2021 IEEE 7th International Conference on Network Softwarization (NetSoft) | 978-1-6654-0522-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/NetSoft51509.2021.9492665

In-Network Applications:
Beyond Single Switch Pipelines

Xin Zhe Khooif, Levente Csikor', Jialin Lif, Dinil Mon Divakaran?

fNational University of Singapore, Trustwave

Abstract—The emergence of commodity programmable
switches have spawned a series of innovations in the network data
plane. By making the traditionally stateless network architectures
to be stateful, we can realize a diverse set of applications, e.g., net-
working monitoring, load-balancing, firewalls, entirely in the data
plane. On the other hand, many existing in-network applications
assume that the underlying switch is single-pipelined, however,
in reality, commodity programmable switches are designed with
multiple pipelines in mind. While this approach enables high
scalability, it has introduced a serious disadvantage: maintaining
states across the pipelines is non-trivial. For instance, without
involving the control plane it is infeasible to keep track of a
request and its response in different pipelines, thereby rendering
many in-network proposals impractical.

In this paper, we highlight this fundamental limitation that
holds back the practical widespread adoption of stateful appli-
cations in today’s multi-pipeline switches. By scrutinizing recent
in-network approaches, we identify that majority of them cannot
operate as they are proposed on multi-pipeline switches. After
raising awareness of this inevitable consequence, we discuss a set
of possible workarounds for in-network applications to overcome
this issue on multi-pipeline switches.

Index Terms—stateful applications, programmable switches,
multi-pipeline, software-defined networks

I. INTRODUCTION

The emergence of commodity programmable switches have
resulted in the “Cambrian Explosion” in the network data
plane. This has induced a paradigm shift [1] in designing
versatile networking applications ranging from network mon-
itoring [2], [3], traffic e ngineering a nd 1 oad-balancing [4],
[5] to high-precision congestion control [6], anomaly de-
tection [7] and DDoS defense [8], [9]. Additionally, switch
programmability has opened the door to perform bump-in-
the-wire computation for another diverse set of use cases,
e.g., distributed coordination [10], [11], distributed machine
learning aggregation [12], and in-network caching [13], [14].

These innovations have led to new network managing
methodologies [15], [16], while making it possible to offload
core functionalities of end-host applications (e.g., replicated
storage [17]) to the network to achieve orders-of-magnitude
performance gains [18]. Notably, a key enabler of application-
level logic offloadingi st he a vailability o f s tateful compo-
nents such as registers, meters and counters in commodity
programmable switches that are exposed to programmers.
However, these resources do not come in abundance. De-
signing in-network applications along with common switching
functionalities (e.g., Layer-2/3 switching and routing) and

978-1-6654-0522-5/21/$31.00 ©2021 IEEE

deploying within one hardware appliance is a challenging
task [19].

Commodity programmable switches commonly consist of
more than one packet processing pipeline in order to scale up
the available backplane capacity, ranging from one pipeline
with 16 ports to four pipelines with 64 ports [20]. This
performance gain, however, presents a major challenge to
the design of in-network applications. For better scalability,
pipelines in a switch are independent from each other and have
their own dedicated hardware resources (e.g., SRAM). A direct
consequence is the absence of coherent memory among the
pipelines, meaning state updates in one pipeline are not visible
in the others unless explicitly synchronized. However, network
traffic processed by a switch usually traverses across pipelines
(i.e., from different ingress port to different egress ports) based
on the predefined switching and routing policies. As a result,
application developers need to explicitly deal with stateful
memory that are inherently distributed across pipelines.

The design and implementation of many existing in-network
applications, e.g., [4], [8], [14], have been largely based on the
assumption that network traffic traverses the same pipeline
exclusively, thereby sweeping the issues under the carpet.
Unfortunately, such over-simplified assumption can easily lead
to erroneously application behaviors when deployed on today’s
multi-pipeline programmable switches. We believe this not
entirely the fault of the developers — the single-pipeline
assumption can be attributed to existing domain specific
languages for programming the data plane, e.g., P4 [21],
NPL [22]. In particular, they are designed to be architecture
agnostic: the language specification has no formally defined
memory models nor semantics of reading/updating memory
when states are distributed across pipelines. Hence, when de-
ploying applications in real networks, the data plane program
developers have to manually define and enforce the expected
behavior based on the hardware target they are working with.
Given the promising gains of in-network applications, the
aforementioned issue undeniably presents a major setback.

