considering the tradeoff between accuracy
and on-device efficiency.

Integrated Approaches: Some methods integrate both
of the above approaches. CeiT [28] combines Transformer
and CNN strengths to overcome the shortcomings of each,
incorporating an image-to-tokens module, locally-enhanced
feedforward layers, and layer-wise class token attention. CoAt-
Net [29] combines depth-wise convolutions and simplifies
traditional self-attention by relative attention, enhancing ef-
ficiency by stacking convolutions and attention layers. De-
ViT [46] also decomposes Vision Transformer for collabo-
rative inference. However, DeViT trains a ViT-Large for each
sub-model even when splitting ViT-Small and employs model
distillation to enhance accuracy, which introduces significant
training overhead. In addition, the smallest model size that
DeViT provides is larger than 90MB.

However, they never consider linking pruning with specific
classes, which limits their methods when both high perfor-
mance and low memory usage are required.

C. Split Learning

Current works that combine Vision Transformer and split
learning primarily focus on federated learning, addressing
data privacy and efficient collaboration in multi-client en-
vironments [47]-[49], where the inner structure of a large
model is split across smaller devices and later fused [50].
However, these approaches do not target the deployment of
Vision Transformer on edge devices.

Traditional machine learning model splitting generally in-
volves partitioning a large model into multiple smaller sub-
models that can be executed collaboratively on resource-
constrained devices, providing a promising technique for de-
ploying models on edge devices. Splitnet [51] clusters classes
into groups, partitioning a deep neural network into tree-
structed sub-networks. [52] dynamically partitions models
based on the communication channel’s state. Nnfacet [1], [2]
splits large CNNSs into lightweight class-specific sub-models to
accommodate device memory and energy constraints, with the
sub-models being fused later. [3] follows a similar approach
to split deep SNNs across edge devices. Distredge [53] uses
deep reinforcement learning to compute the optimal partition
for CNN models.

To the best of our knowledge, our work presents the
first exploration of Vision Transformer model partitioning
for edge deployment, marking a significant contribution to
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this field. Drawing inspiration from previous studies [1]-[3],
our framework, ED-ViT, introduces an innovative approach
to decompose a multi-class ViT model into several class-
specific sub-models, each performing a subset of classification.
Unlike relying on channel-wise pruning, ED-ViT employs
advanced pruning techniques specifically designed for the
unique architecture of Vision Transformers.

III. PROBLEM FORMULATION

The structures of three representative Vision Transformer,
ViT-Small, ViT-Base, and ViT-Large, are presented in Table 1.
The number of operations is commonly used to estimate
computational energy consumption at the hardware level. In
Vision Transformer models, almost all floating-point opera-
tions (FLOPs) are multiply-accumulate (MAC) operations.

For Patch Embedding, FFN, and MLP Head, their operation
counts are easy to infer as they follow a fully connected (FC)
structure, where the MAC count is given by (2FC;, + 1) x
FCyyt, where FCyy, and FC,,,; represent the input and output
features, respectively. For MHSA, assuming the number of
patches is p, the dimension of each patch is d,, the embedding
dimension is d, and the number of attention heads is h, the
MAC for the linear projections to generate the (), K, and V
matrices is 3 X p x d?/h. The MAC for QK7 is p? x d/h,
and the MAC for the softmax operation and multiplication
with V is p? x d/h. For h attention heads, the total MAC is
hx (3xpxd?/h+2xp*xd/h)=3xpxd®+2xp*xd.
Based on this analysis, energy consumption can be estimated
as being proportional to FLOPs, given that the pruned model
follows the same structure.

Thus, we formulate the problem as follows. We assume
that we have L inference samples in total to be processed,
and the set of N edge devices is represented as D. The
available memory and energy (FLOPs of an edge device) [54]
for each edge device D; are denoted as M; and Ej, respec-
tively. The FLOPs (energy consumption) for each inference
sample for the sub-model Model; from the set of sub-
models {Models} is represented as e;, calculated based on
the previous energy consumption estimation. To formulate
the problem of Vision Transformer partitioning and edge-
device-based deployment, we define the objective function as
MAT {Model;}VIND,ep{Ei — Le;}, aiming to minimize the
maximal inference latency, as inference latency is closely re-
lated to the computational power of edge devices. Additionally,
the accuracy ay,s of the fused results from all N inference
samples must be greater than or equal to the required inference
accuracy A,.; the total memory sizes of all sub-models should
not exceed the memory budget bu.

The optimization problem can be formally formulated as
follows, where z;. is a binary decision variable: 1 indicates
that the sub-model deployed on edge device D; is responsible
for class e, and 0 otherwise. Each sub-model learns a specific
subset of the classes in C'. Furthermore, the memory consump-
tion of sub-model j, denoted as size(Model;), represented as
m;, must be smaller than the available memory size of the
deployed edge device:

argmax{aodet,}Minp,ep{ Ei — Lej}
st. Le; < E;, Model;
m; < M;,
Afus > Are,

1
ijgbu, M
J

|D|
ine =1, YeeCNieD
i=1

deploys on D;

IV. METHODOLOGY

This section describes the design of the ED-ViT framework
proposed to solve the optimization problem outlined in (1). We
first explain the main workflow of ED-ViT and then provide
detailed descriptions of the four key steps involved.

