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ABSTRACT

Mission critical systems deployed in data centers today are facing
more sophisticated failures. Byzantine fault-tolerant (BFT) proto-
cols are capable of masking these types of failures, but are rarely
deployed due to their performance cost and complexity. In this
work, we propose a new approach to designing high performance
BFT protocols in data centers. By re-examining the ordering respon-
sibility between the network and the BFT protocol, we advocate
a new abstraction offered by the data center network infrastruc-
ture. Concretely, we design a new authenticated ordered multicast
primitive (aom) that provides transferable authentication and non-
equivocation guarantees. Feasibility of the design is demonstrated
by two hardware implementations of Aom- one using HMAC and
the other using public key cryptography for authentication — on
new-generation programmable switches. We then co-design a new
BFT protocol, NeoBFT, that leverages the guarantees of Aom to elim-
inate cross-replica coordination and authentication in the common
case. Evaluation results show that NeoBFT outperforms state-of-
the-art protocols on both latency and throughput metrics by a wide
margin, demonstrating the benefit of our new network ordering
abstraction for BFT systems.
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1 INTRODUCTION

Online services today are commonly deployed in large data cen-
ters and rely on fault-tolerance protocols to provide high avail-
ability in the presence of failures. An important class of fault-
tolerance protocols is state machine replication (SMR). SMR pro-
tocols [32, 35, 40, 44, 54] have long been deployed in production
systems [15, 17, 21, 29] to ensure a set of distributed nodes behaves
like a single, always available state machine, despite failures of
individual machines. These protocols, however, can only tolerate
node crash failures. In reality, systems running in data centers
are facing more sophisticated failures. This is particularly rele-
vant today with the growing adoption of permissioned blockchain
systems [2, 46, 47] in data centers for applications such as trad-
ing [3, 51]. Major cloud providers have also introduced infrastruc-
ture support for blockchain-based platforms [5, 6, 26], highlighting
their increasing demand. These systems require tolerance to adver-
sarial nodes and attacks while maintaining low latency and high
transaction throughput. Recent work [46] has demonstrated that
fault tolerance protocols are becoming their main performance
bottleneck.

Numerous Byzantine fault-tolerant (BFT) protocols [16, 20, 34,
43, 55, 58, 60] have been proposed to handle arbitrary node fail-
ures. Their strong failure models, however, come with significant
performance implications. BFT protocols typically incur rounds
of replica communication coupled with expensive cryptographic
operations, resulting in low system throughput and high request
latency. To obtain higher throughput, many BFT protocols resort
to heavy request batching, which leads to long end-to-end decision
latency - often in the range of tens of milliseconds. Unfortunately,
such latency overheads are prohibitive for modern data center ap-
plications with strict service-level objectives (SLOs). Speculative
BFT protocols, such as Zyzzyva [34], offer improved commitment
latency. However, even a single faulty replica would negate the
performance benefit of these latency-optimized protocols.

In this paper, we introduce a new approach to building high-
performance BFT protocols in data centers. We observe that tra-
ditional BFT protocols are designed with minimum assumptions
about the underlying network, assuming only best-effort message
delivery. As a result of this weak network model, application-level
protocols are responsible for enforcing all correctness properties,
such as total ordering, durability, and authentication. Our key in-
sight is that by strengthening the network model to provide ordered
message delivery, the complexity and performance overhead of BFT
protocols can be reduced. Prior research [38, 39] has demonstrated
the promises of in-network sequencing for crash fault-tolerant
systems. However, these approaches fall short in the presence of
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Byzantine failures. For instance, faulty nodes can disseminate con-
flicting message orders, and the network sequencer may equivocate
by assigning different sequence numbers to each replica.

In this work, we propose a new network-level primitive, authen-
ticated ordered multicast (Aom), that addresses the above challenges.
AOM ensures that correct receivers always deliver multicast mes-
sages in the same order, even in the presence of Byzantine partic-
ipants. A key property offered by Aom is transferable in-network
authentication: Receivers can verify that a multicast message is
properly delivered by Aom, and they can prove the authenticity of
the message to other receivers in the system. We additionally pro-
pose a mixed failure model [41, 52] where possible faulty behaviors
of the network infrastructure are considered separately. For deploy-
ments that trust the network infrastructure, AoMm assumes a crash
failure model for the network. This slightly weaker model allows
AOM to provide ordering guarantees with minimum network-level
overhead. For systems that require tolerance of Byzantine network
devices, AoM employs a simple cross-receiver communication round
to handle equivocating sequencers.

We demonstrate the feasibility of Aom by implementing it on
commercially available programmable switches [30]. The switch
data plane performs both sequencing and authentication for Aom
messages. While implementing packet sequencing is relatively sim-
ple, generating secure authentication codes poses major challenges
given the switch’s limited resources and computational constraints.
We propose two designs of in-switch message authentication, each
with its own set of trade-offs between switch resource utilization,
performance, and scalability. The first variant implements SipHash-
based [4] message authentication code (HMAC) vectors directly on
the switch ASICs. The second variant generates signatures using
public-key cryptography. Given the hardware constraints, a direct
implementation of cryptographic algorithms such as RSA [49] and
ECDSA [31] remains infeasible on these switches. To overcome
this limitation, we introduce a novel heterogeneous switch archi-
tecture that couples FPGA-based cryptographic coprocessors with
the switch pipelines. This design enables efficient in-network pro-
cessing and signing of AoM messages, scales to larger Aom groups,
and minimizes the hardware resource requirements of the switch
data plane.

Leveraging the strong properties of AoM, we co-design a new
BFT protocol, NeoBFT. In the common case, NeoBFT replicas rely
on the ordering guarantee of Aom to commit client requests in a
single round trip, eliminating all cross-replica communication and
authentication. Furthermore, even in the presence of (up to f) faulty
replicas, NeoBFT stays in this fast path protocol while meeting the
theoretical minimum replication factor (3f + 1). In the event of
network failures, we design efficient protocols to handle message
drops and faulty switch sequencers while preserving the protocol’s
correctness. By evaluating against state-of-the-art BFT protocols,
we show that NeoBFT can improve both protocol throughput by
up to 4.1x and end-to-end latency by 42x. Additionally, NeoBFT
maintains its high performance in the presence of Byzantine par-
ticipants, scales to 100 replicas, and is robust to network anomalies
and sequencer failures.
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2 BACKGROUND

In this section, we give an overview of state-of-the-arts BFT proto-
cols. We then review recent proposals that use in-network ordering
to accelerate SMR systems. Lastly, we specify the targeted deploy-
ment model of our work.

2.1 State-of-the-Art BFT Protocols

There has been a long line of work on BFT SMR protocols. We
present a summary of the state-of-the-art BFT protocols and their
key properties in Table 1. PBFT [16] is the first practical BFT pro-
tocol that tolerates up to f Byzantine nodes using 3f + 1 replicas,
which has been shown to be the theoretical lower bound [14]. In
PBFT, client requests are committed in five message delays. First,
the client sends a request to a primary replica, who then sequences
and forwards the request to the backup replicas. Next, the backup
replicas authenticate the requests and broadcast their acceptance.
Once a replica receives a quorum of acceptance, it broadcasts a
commit decision. Finally, replicas execute the request and reply to
the client after collecting quorum commit decisions. As replicas
exchange messages in an all-to-all manner, each replica processes
O(N) messages, which results in an authenticator complexity of
O(N?).

Zyzzyva [34] employs speculative execution of client requests to
reduce communication overhead. The protocol offers two execution
paths: a fast path that completes in three message delays when
clients receiving matching replies from all replicas, and a slow path
that requires at least five message delays. The primary replica in
Zyzzyva still sends signed messages to all backup replicas (O(N)).
But with all-to-all communication eliminated, the authenticator
complexity is reduced to O(N).

Rather than relying on the clients to collect authenticators, SBFT [27]

uses a round-robin message collector among all replicas to eliminate
all-to-all communication. As a result, authenticator complexity is
similarly reduced to O(N). Additionally, SBFT leverages threshold
signatures to reduce message size and to decrease the number of
client replies to one per decision.

Several BFT protocols ([16, 27, 34]) use an expensive view change
protocol to handle leader failure. For instance, the standard view
change protocol in PBFT requires O(N?) message authenticators,
limiting its scalability. HotStuff [58] introduces an additional phase
during normal operation to address this issue. This modification
reduces the authenticator complexity of the leader failure protocol
to O(N), matching that of the normal case protocol. However, it
incurs an extra one-way network latency to the request commit

delay.

BFT with trusted components. To reduce protocol complexity, re-
cent research [20, 22, 37, 55, 61] proposes to use trusted components
on each replica. These components can be implemented in a Trusted
Platform Module (TPM) [53] or run in a trusted hypervisor, and
are assumed to always function correctly, even when residing on
Byzantine nodes.

A2M-PBFT-EA [20] utilizes an attested append-only memory
(A2M) to securely store operations as entries in a log. Each A2M
log entry is associated with a monotonically increasing, gap-less
sequence number. Once a log entry is appended, it becomes im-
mutable and its content can be attested by any node in the system.
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PBFT [16] Zyzzyva [34] SBFT [27] HotStuff [58] A2M [20] MinBFT [55] NeoBFT
Replication Factor 3f+1 3f+1 3f+1 3f+1 2f+1 2f+1 3f+1
Bottleneck Complexity O(N) O(N) O(N) O(N) O(N) O(N) o(1)
Authenticator Complexity O(N?) O(N) O(N) O(N) O(N?) O(N?) O(N)
Message Delay 5 3 6 4 5 4 2

Table 1: Comparison of NeoBFT to state-of-the-art BFT protocols. Here, bottleneck complexity denotes the number of messages the bottleneck
replica needs to process; authenticator complexity shows the total number of signatures processed by all replicas.

