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Abstract— Switch-based hotspot offloading is a trendy solu-
tion for latency-sensitive applications to achieve high system
throughput with an acceptable P99 query response latency.
However, due to the varying object sizes, dynamic workloads,
and complex query-processing functions of the latency-sensitive
applications, existing switch-based dynamic hotspot offloading
approaches struggle to handle these applications effectively. This
is mainly because of their inefficient switch resource utilization
and non-generalizable hotspot offloading designs. So we propose
Hare, a systematic framework that consists of three techniques
to address these issues. First, Hare uses a MAT-based cross-stage
structure to store and perform hit-checks for large hotspots on
the switch data plane. Second, Hare uses a switch-server co-
offloading mechanism to support fast and precise offloading.
Third, Hare is designed to enable generally automatic offloading
by decoupling application-related query processing with hotspot
offloading. Compared to the state-of-the-art approaches, Hare
supports 8.86 X ~9.97 X larger hotspot size, achieves 1.27 X ~
6.61 X higher system throughput, and can recover the system
throughput and the P99 query response latency within 8s.

Index Terms— Query processing, programmable switch, tail
latency SLO, in-network caching.

I. INTRODUCTION

ERVICES that cater to clients, such as web search engines,

financial trading platforms, games, and online social net-
works, necessitate consistently low response times to attract
and retain users [1], [2], [3]. A primary design objective
for client-facing services is to maximize query throughput
while meeting tail latency SLOs for individual queries [4],
[5], [6], [7], [8]. The importance of low tail latency comes
from the observation that query tail latency greatly impacts the
client’s experience and the company’s business revenues. Take
Amazon online web services for example: tail latency SLO
violations delay web page loading times, and each additional
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100 milliseconds of query tail latency causes a $1.5 million
decrease in revenue [9], [10]. Moreover, a large online service
that usually contains multiple micro-service components [11],
[12], [13] requires stricter tail latency for each component like
a key-value store (KVS) system, whose tail latency should
be hundreds of microseconds to a few milliseconds [14],
[15], [16].

A recent line of work [17], [18], [19], [20] increases
throughput and reduces tail latency by caching frequently
accessed objects on high-speed programmable switches.
Although these works show promising results, we still identify
three challenges when applying in-network caching to real-
world workloads:

C1. Varying Object Sizes. Object size distribution across
different workloads exhibits significant variance. For instance,
the lock ID length in a lock manager system is as short
as 4 bytes [18], while the key length in a key-value store
system can range from tens to hundreds of bytes [21], [22],
[23]. However, existing solutions place rigid constraints on
the offloaded object sizes, limiting their generality: the max-
imum switch object size in NetCache [17] is limited by the
match action table (MAT) bit width in a single pipeline stage
(typically 128 bytes); DySO [20] relaxes this restriction by
storing large objects in registers across stages, but the bit
width per stage is still bounded by the register array size
(typically 16 bytes).

C2. Dynamic Workloads. Object popularity changes
rapidly due to unpredictable real-world incidents [24], [25],
[26], [27], [28], [29]. To maintain low tail latency, an in-
network caching solution should quickly react to popularity
changes. However, offloading an object in NetCache takes
milliseconds on average. This large overhead arises from
inefficient switch-OS-based APIs used to realize interactions
between the switch control plane and the switch data plane
(hereinafter called plane interactions). Besides, when workload
changes, NetCache’s recovered switch hit rate is limited by
the precision of the space-saving statistical modules on the
switch data plane. DySO uses a register-based structure called
r-MAT to replace the MAT structure in order to support fast
microsecond-level offloading with packet-based plane interac-
tions. However, DySO’s recovered switch hit rate is limited
by the hash collision when offloading objects to the r-MAT
structure.

C3. Complex Query-processing Functions. To achieve
high throughput, applications usually require the switch data

2998-4157 © 2025 1IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National University of Singapore. Downloaded on June 22,2025 at 09:13:59 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-7550-9379
https://orcid.org/0000-0003-3530-7662
https://orcid.org/0000-0001-8550-9241

ZHU et al.: HARE: A SYSTEMATIC FRAMEWORK FOR EFFICIENT AND GENERALLY AUTOMATIC HOTSPOT OFFLOADING 939

plane to maintain dirty data' for offloaded objects and don’t
synchronize them with backend servers [18], [19]. It makes
realizing hotspot offloading sticky because the offloading
mechanism should keep data consistent while replacing cold
offloaded objects with hot non-offloaded objects. However,
NetCache is designed as a read-intensive KVS system, while
DySO is designed as a general hotspot offloading mechanism
for read-only systems. Both of them don’t allow dirty data
on the switch data plane, so their offloading process can’t be
directly adopted by write-intensive applications (e.g., write-
intensive KVS, lock manager, and OLTP).

To address issues in existing approaches, we present Hare,
a systematic framework for efficient and automatic hotspot
offloading on programmable switches. It consists of the fol-
lowing three key innovations:

K1. MAT-based Cross-stage Hotspot Storage Structure.
To enable high flexibility in hotspot size, we present e-MAT,
a hotspot storage structure utilizing MATs in multiple stages
to store and perform hit-checks for large offloaded objects.

K2. Switch-server Co-offloading Mechanism. To realize
fast and precise offloading, we present a switch-server co-
offloading mechanism. For precision, it gathers statistics from
both the switch and the backend servers to find the hottest
non-offloaded objects and the coldest offloaded objects. For
fastness, it uses real-time min-heap, hybrid plane interactions,
and batch offloading to reduce the offloading delay.

K3. Automatic Offloading Mechanism. To achieve high
programmability, we present an automatic offloading mech-
anism, which decouples application-related query-processing
from the hotspot offloading mechanism, such that developers
focus on application-related functions while leaving Hare to
automatically manage the dynamic hotspot offloading process.

We implement a read-only KVS and a lock manager with
Hare. Compared to state-of-the-art approaches, Hare supports
8.86x ~ 9.97x larger hotspot size, achieves 1.27x ~ 6.61x
higher system throughput, and can recover the system through-
put and the P99 query response latency within 8s.

II. BACKGROUND

Programmable switches are an emerging trend in the market
with specialized ASICs from vendors such as Intel [30] and
Cavium [31]. Compared to traditional switches [32], [33],
programmable switches provide the capabilities of flexible
packet processing at a line rate of up to billion pkt/s. The
programmability of the switch data plane is enabled by a
configurable architecture [34] and the de facto data plane
programming language is P4 [35]. P4 is a high-level language
that allows users to write match-action rules to express the
processing of packets on the data plane. P4 uses a C-like
syntax with several restrictions. For example, it does not allow
the use of pointers, loops, and complex mathematical functions
which impedes P4 programs running at a line rate.

To run P4 programs, programmable switches often use the
PISA architecture, as shown in Figure 1, to allow programmers

'We adopt the concept of “dirty data” from caching. In the scenario of
hotspot offloading, it refers to data that is solely stored on the switch without
being written back to the backend servers.
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Fig. 1. Protocol independent switch architecture (PISA).

to specify how a packet should be processed using MATs, reg-
isters, and ALUs on the switch data plane. Packet processing
happens concurrently in a sequence of stages, each of which
handles a packet at a time. The resources in each stage are
limited and a packet usually cannot access again the stage it
has already passed. As a result, the layout of functions on
the data plane must be carefully organized so that dependent
operations are arranged in successive order. The switch device
provides an embedded CPU board that serves as the control
plane for the switch. During runtime, the switch control plane
can modify MATs and registers using Switch-OS-based APIs,
while packets can only modify registers on the data plane.