While there exists some potential (see later in §V)
workarounds, such as recirculating each packet (§V-B) to every
pipeline in order to synchronize the states, they complicate
the design and implementation of applications, and negatively
impacts the overall performance of the switch. A more severe
implication is that strong-consistency guarantees, such as
linearizability, are not possible under current architectures,
ruling out several in-network applications proposed to improve
distributed systems [11], [23].

The main purpose of this paper is to raise awareness of this
fundamental constraint in designing stateful applications on
today’s commodity programmable switches. First, we give a
brief overview of the architectural designs of programmable
switches (§II); next, we discuss an example to comprehen-
sively illustrate the above-mentioned limitation (§III). In §IV,
we analyze recent in-network application proposals under
multi-pipeline assumptions and discuss their inefficiencies.
Lastly, in §V, we elaborate on some possible workarounds
to make any in-network application feasible to run on multi-
pipeline switches, with the caveat that all of them come with
non-negligible impacts on the overall network performance.

While this important side-effect has been superficially cov-
ered in [18], [24], in this paper, we delve deeper into the topic.
We hope to attract further discussion from the community
and advocate future in-network application and programming
language designs to consider deployment strategies on multi-
pipeline switches, and potentially, devise a network-wide,
distributed stateful primitive for multi-pipeline switches.

II. BACKGROUND

A. Programmable Commodity Switches

The Portable Switch Architecture (PSA [25]) defined by
the P4 Architecture Working Group illustrates the typical
capabilities of network switches that process and forward
packets across multiple switch ports. The pipeline of a Portable
Switch usually contains three major blocks (see Fig. la),
namely ingress, packet replication engine, and egress. Both
ingress and egress have their own parser and deparser, as well
as match-action units. Each pipeline is mapped to a set of
switch ports.

Similarities to the PSA can be drawn from the switching sil-
icons used in today’s programmable commodity switches such
as Broadcom’s Trident-series ASICs (Trident 3 [26], Trident
4 [27]), and Intel’s Tofino-series ASICs (Tofino [20], [28],
Tofino 2 [29]). The Tofino ASICs are based on the Protocol-
Independent Switch Architecture (PISA) — a derivative from
the Reconfigurable Match-action Table (RMT [30]) architec-
ture. Pipelines in PISA (see Fig. 1b) consist of ingress and
egress blocks with multiple match-action stages, and traffic
manager between the ingress and egress. On the other hand,
the Trident ASICs are based on the FleXGS architecture [31]
(see Fig. 1c), which also comprises of a programmable ingress
and egress pipelines with multiple stages of lookup engines,
and an additional memory management unit similar to the
traffic manager in the PISA. One noticeable difference is that,
packet parsing and deparsing is only done once in the FleXGS
archictecture. Stateful packet processing is possible with per
stage SRAM (e.g., registers) and FlexCounters on, PISA and
FleXGS, respectively.

To maintain line-rate forwarding, generally, both architec-
tures share similar characteristics in terms of the (i) lim-
ited number of available stages per pipeline (e.g., 12 on
Tofino [32], and 5 on Trident 3 [26]), (ii) fixed memory per
stages, (iii) fixed number of parallel memory accesses, and (iv)
support for set of simple ALU operations only.

Packet
Buffer

Programmable Ingress Pipeline|
and

Ingress Ingress
Parser IngIEES Deparser
m Rep"cation

(a) Switch pipeline of the PSA.

Programmable Ingress Pipeline

e

e

X 'ooress > [memory[ay) .- opngress >
[Memory]at] | | [emory|faL]
Traffic
Manager
[Programmable Egress Pipeline (TM)

ey

i remon
i weman] |- ey
lMemory‘ @ lMemory‘

(b) Switch pipeline of the PISA.

X parser FleXGS
Lookup
Engine

Editor
Control

Programmable Ingress Pipeline i N

Flex Digest,
Counters, QoS
FleXGS L
o Lookup
Engine

alqixald

Packet
Buffer

31607 uoispaa
s1q1xe1d
21607 uoisdaq

19|npayss

1043U0) uoISSIWPY

Multicast
Replicator

DR caitor

]
38
£o
£
Lo

21607

X FleXGS
o Lookup
Engine

(c) Switch pipeline of the FleXGS Architecture.

51607 uoisieq
alqixald

Memory Management
Unit (MMU)

Fig. 1: Overview of the different switch pipeline architectures.