A. Design Overview

As illustrated in Fig. 1, ED-ViT leverages the unique
characteristics of Vision Transformer and the collaboration of
multiple edge devices. The framework involves N concurrent
edge devices for distributed inference alongside a lightweight
MLP aggregation to derive the final classification results.
Initially, the original Vision Transformer is trained on the
entire dataset to achieve high test accuracy for the classi-
fication task. The ED-ViT framework is composed of four
main components: model splitting, pruning, assignment, and
fusion. During model splitting, the Vision Transformer model
is divided into sub-models, each responsible for a subset of
classes. To reduce computation overhead, these sub-models are
further pruned using model pruning techniques. Subsequently,
the sub-models are assigned to the appropriate edge devices,
taking the optimization problem into consideration. Finally, the
aggregation device fuses the outputs from the edge devices to
produce the final inference results. The specific details of each
component are provided below.

B. Model Splitting

In the original Vision Transformer, different heads con-
tribute to learning and inferring from the samples. However,
for certain classes, maintaining all the connections between
the heads can be redundant. As a result, ED-VIT prunes
these connections and reconstructs the heads, with more
retained heads leading to more parameters and connections
being preserved. As illustrated in Algorithm 1, each Vision
Transformer sub-model undergoes pruning based on a head
number threshold and its associated categories, following
a relatively equitable workload distribution. Subsequently, a
greedy search mechanism is used to identify the most suitable
edge device model assignment plan for deploying a particular
sub-model, considering both energy and memory constraints.
If the total memory size exceeds the budget or no suitable plan
is found, an iterative approach is applied to adjust the number
of heads for the sub-model with the biggest memory size to be
pruned, repeating the allocation process until all sub-models
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Fig. 2: Structured pruning of a Vision Transformer block. Left: illustration of prunable components in a ViT block. Right:
corresponding sequential pruning process. Our approach targets three key components: (1) channels in residual connections
(red, denoted as d), (2) the number of heads in the MHSA module (green, denoted as k), and (3) hidden layer channels in
the FFN (blue, denoted as c). The pruning process occurs in three stages: residual connection channels, MHSA heads, and
FFN hidden dimensions. Yellow regions indicate parameters being pruned in the current stage, while gray regions represent

previously pruned parameters.

are successfully assigned to edge devices. The pruning and
the greedy assignment methods are shown as Algorithm 2 and
Algorithm 3, located in Section IV-C and IV-D, respectively.

C. Model Pruning

We believe that reducing the computational burden of Vision
Transformer will significantly contribute to lowering inference
latency in distributed edge device settings. We focus on
the original ViT architecture [9], chosen for its simplicity
and well-defined design space, focusing on redistributing the
dimensionality across different blocks to achieve a more bal-
anced tradeoff between computational efficiency and accuracy,
as shown in Fig. 2.

Analysis of Prunable Parameters: The main prunable
components in a ViT block, as illustrated in Fig. 2.

e Residual Connection Channels (Red, d): The channels
across the shortcut connections within the transformer
blocks.

o Heads in MHSA (Green, h): The dimensions of the query,
key, value projections (dy, dx, d)'.

o Feed-Forward Network (FFN) Hidden Dimensions (Blue,
¢): The dimension c of the hidden layer used for expand-
ing and reducing.

Pruning Process: As illustrated in Fig. 2, The pruning
process is carried out in stages, with each stage focusing
on one of the prunable components. We compute the KL-
Divergence between the output distributions of the original

ld, = dy = dy = d/h

model and the pruned model to evaluate the importance of
each component, as follows:

) P(i

Dru(P | @) = X Pli)log g3

where P(i) represents the output distribution of the original
model, and Q(¢) represents the distribution after pruning.
We focus on pruning the channels of the residual connec-
tions (as shown in red) in the first stage. Using KL-Divergence,
we identify and prune the channels that contribute the least,
reducing the dimensionality from d to s x d, and the pruning
factor s controls the degree of reduction in the parameters. We
use j-th sub-model as an example: we set s = (h — hp;)/h,
effectively controlling the extent of the pruning and parameter
reduction. This helps to streamline the flow of information
between layers without significantly affecting model perfor-
mance. Then, instead of directly removing entire heads in
the MHSA module, we prune the least important dimensions
within the query, key, and value projections (dg, d, and d,)
across multiple heads. This process effectively reduces the
total number of heads to s x h, without entirely discarding
any head, thus maintaining a balanced representation of the
attention mechanism while reducing its complexity. The di-
mensionality of the projections is scaled accordingly to reflect
the merging and pruning process, ensuring that the model
retains its ability to capture token interactions. The final stage
involves pruning the hidden dimension c in the FFN, as shown
in blue. By calculating KL-Divergence, we identify the least
important neurons and reduce the hidden dimension from c
to s x c. Following each pruning stage, the model is fine-
tuned to recover any performance loss that may result from
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Algorithm 1 Model Splitting in ED-ViT

Algorithm 3 Model Assignment in ED-ViT

Input: The number of edge devices N; memory budget bu;
initial pruning head number hp = hpi, hps, ..., hpy for all
sub-models, remaining available memory size M; and
remaining computational resource F; for device i; training
dataset (X,y)

Parameter: the classes set C; trained original Modely
Output: class-specific sub-models {Modely,..., Model y } and
a fusion model M LP

Let flag, = True, D={device 1, ..., device N}.