The PISA architecture contributes to in-network caching
typically in the following manner: it employs MATSs to store
offloaded objects and to perform hit-checks, and uses registers
to store the associated application data. When a query is
considered a hit, it is processed directly within the switch data
plane using the associated application data. We take NetCache
as an example to show how the PISA architecture works.
In this case, the offloaded objects are keys and the application
data are values. As shown in Figure 1, NetCache stores hot
keys (e.g., O1, Os, ...)* in the MAT structure as items, and
programs match-action rules for each item in the MAT. To be
specific, if the queried key in a query packet matches any item
(e.g., O1) of the MAT, the corresponding action for this item
is to assign the action data (e.g., O1.index) to a query-related
variable (e.g., query.hit_index) which will be further used to
locate the application data in registers.

III. MOTIVATION

We identify three issues that prevent existing works from
wide adoption by a broad range of applications.

A. Low Flexibility in Hotspot Size

The distribution of object sizes varies significantly across
different workloads. While applications such as the lock

20 is abbreviated for “object”.
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Fig. 2. Naive solutions to extend the maximum size of the offloaded keys with MATs do not work.

manager typically handle small objects (e.g., 4-byte lock IDs),
there are still specific scenarios where handling large objects
(e.g., hundred-byte keys) is common. We take two application
scenarios that usually require large objects as examples: In
distributed file systems, the full file path can be used as a
key for querying the file metadata [36], [37]. In scenarios
with complex directory hierarchies, this can lead to large key
sizes. Similarly, in Internet of Things (IoT) databases, dataset
identifiers are employed as keys for querying dataset locations.
These identifiers typically include detailed information such
as device owner, device name, device location, measurement
type, time range, and so on, resulting in large key sizes [38].
Offloading query processing functions of these applications
to the switch data plane requires support for large objects.
However, existing solutions place rigid constraints on the
offloaded object sizes, limiting their generality.

1) NetCache: NetCache uses the MAT structure on the
switch data plane to store and perform hit-checks for offloaded
objects. When the queried object hits any offloaded object
in the MAT structure, NetCache processes the query directly
on the switch data plane. However, NetCache’s hit-check
mechanism restricts the maximum size of an offload object
to the maximum bit width of the MAT structure in only one
pipe stage of the switch data plane. To illustrate the challenges
in extending object size, we present the following three naive
solutions that leverage MAT's across multiple stages to support
larger offloaded object sizes.

Naive Solution S1: Direct Partition. As shown in
Figure 2a, we can directly partition a large offloaded object
(e.g., O1) into several segments (e.g., O1.seg; and O;.sego)

and use MATs in different stages to store different segments
of the object as items (e.g., M AT} stores O;.seg;, M AT,
stores (O7.segs). The items that are stored in different MATSs
but belong to the same object share the same action data (e.g.,
O;1.indexy = Oi.indexs = 0 x1). When a query arrives,
each MAT checks if the corresponding segment of the queried
object O, matches any item. If items matched by O, in MATs
share the same action data, the query is determined to be a
hit and will be handled by the switch data plane. However,
when a MAT has an item that belongs to at least two objects,
this mechanism would cause a false miss issue because of
the matching priority for these items. Figure 2a illustrates
an example of sequentially offloading segments of O1, Os,
and O3 to two MATSs. We assume that the incoming object
Oq4 is Oz and that Oj.seq; is equal to Oq.seq;. Because
the first offloaded item has the highest priority for matching,
O, will match O;.seg; in M ATy and Os.segy in MATs.
As a result, the query will be finally determined to be a
miss.

Naive Solution S2: Index Conversion. To address the
issue of S1, we employ the index conversion approach to
avoid duplicate items in a MAT, as shown in Figure 2b.
The corresponding index of the offloaded segment that O,
matches in each MAT will be multiplied by a unique bias
(e.g., x10, x1) and then summed. The summed result is used
as the final index (query.hit_index) to locate the application
data in registers. However, this approach would lead to a false
hit issue when the item matched by O, in each MAT doesn’t
belong to the same offloaded object. Figure 2b illustrates an
example where O,.seg; = Os.seg; and Oy.seg2 = O1.5€g>.
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In this example, O, gets a valid final index and causes a false
hit issue.

Naive Solution S3: Additional Item Field. Another way
to address the issue of S1 is to introduce an additional item
field for each segment in each MAT. As shown in Figure 2c,
each offloaded object has a globally unique ID (e.g., O1.uid #
Os.uid # Os.uid), and each segment in each MAT takes the
corresponding object’s unique ID as an additional item field.
In this way, if two or more objects have the same segment in
a MAT (e.g., O1.seg1 = Osz.seg; = 0 x 1 in M ATy), the
unique ID can be used to distinguish which segment belongs
to which object, so as to avoid the false miss issue caused by
duplicate items. However, though this solution does solve the
false miss issue, it requires the client to include the unique ID
of the queried object in the query packet, resulting in extra
overhead. For example, the client should either send extra
packets to retrieve the unique ID of the queried object from
servers, or waste memory to store the unique ID locally. Since
maintaining a lightweight client is important for user experi-
ence, especially on mobile devices with limited computing,
networking, and memory resources [39], [40], this solution is
not optimal.

2) DySO: DySO proposes a register-based structure called
r-MAT to store and perform hit-checks for offloaded objects,
with the assumption that the size of the offloaded object fits in
the bit-width of the register array in one stage so each stage
can provide one column. Figure 3 illustrates that the registers
in multiple stages build a two-dimensional matrix in an -MAT
structure. When a query arrives, the stage for hashing decides
which row of the matrix will interact with the query. Then
the queried object will be compared with the corresponding
offloaded object in each stage. If the queried object matches
any offloaded object, the query will be determined to be a hit.

Although DySO doesn’t explicitly explain how to offload
objects whose size exceeds the bit-width of the register array
in a single stage, we can easily implement it by using multiple
stages to represent one column. In particular, one offloaded
object can be partitioned into several segments and each
segment occupies a stage with the same row index. However,
DySO still struggles to expand the size of the offloaded
objects because the r-MAT structure consumes stages heavily.
Typically, the maximum bit-width of the registers in one
stage is § of the maximum bit-width of the MAT in one
stage. As a result, compared to the MAT structure, the r-MAT
requires 8 stages to store a large offloaded object. Given that
modern switches usually have only 10 ~ 20 stages [18], the
stage overhead makes r-MATs impractical for large offloaded
objects.

Switch control plane
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41
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Fig. 4. NetCache’s dynamic hotspot offloading process.
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query response latency.

B. Not Supporting Fast and Precise Offloading

To cope with dynamic workloads, the controller needs to
frequently update the switch data plane with hotspots. The
primary challenge is the limited switch table and register
update rate. While commodity switches can update more than
10K table entries per second [41], the update rate is insufficient
to support traditional cache update mechanisms like LRU and
LFU. These mechanisms update the cache for every query,
causing unnecessary in-network cache churns and performance
degradation [17], [42]. To avoid unnecessary cache churns,
both NetCache and DySO offload an object to the switch data
plane only when it becomes hot enough, rather than for each
query access. However, it is challenging to accurately identify
the top-K hotspots and quickly offload them to the switch data
plane. In the following content, we explain why NetCache and
DySO can’t achieve fast and precise offloading.