With A2M, replicas can eliminate equivocation, thereby reducing
the replication factor to 2f + 1. However, the protocol still suffers
from the same bottleneck complexity, authenticator complexity,
and message latency as PBFT. To address this issue, TrInc [37] re-
duces the trusted component to a single counter and leaves the log
in untrusted memory.

MinBFT [55] introduces a message-based trusted primitive called
Unique Sequential Identifier Generator (USIG). USIG generates a
unique identifier for each input message that is monotonic, sequen-
tial, and verifiable. By authenticating USIG identifiers, MinBFT
replicas can validate that all other replicas have received the same
messages in the same order. This property enables MinBFT to reduce
the message delay to four. Unfortunately, MinBFT’s authenticator
complexity remains at O(N?).

2.2 In-Network Ordering for CFT Protocols

Another recent line of work [38, 39, 45] proposes a new approach
to designing crash fault-tolerant (CFT) SMR protocols. These sys-
tems move the responsibility of request ordering to the data cen-
ter network. By doing so, application-level protocols only ensure
durability of client operations. This network co-design approach
improves SMR protocol performance by reducing coordination over-
head among servers needed to commit an operation. For instance,
NOPaxos [39] dedicates a programmable switch in the network
as a sequencer, which stamps sequence numbers to each request.
This ensures that all replicas execute requests in the same sequence
number order. However, these solutions only target CFT protocols
and are unable to handle Byzantine faults, such as when a Byzan-
tine node impersonates the sequencer and broadcasts conflicting
message orders.

2.3 Deployment Model

Our work targets the permissioned [2, 46] BFT setting, where access
to the system is controlled and there is no mutual trust among
the participants. We further target blockchain applications with
strict latency requirement such as trading [3, 51]. For performance
considerations, these systems are commonly deployed within a
single data center. Our solution can be easily extended to geo-
distributed settings, but in this work we focus on the single data
center use case.

3 AUTHENTICATED IN-NETWORK
ORDERING

The core of a BFT SMR protocol is to establish a consistent order
of requests even in the presence of failures. Traditionally, this task
is accomplished by explicit communication among the replicas,
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typically coordinated by a leader. In this work, we propose a new
approach to improving the efficiency of BFT protocols. Our ap-
proach shifts the responsibility of request ordering to the network
infrastructure.

3.1 The Case for an Authenticated Ordering
Service in Data Center Networks

To guarantee linearizability [28], BFT SMR protocols require that all
non-faulty replicas execute client requests in the same order. How-
ever, due to the best-effort network assumptions, an application-
level protocol is fully responsible for establishing a total order of
requests among the replicas. For example, in PBFT [16], the primary
replica assigns an order to client requests before broadcasting to
backup replicas. All replicas then use two rounds of communication
to agree on this ordering while tolerating faulty participants. As
discussed in §2, adding trusted components to each replica does
not alleviate the coordination and authentication overhead in BFT
protocols. Replicas still require remote attestations to verify the
received messages.

What if the underlying network can provide stronger guaran-
tees? Prior work [38, 39, 45] has already demonstrated that in-
network ordering, realized through network programmability [13,
30], can offer compelling performance benefits to crash fault-tolerant
SMR protocols. In this work, we argue that BFT protocols can sim-
ilarly benefit from shifting the ordering responsibility to the net-
work. By offloading this task to the network, BFT replicas can avoid
explicit communication to establish an execution order, thereby
reducing cross-replica coordination and authentication overhead.
This network ordering approach improves both protocol through-
put and latency, as less work is performed on each replica, and
fewer message delays are needed to commit a request.

Why authenticated ordering in the network? In previous network
ordering systems, the responsibility of ordering requests is entirely
delegated to the network primitive, such as the Ordered Unreliable
Multicast in NOPaxos [39] and the multi-sequenced groupcast in
Eris [38]. In non-Byzantine contexts, this network-level ordering is
the only request order observed by any replica. However, in a BFT
deployment, a faulty node can easily impersonate the network prim-
itive and assign a conflicting message order, violating the ordering
guarantee of the network layer. To prevent this, we augment the
network primitive to provide authentication: Non-faulty replicas
can independently verify that the received message order is indeed
established by the network and not by any faulty node. In §4, we
explain how such authentication can be efficiently implemented
using commodity switch hardware.
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Hybrid fault model and Byzantine network. If the network itself
exhibits Byzantine faults, it can equivocate by assigning different
message orders to different replicas, thereby violating the ordering
guarantee. In this work, we argue for a dual fault model. The model
always assumes a Byzantine failure model for end-hosts. The net-
work infrastructure, on the other hand, can either be crash-faulty or
Byzantine-faulty. Our argument is inspired by prior work proposing
hybrid fault model [52] and work [41] that separates machine faults
from network faults. Our approach provides deployment flexibility
— users can choose either a hybrid failure model or the traditional
Byzantine model — with an explicit trade-off between fault toler-
ance and performance. For deployments that trust the network to
only exhibit crash and omission faults, i.e., a hybrid fault model,
our solution offers the optimal performance; if the network infras-
tructure can behave arbitrarily, our solution can tolerate Byzantine
faults in the network, albeit taking a small performance penalty.

We contend that a hybrid fault model, which assumes the net-
work is crash-faulty, is a practical choice for many systems deployed
in data centers. Networking hardware presents a smaller attack sur-
face and is less vulnerable to bugs compared to software-based
components. They are single application ASICs without sophisti-
cated system software, and formal verification of their hardware
designs is a common practice. Furthermore, systems deployed in
data centers inherently place some level of trust in the hardware
infrastructure. Data center operators also have a strong economic
incentive to maintain the trust of their customers by providing
reliable services. We, however, admit that this model is weaker than
those assumed by traditional BFT protocols. Under the hybrid fault
model, our system no longer guarantees safety or liveness if the
network becomes adversarial.

Our fault model resembles existing deployment options in the
public cloud, where only deployments that do not trust the cloud in-
frastructure run their virtual machines on instances with a Trusted
Execution Environment (TEE) such as Intel SGX. Most use cases,
however, place trust on cloud hardware and hypervisors. In return,
they attain higher performance compared to their TEE counterpart.

3.2 Authenticated Ordered Multicast

So far, we have argued for an authenticated ordering service in
the network for BFT protocols. To that end, we propose a new
Authenticated Ordered Multicast (Aom) primitive as a concrete
instance of such model. Similar to other multicast primitives like
IP multicast, an Aom deployment consists of one or multiple Aom
groups, each identified by a unique group address. Aom receivers
can join and leave an Aom group by contacting a configuration
service. A sender sends an AOM message to an AoM group address,
which the network is responsible for routing to all group receivers.
Notably, senders do not have knowledge of the identity or the
address of individual receivers. Instead, they only specify the group
address as the destination.

Unlike traditional best-effort IP multicast, Aom provides a set of
stronger guarantees, which we formally define here:

e Asynchrony. There is no bound on the delivery latency of aom
messages.

o Unreliability. There is no guarantee that an Aom message will
be received by any receiver in the destination group.
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Figure 1: System architecture of Aom. A user-space library is loaded
into each AoM sender and receiver. All Aom messages are routed to
a designated programmable switch. The switch generates sequence
numbers and authentication codes for each Aom message. A separate
service handles Aom group membership and switch configurations.

e Authentication. A receiver can verify the authenticity of an
AOM message, i.e., the message is correctly processed by the Aom
network primitive. A correct receiver only delivers authentic
AOM messages.

e Transferable Authentication. If a receiver r; forwards an Aom
message to another receiver ry, r2 can independently verify the
authenticity of the message.

e Ordering. For any two authentic AoM messages m1 and my that
destined to the same aom group G, all correct receivers in G that
receive both m; and ms deliver them in the same order.

e Drop Detection. Receivers can detect Aom message drops in
the network and deliver DROP-NOTIFICATION. Formally, for any
authentic Aom message m, either 1) all correct receivers in the
destination group G delivers m or a DROP-NOTIFICATION for m
before delivering the next Aom message, or 2) none of the correct
receivers in G delivers m or a DROP-NOTIFICATION for m.

One of the key distinguishing properties of AoMm is the ability for
receivers to verify the authenticity of Aom messages independently.
In this context, authenticity refers not to the identity of the sender,
which still requires end-to-end cryptography. Instead, it assures
that a message has been correctly processed by the AoMm primitive,
and that its ordering has not been tampered by other participant
in the system. The authentication capability is also transferable:
an AoM message can be relayed to any other receiver in the group,
who can independently verify its authenticity.

4 AOM DESIGN

In this section, we present our design of the proposed Aom network
primitive on programmable switches. The overall system architec-
ture is shown in Figure 1.

4.1 Design Overview

Our AoM primitive design consists of three major components: a
network-wide configuration service, a programmable network data
plane, and an application-level library running on aom senders
and receivers. Analogous to IP multicast, receivers create and join
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an AoM group by contacting the configuration service via secure
TLS channels. The configuration service then designates one pro-
grammable switch in the network as the sequencer for the group
and directs it to broadcast routing advertisement for the group
address using a protocol such as BGP. Upon successful propagation
of the advertisement, AoM messages destined for the group address
will be forwarded to the designated sequencer switch.