B. Multiple Switch Pipelines

Bounded by the law of physics, the packet processing rate is
bounded by the clock rate of the switching ASIC (e.g., 1 GHz).
To improve the packet processing capacity, switching silicon
designers follow the “scale-out” approach, i.e., in contrast to
“scaling-up” the hardware resources (e.g., increasing clock
speed) within the pipeline, they rather increase the number of
parallel pipelines. Each pipeline is designed and configured
to manage a given set of physical ports without any over-
laps [25], [33], [34]'. Furthermore, the parallel pipelines do
not even share any common resources (e.g., SRAM, TCAM)
except being connected to the switch backplane, i.e., memory
management unit in FleXGS, or the Traffic Manager in PISA
(cf. Fig. 1). Accordingly, when an application is deployed
on a multi-pipeline switch, it has to be deployed on each
pipeline individually. However, as packets may be routed and
switched from one pipeline to another via the backplane, any

!Furthermore, to cater for different demands of packet processing capacity
and number of switch ports, in practice, network device manufacturers also
introduce multiple line-cards (with switching ASICs) in parallel [35], [36].

state (e.g., counters, registers) maintained within a pipeline
is neither synchronized, shared nor accessible from other
pipelines. Consequently, inter-dependent states can happen to
be scattered across multiple pipelines due to nature of routing
and switching, i.e., when the ingress and egress ports are at
different pipelines. Applications relying on such states,e.g.,
even as simple application as TCP connection tracking (see
details in §III), are facing a huge challenge in practical
deployments. Recently, some attempts have been made on
synchronizing states distributed among the pipelines, however,
they have been shown to be futile [33].

While having multiple parallel pipelines have been practiced
for years [37] in the switching architecture design, the notion
of having multiple pipelines have never been explicitly ex-
posed in traditional fixed function ASICs. SRAM and TCAM
entries in the data plane have always been modified only by
the control plane. Hence, the control plane keeps all the states
synchronized regardless of the number of parallel pipelines.
With the advent of programmable switching ASICs, however,
the newfound ability to modify states entirely in the data plane
(e.g., SRAM - registers) without the need of any control plane
interaction has opened up various opportunities, yet, it presents
a completely new challenge in designing stateful data plane
applications efficiently.

Next, we further illustrate and elaborate on this problem
through a simple example.

III. EXAMPLE: TCP CONNECTION TRACKING

To demonstrate the problem of implementing stateful ap-
plications in multi-pipeline switches, we take the canonical
example of stateful packet processing — TCP connection
tracking (conntrack) for stateful firewalls [38]. We choose
this application due to its simplicity, and being sufficiently
comprehensive to depict the limitation of stateful packet
processing in multi-pipeline switches.

According to network security best practices, TCP
conntrack only allows TCP connections to be established
if they were initiated from the host network per se. Put
differently, an outgoing TCP SYN packet (from the host
network to the external networks) must be observed first before
allowing the returning TCP SYN-ACK; then, the connection
can be established accordingly. On the contrary, connections
initiated from the external networks are dropped.

To reap the line-rate packet processing benefits of pro-
grammable switching ASICs, i.e., operating entirely in the data
plane, TCP conntrack is typically realized using probabilis-
tic data structures, such as bloom filters [39], to efficiently
utilize the precious SRAM (commonly available as registers)
in the pipeline stages. Bloom filters [39] are well-known space-
efficient data structures to answer set-membership queries. In
the case of TCP conntrack, whenever there is an outgoing
TCP SYN, the flow ID? will be registered with the bloom filter.
Subsequently, for the returning/incoming SYN—-ACKs, the flow

2Here, we refer to the five-tuple comprising of the source and destination
IP addresses and ports, and the IP protocol. Note, depending on the goal of
the application, flow IDs can be defined differently.

FlowID(A-->Serven)==~~ |~ !
I
i
N — e |
FlowiD(Server—>A), 1=~ 17 =" e
W v (

%) ¥
0/0/1/0|0|0|0|0 |1 0|0/0(0 1/0/0|0
/Bloom filter at Pipeline 0 /Bloom filter at Pipeline 1 '
{Pipeline 0 /Pipeline 1 Iy

Programmable
Multi-pipeline
Switch

-

o Y

Host B

(a) Simplified view on how pipelines are mapped to physical switch ports.

Pipeline 0
1

Ingress Pipeline ‘

Traffi¢
Manag*r
™

Ingress Pipeline

(b) Illustration on how network traffic traverses the pipelines.