1) NetCache: NetCache has a high offloading delay because
the switch-OS-based plane interactions dominate the overall
time cost of the NetCache’s offloading process. Figure 4 shows
NetCache’s offloading process can be separated into four steps,
each of which involves costly plane interactions. In Step 1, the
NOO-Stat® reports one hot object to the analyzer. In Step 2,
the analyzer identifies a cold object by scanning the OO-Stat.*
In Step 3, the modifier modifies the object in the hit-check
MAT and the application data in registers. NetCache repeats
Step 1 ~ Step 3 multiple times before proceeding to Step 4.
In Step 4, the analyzer clears the OO-Stat and the NOO-

3NOO-Stat (Statistical Module for Non-offloaded Objects) is the statistical
module to store and update frequency counts for non-offloaded objects.
NetCache implements a Count-Min sketch [43] to report hot non-offloaded
objects, and a Bloom filter [44] to remove duplicate reports.

400-Stat (Statistical Module for Offloaded Objects) is the statistical mod-
ule to store and update frequency counts for offloaded objects. NetCache
implements a precise counter for each offloaded object.

Authorized licensed use limited to: National University of Singapore. Downloaded on June 22,2025 at 09:13:59 UTC from |IEEE Xplore. Restrictions apply.



942
Switch control plane
Modifier Analyzer
Mo e
7 S
Step 3 Step 4 Step 2 |Step 1
I Switch OS
( Switch data plane
----For offloaded objects---‘-—----—-—| |--------For all objects--------| |
Hit—check | APP data | | QO-Record
> .
-~ ~N

Stage-cost & Hash collision!

Ideal situation Hash collision (Under extreme conditions)

~Col1 ~Col1
Row 1 | Top 1 Row1 | Top1 Top2 Top3 Top4
Row 2 | Top 2 Row2 | Top5
Row 3 | Top 3 Row 3 | Top 6
Row 4 | Top 4 Row4 | Top7

Fig. 6. DySO’s dynamic hotspot offloading process.

Stat. In particular, NetCache spends milliseconds to offload
one hotspot, and plane interactions take up more than 90% of
the total time.

Figure 5 shows NetCache’s slow hotspot offloading causes
a wide peak in the P99 query response latency and a wide
valley in the system throughput with 32k offloaded objects
under the Zipf-0.99 distribution. Besides, NetCache’s NOO-
Stat needs to balance between the expected precision and the
required resources and thus limits the stable switch hit rate.

2) DySO: DySO realizes fast offloading at the sacrifice of
precision because of the --MAT hash collision. Figure 6 shows
DySO’s offloading process. In Step 1, the analyzer fetches
recorded queried objects from the QO-Record.” In Step 2,
the analyzer updates the local statistics with the recorded
objects, and checks if the set of the hottest objects changes
with the updated statistics. In Step 3, the modifier modifies
the hit-check r-MAT and the application data to ensure the
hottest objects and the related application data are offloaded.
In Step 4, after a certain period of time (e.g., 1s), the analyzer
ages the frequency counts of all objects. DySO loses precision
on hotspot offloading because it only supports offloading the
local hottest objects for each row of the r-MAT structure
instead of offloading the global hottest objects due to the hash
collision.

Figure 6 explains how hash collision impacts the precision
of the hotspot offloading. For a 4 x 1 r-MAT, the ideal situation
is to offload the top 1 ~ top 4 hottest objects. However,
assuming the top 1 ~ top 4 hottest objects share the same
hash index, only the top 1 hottest object can be offloaded.
Since the number of rows of the r-MAT is highly limited
to a small number (e.g., 32k), the hash collision is severe.
DySO eases the impact of the hash collision by increasing the
number of columns. However, because the r-MAT structure is
stage-cost, it is difficult to expand the number of columns
when dealing with large offloaded objects and application
data. We implement a DySO-based read-only KVS system and

5Q0-Record (Module for Recording Queried Objects) is a module that
records query objects without distinguishing between offloaded and non-
offloaded objects.
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evaluate its stable hit rate under Zipf-99 query distribution with
various key and value sizes, as shown in Figure 7. We observe
that when increasing the key size and the value size, the switch
data plane supports an obviously fewer number of columns,
and the hash collision increases the gap between the ideal hit
rate and the real hit rate.

C. Customized Design

To achieve high throughput, applications usually require
the switch data plane to maintain dirty data for offloaded
objects and don’t synchronize them with backend servers in
real time [18], [19]. It makes realizing hotspot offloading
sticky because the offloading mechanism should keep data
consistent while replacing cold offloaded objects with hot non-
offloaded objects. However, existing works fail to ensure data
consistency when dirty data exists during hotspot offloading,
as we discuss in the following content.

1) NetCache: NetCache is customized for a read-intensive
KVS system, which typically has two types of queries: GET
and PUT. The GET query reads the value of the queried
key, and the PUT query modifies the value of the queried
key. NetCache uses the switch data plane as a read-only
cache and employs the write-through policy for PUT queries,
which means the PUT query always invalidates the offloaded
matched key on the switch and will be transferred to the
backend servers. Because the system is read-intensive, the
write-through policy hardly affects the system throughput.
Also because of the write-through policy, the backend servers
in NetCache always have the latest version of all key-value
pairs, so deleting the cold offloaded key and its value on the
switch data plane won’t cause data inconsistency. However,
for other systems (e.g., lock manager [18], OLTP system [19])
whose application data (e.g., the phase of the lock) is write-
intensive, they can’t tolerate write-through policy for each
query that participates in application data modification. As a
result, they require application data mitigation from the switch
data plane to the backend servers before deleting the cold
offloaded object and its related application data. As such,
NetCache’s offloading process no longer functions properly.

2) DySO: DySO is a general mechanism for read-only
systems (e.g., the read-only KVS system and the network
address translation system). As NetCache, DySO also directly
deletes the cold offloaded object and its related application
data on the switch data plane during hotspot offloading, since
read-only systems do not have dirty data on the switch data
plane. However, for write-intensive applications that have dirty
data on the switch data plane, this offloading process can’t be
applied, as it would result in the loss of dirty data.
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Automatic Offloading Mechanism (K3)

Fig. 8.

IV. DESIGN OF HARE
A. Overview of Hare

According to the drawbacks of existing works, when design-
ing Hare, we keep the following goals in mind:

G1. High Flexibility in Hotspot Size. Because the number
of stages on the switch data plane is highly limited, Hare
should allow offloading large objects in a stage-saving way.

G2. Fast and Precise Offloading. Because the available
space for storing offloaded objects on the switch data plane is
highly limited, Hare should precisely identify and offload the
hottest objects. Meanwhile, Hare should also offload hotspots
fast to the switch data plane to avoid wide peaks and valleys
in the P99 query response latency and the system throughput.

G3. Generally Automatic Offloading. To allow offload-
ing hot objects across diverse applications, Hare should be
designed as a framework that ensures generally automatic
offloading while maintaining data consistency for various use
cases.

System overview. To achieve the above goals, we propose
Hare, a systematic framework for efficient and automatic
hotspot offloading on programmable switches. Figure 8 illus-
trates the overview of Hare, which has three key innovations:

K1. MAT-based Cross-stage Hotspot Storage Structure.
To achieve high flexibility in hotspot size (G1), we propose

| For non- object: |

Backend server(s)

Switch-server-coprocessing Offloading Mechanism (K2)

Design overview of Hare. Hare consists of three key ideas K1, K2, and K3.

e-MAT, a new hotspot storage structure using MATSs in mul-
tiple stages to store and perform hit-checks for offloaded
objects.

K2. Switch-server Co-offloading Mechanism. To realize
fast and precise offloading (G2), we design a new offloading
mechanism. For precision, it gathers statistics from both the
switch data plane and the backend servers to identify the
hottest non-offloaded objects and the coldest offloaded objects.
For fastness, it uses real-time min-heap, hybrid plane interac-
tions, and batching optimization to reduce offloading delays.