The sender-side library generates a custom packet header that
follows the UDP header. This custom header includes the group
ID, a sequence number, an epoch number, a message digest, and an
authenticator. The digest is generated using a collision-resistant
hash function [48]. The sequencer switch is responsible for filling
in all fields in the custom header, excluding the group ID and the
message digest.

The switch features a sequencing module (§4.2), which stamps
sequence numbers onto AoM packets. The pipeline then feeds the
stamped sequencer number, concatenated with the message digest,
into an authentication module. This module generates an authen-
ticator, which can be a vector of HMAC (§4.3) or a single public
key signature (§4.4). The switch then incorporates the generated
authenticator into the header and multicasts the packet to all group
receivers.

The receiver-side library verifies the authenticator and delivers
AOM messages in sequence number order. For any gap in the number
sequence, the receiver delivers a DROP-NOTIFICATION. For deploy-
ments that operate in a Byzantine-faulty network, the receiver-side
library additionally exchanges CONFIRM messages with other re-
ceivers within the group to tolerate sequencer equivocation (§4.2).

4.2 Message Ordering and Failure Handling

To establish a consistent ordering of Aom messages, we leverage pro-
grammable switches to stamp monotonically increasing sequence
numbers to each aom packet. The sequencer switch employs a reg-
ister array to maintain a counter for each Aom group. A separate
match table maps Aom group IDs to indices into this array. During
AoM packet processing, the switch locates the counter register using
the group ID within the header, increments the counter, and inserts
the counter value into the header. After the switch generates an
authenticator, it uses its replication engine to multicast the stamped
AOM message to all AoM receivers within the group. As detailed
in §4.1, receivers deliver authenticated Aom messages in sequence
number order. If a gap in the number sequence is observed, the
receiver delivers a DROP-NOTIFICATION.

Tolerating Byzantine-faulty network. If the network infrastruc-
ture is trusted to be non-Byzantine (§3.1), a receiver can directly
deliver authenticated Aom messages in sequence number order. This
delivery rule conforms our ordering property, as any two receivers
are guaranteed to receive identical messages for each sequence
number. Combining with the transferable authentication property,
a single Aom message suffices as a publicly verifiable ordering cer-
tificate for itself, which we exploit in our NeoBFT protocol (§5).

However, in a Byzantine-faulty network, the sequencer may
equivocate by sending different message ordering to each receiver.
To tolerate network-level equivocation, upon receiving an Aom
message, a receiver r broadcasts a signed confirmation (CONFIRM,
s, h)s, to the group, where s is the message sequence number and
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h is the hash of the message. r ignores subsequent AoM messages
with the same sequence number, and only delivers an Aom message
after it collects enough matching coNFIRMs (at least 2f + 1 where
f is the number of faulty receivers). This strengthened delivery
rules ensures ordering, as quorum intersection guarantees that no
two non-faulty replicas can deliver distinct Aom messages for the
same sequence number. The entire message set, including the Aom
message and the matching CONFIRMs, is delivered to the application
and serves as an ordering certificate.

Sequencer switch failover. Due to network partitions, faulty se-
quencer switches, or other network anomalies, AOM receivers may
fail to receive authenticated AoM messages indefinitely. In such
cases, receivers can request the configuration service to fail over to
a different sequencer for the group. However, the set of delivered
messages at each receiver may differ when the new switch takes
over. Furthermore, the old sequencer may only suffer a transient
fault. To properly handle a switch failover, the application-level
protocol is responsible for reaching consensus on the set of mes-
sages delivered by the failed sequencer (§5.5). Once an agreement is
reached, the receivers ask the configuration service to select a new
sequencer switch and exchange the necessary authentication keys.
Subsequently, they can start delivering authenticated Aom messages
from the new sequencer switch and ignore messages from the old
one.

4.3 HMAC-Based Authentication

Generating secure and transferable authentication tokens in network
hardware is more challenging than message sequencing due to
switch resource constraints. Our first design uses HMAC vector as
an AoM authentication token [16]. Upon joining an AoM group, a
receiver uses a key exchange protocol [42] to share a secret key
with the sequencer switch, facilitated by the configuration service.
The switch control plane installs the secret key of each receiver
in the data plane. To authenticate an Aom message, the switch
generates a vector of HMACs, one entry for each receiver. Each
code is computed by inputting the concatenated message digest and
the sequence number (§4.1), and the receiver’s secret key to a keyed
cryptographic hash function. The switch then writes the entire
HMAC vector into the message header. A receiver authenticates
an AOM message by comparing a locally computed HMAC to the
corresponding entry in the received vector. By including the entire
HMAC vector, Aom authentication is transferable (§3.2).

In-switch HMAC implementation. Implementing an unforgeable
HMAC requires access to collision resistant cryptographic hash
functions. Recent advancements, such as HalfSipHash [59] and
P4-AES [19], demonstrate the feasibility of implementing high-
throughput cryptographic hash functions on switches. In this work,
we use HalfSipHash as a building block for our in-switch HMAC
design.

A cryptographic hash function, however, only solves half of the
equation; implementing HMAC vector in the switch data plane in-
troduces several new technical challenges. Firstly, the hash function
consumes significant switch hardware resources. For instance, the
reference HalfSipHash implementation uses all 12 pipeline stages
of a Tofino [30] switch. Naively replicating HMAC calculation to
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Figure 2: Folded pipeline design for generating HMAC vectors on
a Tofino switch. Blue arrows denote Aom packets without HMACs.
Red arrows represent authenticated aom packets. Thick arrows refer
to multicast.

generate HMAC vectors will easily exceed the switch resource con-
straints. Second, there exists data dependencies between HMAC
computation and other switch logic (e.g., sequencing). A sequential
combination of the components would result in a dependency chain
that surpasses the hardware limit [33]. Lastly, the size of HMAC
vectors grows linearly with the Aom group size. The switch data
plane design needs to scale to handle large AoM instances given a
fixed set of resources.

Our approach. In Figure 2, we illustrate our switch data plane
design for HMAC vector generation. To overcome the challenges
of limited resources and data dependency, we dedicate one switch
pipeline (P1PE 1) solely for the computation of HMAC vectors. Af-
ter ingress processing, packets requiring HMAC vector genera-
tion are forwarded to the loopback ports in the designated HMAC
pipeline. Upon completion of the HMAC vector calculation, the
HMAC module multicasts the resultant packets to the intended
egress pipelines or returns them to the original ingress for further
processing. Our pipeline-folding architecture extends the compu-
tation capacity beyond the available pipeline stages. Furthermore,
our approach decouples HMAC vector computation from the other
packet processing logic, leading to a more streamlined and modular
design.

The original HalfSipHash design [59] requires 6 pipeline passes
to produce one HMAC. Even for a small Aom group with 4 receivers,
this design uses 24 pipelines passes to generate the entire HMAC
vector. To improve the overall vector generation latency, we trade
off the number of pipeline passes per HMAC for higher degree
of parallelism. Specifically, our design unrolls the reference Half-
SipHash implementation, which extends the number of pipeline
passes to 12. In return, we reduce the hardware resources required
for one HMAC instance by half. As a result, our design can fit four
parallel instances of HalfSipHash in the HMAC module, thereby
generating a 4-HMAC vector in 12 pipelines passes.

To scale beyond 4 receivers in an AoM group, we leverage the
additional loopback ports in the dedicated HMAC pipeline. As
our base design can produce 4 HMACs each time, we partition
receivers into subgroups of 4. To request HMAC vector generation,
the switch multicasts the packet to n loopback ports in the HMAC
pipeline, where n is the number of subgroups. The switch then
runs n independent instances of the based design, each generating
4 HMAC:s for a subgroup. The resulting n packets are all sent to
the receivers, who assemble the complete HMAC vector. With 16
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Figure 3: Aom FPGA-based public-key coprocessor design

loopback ports [30], our design can scale up to 64 receivers. For
smaller Aom groups, the switch load balances between the loopback
ports to increase the vector generation capacity.

4.4 In-Network Public-Key Cryptography

Our switch HMAC design is optimized for small Aom groups. How-
ever, as the group size increases, performance of our HMAC authen-
tication degrades. The switch requires additional pipeline passes
to compute the larger HMAC vector, which reduces the effective
HMAC vector generation rate. Moreover, each receiver processes
more packets for each Aom message, as the number of HMACs that
can fit in a single header is limited by the Packet Header Vector
(PHV). To address this scalability issue, we propose an alternative
design that implements public-key signature-based authentication.

Concretely, each sequencer switch generates a private-public key
pair. All public keys are stored and distributed by the configuration
service. To authenticate an Aom message, the switch uses its private
key and the concatenated message digest and sequence number
(§4.1) as input for a public key algorithm [31] that generates a
digital signature. Aom receivers then use the switch public key
to verify the sequencer signature in the message. Performance of
our signature-based authentication design is group size agnostic,
as the switch generates a single signature for each Aom message,
regardless of the number of receivers.