1:

2: LetE:{El,...,EN}, M:{Ml,...7]\/fN}.

3: repeat

4 Let C={Cy,Cy,...,Cn},5.t]Cl = SN, |Cil.

5. Cj is determined randomly.

6: until VC,,Cy, € C, ||C’a\ — |C’bH <1.

7. while flag, is True do

8: foriin N do

9: Model; = prune(Modelg, X, y, C;, hp;).

10:  end for

1: MA=¢

12:if 37, m; < bu then

13: MA = greedySearchAssign(E, M,Model;, D).

14:  end if

15 if MA# ¢ then

16: flag, = False.

17 else

18: hpj = hp;+1 where Model; has the biggest memory
size.

19:  end if

20: end while

21: concat e = concat(Model; (X),..., Model y(X)).
22: MLP = train(concatyy, ¥).

23: return M LP, Modelq, ..., Model y.

Algorithm 2 Model Pruning in ED-ViT

Input: pruning head number hp;; assigned classes subset C;
Parameter: the raw original Modely; training dataset (X,y)
QOutput: pruned Model;

X, yi = resample(X,y, C;).

: Model; = PruneShortConnection(Modely, hp;)
: Model;, = PruneM HSA(Model;, hp;)

Model; = PruneF' F N (Model;, hp;)

: Model; = retrain(Model;, X;, y;).

: return Model;.

o S I I S I

the parameter reduction. This ensures that the pruned model
achieves a similar level of accuracy as the original model while
requiring fewer computational resources.

In conclusion, the pruning process is outlined in Algo-
rithm 2. An additional advantage of ED-ViT is that, even
after pruning, the sub-models still retain the structure of
Vision Transformer. This gives our method the potential to

Input: remaining available memory size set M, remaining
computational resource set E, the edge device set D, the
sub-model set.

Output: Model assignments M A

1: {Models} <+ sort({Models}) (Sort the sub-models
based on the computation overhead from the highest to
lowest).

2: for ¢ in N do

3:  j 4+ argmazpepFk.

4. if M; >=  size(Model;)

computing(Model;) then

and FE; >=

5 E; < E; — computing(Model,).
6 M; + M; — size(Model,).

7. else

8 D+ D—j.

9 if D = ¢ then

10: return ¢

11: end if

12:  end if

13: end for

14: return M A

be combined with other horizontal pruning techniques for ViT
and its variants and leverage the inherent features of Vision
Transformer models to generalize well into downstream tasks.

D. Model Assignment

To address the optimization problem expressed in (1), we
propose a greedy search algorithm for assigning Vision Trans-
former sub-models to edge devices. As shown in Algorithm3,
the sub-models are first sorted based on their energy consump-
tion. ED-VIT assigns the most computation-intensive sub-
model first based on their model sizes, which is proportional to
the computation overhead as in Section III. The algorithm then
iteratively assigns the remaining sub-models to maximize the
system’s available energy. Initially, the device with the highest
computational power is selected. If the remaining memory
and energy can accommodate the sub-model, we update the
device’s available memory and energy. Otherwise, if the sub-
model exceeds the device’s memory capacity, the memory-
exhausted device is removed from the set. If no devices remain,
it indicates that the current pruning results prevent deployment
of all sub-models. In this case, the algorithm terminates, and
the ED-ViT framework re-prunes the sub-models based on a
new head pruning parameter, as described in Algorithm 1.
Finally, the algorithm outputs the model assignment plan M A,
representing the mapping of sub-models to edge devices.

As described in Section III, the problem of Vision Trans-
former sub-model partitioning and assignment can be formu-
lated as a 0-1 knapsack problem, where each edge device
has varying available memory and energy. Each sub-model
is responsible for a specific set of classes, and multiple sub-
models can be deployed on a single device. We perform a col-
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laborative optimization of partitioning the Vision Transformer
model into multiple sub-models, as shown in Algorithm 1, and
deploying these sub-models across edge devices using a greedy
search assignment mechanism , as shown in Algorithm 3.
This approach provides a relatively optimal solution to the
formulated problem. Our extensive experiments demonstrate
the effectiveness of our framework design and algorithms.

E. Model Fusion

In the result fusion phase, each sub-model on the edge
devices processes inputs and extracts corresponding features.
The aggregation edge device aggregates the generated features
through concatenation and feeds them into an MLP to produce
the final prediction. Notably, the MLP for result fusion requires
training only once after all sub-models have been trained.

In our paper, we utilize a tower-structured MLP to process
the concatenated tensors received from the various edge de-
vices. Specifically, each transmitted tensor from a device is
integrated using a N x d x s =+ A x N x d x s = numcls
MLP structure, where A is the shrinking hyperparameter and
the default value is 0.5, numcls is the number of classes.
By utilizing a compact MLP model, we effectively fuse
the distributed inference results from the sub-models while
consuming only a minimal amount of computational resources.