K3. Automatically Offloading Mechanism. We present
a new development process to realize generally automatic
offloading (G3). It decouples application-related query-
processing with hotspot offloading so developers are only
required to fulfill application-related code regions as devel-
oping a system without tedious dynamic hotspot offloading.

B. MAT-Based Cross-Stage Hotspot Storage Structure

For latency-intensive applications that can benefit from
hotspot offloading, the object size distribution across different
workloads exhibits significant variance. However, the existing
solutions place rigid constraints on the offloaded object sizes
as mentioned in Subsection III-A. So we propose e-MAT,
a new hotspot storage structure that aims to extend the
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scalability of the MAT structure with functional correctness,
where the functional correctness requires (1) no false miss —
no duplicate items in each MAT structure, and (2) no false hit
— no unexpected hit for non-offloaded objects.

Key Insight for E-MAT. The key insight behind con-
structing the e-MAT structure is to introduce an appropriate
additional item field for segments in MATSs. The field should
identify which offloaded object a segment belongs to while not
imposing extra overhead on the client, as discussed in the naive
solution S3 in Subsection III-A. Intuitively, the index from the
previous MAT suits this job well for the following reasons:
First, the index of each segment in a MAT can be set to a
unique value within the MAT. This allows the subsequent MAT
to identify which offloaded object a certain segment belongs
to, by using the index from the previous MAT as the additional
item field. Figure 9 illustrates how it works. Suppose O (0 X
111) and Oy ( 0 x 212) are two offloaded objects, and
both of them can be divided into three equal-length segments.
O1.indexy from MAT; is used as an additional item field
for O;’s corresponding item {O;.index, O1.segs } in M AT.
Similarly, O;.indexs from M AT5 is used as an additional
item field for O;’s corresponding item {O;.indexs, O1.seg3}
in M AT3. The same logic applies to O,. When a query arrives,
each MAT checks if the corresponding segment of the queried
object with the previous index matches any item. If a query
has a matching item in each MAT, it is determined to be a
hit query and the index from the last MAT will be used to
index the application data. It’s worth noting that though O;
and O; have the same second segment (O;.segy = Os.s€g2 =
0 x1), there is no false miss issue caused by duplicate items in
M AT, because previous indexes O;.index; and Os.index;
help distinguish O;.segs and Os.segy in M AT,. There is
also no false hit because the additional item field links the
segments of the same offloaded object one by one across
different MATs. As a result, a query can find a matching item
in each MAT only if it queries for an offloaded object. Second,
in the PISA structure of the programmable switch, a query
can easily collect indexes while passing through MATSs in a
pipeline manner on the switch data plane, without imposing
additional overhead on the client.

Though the key insight behind the e-MAT structure is
straightforward, it’s still challenging to solve the false miss
issue caused by duplicate items in M AT}, because no index
from the previous MAT can be used to distinguish segments
in M AT). For example, as shown in Figure 10, suppose O;
equals 0 x 111, O equals 0 x 121, and O;’s matching priority
is higher than Os. We can see that when the queried object
O, equals O3, Oy.5eg1 (0 x 1) will match O;.seg; (0 x 1) in
M AT, while {O,.index1,04.5eg2} ({0 x 1,0 x 2}) won’t
match any item in M AT5, causing a false miss issue. It’s
because no index from the previous MAT can be used to
distinguish O;.seg; and Os.segy in M ATy.

E-MAT Construction Mechanism. Distinguishing dupli-
cate items in M AT causes extra overhead on the client as
mentioned in Subsection III-A. However, is it the only way
to avoid the false miss issue? The answer is no. To avoid the
false miss issue caused by duplicate items, Hare builds the
e-MAT structure by merging duplicate items in each MAT.
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TABLE I
SYMBOLS USED IN THE E-MAT UPDATING MECHANISM
O_new The non-offloaded object that needs offloading.
O_old The offloaded object that needs replacing.
MAT,, The m-th MAT in the e-MAT structure.
I_newy, | The item for O_new in M AT,,.
I_oldm, The item for O_old in M AT,,.

For example, as shown in Figure 8, in M AT; of the e-MAT
structure, we merge O;.seg; and Os.seg; because both of
them equal 0 x 1. It’s worth noting that merging duplicate
items (e.g., O1.seg; and Os.seg;) in a MAT will further
trigger the merging of their corresponding indexes (e.g.,
O;.indexy and Os.indexy). Similarly, in M AT,, we merge
{01 .index1,0;.seg2} and {Os.index;,Oz.5eg2} because
both of them equal {0 x 1,0 x 1}. It’s important to merge
duplicate items in each MAT, not just in M AT}, because
merged items and their corresponding merged indexes may
cause duplicate items in the following MAT. By merging
duplicate items in each MAT, we can solve the false miss
issue because there are no duplicate items in each MAT. There
is also no false hit issue because O, can pass through all
hit-checks only when O, is identical to an offloaded object.

E-MAT Updating Mechanism. It’s not easy to fast and
safely update the e-MAT structure. We use the following two
naive solutions to show the difficulty: First, naively replacing
the offloaded object’s segments in the e-MAT structure with
the non-offloaded object’s segments is fast, but not safe. For
example, in Figure 8, if we replace O; (O x 111) with
O (0 x 411) by directly replacing Op.seg; (0 x 1) with
Oy.seg1 (0x4), we can find that Oz (0 x 112) is also replaced
by an irrelevant non-offloaded object (0 x 412). It’s because
O;.seg; and Os.seg; merge, and they share the same item in
M AT;. Second, naively reconstructing the e-MAT structure
is safe but not fast. Specifically, reconstructing the e-MAT
structure includes the following steps: (1) Analyze the new set
of items that should exist in the e-MAT. (2) Delete all items
in the e-MAT. (3) Insert the new set of items to the e-MAT.
Define M as the number of MATs in the e-MAT structure
and N as the number of offloaded objects. This process
involves M x N item deletions and M x N item insertions
for the e-MAT, leading to 2 x M x N switch-OS-based plane
interactions. As we introduce in Subsection III-B, switch-OS-
based plane interactions are time-consuming, so reconstructing
the e-MAT structure cannot achieve fast replacement. Our
updating mechanism aims to reduce switch-OS-based plane
interactions while maintaining functional correctness. The key
idea of our updating mechanism is to keep all merged items in
the e-MAT structure unchangeable while replacing the target
offloaded object. To provide a clear and concise description
of our updating mechanism, in the following content, we first
define the symbols used, as shown in Table I, and then provide
the details of the mechanism.

Our updating mechanism sequentially examines each MAT
to determine if its items need modification. Specifically, for
M AT,,, we categorize the situations into the following cases:
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Fig. 9. Key insight for E-MAT: Use the index from the previous MAT as the additional item field.
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0O, = 0x111, O, = 0x121.

Fig. 10. Directly introducing the index from the previous MAT as an additional item field leads to a false miss issue.

Case 1: I_new,, = I_old,,. In this case, we don’t modify
any item in the M AT,,, because deleting I_old,,, and inserting
I_new,, cancel each other.

Case 2: I_new,, # I_old,,. In this case, we delete I_old,,
only if it isn’t shared by other offloaded objects; similarly,
we insert I_new,, only if it doesn’t exist in M AT,,.

We use the following examples to illustrate how the e-MAT
updating mechanism works.