In-network cryptography design. Implementing public-key cryp-
tography in a network switch is a daunting task. The RSA [49]
public-key algorithm requires modular exponentiation of large
prime numbers. Even with aggressive optimizations, calculating
an RSA signature still involves unbounded loops of multiplications
and modulo operations. The ECDSA [31] algorithm involves simi-
lar complexity, and additionally requires random number genera-
tions and multiplicative inverses. Unfortunately, current generation
programmable switches lack support for these computations, and
future switch data planes are unlikely to accommodate them due
to strict timing, power, and resource constraints.

To overcome the limitations of existing switches, we propose a
new switch architecture that includes a specialized cryptographic
coprocessor alongside the primary switching chip. This coproces-
sor is equipped with a simple processing element, dedicated fast
memory, and cryptographic accelerators, and is connected to the
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switching chip through high-speed network links. To offload cryp-
tographic operations to the coprocessor, the switch constructs a
remote procedure call (RPC) metadata that specifies the operation
type, key identifier, input message, and offsets into the packet for
operation outputs. After egress pipeline processing, the switch
submits both the RPC metadata and the original packet to the co-
processor for processing. The coprocessor then writes the result
into the packet and forwards it back to the switch. Our offloading
design is best-effort. The coprocessor implements a tail-drop queue
for submitted operations, and the switch does not maintain RPC
state locally.

Cryptographic coprocessor implementation. We develop a copro-
cessor prototype for Aom signature signing on a Xilinx Alveo U50
FPGA card [1]. Figure 3 shows the high-level architecture of our
hardware design. The card connects to one of the switch ports
through a 100Gbps QSFP28 cable. A parser module parses the RPC
metadata, and forwards the operation input to a hashing module to
calculate an SHA-256 [24] hash. A signing module then generates
a signature of the hash using the secp256k1 elliptic curve [31]. Fi-
nally, a stream merger module stamps the signature into the packet
and sends it back to the QSFP28 port. We developed all the hard-
ware modules, except the Xilinx QSFP28 hard IP, in-house using a
combination of RTL and HLS.

Even with a powerful FPGA chip, calculating an secp256k1
signature is still a time-consuming process. We reduce signing
latency by exploiting the underlying mathematical property of
secp256k1 — a significant portion of the curve computation is
input-independent. Specifically, we design a pre-compute module
that continuously calculates multiples of a generator point of the
elliptic curve and stores them in a pre-computed table in fast block
RAM. The signer module uses values in this table to speed up scalar
point multiplication.

The rate of generating pre-computed table entries can limit the
overall coprocessor signing throughput. To address this limitation,
we propose a novel hash chaining technique. A packet updater
module stamps into each Aom packet an additional SHA-256 hash
of the preceding packet in the number sequence. A signing ratio
controller monitors the stock level of the pre-computed table and
instructs the signer module to skip generating signatures for packets
once the stock level falls below a threshold. Consequently, while
all Aom packets contain an SHA-256 hash of the previous packet
in the stream, only a subset of them may include a signature. To
authenticate signature-less packets, receivers wait until the next
signed packet and verify the entire batch by validating the hash
chain in the reverse order.

4.5 Which Authentication Variant to Use?

The two authentication variants have distinct set of trade-offs. The
HMAC-based scheme is lighter weight and can be implemented
on existing switches without special hardware support. However,
it suffers from poor scalability, requires more complex credential
setup, and has weaker security guarantees due to the hash function
limitation. The scheme is therefore a better option for smaller de-
ployments with stricter performance requirements. The public-key
signature variant scales to large receiver groups and is more secure.

245

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

It, however, requires switches that are not yet commercially avail-
able or additional FPGA hardware. Verifying public-key signatures
also incurs a higher overhead on the receivers.

5 THE NEOBFT PROTOCOL

Leveraging the authenticated ordering guarantee provided by aom,
we co-designed a new BFT protocol, NeoBFT, that commits client
operations in a single RTT, even in the presence of Byzantine repli-
cas.

5.1 System Model

We assume a Byzantine failure model for both clients and repli-
cas. The fault model of the Aom primitive can be either hybrid or
Byzantine, as discussed in §3.1. We make standard failure assump-
tions [16] about the configuration service. The service ensures that
no more than f faulty replicas are present in a replication group,
and a correct! sequencer switch is eventually installed for each
group. Note that the eventual correct switch assumption is only for
protocol liveness, not safety.

We make standard cryptography assumptions: Nodes do not
possess enough computational resources to subvert the crypto-
graphic hash functions, message authentication codes, and public-
key crypto algorithms we use in the protocol. We also assume a
strong adversary model: Byzantine nodes can collude, but cannot
delay correct nodes indefinitely.

NeoBFT is a state machine replication [50] protocol. We assume
all operations executed by the protocol are deterministic. With less
than L"T_lj (Byzantine) faulty replicas in the system (where n is the
total number of replicas), NeoBFT guarantees linearizability [28] of
client operations. Due to the impossibility of asynchronous consen-
sus [25], NeoBFT only ensures liveness in periods of synchrony.

5.2 Protocol Overview

NeoBFT relies on the guarantees provided by the aAom network
primitive to achieve single RTT commitment in the common case.
Specifically, clients multicast requests to NeoBFT replicas using
AoM. In the absence of network-level anomalies (e.g., message drops
and switch failures), all correct replicas delivers Aom messages in
the exact same order. Crucially, such guarantee implies that replicas
require no explicit communication to agree on the order of mes-
sages. NeoBFT thus avoids the expensive cross-replica coordination
and server signature signing/verification required by other BFT
protocols. Moreover, adversaries can not temper with the order of
messages nor their content, as correct replicas can independently
verify the authenticity and integrity of each Aom message. Once an
AoM message is delivered, replicas can immediately execute the re-
quest and respond to the client, resulting in a single phase fast path
protocol. As discussed in §4.2, when delivering messages, the net-
work primitive provides an ordering certificate. Similar to previous
speculative protocols [34, 39, 45], NeoBFT relies on clients to con-
firm operation durability. As a result, replicas execute speculatively,
before the final commitment. However, since all correct replicas
have already established a total order of operations, NeoBFT does
not require extra protocols to handle faulty replicas (Zyzzyva [34])

1A correct sequencer switch is reachable from all non-faulty replicas and properly
follows the Aom design. If the network is trusted, the second condition always holds.
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or state divergence due to out-of-order executions (Speculative
Paxos [45]). Only in the exceptional case where a speculatively
executed operation is later agreed to be skipped (due to the gap
commit or the view change protocol), a NeoBFT replica is required
to roll back application state.

In the rare case where AoMm messages are dropped in the network,
the Aom primitive delivers DROP-NOTIFICATIONS to non-faulty repli-
cas. To handle DROP-NOTIFICATIONS, replicas only need to agree
on whether to process or to skip the message, not the order of
messages. NeoBFT uses a BFT binary consensus protocol, driven
by a leader replica, to reach this agreement. In this protocol, the
leader uses a single ordering certificate (received by any replica)
to commit the corresponding message. To permanently skip the
message, the leader replica collects evidences from a quorum of
replicas to form a drop certificate, which non-leader replicas would
verify before committing the message as a No-op. We use drop cer-
tificates to prevent Byzantine replicas from delaying the agreement
indefinitely.

A faulty AoM sequencer may stop multicasting messages or de-
liberately equivocating or dropping messages. To ensure progress,
replicas request the configuration service to replace the faulty se-
quencer. Installment of a new sequencer indicates the start of a new
epoch. Correctness of the protocol requires replicas to agree on the
set of messages processed in the last epoch before entering the new
epoch. To that end, each NeoBFT instance goes through a sequence
of views; each view is identified by a view number represented as a
(epoch-num, leader-num) 2-tuple. When the current leader replica
has failed (or suspected to be failed) or an old epoch has ended,
replicas advance the respective field in the view number, and use a
view change protocol [16, 39, 40, 45] to reach agreement on the set
of messages in the last view.

NeoBFT also includes a protocol to periodically synchronize
replica states and finalize speculatively executed requests. Details
of the protocol can be found in §B.2.

5.3 Normal Operation

We first consider the common case protocol in which Aom messages,
instead of DROP-NOTIFICATIONS, are delivered to NeoBFT replicas
in a stable epoch. A client ¢ requests execution of an operation op
by sending a signed message (REQUEST, op, request-id), using the
AOM primitive, where request-id is a client-generated identification
to match replica replies. The message is processed by the network
primitive (§3.2), and an ordering certificate (oc) for the message
is delivered to all replicas. If the client does not receive replies
in a timely manner, it uses regular unicast to send the request to
all replicas (while keeps resending the request using aAom). Our
view change protocol (§5.5) ensures that the request is eventually
committed even if the Aom sequencer is faulty.

Replica i verifies the oc by authenticating the Aom authenticator
and checking the 2f + 1 matching coNFIRMs (only for Byzantine-
faulty network). It then adds the oc to its log, speculatively executes
op, signs and replies (REPLY, view-id, i, log-slot-num, log-hash,
request-id, result)s; to the client, where view-id is the current view
number, log-slot-num is the log index the request occupies, log-hash
is a hash of the log up to the index, and result is the execution result.
We use hash chaining for O(1) hash calculation [45].
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Client ¢ waits for 2f + 1 replies from different replicas with valid
signatures and matching view-id, log-slot-num, log-hash, and result.
It then accepts the result in the reply.