V. EXPERIMENTS
A. Experiments settings

Datasets. Considering the versatile applicability of the
framework across various scenarios, we select three com-
puter vision datasets (i.e., CIFAR-10 [55], MNIST [56], and
Caltech256 [57]) and two audio recognition datasets (i.e.,
GTZAN [58] and Speech Command [59]) to construct the
classification tasks for our experiments. For all the computer
vision datasets, we resize the sample to 224 x 224 x 3 to support
various datasets and downstream tasks via a similar data
structure without loss of generality; for the audio recognition
datasets, we resize the sample to 224 x 224 x 1 with the same
aim.

Implementation Details: All models are implemented using
Pytorch [60]. During the training process, we use the Adam
optimizer [61] with a decaying learning rate initialized to le-
4, and we set the batch size to 256. For the computer vision
task, the original Vision Transformer model is pre-trained on
the ImageNet dataset [62], followed by fine-tuning the task-
specific data for 10 epochs. For the audio recognition task,
Vision Transformer is pre-trained on the AudioSet dataset [63]
and then fine-tuned on the task data for about 20 epochs. All
the experimental results are averaged over five trial runs. We
use the server with 8XNVIDIA A100 GPUs to generate sub-
models and the fusion model. Each inference trial is conducted
on 1 Raspberry Pi-4B for fusion and 1 to 10 Raspberry Pi-4B
devices for sub-models, which serve as the edge devices for
evaluating the execution time of processing a single sample
on a specific sub-model. The edge devices are all connected
with a gigabyte switch S1720-52GWR-PWR-4P as shown in
Fig. 3. For bandwidth control, we use the traffic control tool

Fig. 3: Our 5-device example experimental prototype utilizes
a switch and Raspberry Pi 4B devices, with one dedicated to
the fusion model and the other four allocated to sub-models.

[0 CIFAR-10 [ MNIST  [EH Caltech

(a) Accuracy (b) Latency (c) Total Memory Size

|

1 2 3 5 10
Number of Edge Device

2 o
g 8
N oW ow
8 &
5 8 &
8 & 3

Accuracy (%)
Latency (s)

N
S

N

&

o w

0

Total Memory Size (MB)

LI L0 ..
1 2 3 5 10 1 2 3 5 10

Number of Edge Devices Number of Edge Device

7}

Fig. 4: Performance metrics of Split ViT-Base models on
CIFAR-10, MNIST, Caltech dataset. Note that (a) shows the
accuracy results; (b) shows the latency results, the dotted lines
represent the latency of the original ViT-Base model, and (c)
shows the total memory sizes for all the sub-models. All the
experiment results are collected on Raspberry Pi-4B.
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Fig. 5: Performance metrics of Split ViT-Base models on
GTZAN and Speech Command dataset.

tc [64], which is able to limit the bandwidth under the setting
value. The maximum bandwidth between devices is capped at
2 Mbps to simulate real-world scenarios.

B. Experiments on Computer Vision Datasets

We evaluate our approach using CIFAR-10, MNIST, and
Caltech image datasets. The original model size is 327.38
MB. Fig. 4 shows the accuracy, inference latency, and memory
usage of the ViT-Base model under the ED-ViT framework,
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Fig. 6: Performance metrics of Split ViT-Small and ViT-Large
models on CIFAR-10, Caltech dataset.

with 1 to 10 edge devices. With only one edge device,
we apply model compression by pruning Vision Transformer
without decomposition. All experiments are conducted with a
total memory budget of 180MB across devices, ensuring fair
comparisons.

The results demonstrate that as the number of edge devices
increases, the accuracy remains largely consistent and yields
strong performance. For CIFAR-10, accuracies are consistently
above 85%; for MNIST, they are above 91%; and for Caltech,
they exceed 90%. In most cases, the variance in final fusion
prediction accuracy is less than one percentage point. The
inclusion of more sub-models illustrates the feasibility of
deploying larger-scale models without significant accuracy
loss. As the number of edge devices increases, the inference
latency decreases, as each sub-model is responsible for fewer
classes and contains fewer parameters. Notably, the latency for
the original model is 36.94 seconds on the CIFAR-10 dataset,
which is 28.9 times the smallest latency (1.28s) and 3.84 times
the highest latency (9.63s). Our ED-ViT could make multiple
edge devices work collaboratively to maintain accuracy while
lowering the storage burden and inference time as the number
of edge devices increases. The results for other datasets show
a similar trend as the model structures are the same.

In terms of total memory usage, ED-ViT provides effective
splitting and assignment strategies. Note that as the number of
retained heads increases, the memory size grows quadratically.
For one edge device, retaining more heads could exceed the
budget. However, in a two-device setting, each sub-model
retains a similar number of heads, ensuring the total memory
usage remains within the budget. This explains the spike
in total memory sizes with two edge devices, as shown in
Fig. 4. As the number of edge devices increases from 3 to
10, the memory size of each sub-model decreases, reducing
computation overhead and demonstrating that many complex
model designs and computational operations are redundant for
problem-solving. In the 10-edge device setting, the model size
on the CIFAR-10 dataset is reduced to just 9.60MB, achieving
a size reduction of up to 34.1 times, compared to the original
model from ED-ViT.