Example 1: Suppose we want to replace O_old (0 x 111)
in Figure 8 with O_new (0 x 114), we can find that for
M ATy, there is I_oldy, = I_new; = 0 x 1, which fits Case 1,
so we don’t need to modify M AT;. Similarly, for M AT5,
there is I_oldy = I_news = {0 x 1,0 x 1}, which also
fits Case 1, so we don’t need to modify M AT5. Finally, for
M AT, there are I_olds = {0 x 1,0 x 1} and I_news =
{0x 1,0 x 4}, which fits Case 2. Since I_olds isn’t shared by
other offloaded objects and I_news doesn’t already exist in
M ATj, we can safely delete I_olds from M AT5 and insert
I_news to M AT3.

Example 2: Suppose we want to replace O_old (0 x 211)
in Figure 8 with O_new (0 x 114), we can find that for
M AT, there is I_oldy (0 x 2) # I_new; (0 x 1), which
fits Case 2. Since I_old; isn’t shared by other offloaded
objects but I_new; already exists in M ATy, we only need
to delete I_oldy from M AT;. Similarly, for M AT, there
is I_oldy ({0 x 2,0 x 1}) # I_news ({0 x 1,0 x 1}),
which fits Case 2. Since I_olds isn’t shared by other offloaded
objects but I_news already exists in M AT5, we only need
to delete I_oldy from M ATs. Finally, for M ATj, there are
I_olds = {0x2,0x1} and I_news = {0x1,0x4}, which fits
Case 2. Since I_olds isn’t shared by other offloaded objects
and I_news doesn’t already exist in M AT5, we can safely
delete I_olds from M AT3 and insert I_news to M AT3.

Due to the fine-grained operations in different cases, our
e-MAT updating mechanism needs no more than 2 x M

switch-OS-based plane interactions to update the e-MAT.
Besides, it keeps all merged items in the e-MAT structure
unchangeable while replacing the target offloaded object. This
guarantees the functional correctness of the e-MAT.

C. Switch-Server Co-Offloading Mechanism

To achieve fast and precise offloading, we propose a
switch-server co-offloading mechanism. The key idea of our
mechanism is to achieve precise offloading by using both
the switch data plane and backend servers to collect accurate
statistics — rather than relying solely on the switch data plane
— and to achieve fast offloading with the real-time min-heap,
the hybrid plane interactions, and the batch offloading opti-
mization. In this subsection, we first describe the offloading
process, and then present the technical details about how to
achieve fast and precise offloading.

Offloading Process. Figure 8 shows Hare’s hotspot offload-
ing process which can be divided into the following steps:
Step 1, the OO-Stat counts the frequency for each offloaded
object. In the meantime, the NOO-Stat counts the frequency
for each non-offloaded object. Step 2, the analyzer retrieves
frequency counts from the OO-Stat to identify a set Ogyitch
of K coldest offloaded objects. Then, the analyzer retrieves
K hottest non-offloaded objects from each backend server,
and from these retrieved objects, the analyzer identifies a
set Ogerper consisting of the overall K hottest non-offloaded
objects. Step 3, the analyzer identifies a set Opopest Of K
globally hottest objects (whether offloaded or not) among
Oswiteh and Ogeryer, and then decides the offloading policy.
To be specific, objects which belong to Ogytcn, but don’t
belong to Opottest should be replaced by objects which belong
to both Ogeryer and Opopgest- Step 4, the analyzer modifies the
object states in the state managers for objects participating
in the replacement. Step 5, the analyzer notifies the M-
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modifier® to modify the hit-check e-MAT by APIs, while also
notifying the D-modifier’ on each backend node to modify
the application data. Step 6, the analyzer refreshes the states
of objects participating in the offloading policy. Step 7, the
analyzer clears the OO-Stat and informs the NOO-Stat on each
backend server to clear itself.

How to Enable Fast and Precise Offloading. While it’s
straightforward to achieve precise offloading by accurately
identifying the hottest non-offloaded objects and the coldest
offloaded objects with precise counters, the challenge is how
to speed up the offloading process. Specifically, the following
procedures may introduce significant time overhead:

Proc 1. The NOO-Stat on each backend server needs to
prepare a set of top-K hottest non-offloaded objects in Step 2.
However, accurately identifying these objects by scanning the
frequency counts of all non-offloaded objects can be a time-
intensive process.

Proc 2. The analyzer on the switch control plane needs to
retrieve all frequency counts from the OO-Stat on the switch
data plane in Step 3, leading to a high volume of plane interac-
tions. However, as discussed in Subsection III-B, switch-OS-
based plane interactions are inherently time-consuming.

Proc 3. Both the OO-Stat and NOO-Stat require substantial
time to get a large volume of statistics in Step 1. This
ensures the statistical data aligns closely with the workload
distribution, but it also results in a significant time cost.

We address the impact of these procedures on overall
offloading latency using the following techniques:

Tech 1. Real-time Min-heap. We make the NOO-Stat
in each backend server maintain a real-time min-heap of
the objects with the top-K highest frequency counts while
collecting frequency counts in Step 1. Specifically, when a
query comes to the backend server, if the queried object isn’t
in the min-heap but the frequency count of the queried object
is higher than the frequency count of the object at the heap
top, the min-heap will delete the object at the heap top and
insert the queried object into the heap. In this way, after
Step 1 is completed, the NOO-Stat can directly identify the
top-K hottest non-offloaded objects with the min-heap.

Tech 2.Hybrid Plane Interaction. We realize e-MAT
modifications using switch-OS-based APIs while realizing
other plane interactions using network packets. To support
network-based plane interaction, the OO-Stat uses the reg-
ister to realize the precise counter, and the state manager
also uses the register to store the object state. Because the
rate of network packets can significantly exceed the rate of
switch-OS-based plane interactions by several orders of mag-
nitude, operations such as retrieving frequency counts from the
OO-Stat, which are achievable through network-based plane
interactions, are no longer time-consuming.

Tech 3. Custom Batch Offloading. As detailed in the
paragraph titled “Offloading process”, Hare’s offloading pro-
cess supports batch offloading, which allows offloading K
hottest objects in a single execution of the offloading process
(Step 1 ~ Step 7), instead of offloading one object at a time.

SM-modifier is short for the hit-check e-MAT modifier.
"D-modifier is short for the application data modifier.
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By offloading K hottest objects together with the statistics
collected once in Step 1, batch offloading reduces the average
time required to offload each object.

Equation 1 illustrates the average time (7g.4) required to
offload a single object when using the three techniques above.

ZZtep=1 Tstep  Ti+Ts _ Tsar + Tiaar )
K T K7 K

As shown in Equation 1, among all steps in the offloading
process, Step 1 and Step 5 are the most time-consuming.
In Step 1, the time (T:,:) for both the OO-Stat and the
NOO-stat to collect statistics needs milliseconds to get a large
number of statistics so that the distribution of the statistics is
similar enough to the distribution of the workload. In Step 5,
the time (T a7) spent on MAT modification is also significant
because the M-modifier realizes MAT modification with slow
switch-OS-based APIs, and the number of times for calling
the APIs is in proportion to K. As a result, increasing K
can mainly decrease the impact of Tstq¢ on 15,4 but hardly
ease the impact of Tj;47. What’s more, a large K increases
the average time the NOO-Stat spends on collecting statistics
(counting frequency & updating the min-heap) for each query
received, because the time complex for NOO-Stat to update
its min-heap is O(logK). Since the query-processing function
and the NOO-Stat’s statistic-collecting function are sequen-
tially executed for each query received, a large K causes a
large interval between two invocations of the query processing
function, which decreases the backend server throughput. So,
when choosing the value of K, there is a balance between the
average time for offloading one object and the average time
the NOO-Stat takes to collect statistics.