5.4 Handling Dropped Messages

When a non-leader replica i receives a DROP-NOTIFICATION, it at-
tempts to recover the missing message from the leader. To do so,
it sends a (QUERY, view-id, log-slot-num) to the leader. QUERY mes-
sages require no signatures since they do not alter the state of a
correct replica. If the leader has the corresponding oc, it responds
with a (QUERY-REPLY, view-id, log-slot-num, oc). Replica i verifies
the oc and ensures the enclosed Aom message is the missing mes-
sage by checking the internal sequence number. It then resumes
normal operation. Because oc can be independently verified by any
replica, QUERY-REPLYs also require no signatures. Note that replica
i blocks on waiting for the leader’s response or a committed No-
op before processing subsequent client requests, resending QUERY
messages if necessary.

If the leader [ itself receives a DROP-NOTIFICATION, it broadcasts a
(GAP-FIND-MESSAGE, view-id, log-slot-num)s, to all replicas. When
replica i receives a GAP-FIND-MESSAGE, it replies to the leader with
either a (GAP-RECV-MESSAGE, view-id, log-slot-num, oc) if it has
received the ordering certificate, or a (GAP-DROP-MESSAGE, view-id,
i, log-slot-num)s, if it has also received a DROP-NOTIFICATION for
the message. If a replica replies GAP-DROP-MESSAGE to a GAP-FIND-
MESSAGE, it blocks until it receives the gap agreement decision
(ignoring QUERY-REPLYS for the message).

Once the leader receives one GAP-RECV-MESSAGE or 2f + 1 GAP-
DROP-MESSAGE (including from itself), whichever happens first, it
uses a binary Byzantine agreement protocol, similar to PBFT [16], to

commit the decision. Specifically, the leader broadcasts a (GAP-DECISION,

view-id, log-slot-num, decision)s,, where decision is either a single
GAP-RECV-MESSAGE or 2f + 1 GAP-DROP-MESSAGES. If a GAP-RECV-
MESSAGE is received, the leader first verifies the enclosed oc follow-
ing the same procedure as above.

When replica i receives a GAP-DECISION, it verifies the enclosed
oc if the decision contains a GAP-RECV-MESSAGE. If the decision
contains 2f +1 GAP-DROP-MESSAGE, the replica verifies that all 2f +1
messages are from distinct replicas, and their log-slot-num matches
the one in the cap-DECISION. It then broadcasts a (GAP-PREPARE,
view-id, i, log-slot-num, recv-or-drop)s,, where recv-or-drop is a
binary value indicating the decision, to all replicas.

Once replica i receives 2f GAP-PREPAREs from distinct repli-
cas (possibly including itself) and it has received a validated Gap-
DECISION with a matching decision from the leader, it broadcasts a
(GAP-COMMIT, view-id, log-slot-num, recv-or-drop)s, to all replicas.
The replica also stores the GAP-DECISION and 2f GAP-PREPARE in
its log for the view change protocol.

When replica i receives 2f + 1 Gap-coMMITs from different repli-
cas (possibly including itself), it stores either the oc (if it hasn’t
done so0) or a No-0P to the log slot based on the decision, and re-
suming normal operation if it is blocking on a QUERY-REPLY or a
gap agreement decision. It also stores all 2f + 1 GAP-cOMMITS in
its log. This quorum of car-commiT will serve as a gap certificate
for the state synchronization and view change protocols. In the
rare case where the replica has already speculatively executed the
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request and the decision is a drop, it rolls back the application state
to right before log-slot-num, and re-executes subsequent requests
in the log.

5.5 View Changes

We use a view change protocol, inspired by PBFT, to handle both
leader failures and faulty Aom sequencers. The protocol guarantees
that all committed operations (including No-ops) will carry over
to the new view. View changes can be initiated when a non-leader
replica fails to make progress in a gap agreement or state synchro-
nization protocol, or when a replica receives a request message
directly from the client (§5.3) but the request is not delivered by
AoM after a timeout.

For view changes that involve switching epochs, the protocol
requires log consistency before entering the new epoch. To that
end, we introduce an epoch certificate consisting of 2f + 1 valid
EPOCH-START messages from distinct replicas. An epoch certificate
is a proof of the agreed starting log position of the epoch. We then
define validity of a replica log as the following: a replica log is valid
if and only if (i) the starting log position of all epochs are supported
by a valid epoch-cert, and (ii) within each epoch e, all log positions
are filled with either a valid oc or a No-oP supported by a gap
certificate.

Our view change protocol is similar to that of PBFT. The main dif-
ferences are the epoch certificates and the definition of log validity.
Details of the protocol can be found in §B.1.

5.6 Correctness

Here, we sketch a correctness proof for the NeoBFT protocol. Com-
plete safety and liveness proofs can be found in §C.

The safety property we are proving is linearizability [28]. A key
definition we use in our proof is committed operations: an operation
is committed in a log slot if it is executed by 2f + 1 replicas with
matching view-ids and log-hashes.

First, we show that within an epoch, if a request r is committed
at log slot /, no other request r’ (r’ # r) or No-oP can be committed
at [. Due to the guarantees of AoM, no correct replicas will execute
r’ at log slot I given that some correct replica has already executed
r, so r’ can never be committed at [. To show that No-OP cannot
be committed, we prove by contradiction. Assume a NO-OP is com-
mitted at /, some replica would have received a GAP-DECISION with
2f+1valid GAP-DROP-MESSAGE from the leader, and 2f GAP-PREPARE
containing a drop decision from different replicas. By quorum in-
tersection, no replica can receive 2f distinct GAP-PREPARES with a
recv at [, making drop the only possible decision. Our view change
protocol also ensures that the decision will persist in all subsequent
views. Moreover, 2f + 1 replicas have sent a GAP-DROP-MESSAGE,
and at least f + 1 of those replicas are non-faulty. Since they block
until they receive GaAp-comMITs and the only possible outcome is
drop, they will not execute r. By quorum intersection, r cannot be
committed, leading to a contradiction.

Next, we show that within an epoch, if a request is committed at
log slot I, all log slots before I will also be committed. A committed
request at / implies that at least f +1 correct replicas have matching
logs up to I. For each log slot before [, since the same request has
been processed by f + 1 correct replicas, we can apply the same
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Action Hash  Hash
Module ‘ Stages Data Bit Unit VLIW
Pipe 0 7 0.8% 2.0% 0% 3.4%
Pipe 1 12 12.8% 21.2% 77.8% 12.0%

Table 2: Switch resource usage of the Aom HMAC vector switch pro-
totype

Module LUT Register BRAM  DSP

Pipeline 0.91% 0.70% 2.12% 0.57%
Signer 21.0% 19.4% 10.71%  28.52%
Total 34.69%  29.22%  28.76% 29.16%
Available 870K 1740K 134K 594K

Table 3: FPGA resource usage of the Aom public-key cryptographic
coprocessor

reasoning as above to show that no other request or a NO-OP can
ever be committed at that slot.

Lastly, we show that our view change protocol guarantees that
correct replicas agree on all committed requests and No-0OPs across
views, and that they start each epoch in a consistent log state. The
first point is easy to show given that our view change protocol
merges 2f + 1 logs and using the quorum intersection principle. To
prove the second point, we only need to show that for each epoch e,
all correct replicas end e at the same log slot before starting e+ 1. To
enter epoch e+1, a correct replica needs a valid epoch-cert for epoch
e+ 1: 2f + 1 distinct EPOCH-STARTs with matching log-slot-num. By
quorum intersection, no other epoch-cert can exist for e + 1 with a
different log-slot-num. And since correct replicas verify epoch-cert
for every epoch during view changes, by induction, their logs will
be in consistent state.

6 EVALUATION

We implement NeoBFT and the aom library in ~1600 lines of Rust
code. The HMAC version of the Aom sequencer is implemented in
~1900 lines of P4 [13] code and compiled using the Intel P4 Studio
version 9.7.0. The FPGA-based cryptographic accelerator is written
in ~1500 lines of HLS C++/Verilog code, synthesized using the
Xilinx Vivado Design Suite 2020.2 [56].

We compare NeoBFT to PBFT [16], HotStuff [58], Zyzzyva [34],
and MinBFT [55]. To ensure a fair comparison, all protocols are
implemented in the same Rust-based framework. For MinBFT, we
run the trusted USIG service in Intel SGX [51]. We also add batching
support to all protocols, following the batching techniques proposed
in their original work. NeoBFT does not use any batching on the
protocol level. Only when using the public key variant of aom,
NeoBFT replicas buffer packets until receiving a signed message
from the network. We run all protocols on four replicas, thereby
tolerating one Byzantine failure, unless specified otherwise.

Testbed. Our testbed consists of nine servers and a Xilinx Alveo
U50 FPGA, all connected to an Intel Tofino-based [30] switch. Repli-
cas are deployed on machines with dual 2.90GHz Intel Xeon Gold
6226R processors (32 physical cores), 256 GB RAM, and Mellanox
CX-5 EN 100 Gbps NICs. Clients run on machines with a 2.10GHz
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Intel Xeon Gold 6230 processor (20 physical cores), 96 GB RAM,
and Mellanox CX-5 EN 100 Gbps NICs. All machines run Ubuntu
Server 20.04 LTS.