C. Experiments on Audio Recognition Datasets

We use the GTZAN and Speech Command audio datasets
to evaluate the performance of our framework. The original
model sizes of Vision Transformer for GTZAN and Speech

TABLE II: The FLOPs for sub-models on different datasets
when using ViT-Base.

The Number of Edge Devices

Dataset
Original 2 3 5 10
CIFAR-10 16.86G 425G 1.90G 1.08G 0.48G
GTZAN 16.79G 420G 1.88G 1.059G 0.46G

Command is 325.88MB. Fig. 5 presents the accuracy, infer-
ence latency, and total memory size of the ViT-Base model
as implemented by the ED-ViT framework, similar to the
experiments with the computer vision datasets. We still set
the memory budget to 180MB.

The results show that as the number of edge devices
increases, ED-VIT is able to maintain the accuracy, delivering
robust performance. For GTZAN, accuracies are consistently
above 84%, and for the Speech Command dataset, accuracies
are above 90%. Similar to the results on the computer vision
datasets, the inference latency decreases as the number of
edge devices increases. Notably, the latency for the original
model is 32.16 seconds on the GTZAN dataset, which is 25.13
times the smallest latency (1.28s) and 3.37 times the highest
latency (9.55s). This substantial latency reduction trend is
consistent across both datasets. Regarding total memory size,
all configurations remain within the set limits. As the number
of edge devices increases, the memory size of each sub-
model decreases, and the computation overhead is similarly
reduced. In the 10-edge devices setting, for each model in
the GTZAN dataset, the size is reduced to only 9.35MB,
achieving a reduction of up to 34.85 times compared to the
original model. Similar results are also observed in the Speech
Command dataset from ED-ViT.

D. Overhead of Computation and Communication

We use FLOPs to simulate the energy consumption on
the edge devices. Table II presents the FLOPs for each
edge device on CIFAR (computer vision/video) and GTZAN
(audio recognition) datasets with different numbers of edge
devices using the ViT-Base model. The FLOPs for the original
model on the CIFAR-10 and GTZAN datasets are 16.86G and
16.79G, respectively. As the number of edge devices increases,
the FLOPs decrease across all datasets, and the experimental
results are consistent with the parameter counts. These findings
demonstrate that ED-ViT significantly reduces computation
overhead and saves energy for the edge devices.

When the number of edge devices increases from 1 to 10
using ViT-Base across all the datasets, the size of features for
communication on each sub-model decreases from 1536 bytes
to 512 bytes. Compared with the original image size (150528
bytes), our method could greatly reduce the communication
overhead to 294 times. The maximal communication time for
one edge device is 5.86ms, which is acceptable in the practical
situation. The results also show that the inferences on sub-
models and the fusion model take up most of the latency (order
of seconds) in Section V-B and Section V-C.
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TABLE III: The accuracy results of splitting CNN and SNN
versus ED-ViT with ViT-Base on CIFAR-10 dataset.

The Number of Edge Devices

Methods
1 2 3 5 10
Split-CNN  85.05+£0.32  85.11:£0.30  85.17+0.27  85.33+0.14  85.31+0.29
Split-SNN  83.56-£0.01 82.45+0.12  83.01+£0.79  83.06+0.50  82.29+0.32
ED-ViT 89.11+0.40  86.18+0.18  86.97+0.21 86.94+0.19  85.59+0.33

E. Experiments on Different Model Structures

We also select two complex datasets (e.g, CIFAR-10 and
Caltech) to test different Vision Transformer structures for
low-power video analytics tasks. The original model sizes
of ViT-Small and ViT-Large are 82.71MB, 1,157MB, respec-
tively. Fig. 6 presents the accuracy, inference latency, and
total memory size of the ViT-Small and ViT-Large models as
implemented by the ED-ViT framework, similar to Fig. 4. We
increase the total memory size limit for ViT-Large to 600MB
and decrease the limit for ViT-Small to SOMB.

The results show that as the number of devices increases, the
accuracy remains relatively consistent, again showing robust
performance. For ViT-Small, the accuracy is over 76.5% on
the CIFAR-10 dataset and over 77.39% on Caltech across
all settings; for ViT-Large, the accuracy is over 86% on
the CIFAR-10 dataset and over 90.48% on Caltech in all
settings. In most cases, the accuracy fluctuation for the final
fusion prediction remains within a variance of less than one
percentage point. The accuracy for ViT-Small is lower than
that of ViT-Base, while ViT-Large achieves higher accuracy
than ViT-Base, corresponding to the difference in parameter
counts. Generally, the more parameters, the better the accuracy.
As the number of edge devices increases, the latency decreases
for both settings, similar to ViT-Base. The latency for ViT-
Small is lower than that of ViT-Base, as ViT-Small requires
less computational power, while the latency for ViT-Large is
higher due to its larger size. In terms of memory size, in the 10-
edge device setting, for each model on the CIFAR-10 dataset,
the size for ViT-Small is 2.58MB, achieving a reduction of
up to 32.06 times compared to the original model. Similarly,
for ViT-Large, the size is 18.73MB, which also achieves a
61.77-fold reduction compared to the original model size.

Note that for the ViT-Small on the CIFAR-10 and CalTech,
the input size and the output size are the same; thus, their
latency and total memory size on the edge devices are also
the same. Similar results are observed across both datasets for
ViT-Small and ViT-Large.