Ta’ug =

D. Automatic Offloading Mechanism

To facilitate application development, Hare introduces a
programming framework that abstracts the complexities of
dynamic hotspot offloading. In this subsection, we first intro-
duce the challenge in framework design. Next, we present
the key idea behind the design. Finally, we describe the user
interfaces and the executable file auto-generation mechanism.

Challenge. It’s challenging to abstract a framework for
hotspot offloading that can flexibly accommodate various
applications, as the hotspot offloading logic is highly inter-
twined with user-defined application-related query processing
logic. For instance, to avoid data inconsistency, the application
data should be appropriately transferred between the backend
servers and the switch data plane in Step 5 of Hare’s hotspot
offloading process. However, the structure (e.g., map or queue)
of the application data is closely tied to the specific applica-
tion. As a result, transferring the application data uniformly
across different applications may cause incorrect application
behavior.

Key Idea. The key idea of the programming framework is
to hide the implementation of application-unrelated functions
from users, while providing users with only application-related
programming interfaces. In this way, the framework can
reduce development difficulty while maintaining application
flexibility. Figure 8 illustrates how to integrate a user-defined
application into Hare’s dynamic hotspot offloading process
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Backend server (DPDK) /' /* The hit index of an offloaded object on the switch

947

/1 void User::datamv_server2switch(

a data plane that need to be replaced */

void User::process_query(){
/* Receive and parse query */

query = User:receive(); Query from client Response to client

target_hit_index,
/* The non-offloaded object on this server that need to
replace the offloaded object */
target_obj_onBS

Control packet for
communicating with,/*
data movement switch control plané

Control packet for

query_info = parse(query);

/* Process query */ |

response_info.key = query_info.key;

response_info.value = get_value(
query_info.key);

/* Deparse and send response */

response = deparse(response_info);

User:send(response);

/* Update statistics */

User:update_statistics(query_info.obj);

Query processor
(with App data)

‘ NOO-Stat (counter & heap)

App threads

vt vt it

System function scheduley’l

/* Generate control packets for data movement */
key = target_obj_onBS;
control_info.hit_index_4 datamv = target_hit_index;
control_info.value = get_value(key);

/* Deparse and send control packet */
control_packet = deparse(control_info);
User:send(control_packet);

D-modifier |

\,

void User:datamv_switch2server(
/* An offloaded object on the switch data plane that
need to be replaced */

— N,
State manager ‘\‘
\,
\
NOO-Stat I
\
Integrator N
AN target_obj_onSDP,
\, /* The hit index of the offloaded object */

Sys thread N target_hit_index

Do

PS. Both datamv_server2switch and datamv_switch2server are invoked multiple times during Step 5 of Hare's offloading process. Each invocation uses
different arguments. This is done to transfer all relevant application data between this backend server and the switch data plane.

Switch data plane (P4)

Control packet from backend
server for data movement

Query from client

Control packet from
switch control plane
for state management
and statistics retrieval

g I— e R AN
transition accept; Parse Query parser DM-parser L & State parser ‘ {)rl;tﬁes?tti?:ta(fc\ger.‘\)/ta;lue);
______________________ | D
E-MAT
defineziappdata( Miss Hit A
T e e | 00-5at e maneger |

Register(N) value_array;

RegisterAction(value_array) get_value = {..} .

RegisterAction(value_array) put_value = {..} Query-hit processor
} (with App data)

apply_queryhit{

DM-processor

(vv,i,t,hA}ip,,d@,@,),,, )

A apply_datamv{
/* Move APP data */
put_value.execute(hdrhit_index_4_datamv);

/* Process queries */
hdrvalue = get_value.execute( Deparse

Deparser

meta.hit_index_4_query);

Query to server N
v client

PS.

v
Response to  Control packet to backend
server for data movement

v
Control packet to switch
control plane

1. “hdr” represents a structure used to store fields extracted from a packet; “meta” represents a structure used to store additional information generated during packet processing.
2. To maintain clarity and conciseness, the figure excludes the forwarding logic for the response packets from the backend server, the control packets for communicating between
the switch control plane and the backend server, and the network packets unrelated to Hare.

Fig. 11.

with the programming framework. With Hare, the user needs
to complete the following tasks: First, write code related to
application-specific query processing and data movement in
the P4 file for the switch data plane. Second, write code related
to application-specific query processing and data movement
in the DPDK file for the backend server. Third, run a Python
tool, which takes the user’s codes and configuration parameters
(e.g., the number of objects offloaded) as input, to generate
complete code files and executable files. Finally, run exe-
cutable files on appropriate devices to launch the system.
User Interfaces for Backend Server. We first introduce the
components on the backend server and then describe the user
interfaces with an example. As shown in Figure 11, the
components on the backend server include the query processor,
the NOO-Stat, the D-modifier, the state manager, and the
system function scheduler. The NOO-Stat further consists of
counters, heap(s), and an integrator, which are distributed
across different threads — the thread running the query pro-
cessor (called App thread) is equipped with counters and a
K-sized min-heap for queried objects; the thread running the
system function scheduler (called Sys thread) is equipped with
an integrator, which is used to find the K hottest objects
from all heaps of the backend server when there is more
than one App thread. The system function scheduler manages
when and which component of the Sys thread should run

User interfaces. Components with dashed boxes are defined by user, while the others are defined by the framework.

according to the hotspot offloading process mentioned in
Subsection IV-C. Among the components above, only the
query processor and the D-modifier remain user-defined. The
former is for flexible application-related query processing,
while the latter is to facilitate appropriate application data
movement. We keep other components hidden from users
since they are application-unrelated and can be automatically
handled by the framework.

We take the read-only KVS system as an example, as shown
in Figure 11. The bold code in dashed boxes is provided by the
framework and the non-bold code in dashed boxes is provided
by the user. We can see that the user is required to implement
three application-related member functions (process_query,
datamv_server2switch, and datamv_switch2server) of the
User class. When implementing the functions above, the user
can also utilize other built-in member functions (e.g., send,
receive, update_statistic) of the User class. Specifically,
to implement a read-only KVS system, in process_query
function, first, the user receives and parses the query to get
the queried key. After that, the user finds the corresponding
value of the queried key, constructs the response packet, and
sends the packet to the client. Finally, the user updates the
NOO-Stats with the queried key. In datamv_server2switch
function, the user constructs and sends the control packet for
application data movement to the switch data plane. Each
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control packet contains the hit index of an offloaded key
that should be replaced (control_info.hit_index_4_ datamv)
and the value of a non-offloaded key that should be
offloaded to the switch data plane (control_info.value). In
datamv_switch2server function, because the switch in a
read-only KVS system doesn’t have dirty data, there is no need
for programming. If other systems, like lock manager systems,
require application data movement from the switch data plane
to the backend servers, the user can send and receive control
packets in this function to retrieve application data from the
switch data plane.

User Interfaces for Switch Data Plane. We first intro-
duce the components on the switch data plane and then
describe the user interfaces with an example. As shown in
Figure 11, the components on the switch data plane include
parsers, the e-MAT structure, the OO-Stat, the state manager,
packet processors, and the deparser. Among them, parsers can
be further divided into four types: the query parser, the DM-
parser,8 the OO-Stat parser, and the state parser; similarly,
packet processors can be divided into two types: the query-hit
processor and the DM-processor.’ To reduce development
difficulty, we keep the OO-Stat parser, the state parser, the
E-MAT, the OO-Stat, the state manager, and the deparser hid-
den from users. These components are application-unrelated
and can be automatically handled by the framework. The
query parser and the query-hit processor remain user-defined
to enable flexible application-related query processing; the
DM-parser and the DM-processor are user-defined as well to
facilitate appropriate application data movement.