Fig. 2: The figures show a multi-pipeline switch where dif-
ferent hosts are connected to different pipelines. Note: The
dashed lines in (b) refer to traffic originating from the Hosts,
while the solid lines depict the traffic originating from the
Server.

ID3, will then be checked against the bloom filter to verify that
the connection was in fact initiated from the internal network
before allowing SYN-ACK and the subsequent traffic to go
through the firewall.

In the physical nature of routing and switching, packets
do not enter and exit through the same physical interface.
Moreover, in the case of a multi-pipeline switch, they might
not even enter and exit through the same pipeline. To visualize
this, we depict two possible scenarios in Fig. 2. Fig. 2a shows
the high level view on how the switch ports are typically
mapped to individual pipelines, while Fig. 2b illustrates how
traffic traverses the pipelines.

In Fig. 2, the Server, Host A and Host B are con-
nected to a common programmable multi-pipeline switch.
Physical connectivity-wise, the Server and Host A are
connected to port 5 and 6 of pipeline 0; while Host B is
connected to port 14 in pipeline 1. The Server is not allowed
to initiate connections to the hosts, and can only respond to
client requests.

First, we discuss the case where both outgoing and incoming
traffic are local within the same pipeline. For Host A, it is

3More precisely, the flow ID in this case is “reversed” to be in line with
flow ID of the original SYN packet.

located within the same pipeline with the Server. Host A
attempts to establish a TCP connection with the Server by
sending a TCP SYN. The TCP SYN’s flow ID (denoted by
FlowID(A—>Server)) is then recorded with the bloom filter
maintained in the memory, specifically, at ingress pipeline 0.
To reach the server, the client’s traffic is then forwarded to
port 5. Later, the returning TCP SYN-ACK arrives via port
5. Its “reversed” flow ID (marked by FlowID(Server—>A)) is
looked up in the corresponding bloom filter (in ingress pipeline
0) to verify that the connection was initiated from Host A.
If the flow ID exists, the TCP SYN—-ACK and the subsequent
returning TCP traffic for this flow is forwarded to Host A
through port 6.

On the other hand, for the case of Host B, it is situ-
ated in a different pipeline than the Server is connected
to. Whenever Host B initiates a TCP connection with the
Server, the TCP SYN packet (denoted by FlowID(B—
>Server)) will be logged in pipeline 1 instead of pipeline
0. Therefore, the returning TCP SYN/ACK (marked by
FlowID (Server—>B)) from the Server will be dropped
as there are no relevant states regarding that particular flow in
the bloom filter of pipeline 0.

Drawing from the observations in Fig. 2, we can infer the
following:

CONSEQUENCE: Stateful applications with objectives based
on preceding traffic states cannot work when the corresponding
traffic traverse across disjoint pipelines.

IV. ANALYSIS OF RECENT APPLICATIONS

We look at recent in-network proposals for commodity
programmable switches and investigate whether they can work
as intended on multi-pipeline switches. According to the
applications’ relevance, we divide recent approaches into two
key domains, i.e., network monitoring and in-network compute
& acceleration, then we discuss the key works in each domain.

A. Networking

1) Network Monitoring: Data plane programmability and
the access to stateful resources (e.g., registers, meters, coun-
ters) in the data plane open up possibilities to perform fine-
grained per-packet monitoring in contrast to traditional coarse-
grained sampling-based approaches (e.g., NetFlow [40]). Pro-
posals such as PRECISION [2] or dSketch [19] introduce
the ability to track heavy hitters entirely in the data plane,
while FCM-Sketch [3] and BeauCoup [41] enable cardinality
estimations (e.g., detecting super-spreaders) in the data plane.
On the other hand, BurstRadar [42] and ConQuest [43] present
approaches to perform fine-grained queue measurements for
micro-burst detection in the network data plane.

In general, network monitoring applications keep track of
packet-level statistics such as the number of packets and
bytes. This action does not rely on any preceding states.
Even if the traffic of interest appears to be scattered across
different pipelines, the control plane would eventually gather
and aggregate statistics for further decision making due to their
commutative nature in this context. Hence, in-network traffic

monitoring applications operate as intended on multi-pipeline
switches.