6.1 Micro-benchmarks

We first conduct micro-benchmarks to evaluate the performance of
our AOM network primitive. Both the HMAC-based switch design
(aom-HM) and the FPGA-accelerated public-key variant (Aom-PK)
are evaluated. Specifically, we generate 64-byte Aom packets at
line-rate using the Tofino built-in packet generator. To accurately
measure the latency of our design, we take an ingress and an egress
switch timestamp for each aom packet. Table 2 shows the switch
resource utilization of our AoM in-network HMAC vector design.
Table 3 summarizes the FPGA resource usage of our public-key
cryptography coprocessor design.

Figure 4 and Figure 5 shows the latency CDF of the two designs
at different load levels. The Aom group size is fixed at 4. Before
fully loaded, Aom-HM attains a median latency of ~9us, while Aom-
PK achieves a median latency of ~3us. The longer latency of the
HMAC design is due to the additional pipeline passes (12 in total)
to generate a secure hash. Latencies of both hardware designs
are highly consistent. The 99.9% latency increases by only 0.7%
compared to the median for Aom-HM, and 0.6% for AoM-PK. At
close-to-saturation load, AoM-HM shows longer latency tail due to
significant queuing delays in the switch pipelines.

Figure 6 shows the maximum throughput attained by each design
with varying Aom group size. With a group size of 4, AoM-HM
achieves a maximum HMAC vector throughput of 77Mpps, which
is around 300 million hashes per second. Its throughput, however,
starts to drop when adding more receivers to the group. With 64
receivers, throughput of Aom-HM drops to 5.7Mpps which is only
8% that of the 4-receiver setting. AOM-PK, on the other hand, attains
a constant signing throughput of 1.1Mpps regardless of the group
size. We note that throughput of Aom under a single sequencer is
at least an order of magnitude higher that of our NeoBFT protocol
(§6.2). Our network ordering design, therefore, will not become the
performance bottleneck of the system.

key variant of Aom (AOM-PK)
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tine network. Zyzzyva-F is Zyzzyva with a non-responding Byzantine
replica.

6.2 Latency vs. Throughput

We next evaluate the latency and throughput of NeoBFT and com-
pare them to other BFT protocols. Our focus here is protocol-
level performance, so we run an echo-RPC application with ran-
domly generated strings as requests. We use an increasing number
of closed-loop clients and measure the end-to-end latency and
throughput observed by the clients.

As shown in Figure 7, HMAC-based NeoBFT achieves higher
maximum throughput than PBFT (2.5%), HotStuff (3.4X), and MinBFT
(4.1x). More aggressive batching can further increase HotStuff’s
throughput to a level comparable to NeoBFT; however, its latency
also increases to more than 10ms. To commit a client operation,
these protocols require explicit coordination among the replicas,
with each message requiring expensive cryptographic operations.
MinBFT utilizes the trusted component to reduce the replication
factor to 2f + 1, but does not improve the authenticator complexity.
NeoBFT, on the other hand, leverages guarantees of AoM to elimi-
nate coordination and cross-replica authentication overhead in the
common case. Comparing to Zyzzyva, NeoBFT still achieves 1.8x
higher throughput. Moreover, when one of the replicas becomes
faulty, throughput of Zyzzyva (Zyzzyva-F) drops by more than
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ing number of replicas lated packet drops

54%, while throughput of NeoBFT is unaffected. When using the
public-key variant of Aom, NeoBFT only suffers a 60K throughput
decrease, despite requiring more expensive cryptographic opera-
tions, demonstrating the efficiency of our in-network crypto design.

Figure 7 also shows the bigger benefit of NeoBFT— latency.
HMAC-based NeoBFT outperforms PBFT in latency by 14.68%, Hot-
Stuff by 42.28X, Zyzzyva by 8.56X, and MinBFT by 6.08X. NeoBFT
commits client operations in two message delays, while the other
four protocols require at least three message delays with additional
authentication penalties. Using the public-key variant of Aom adds
55us to the latency of NeoBFT. However, this version of NeoBFT
still outperforms all the other protocols in latency by at least 2.7x.

Tolerating Byzantine network. As discussed in §4.2, to tolerate
Byzantine sequencers, AOM receivers exchange and authenticate
coNFIRM messages. This can lead to degraded throughput and la-
tency compared to deployments that trust the network. Figure 7
shows the performance of NeoBFT when tolerating a Byzantine
network. By batch processing cCONFIRM messages, NeoBFT mini-
mizes the impact of the additional message exchanges, and is able
to sustain a high throughput at the expense of higher latency. As
shown in the figure, this NeoBFT variant still outperforms the other
comparison protocols in both throughput and latency.

6.3 Protocol Scalability

To evaluate the scalability of NeoBFT, we gradually increase the
number of NeoBFT replicas, and measure the maximum sustainable
throughput. Due to the limited capacity of our own cluster, we
deploy AoM on Amazon EC2 in the AWS ap-east-1 region. We run up
to 100 AoM replicas on m5.4xlarge instances with hyper-threading
disabled, and clients on t3.micro instances. As EC2 does not offer
programmable switches, we implement a software version of the
AoM switch using Rust. Due to hardware differences, the maximum
throughput number is lower compared to that of our cluster. As
shown in Figure 8, NeoBFT using AoM-PK scales to 100 replicas with
only a 13% throughput drop. NeoBFT replicas process a constant
number of messages per client request, regardless of the replica
count. This allows NeoBFT to scale its performance almost linearly
with more replicas. Adding replicas, however, would increase the
number of reply messages NeoBFT clients need to receive. NeoBFT
effectively shift the collector load to the client, which can naturally
scale. As discussed in §4.3, when using Aom-HM, replicas receive n
messages for each client request, where n is the number of Aom-HM

0.01%

Simulated drop rate

Figure 9: Throughput of NeoBFT with simu-
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0.1%

Figure 10: Performance of replicated key-
value store using YCSB benchmark

subgroups. When the group size increases, throughput of NeoBFT
drops as each replica processes linearly more messages.

6.4 Resilience to Network Anomalies

When AoM messages are dropped in the network, NeoBFT replicas
coordinate to agree on the fate of the message. To evaluate NeoBFT’s
resilience to network anomalies, we simulate packet drops in the
network, and measure the maximum throughput of NeoBFT. As
shown in Figure 9, throughput of NeoBFT is largely unaffected when
moderate amount of packets are dropped, since DROP-NOTIFICATION
allows non-faulty NeoBFT replicas to efficiently recover missing
messages from each other, without the expensive agreement proto-
col. When a higher percentage of packets are dropped (1%), NeoBFT
does suffer a more observable throughput drop.

Sequencer switch failover. When the sequencer switch becomes
faulty, NeoBFT performs a view change and fails over to a different
sequencer (§5.5). To understand the impact of a faulty sequencer,
we measure the throughput of NeoBFT during a switch failover.
We ran NeoBFT at maximum throughput for 10 seconds, and then
simulated a sequencer failure by dropping aom packets on the
switch. Throughput of NeoBFT immediately dropped to zero. When
the replicas detected the sequencer failure, they ran a view change
protocol which finished in less than 200 ps. They then informed
the configuration service to switch to a new sequencer, which we
simulated by re-initializing the sequencer switch state through the
control plane. After switch reconfiguration is done, throughput of
NeoBFT quickly resumed to its peak. Overall, sequencer failover
took less than 100ms, with the majority of the delay caused by
network-level updates rather than the view change protocol.

6.5 BFT Storage System Performance

Lastly, we evaluated the performance of NeoBFT when running
more complex real-world applications and compared against other
protocols. We developed an in-memory, B-Tree-based key-value
store, and ran YCSB workload A with 100K records and 128-bytes
fields. Maximum YCSB throughput attained by each system is
shown in Figure 10. NeoBFT achieved higher throughput than
PBFT, HotStuff, Zyzzyva, and MinBFT when running a more com-
plex application. This KV-store requires protocols to handle larger
requests than previous experiments, leading to reduced batching ef-
ficiency for Zyzzyva, MinBFT, PBFT, and HotStuff. NeoBFT exploits
its lower message complexity to attain higher performance.
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7 RELATED WORK

BFT protocols. As discussed in §2.1, there has been a long line of
work on designing practical BFT protocols [16, 27, 34, 58]. These
protocols guarantee correctness in an asynchronous network, and
ensure liveness during weak asynchrony. They all use a single
leader node to coordinate ordering and agreement, and rely on view
change (or similar) protocols to deal with faulty leaders. Byzantine
Paxos [36] and DBFT [23] propose a leaderless BFT design, but re-
quire a synchronous protocol that commits in O(f) or more rounds.
HoneyBadger [43] attacks the weak synchrony assumption and pro-
vides optimal asymptotic efficiency. However, it introduces O(N?)
message complexity and five message delays. NeoBFT leverages
the guarantees of AoMm to eliminate the leader and coordination
overhead in the common case, leading to a bottleneck message com-
plexity of O(1) and two message delays to commit an operation.

BFT with trusted components. Recent work have proposed lever-
aging trusted components to improve BFT protocols [9, 20, 22, 37,
55]. Using a local trusted component on each replica enables these
protocols to reduce the replication factor to 2f + 1. However, since
the trusted components are local to replicas, they still necessitate
coordination among replicas to commit client operations. More-
over, many of these protocols implement trusted components in
resource-constrained TPM hardware which significantly limit their
performance. NeoBFT implements its ordering service in the data
center network. Relying on authenticated network ordering, the
protocol avoid all coordination in normal operation. And by imple-
menting on fast networking hardware, the service does not become
the performance bottleneck.