We take the read-only KVS system as an example,
as shown in Figure 11. The bold code in dashed boxes
is provided by the framework and the non-bold code in
dashed boxes is provided by the user. We can see that the
user is required to implement five application-related code
regions: parse_query, define_appdata, apply_queryhit,
parse_datamv, and apply_datamv. The former three are
used for query processing, while the latter two are used for
application data movement. To enable query processing, the
user first extracts an object from the appropriate position
of the query packet in the parse_query region. Next, the
user defines the register array (e.g., value_array) and the
related register actions (e.g., get_value and put_value) to
support the operations on values for the KVS system in the
define_appdata region. Finally, the user processes the hit
query with the register array, the related register actions,
and the hit index in the apply_queryhit region. Similarly,
to enable application data movement, the user first extracts the
hit index and the value from the control packet, which origi-
nates from the backend server for data movement, within the
parse_datamv region. Then, in the apply_datamv region,
the user puts the value into the correct position of the register
array based on the extracted hit index.

8DM-parser is short for the parser used to parse the control packet for
application data movement. Similarly, the OO-Stat parser is short for the
parser used to parse the control packet for fetching and cleaning statistics;
the state parser is short for the parser used to parse the control packet for
state management.

9DM-processor is short for the processor used to process the control packet
for application data movement.
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The framework automatically drops queries for objects
participating in replacement to maintain functional correctness.
The states of objects participating in replacement are special,
and queries for objects with special states will be dropped
by the framework instead of being exposed to the user. The
state modification is managed by the analyzer in Step 4 and
Step 6 of the switch-server co-offloading mechanism.

Executable File Auto-generation Mechanism. A Python
tool is designed to auto-generate the complete compilable code
files based on the user’s code files and the user’s configura-
tion parameters (e.g., the number of offloaded objects). The
code file for the switch control plane is unrelated to query
processing so it’s purely generated by the Python tool without
any user’s code file. After generating compilable code files,
the Python tool calls corresponding compilers for different
code files to generate the executable files. Additionally, for the
backend server, hotspot-offloading-related components can be
provided via a library, enabling the user to integrate Hare’s
hotspot offloading logic into existing DPDK frameworks.

V. EVALUATION
A. Experimental Setup

Testbed. Our testbed consists of one 3.2Tbps Barefoot
Tofino switch and eight server machines. Each server machine
is equipped with two 12-core CPUs (Intel(R) Xeon(R) Sil-
ver 4214 CPU @ 2.20GHz), 256 GB total memory (eight
Samsung 32GB DDR4-2666 memory), and a 100G NIC
(Mellanox Technologies MT27800 Family [ConnectX-5]). Six
servers are used as clients to generate queries and two servers
are used as backend nodes to respond to queries for non-
offloaded objects.

Applications. We cover both read-intensive and write-
intensive applications for Hare [45]. As we introduce in
Section I, NetCache is designed for the read-intensive KVS
system, DySO is designed for read-only systems, and Hare is
designed as a systematic framework for general systems. The
intersection of the systems all three designs support is the
read-only KVS system, so we compare Hare with NetCache
and DySO within this context. By default, for Hare, we set
Twait = 50ms, K = 800 to gain the best system performance.
For NetCache, we set the threshold for hotspot report to 384,
sample 128 frequency counts from the switch data plane to
find the coldest offloaded objects, and clean statistics every
1s. For Hare, we use 1Mpps control packets to fetch records
from the switch data plane to the switch control plane and half
frequency counts every 1s. We also implement a lock manager
system with Hare to show Hare suits write-intensive applica-
tions as well. Our implementation is similar to NetLock [18].
NetLock implements variable-length query-waiting queues for
offloaded locks but only supports static hotspot offloading in
the initial phase. We implement queues with a fixed size of
8 to simplify the movement of application data.

Workloads. For both applications, we use skewed work-
loads that follow Zipf distribution with skewness parameter
a = 0.99, which are typical for data center scenarios [17],
[42], [46] and are evidenced by real-world deployments
[27], [47].
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Fig. 12. Flexibility in hotspot size.

B. Effect of Individual Optimization

Flexibility in Hotspot Size. Figure 12a compares the
maximum object size that Hare, DySO, and NetCache can
support with a certain number of stages on the switch data
plane. We observe that Hare enables large maximum object
size compared with DySO and NetCache. Specifically, when
10 stages are used to store offloaded objects, Hare supports
8.86x larger object size than DySO and 9.97x larger than
NetCache, because Hare’s e-MAT structure allows each stage
to store and perform hit-checks for maximally 128B object
segments, while DySO allows for maximally 16B object
segments for each stage. There is no intuitive approach for
NetCache to extend the maximum object size as described in
Section III.

We also validate that Hare doesn’t sacrifice the number of
offloaded objects. We test the maximum number of objects
(keys) that can be offloaded under different object (key) sizes
and application data (value) sizes, as shown in Figure 12b.
We observe that Hare always supports the largest number
of offloaded objects. Specifically, Hare supports 1x ~ 2x
more objects than DySO and 1x ~ 1.5x more objects than
NetCache when the object size and the application data size
range from 16B to 80B. It’s because compared with NetCache,
Hare moves the NOO-Stat from the switch data plane to the
backend servers, while the NOO-Stat in NetCache occupies
registers in two stages of the switch data plane. Compared
with DySO which uses the register-based r-MAT structure to
store objects, Hare benefits from using the MAT-based e-MAT
structure to store objects, as the MAT space is nearly 1.8x
larger than the register space in one stage.

Switch Hit Rate Recovery Capability. We validate that
Hare offloads hotspots fast and precisely, in terms of recovery
curves of the switch hit rate. We test Hare, DySO, and Net-
Cache with 80B keys and 80B values, because three systems
offload the same number of hotspots (32k) to the switch data
plane under this configuration. All systems start with zero
offloaded objects and warm for 100s to achieve a stable switch
hit rate. Then we switch 32k coldest objects to the top of the
popularity ranks to test the recovery capability of the three
systems. Figure 13a illustrates how the switch hit rate changes
over time. We make the following observations. First, Hare
achieves the highest recovered switch hit rate. Specifically, its
recovered switch hit rate outperforms NetCache by 9% and
outperforms DySO by 17%. It’s because NetCache utilizes

TABLE I
LoC COMPARISON (K)

KVS Lock manager
NetCache | DySO | Hare | NetLock | Hare

Backend server 1.3 1.2 0.2 1.9 0.7

Switch control plane 1.7 22 0 0.7 0
Switch data plane 1.2 1.1 0.2 2.7 2.0
Total 4.2 4.5 0.4 53 2.7

space-saving algorithms (Count-Min sketch and Bloom filter)
on the switch data plane to report hotspots. However, this
approach loses precision in finding the most popular 32k
objects. DySO’s recovered switch hit rate is limited by the
number of columns of its r-MAT structure. When only one
column is feasible for large hotspots, severe hash collisions
restrict DySO’s recovered switch hit rate. In contrast, Hare
counts the frequency for all objects precisely and offloads
objects without severe hash collision, so Hare can reach the
highest recovered switch hit rate. Second, Hare requires less
time to achieve the same switch hit rate than NetCache.
Specifically, to reach NetCache’s recovered switch hit, Hare
needs 10% of the total times required by NetCache, because
NetCache wastes time on switch-OS-based plane interactions
while Hare realizes most plane interactions with efficient net-
work packets and uses the custom batching offloading method
to reduce the average time cost. Notably, DySO sacrifices its
final recovered switch hit rate to achieve the fastest offloading
with its register-based r-MAT structure.