F. Comparison with Baseline Methods: Split-CNN and Split-
SNN

Vision Transformer achieves better accuracy compared to
traditional CNN and SNN models. However, the performance
of these models on edge devices has not been directly
compared before. Nnfacet [2] proposes a method to split
CNNSs across multiple edge devices, employing a filter pruning
technique [65], which differs from our approach. EC-SNN [3]
utilize the convolutional spiking neural network (CSNN) [7]

3 Split-CNN
(a) Accuracy

3 Split-SNN
(b) Latency

3 Ours
(c) Total Memory Size

Accuracy (%)
Latency (s)
Total Memory Size (MB)

Split-CNN Split-SNN  Ours Split-CNN  Split-SNN  Ours Split-CNN Split-SNN  Ours

Fig. 7: Performance of splitting method with CNN, SNN, and
ViT-Base models on CIFAR-10 dataset with 10 edge devices.

TABLE IV: The impact of retraining for CIFAR-10 dataset on
ViT-Base of ED-ViT.

Methods The Number of Edge Devices

1 2 3 5 10
ED-ViT 89.11+0.02  86.18+0.34  86.97+0.70  86.94+0.10  85.59+0.24
(w/o) retrain 88.25+0.30  86.00+0.45  86.08+0.03  85.33+0.11  84.20+0.14
(w/) entire retrain ~ 89.11+0.30  92.33+0.11  91.1440.45  89.97+0.62  90.26+0.07

to transform CNNs into SNNs, using a similar strategy. Both
methods focus on VGGNet [5] backbone networks and are
channel-wise methods. In our experiments, the baseline model
for these methods is VGGNet-16 in their papers, which also
has a memory size similar to ViT-Base and achieves the
best original results for comparison. We follow the hyper-
parameters in their papers to conduct the experiments.

The accuracy results on the CIFAR-10 dataset are presented
in Table III. Based on the results, we observe that CNN
outperforms SNN, while our ED-ViT method for ViT-Base
yields better accuracy than both CNN and SNN approaches.
The original accuracies of ViT-Base, CNN, and SNN are
98.12%, 93.64%, and 93.56%, respectively. Their average
accuracy losses are 11.16%, 8.5% and 10.15% across var-
ious device numbers. Due to the inherently high accuracy
of Vision Transformer, we admit that its accuracy drop is
slightly higher than CNN and SNN. This is precisely why
we leverage Vision Transformer: to employ its exceptional
performance. Our method maintains a comparable accuracy
drop with a 28.9x size reduction, achieving up to 4.06% and
5.55% higher accuracy than state-of-the-art CNN-based and
SNN-based methods shown in Table III.

In addition to the accuracy results, we also compare in-
ference latency and total memory size of the three methods
when the number of edge devices is 10. These results are
shown in Fig. 7. Based on the results, our ED-ViT method
achieves the best accuracy compared to SNN and CNN, while
its inference latency is much lower than SNN (4.36 times)
and CNN (2.70 times). Furthermore, the total memory size of
ED-ViT is significantly lower than CNN and is comparable
to SNN, since SNN is known for its small model size. This
experiment demonstrates that deploying Vision Transformer
onto edge devices can meet latency and memory constraints
while delivering superior accuracy results.
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G. Experiments on Effects for Retraining

As we quantify model accuracy, we perform an ablation
study to assess the impact of retraining. The results are shown
in Table IV. The first line shows the results of the original
ED-ViT. The second line shows the results from averaging
the softmax output of sub-models without the fusion MLP.
The third line shows the results based on the retraining of the
overall models (sub-models and MLP together) for the fusion
stage. When using only one device, the result is the same as
the original ED-ViT as the training process remains unchanged
in this scenario. Different from the work on splitting SNN
and CNN, which are based on channel-wise methods and only
get about 0.1% improvement in performance when retaining
the overall models, our method is shown to have a great
potential to improve performance (up to 6.15%). However, in
the practical setting, it may be hard to retrain the sub-models
with the fusion MLP.

VI. CONCLUSION

In this study, we are the first to propose a novel framework
aimed at deploying Vision Transformer on edge devices, which
combines model-partitioning and pruning. The formulation
and resolution of the problem offer a viable solution, ED-ViT,
which decomposes the Vision Transformer model into smaller
sub-models and leverages the state-of-the-art pruning method
to streamline the complex network architecture. ED-ViT not
only preserves the essential structure of the original model
but also enables more efficient inference, maintaining high
system accuracy within the memory and energy constraints
of edge devices. Extensive experiments and implementations
have been conducted on five datasets, three ViT architectures,
and two baseline methods, using three evaluation metrics of
accuracy, inference latency, and total memory size. The results
demonstrate that ED-ViT significantly reduces overall energy
consumption and inference latency on edge devices while
maintaining high accuracy. Our ED-ViT shows great potential
for deployment on edge devices and for future integration with
other horizontal methods to achieve better performance.

REFERENCES

[1] J. Chen, D. Van Le, R. Tan, and D. Ho, “Split convolutional neural
networks for distributed inference on concurrent iot sensors,” in 2021
IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021, pp. 66-73.