Network ordering. A classic line of work in distributed com-
puting proposes stronger network models, such as atomic broad-
cast [12, 32] and virtual synchrony [10, 11], to simplify distributed
system designs. These network primitives guarantee that a total
order of messages are delivered to all broadcast receivers. However,
atomic broadcast and virtual synchrony do not offer performance
benefits to distributed systems — implementing them is equivalent
to solving consensus [18]. NOPaxos [39] and Eris [38] pioneered a
weaker network model in which messages are delivered in a consis-
tent order, but reliable transmission is not guaranteed. This weaker
model can be efficiently implemented using programmable switches.
NOPaxos proposes an Ordered Unreliable Multicast primitive for
state machine replication, while Eris designs a multi-sequenced
groupcast primitive for distributed transactions. BIDL [46] uses
sequencers to parallelize consensus and transaction execution in
a permissioned blockchain system. However, BIDL still uses tradi-
tional BFT protocols for consensus and its sequencer design does
not improve performance of the BFT protocol itself. The network
sequencing approach has also been applied to other distributed
system designs [7, 8, 57]. Our AoM primitive was inspired from
these work, but additionally provides transferable authentication,
a guarantee crucial for BFT protocols.

8 CONCLUSION

In this work, we propose a novel in-network authenticated order-
ing service, AoM. We demonstrated the feasibility of this design by
implementing two variants, one using HMAC and another using

250

Guangda Sun, Mingliang Jiang, Xin Zhe Khooi, Yunfan Li, and Jialin Li

public key cryptography for authentication. We then co-designed
a new BFT SMR protocol, NeoBFT, that eliminates cross-replica
coordination and authentication in the common case. NeoBFT out-
performs state-of-the-art BFT protocols on both throughput and
latency metrics.
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A ARTIFACT APPENDIX
A.1 Abstract

The NeoBFT artifact comprises two components: the source code of
the main protocol, and paper-specific parts (such as artifact scripts
and data) to replicate the results in this paper.

A.2 Scope
Our prototype serves as a demonstration of the following:

o The throughput of AomM, including both Aom-HM and AoM-PK
variants, is compatible to support replication deployment
without performance degradation.

o The co-designed replication protocol outperforms mainstream
BFT protocols with lower latency and higher throughput.

o The replication protocol can support fault-tolerance deploy-
ment of realistic applications e.g. key-value store.

Result of all evaluations, i.e. Figure 4, 5, 6, 7, 8, 9, 10, can be
reproduced.

A.3 Contents

The artifact includes the implementation of libNEo, the NeoBFT pro-
tocol, and all comparison BFT protocols: PBFT, Zyzzyva, HotStuff,
and MinBFT. The artifact also includes P4 programs for implement-
ing the AoMm primitive, and an FPGA bitstream file that works as
the AoM-PK accelerator.

A.4 Hosting

The source codes are hosted at https://github.com/nus-sys/neobft-
artifact. The repository also includes instructions for running the
system and reproducing evaluation results.

A.5 Requirement

Reproducing Aom micro-benchmarks requires a Tofino-1 switch
and a Xilinx FPGA card. Experiments for reproducing Figure 7, 9
and 10 additionally require 4 servers running replicas. The scala-
bility evaluation, i.e., Figure 8, requires up to 100 servers to host
replicas and additional servers to simulate in-network sequencing
and multicast. We conducted the evaluation on AWS EC2 instances.

B ADDITIONAL PROTOCOL DETAILS
B.1 View Change Protocol

In this section, we provide the detail of the view change protocol,
which is omitted in the main paper.

When replica i initiates a view change, it broadcasts a (VIEW-CHANGE,

view-id, v’, epoch-cert, log)s, to all other replicas, where view-id is
its current view number, o’ is the new view, and epoch-cert contains
an epoch certificate for each epoch it has started.

When leader replica [ of view o’ receives 2f valid VIEW-CHANGE
messages for view v’ from different replicas, it merges the logs in
the VIEW-CHANGE messages as follows:

(1) It finds the view-id with the largest epoch number e that is
supported by a epoch-cert.
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(2) If the replica has not started epoch e yet, it finds a valid
log that has started epoch e. It then copies all requests and
NO-0Ps before the starting log position of epoch e to its own
log.

(3) From all valid logs that have started epoch e, it locates the
log with the largest seq-num in epoch e. It then copies all
requests in epoch e from the log to its own log.

(4) From any valid log that have started epoch e, it copies all
NO-0Ps in epoch e from the log into its own log, possibly
overwriting existing requests.

A (VIEW-START, v, view-change-msgs)g, is then broadcasted by
the leader replica I, where view-change-msgs contains the 2f VIEwW-
CHANGE messages it uses to merge the log and the VIEW-CHANGE
message it would have sent for o’.

When replica i receives a VIEW-START message with o higher
than its current view, it checks that view-change-msgs are properly
signed by 2f + 1 different replicas, they all contain the same next
view number o’, and their logs are valid. It then merges its log with
logs in view-change-msgs using the same procedure we described
above.

If the view change does not involve a epoch switch, replica i
can immediately enter the new view. Otherwise, it broadcasts a
(EPOCH-START, €', log-slot-num)s, to all replicas, where e’ is the
new epoch number, and log-slot-num is the last log index after
merging the logs during view change. Once a replica receives 2f +1
EPOCH-START messages from different replicas with e’ and log-slot-
num matching its own, it can enter the new view. It also stores these
EPOCH-START messages locally as an epoch certificate for future
view changes.

B.2 State Synchronization

During normal operations, replicas execute client requests specula-
tively before they become durable. A speculatively executed request
might be overwritten due to the gap agreement or view change
protocols, and the replica has to roll back application state and
re-executes all subsequent requests in the log. To further reduce the
frequency of roll backs and the number of re-executions, we use a
periodic synchronization protocol. The goal of the synchronization
protocol is to produce a sync-point, where all log entries before and
including the sync-point are committed. A committed log entry will
never be overwritten or removed, and will be present in the log
(at the same position) of all non-faulty replicas in all subsequent
views.

After every N entries are added to the log (N is a configurable
constant), a replica i broadcasts a (syNc, view-id, log-slot-num,
drops)g; to all replicas, where log-slot-num is latest log index that
is a multiple of N, and drops contains gap certificates for all log
slots that have been committed as No-oP in the current view. Once
replica i receives 2f syNc messages with the same log-slot-num
from different replicas, for each entry in any of the drops that
has a valid gap certificate, it writes a No-op (possibly overwriting
existing request) to the corresponding log position and saves the
gap certificate. It then updates its sync-point to log-slot-num.
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C CORRECTNESS PROOF

This section contains complete safety and liveness proofs of the
NeoBFT protocol.

C.1 Safety

The main safety property guaranteed by NeoBFT is linearizability.
In this safety proof, we assume the network primitive Aom provides
transferable authentication, ordering, and drop detection, as specified
in the main paper.

THEOREM 1 (NEOBFT SAFETY). NeoBFT guarantees linearizability
of client operations and returned results.

Before proving Theorem 1, we first define a few properties of
NeoBFT replica logs and client REQUESTS.

Definition. A REQUEST is committed in a log slot if it is executed
by 2f + 1 distinct replicas in that slot with matching view-id and
log-hash.

Definition. A REQUEST is successful if the client receives 2f+1 valid
REPLYs from different replicas with matching view-id, log-slot-num,
log-hash, and result.

It is easy to see that a successful REQUEST implies that the RE-
QUEST is committed.

Definition. A log is stable if it is a prefix of the log of every non-
faulty replica in views higher than the current one.

LEmMMA 1 (LoG STABILITY). Every successful REQUEST was ap-
pended onto a stable log at some non-faulty replica, and the resulting
log is also stable.

To prove Lemma 1, we first prove the following set of lemmas.

LEmMmA 2. All non-faulty replicas that begin an epoch begin the
epoch with the same log position.

ProOF. Prove by induction. In the first epoch, all non-faulty
replicas start with log position 0. This proves the base case. Now
assume all non-faulty replicas start epoch e with the same log
position. To enter the next epoch e’, a non-faulty replica needs to
receive 2f + 1 EPOCH-START messages for e’ from distinct replicas
with log-slot-num matching its own. Define these 2f + 1 EPOCH-
STARTS as a epoch certificate. By quorum intersection, no two non-
faulty replicas can have epoch certificates with different log-slot-
num. Therefore, all non-faulty replicas enter epoch e’ with the same
log position. This proves the inductive step. O

LEMMA 3. Within an epoch, if a REQUEST is committed in some log
slot I, then no replica can include a No-opP with a valid gap certificate
in slot | in that epoch.

Proor. We prove by contradiction. Assume a replica inserts a
No-0P with a valid gap certificate in slot I. The replica then has
received 2f + 1 GaP-commITs with decision drop for slot [, implying
some replica has received 2f distinct GAP-PREPARES containing a
drop decision and a matching GAP-DECISION from the leader. Since
a non-faulty replica only sends unique GAP-PREPARE for a log slot
within a view, by quorum intersection, there cannot exist 2f dis-
tinct GAP-PREPARES containing a recv decision at slot I. Therefore,
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drop is the only possible commit decision for the gap agreement
protocol. Moreover, a valid GAP-PREPARE containing a drop decision
implies that 2f + 1 replicas have sent a GAP-DROP-MESSAGE. Out of
those 2f + 1 replicas, at least f + 1 are non-faulty. Since non-faulty
replicas block until they receive Gap-commIT and the only possible
commit outcome is drop, they will not execute REQUEST. By quorum
intersection, no 2f + 1 replicas can execute REQUEST, SO REQUEST
cannot be committed. This leads to a contradiction. O

LEMMA 4. For any two non-faulty replicas in the same epoch, no
slot in their logs contains different REQUESTS.