We also test the impact of batch size (K) on Hare’s switch
hit rate as shown in Figure 13b. We observe that a large K
tends to reduce the switch hit rate recovery time, and the reduc-
tion becomes marginal as K continues to increase. It’s because
when K increases, the time bottleneck for hotspot offloading
changes from collecting statistics (Step 1) to modifying MAT's
(Step 5), while the latter hardly benefits from a large K as we
analyze in Section I'V-C. What’s more, we evaluate the impact
of batch size on the backend server throughput as shown in
Figure 13c. We make the following observations. First, when
K increases, the average time (I'noo—stqt) increases, which
is required by the NOO-Stat to collect statistics (counting
frequency & updating the min heap) from each received query
that triggers min heap updating. It’s because the time com-
plexity for the NOO-Stat to update its min heap is O(logK).
Second, the backend server throughput decreases when K
increases, because each received query triggers a sequential
execution of query-processing and statistic-collecting. A large
K causes a large interval between two query processing, which
lowers the backend server throughput.

High Programmability. Table II illustrates the lines of
user-written code (LoC) of Hare with the existing arts of
the read-only KVS system and the lock manager system.
We observe that Hare consistently requires the fewest LoCs.
It’s because for both the backend server and the switch
data plane, Hare abstracts hotspot offloading functions and
basic networking tasks (e.g., sending, receiving, and header
processing). Moreover, with Hare, the switch control plane
requires no LoC, as its application-unrelated functions are
entirely auto-generated.
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C. End-to-End Performance

For the KVS application, we test the system throughput
and the P99 query response latency of Hare, DySO, and
NetCache with 80B keys and 80B values. For the lock
manager application, we test the system throughput and the
P99 query response latency of Hare and NetLock. All systems
are allowed to offload up to 32k objects to the switch data
plane. Before workload changes, all systems start with zero
offloaded objects and warm for 100s to achieve stable system
throughput and P99 query response latency. For each system,
we fine-tune the client query rate to a specific value, ensuring
that before workload changes, the stable P99 query response
latency remains within a predetermined upper bound and the
system throughput is maximized. Then we make the workload
change by moving 32k coldest objects to the top of the
popularity ranks to test the recovery capability of the systems.

KVS. Figure 14 shows the recovery curves of the system
throughput and the P99 query response latency when the stable
P99 query response latency < 200us. Similar conclusions
hold for other latency constraints (e.g., 400us and 800us).
We make the following observations. First, Hare achieves
the highest recovered system throughput. Specifically, Hare
achieves 1.27x higher recovered system throughput than that
of NetCache and 1.48x higher than that of DySO. It’s
because Hare achieves the highest recovered switch hit rate
as shown in Figure 13a. A high switch hit rate can relieve
the query-dropping issue that happens on backend servers
and reduce the P99 query response latency, which enables
Hare to achieve high system throughput under given latency
constraints. Second, compared to NetCache, Hare requires less
time to recover the system throughput and the P99 query
response latency to a stable value. Specifically, Hare needs
around 40% of the total time of NetCache to recover the
system throughput and the P99 query response latency. It’s
because the recovery time mainly depends on the switch hit
rate recovery time, and Hare needs around 40% of the total
time required by NetCache to recover the switch hit rate to a
stable value.

Lock Manager. Figure 15 shows the recovery curves of the
system throughput and the P99 query response latency when
the stable P99 query response latency < 200us. We observe
that Hare achieves 6.61 x higher throughput than NetLock and
can fast recover the system throughput and the P99 response
latency within 8s. It’s because Hare supports fast and precisely
dynamic hotspot offloading, whereas NetLLock only supports
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static hotspot offloading during the initial phase. As a result,
when facing dynamic workloads, the system performance of
NetLock decreases to the level where there is no offloading.

In a word, Hare achieves the highest system throughput with
a given P99 query response latency when the switch hit rate
stabilizes. It can also fast recover the system throughput and
the P99 query response latency when the workload changes.
Because of these two traits, Hare can help latency-intensive
applications retain users and increase profits.

VI. RELATED WORK

To our knowledge, this is the first paper to propose a system-
atic framework that provides efficient and generally automatic
hotspot offloading on programmable switches. We describe
other related works in the following aspects:

Applications Benefiting from Hotspot Offloading. In
addition to the KVS and the lock manager, there are
other applications that have the potential to benefit from
hotspot offloading, such as network address translation (NAT)
boxes [48], online transaction processing (OLTP) [19], L4 load
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balancers [49], and content delivery networks (CDNs) [50],
[51], [52]. All of these applications share the common char-
acteristic of experiencing frequent workload changes in their
environments.

Switch-based Hotspot Offloading Mechanisms. Besides
NetCache [17] and DySO [20], there are still other works
about switch-based hotspot offloading, while each of them
has its own limitation. Specifically, NetLock [18] and
PADB [19] only support static hotspot offloading in the initial
phase; PFCA [53]’s dynamic hotspot offloading process is
only simulation-viable [54], [55]; NetHCF [56] dynamically
offloads hotspots in a manner highly similar to NetCache,
which wastes time on slow switch-OS-based plane interac-
tions. What’s more, all the above works are tailored to specific
applications. On the contrary, Hare offloads hotspots not only
dynamically but also fast and precisely. Besides, it further sup-
ports high flexibility in hotspot sizes and provides a systematic
framework for generally automatic hotspot offloading.

Fast Plane Interaction. Existing works [20], [57], [58],
[59], [60], [61] realize that the heavy intervention of the
switch-OS for plane interactions causes additional overhead
and should be avoided or optimized, however, only a small
number of works make an effort on it. Specifically, DySO [20]
achieves fast plane interactions by network packets; IMap [58]
and Symposium [59] double MAT/register-based modules on
the switch data plane to overlap heterogeneous operations
like reading and writing while these operations are still based
on switch-OS-based APIs; Mantis [61] modifies the existing
switch-OS drivers and control plane interfaces. These opti-
mization methods either cause heavy resource occupation on
the switch data plane or introduce driver-level intrusion which
may result in system instability. In contrast, Hare relies on both
the switch-OS-based APIs and network packets to achieve fast
plane interactions, easing resource occupation and avoiding
OS intrusion.

Automatic Tools for Application Offloading. There are
other automatic tools for application offloading on smart
network devices. References [62], [63], [64], [65], and [66]
provides tools to automatically generate high-performance
codes for network function accelerators (e.g., FPGAs, P4
programmable switches) from existing unaccelerated code
through code analysis and performance profiling. Refer-
ences [67] and [68] provide function correctness validation for
applications on the switch data plane. These aforementioned
automatic tools primarily focus on application migration,
performance monitoring, and performance analysis for indi-
vidual devices. In contrast, Hare is a programming framework
designed to hide complex interactions between the switch and
the backend servers when users develop systems that require
dynamic hotspot offloading.

VII. CONCLUSION

Hare is the first systematic framework for efficient and gen-
erally automatic hotspot offloading on programmable switches.
It has high flexibility in hotspot size, offloads hotspots fast and
precisely, and provides an offloading-invisible development
process. We compare Hare with NetCache and DySO in a
read-only KVS system, and with NetLock in a lock manager

system. The experimental results demonstrate that our design
supports the largest hotspot size, requires the fewest LoCs,
and rapidly achieves the highest switch hit rate and the highest
system throughput with narrow peaks in P99 query response
latency when workloads change.
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