——, “Nnfacet: Splitting neural network for concurrent smart sensors,”
IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1627-1640,
2023.

D. Yu, X. Du, L. Jiang, W. Tong, and S. Deng, “Ec-snn: Splitting
deep spiking neural networks for edge devices,” Proceedings of the
Thirty-ThirdInternational Joint Conference on Artificial Intelligence,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
271507864

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770-778, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:206594692

(81

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

295

S.-W. Deng and S. Gu, “Optimal conversion of conventional artificial
neural networks to spiking neural networks,” ArXiv, vol. abs/2103.00476,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
232075977

A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

D. Alexey, “An image is worth 16x16 words: Transformers for image
recognition at scale,” arXiv preprint arXiv: 2010.11929, 2020.

Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer with long-
short range attention,” arXiv preprint arXiv:2004.11886, 2020.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10347-10357.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision.  Springer, 2020, pp. 213—
229.

Z. Dai, B. Cai, Y. Lin, and J. Chen, “Up-detr: Unsupervised pre-training
for object detection with transformers,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 1601—
1610.

F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, and D.-P.
Fan, “Uncertainty-guided transformer reasoning for camouflaged object
detection,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 4146-4155.

Z. Song, F. Wu, X. Liu, J. Ke, N. Jing, and X. Liang, “Vr-dann: Real-
time video recognition via decoder-assisted neural network acceleration,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 1EEE, 2020, pp. 698-710.

Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, and H. Xia,
“End-to-end video instance segmentation with transformers,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 8741-8750.

R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman, “Video action
transformer network,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 244-253.

C. Plizzari, M. Cannici, and M. Matteucci, “Spatial temporal transformer
network for skeleton-based action recognition,” in Pattern recognition.
ICPR international workshops and challenges: virtual event, January
10-15, 2021, Proceedings, Part III. Springer, 2021, pp. 694-701.

Y. Gong, C.-I. Lai, Y.-A. Chung, and J. Glass, “Ssast: Self-supervised
audio spectrogram transformer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 10, 2022, pp. 10699-10709.

Z. Pan, B. Zhuang, J. Liu, H. He, and J. Cai, “Scalable vision
transformers with hierarchical pooling,” 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 367-376, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:232290833

B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. J’egou,
and M. Douze, “Levit: a vision transformer in convnet’s clothing
for faster inference,” 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 12239-12249, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:233004577

P. Zhang, X. Dai, J. Yang, B. Xiao, L. Yuan, L. Zhang, and J. Gao,
“Multi-scale vision longformer: A new vision transformer for high-
resolution image encoding,” 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 2978-2988, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232404731

W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng,
and S. Yan, “Metaformer is actually what you need for vision,”
2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10809-10819, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:244478080

C. Yang, Y. Wang, J. Zhang, H. Zhang, Z. Wei, Z. L. Lin, and
A. L. Yuille, “Lite vision transformer with enhanced self-attention,”
2022 [EEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11988-11998, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:245353696

Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. C.
Bovik, and Y. Li, “Maxvit: Multi-axis vision transformer,” in
European Conference on Computer Vision, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:247939839

T. Yao, Y. Li, Y. Pan, Y. Wang, X. Zhang, and T. Mei, “Dual vision
transformer,” IEEE Transactions on Pattern Analysis and Machine

Authorized licensed use limited to: National University of Singapore. Downloaded on December 23,2025 at 23:22:41 UTC from IEEE Xplore. Restrictions apply.



(27]

[29]

[37]

[41]

(42

[43]

Intelligence, vol. 45, pp. 10870-10882, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:250425982

X. Pan, T. Ye, Z. Xia, S. Song, and G. Huang, “Slide-transformer:
Hierarchical vision transformer with local self-attention,” 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2082-2091, 2023. [Online]. Available: https://api.
semanticscholar.org/CorpusID:258048654

K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu, “Incorporating
convolution designs into visual transformers,” 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 559-568,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
232307700

Z. Dai, H. Liu, Q. V. Le, and M. Tan, “Coatnet: Marrying convolution

and attention for all data sizes,” ArXiv, vol. abs/2106.04803,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
235376986

W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 548-558, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:232035922

——, “Pvt v2: Improved baselines with pyramid vision transformer,”
Computational Visual Media, vol. 8, pp. 415 — 424, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:235652212

M. Zhu, Y. Tang, and K. Han, “Vision transformer pruning,” arXiv
preprint arXiv:2104.08500, 2021.

M. Xia, Z. Zhong, and D. Chen, “Structured pruning learns compact
and accurate models,” arXiv preprint arXiv:2204.00408, 2022.

Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, and P. Xie, “Not all
patches are what you need: Expediting vision transformers via token
reorganizations,” arXiv preprint arXiv:2202.07800, 2022.

Y. Liu, M. Gehrig, N. Messikommer, M. Cannici, and D. Scaramuzza,
“Revisiting token pruning for object detection and instance
segmentation,” 2024 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 2646-2656, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259138783

Q. Tang, B. Zhang, J. Liu, F. Liu, and Y. Liu, “Dynamic token pruning
in plain vision transformers for semantic segmentation,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023,
pp. 777-786.