Proor. Within the epoch, non-faulty replicas insert REQUESTS
into their logs strictly in the order received from Aom. In the absence
of DROP-NOTIFICATIONS, the ordering property of Aom ensures
that all non-faulty replicas have identical sequence of REQUESTs in
their logs. By Lemma 2, for any epoch, all non-faulty replicas start
the epoch with the same log position. Consequently, for any two
non-faulty replicas, no log slot within the epoch contains different
REQUESTS. A non-faulty replica may also insert a REQUEST r into its
log when handling a prop-NoTIFICATION. To fill the gap caused by
the DROP-NOTIFICATION, the replica requires the transfer of r with
the corresponding ordering certificate oc (through QUERY-REPLY
or GAP-COMMIT). The transferable authentication property of Aom
ensures that r is identical to REQUESTS delivered by other non-faulty
replicas at the same position in the Aom message sequence. The case
is therefore equivalent to the case in which a REQUEST, not a DROP-
NOTIFICATION, is received by the replica. A non-faulty replica may
also insert a No-oP into its log during the gap agreement protocol.
Assume the replica inserts No-oP at the [ + ith log slot where [
is the starting log position of the epoch. The replica ignores the
corresponding ith REQUEST (by checking the sequence number) if it
is later delivered by aom. Consequently, if the replica receives the
i + 1th REQUEST in the AoM message sequence, it can only insert
the REQUEST at log position [ + i + 1. By the above argument, the
replica’s log from [ + i + 1 onward will not contain non-matching
REQUESTS from other non-faulty replicas. By induction on i, no
log slot within the epoch contains different REQUESTs at any two
non-faulty replicas. O

LEMMA 5. Any REQUEST or NO-OP that is committed at a log posi-
tion in some view will be in the same log slot in all non-faulty replica’s
log in all subsequent views.

Proor. To enter a new view o’ from the current view v, a non-
faulty replica needs to receive a VIEW-START message which con-
tains 2f + 1 VIEW-CHANGE messages from distinct replicas. There
are two cases. Case 1: If a request r is committed at log position
i in view v, by definition, r is executed by 2f + 1 replicas at the
same log position in v. Therefore, at least f + 1 non-faulty replicas
have inserted r into their log at position i. By quorum intersection,
at least one of the VIEW-CHANGE messages contains r in the log.
The log merging rule in the view change protocol ensures that
the replica inserts r into its log at the same log position in view
v’. And by Lemma 3, no No-op can be committed at the same log
position, so the replica will not overwrite the slot with a No-op
during log merging. Case 2: If a No-oP is committed at log position
i in view o, at least 2f + 1 replicas have sent GaAp-commIT with
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decision DROP-NOTIFICATION for log slot i. Therefore, at least f + 1
non-faulty replicas have stored 2f GAP-PREPARE and the matching
GAP-DECISION with decision DROP-NOTIFICATION. By quorum inter-
section, at least one of the VIEW-CHANGE messages contains the 2f
GAP-PREPARE and the GAP-DECISION. The log merging procedure
ensures that slot i is filled with a No-0P in view v’. ]

We are now ready to prove the main log stability lemma.

PrOOF OF LoG STABILITY (LEMMA 1). A successful REQUEST im-
plies that REQUEST is committed at log slot I. By definition of com-
mitted requests, at least f + 1 non-faulty replicas have matching
logs up to I. And since non-faulty replicas insert log entries strictly
in log order (blocking before the next log entry is resolved), all log
entries before [ are occupied. For any log slot I’ < [, if a REQUEST
r is stored in the matching logs, by Lemma 4, no other REQUEST
can be inserted into the same slot at any non-faulty replica. And
by quorum intersection and our gap agreement protocol, there can-
not exist a valid gap certificate for slot I’. Therefore, only r can
be committed at log slot I’ in the view. Otherwise, if a NoO-0OP is
stored in the matching logs, there must exist a valid gap certificate
for slot I’. By definition, the NO-OP is committed at I”. Lemma 5
then guarantees that log entry at I’ (either a REQUEST or a NO-0OP)
in the matching log will be in the same log slot in all non-faulty
replica’s log in all subsequent views. Consequently, the successful
REQUEST was appended onto a stable log at least f + 1 non-faulty
replica. Since the successful REQUEST is also committed at log slot /,
by Lemma 5, REQUEST will be in slot [ in all non-faulty replica’s log
in all subsequent views. The resulting log is thus also stable. O

With Lemma 1, we are ready to prove our main safety property.

Proor oF NEOBFT SAFETY (THEOREM 1). First, observe that, by
definition, a stable log only grows monotonically. Combining this
observation with Lemma 1, from the client’s perspective, the be-
havior of NeoBFT is indistinguishable from the behavior of a single,
correct machine that processes REQUEST sequentially. This implies
that any execution of NeoBFT is equivalent to some serial execution
of REQUESTs. Moreover, clients retry sending an operation until a
REQUEST containing the operation is successful. NeoBFT applies
standard at-most-once techniques to avoid executing duplicated
REQUESTS. Therefore, a NeoBFT execution is equivalent to some
serial execution of unique client operations.

The above argument proves serializability. When a client receives
the necessary replies for a successful REQUEST r, by Lemma 1, » must
have already been added to a stable log. For any successful REQUEST
r’ issued after this point in real-time, r’ can only be inserted after r
in the stable log. Since non-faulty replicas execute REQUESTS strictly
in log order, the operations issued and results returned by NeoBFT
are linearizable. ]

C.2 Liveness

Due to the well-known FLP result, NeoBFT can not guarantee
progress in a fully asynchronous network. We therefore only prove
liveness given some weak synchrony assumptions.

THEOREM 2 (LIVENESS). REQUESTs sent by clients will eventually
be successful if there is sufficient amount of time during which

o the network the replicas communicate over is fair-lossy,
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o there is some bound on the relative processing speeds of replicas,
o the 2f + 1 non-faulty replicas stay up,
o there is a non-faulty replica that stays up which no non-faulty

replica suspects of having failed,
e there is a non-faulty Aom sequencer stays up which no non-

faulty replica suspects of having failed,
e all non—fgulty replicas correctly suspect faulty nodes and Aom

sequencers,
e clients’ REQUESTs are eventually delivered by Aom.

Proor. Since there exist non-faulty replica and non-faulty aAom
sequencer that stay up which no non-faulty replica suspects of
having failed, there is a finite number of view changes during
the synchrony period. Once the non-faulty replica that stays up
has been elected as leader, and the non-faulty sequencer has been
configured by the network, no view change with a higher view will
start, as 2f + 1 non-faulty replicas will not send the corresponding
VIEW-CHANGE message.

Moreover, any view change that successfully starts will eventu-
ally finish. A non-faulty replica that initiates a view change keeps
re-broadcasting its VIEW-CHANGE message until the new view starts,
or until the view change is supplanted by one with a higher view.
Since non-faulty replicas correctly suspect faulty nodes and aAom
sequencers, eventually 2f + 1 non-faulty replicas will initiate the
view change. As all 2f + 1 non-faulty replicas stay up, the leader
for the new view, if it is non-faulty, will eventually receive the
necessary 2f + 1 VIEW-CHANGE messages to start the view. If the
leader is faulty, non-faulty replicas will correctly suspect the fact,
and start a higher view change which will supplant the current one.

Additionally, once a view starts, eventually all non-faulty replicas
will adopt the new view and start processing REQUESTS in the view,
as long as the view is not supplanted by a even higher view. If the
leader is non-faulty, it will re-broadcast VIEW-START messages until
it receives acknowledgement from all replicas. If the leader is faulty,
non-faulty replicas will correctly suspect the fact, and start a higher
view change which will supplant the current one.

The above arguments imply that eventually, there will be a view
which stays active with a non-faulty leader and a non-faulty aAom
sequencer. During that view, non-faulty replicas will eventually
be able to resolve any DROP-NOTIFICATION from Aom: The replica
receiving a DROP-NOTIFICATION will keep resending the QUERY
message until receiving a QUERY-REPLY from the leader or enough
GAP-cOMMITS. If the leader does not have the REQUEST, it will con-
tinually broadcast GAP-FIND-MESSAGE to all replicas. Since 2f + 1
non-faulty replicas stay up, eventually the leader will receive either
one GAP-RECV-MESSAGE or 2f + 1 GAP-DROP-MESSAGESs. Once the
non-faulty leader starts the binary Byzantine agreement protocol
with the decision, by applying the same line of reasoning, eventually
non-faulty replicas blocking on the DROP-NOTIFICATION will receive
the necessary GAP-cOMMITS to resolve the DROP-NOTIFICATION.

Therefore, the system will eventually reach a point where a
view stays active with a non-faulty leader and a non-faulty aom
sequencer, and non-faulty replicas only receive REQUESTs from AoM.
After that point, every REQUEST delivered by aom will eventually be
successful. Because clients’ REQUESTs eventually will be delivered
by aom and 2f +1 non-faulty replicas stay up, clients will eventually
receive the necessary REPLYs for REQUESTSs they have sent. O
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