In addition, In-band Network Telemetry (INT), known as
the “killer” application of programmable switches, introduces
the ability to encode telemetry information (e.g., queue occu-
pancy) along the network path and has provided unprecedented
visibility [44], [45] for network operators. Typical use cases of
INT include high-precision congestion control [6], path trac-
ing and network troubleshooting. Programmable commodity
switches along the network path play the role of appending
INT headers containing information such as queue occupancy.
Then, at the penultimate hop, the INT headers are popped and
exported for further analysis. Traffic headed towards different
egresses do not affect the information being appended to
the INT headers as they (e.g., queue occupancy, current link
utilization) are always available and processed at the egress
pipeline. Accordingly, multi-pipeline switches do not pose any
problem for implementing in-band network telemetry either.

2) Load Balancing: Traditional equal-cost multipath
(ECMP) based routing strategies are static and do not adapt
to link utilization changes. Hence, dynamic in-network load-
balancing approaches such as HULA [4], MP-HULA [46],
DASH [5], and Contra [47] present real-time feedback mech-
anisms to better adapt with the ever-changing network loads.

In a nutshell, these approaches depend on periodic probes
to inform adjacent switches about the real-time status of
the switches such as link utilization and queue occupancy.
Information carried by the probes are then stored in register
arrays by adjacent switches in their ingress pipelines, which
will then be queried to determine which particular link the
packet should be forwarded through. However, if the egress
ports/links are located in a different pipeline in contrast to
the ingress pipeline, the current pipeline would not receive
any probes containing the corresponding link information.
Hence, the relevant states are absent for the ingress pipeline for
performing load-balancing for egress links that are connected
to other pipelines.

This presents an issue similar to what has been dis-
cussed in §III. As load-balancing network traffic relies on
preceding states from the probes that may not be present
in the same pipeline (specifically, at the ingress pipeline),
under multi-pipeline scenarios, in-network load-balancing ap-
proaches break.

3) DDoS Defense: DIDA [8] and Poseidon [9] present the
use of commodity programmable switches to perform line-
rate defense against volumetric distributed denial-of-service at-
tacks. Take the classic volumetric DNS amplification attack as
an example: to identify such an attack, the network data plane
has to keep track of both the DNS requests and responses.
Whenever the number of responses becomes significantly
greater than the number of requests, it can be deduced that the
particular host is under attack and immediate reactive measures
(e.g., blocking or redirecting the malicious traffic to scrubbers)
must be put in place in the data plane.

Identically, the need to keep track of the requests and
responses fall within the consequence outlined in §III. If the

requests and its corresponding responses arrive at different
pipelines, the data plane itself is not able to deduce whether the
network is indeed under an attack or not*, unless the control
plane is involved (§V-C).

B. In-network Compute & Acceleration

1) Caching: Distributed storage system workloads com-
monly exhibit high skew: a small percentage of popular objects
receive disproportionately more traffic than the others. High
skew in object accesses presents a major challenge to the
efficiency of the storage system, as it naturally leads to uneven
load distribution among storage servers, and may cause servers
to overload if they hold highly popular objects. Recently, there
have been proposals [13], [48] that aim to address this issue by
caching popular objects directly in programmable switch data
plane. Switch ASICs provide sufficient processing capacity
to handle requests to the most popular objects in the system
regardless of skew, effectively reducing load on the back-end
storage servers and more importantly, making the load more
even across the servers.

To ensure consistent caching results, queries for an object
must be routed to the same switch pipeline that stores the
cached copy of the object. NetCache [13] addresses this
challenge by storing object caches in the egress pipeline.
It leverages the fact that storage requests are destined to
the storage server that holds the object (and the mapping
is assumed to be stable), so an object, regardless of which
ingress port the packet arrives at, is always mapped to the
same egress port (and therefore the same egress pipeline). In-
network caching, therefore, can function properly on multi-
pipeline switches.

2) Distributed Coordination: Many distributed systems re-
quire explicit coordination to provide consistency guarantees:
replicated state machines use coordination to ensure the system
to behave as a single, correct machine; distributed transactional
systems employ concurrency control and distributed commit-
ment to enforce serializable execution of transactions; dis-
tributed storage systems use coordination to provide coherence
among the cached and replicated object copies. However, ex-
cessive coordination among servers introduces high overhead,
adding latency penalties and limiting the system’s throughput
and scalability. A recent line of work attempts to reduce
or even eliminate distributed coordination by co-designing
distributed systems with programmable switches [11], [14],
[171, [23], [49], [50].