C. Zheng, Z. Li, K. Zhang, Z. Yang, W. Tan, J. Xiao, Y. Ren,
and S. Pu, “Savit: Structure-aware vision transformer pruning via
collaborative optimization,” in Neural Information Processing Systems,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
258509611

Z. Song, Y. Xu, Z. He, L. Jiang, N. Jing, and X. Liang, “Cp-vit: Cascade
vision transformer pruning via progressive sparsity prediction,” arXiv
preprint arXiv:2203.04570, 2022.

Y. Xu, Z. Zhang, M. Zhang, K. Sheng, K. Li, W. Dong, L. Zhang,
C. Xu, and X. Sun, “Evo-vit: Slow-fast token evolution for dynamic
vision transformer,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 3, 2022, pp. 2964-2972.

S. Venkataramanan, A. Ghodrati, Y. M. Asano, F. Porikli, and A. Habib-
ian, “Skip-attention: Improving vision transformers by paying less
attention,” arXiv preprint arXiv:2301.02240, 2023.

L. Yu and W. Xiang, “X-pruner: explainable pruning for vision trans-
formers,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2023, pp. 24 355-24 363.

H. Yu and J. Wu, “A unified pruning framework for vision transformers,”
Science China Information Sciences, vol. 66, no. 7, p. 179101, 2023.
J. Li, Q. Nie, W. Fu, Y. Lin, G. Tao, Y. Liu, and C. Wang, “Lors:
Low-rank residual structure for parameter-efficient network stacking,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 15 866-15 876.

S. N. Wadekar and A. Chaurasia, “Mobilevitv3: Mobile-friendly vision
transformer with simple and effective fusion of local, global and input
features,” arXiv preprint arXiv:2209.15159, 2022.

J. Pan, A. Bulat, F. Tan, X. Zhu, L. Dudziak, H. Li, G. Tzimiropoulos,
and B. Martinez, “Edgevits: Competing light-weight cnns on mobile
devices with vision transformers,” in European Conference on Computer
Vision. Springer, 2022, pp. 294-311.

G. Xu, Z. Hao, Y. Luo, H. Hu, J. An, and S. Mao, “Devit: Decomposing
vision transformers for collaborative inference in edge devices,” IEEE
Transactions on Mobile Computing, 2023.

296

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

S. Oh, J. Park, S. Baek, H. Nam, P. Vepakomma, R. Raskar, M. Bennis,
and S.-L. Kim, “Differentially private cutmix for split learning
with vision transformer,” ArXiv, vol. abs/2210.15986, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:253224400

F. Almalik, N. Alkhunaizi, I. Almakky, and K. Nandakumar,
“Fesvibs: Federated split learning of vision transformer with block
sampling,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:259251916

S. Oh, S. Baek, J. Park, H. Nam, P. Vepakomma, R. Raskar,
M. Bennis, and S.-L. Kim, “Privacy-preserving split learning with
vision transformers using patch-wise random and noisy cutmix,’
ArXiv, vol. abs/2408.01040, 2024. [Online]. Available: https://api.
semanticscholar.org/CorpusID:271693565

Z. Su, H. Zhang, J. Chen, L. Pang, C.-W. Ngo, and Y.-G. Jiang,
“Adaptive split-fusion transformer,” 2023 IEEE International Conference
on Multimedia and Expo (ICME), pp. 1169-1174, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:248392009

J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in International Conference on Machine Learning,
2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
12078675

A. Bakhtiarnia, N. Milo, Q. Zhang, D. Bajovi, and A. Tosifidis,
“Dynamic split computing for efficient deep edge intelligence,” ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1-5, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:248986420

X. Hou, Y. Guan, T. Han, and N. Zhang, “Distredge: Speeding
up convolutional neural network inference on distributed edge
devices,” 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1097-1107, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:246486210

V. Weaver, “Green machines - energy efficient machines,” https://web.
eece.maine.edu/~vweaver/group/green_machines.html, 2024, accessed:
13-Sep-2024.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:
18268744

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, pp. 2278-2324,
1998. [Online]. Available: https://api.semanticscholar.org/CorpusID:
14542261

G. Griffin, A. Holub, P. Perona et al., “Caltech-256 object category
dataset,” Technical Report 7694, California Institute of Technology
Pasadena, Tech. Rep., 2007.

G. Tzanetakis and P. Cook, “Musical genre classification of audio
signals,” IEEE Transactions on speech and audio processing, vol. 10,
no. 5, pp. 293-302, 2002.

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

P. K. Diederik, “Adam: A method for stochastic optimization,” (No Title),
2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and human-
labeled dataset for audio events,” in 2017 IEEE international conference
on acoustics, speech and signal processing (ICASSP). 1EEE, 2017, pp.
776-780.

T. L. Foundation, “Tc-show / manipulate traffic control settings,” https:
/lwww.linux.com/tutorials/tc- show-manipulate- traffic-control-settings/,
2022, [Online; accessed 10-October-2023].

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming:
A data-driven neuron pruning approach towards efficient deep
architectures,” ArXiv, vol. abs/1607.03250, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2493219

Authorized licensed use limited to: National University of Singapore. Downloaded on December 23,2025 at 23:22:41 UTC from IEEE Xplore. Restrictions apply.