NOPaxos [23] and Eris [11] propose new multicast primi-
tives with strong ordering properties to facilitate state machine
replication and distributed transactional protocols. By provid-
ing ordered message delivery guarantees, these new network
primitives eliminate distributed coordination in application-
level protocols while still enforce linearizability (for state
machine replication) and strict serializability (for distributed

4In fact, in such case, the pipeline architecture-agnostic DDoS detection
application would falsely report many legitimate DNS responses as attacks
since there are no counts for the corresponding requests at the same pipeline.

transactions). To efficiently realize ordered multicast, both sys-
tems implement in-network sequencing mechanisms: groups
of sequence numbers are maintained on a single programmal-
ble switch; each multicast packet going through the switch
is stamped with the appropriate sequence numbers. Unfortu-
nately, the in-network sequencing approach does not work on
multi-pipeline switches. Sequence numbers cannot be stored
in the ingress pipelines as multicast packets may arrive at
any ingress port; neither can they be maintained in the egress
pipelines since a multicast packet may be replicated to multiple
egress ports, while the primitive requires all copies of the
packet contain the same sequence numbers.

Instead of co-designing network primitives with distributed
protocols running on servers, NetChain proposes to implement
a replicated key-value store completely in the switch data
plane. It uses chain replication across multiple switches to
provide strong consistency and fault tolerance while allowing
client queries to finish in sub-RTT latency. Similar to the
NetCache design, NetChain maintains the key-value store
in the egress pipelines. Queries and updates to a key are
consistently routed to the same egress pipeline, making multi-
pipeline switches to function correctly. The same approach
is applied to NetLock [49], a centralized lock manager that
processes lock requests in the switch data plane. In NetLock,
the lock tables are also maintained in the egress pipelines
which connect to the corresponding lock servers, ensuring
consistent lock request processing.

Many distributed storage systems replicate popular objects
on multiple storage servers to improve load balancing of the
system. However, it is a challenging task to maintain coherence
among the multiple copies, and these systems either introduce
expensive coordination protocols, or forgo consistency alto-
gether. Pegasus [14] is a new distributed storage architecture
that addresses this trade-off by implementing a coherence
directory in the switch data plane. Leveraging the fact that
the switch serves as a central point of the system, Pegasus
routes queries to servers with the most up-to-date copy to
ensure linearizability, and uses server replies to update the
coherence directory, avoiding expensive invalidation traffic.
Unfortunately, Pegasus’ approach fails to work on a multi-
pipeline switch. In Pegasus, requests and replies for a par-
ticular object need to access the same coherence directory
entry on the switch. However, the ingress and the egress
pipelines processing a request may be completely disjoint from
those processing the corresponding reply. Implementing the
coherence directory in neither ingress nor egress would offer
a consistent view of the coherence directory.

3) Distributed Machine Learning Training: Nodes involved
in distributed machine learning training requires significant
communication overhead with the central parameter server in
order to exchange and aggregate the training weights. The
sheer volume of data needed to be exchanged continuously
present a bottleneck to distributed machine learning perfor-
mance.

To address this, the authors at [12] propose SwitchML,
an approach to accelerate distributed machine learning by

performing in-network aggregation using programmable com-
modity switches. As machine learning models are large in
size (in magnitudes of hundreds of Megabytes) and cannot
fit within the memory of the switching ASICs (only a few
Megabytes are available), therefore, aggregation of model
weights are done in per-packet streaming fashion. Upon re-
ceiving all the updates from each worker, the switch outputs
the results with the aggregated weights for each worker via
multicast.

It is not hard to observe that all the workers must be
connected to the same pipeline to perform aggregation on
all the weight update packets received, since the aggregated
weights are maintained in the SRAM within the pipeline.
This presents a constraint for SwitchML to operate on multi-
pipeline switches, limiting its scalability. In §V-A2, we discuss
the approach suggested by the authors to overcome this issue
and scale beyond multiple pipelines and racks.

V. POSSIBLE WORKAROUNDS

In this section, we outline and discuss potential workarounds
that can be applied to existing approaches in multi-pipeline
switch scenarios. For clarity, we use the TCP conntrack
example discussed in (§1II) to reason about these workarounds.

A. Topology-specific Optimizations

1) Wiring Nodes to the Same Pipeline: A straightforward
trick is to design the network topology carefully by taking the
ASIC’s pipeline-to-port mapping into consideration [18]. For
instance, in the case of Fig. 2, as long as Host A and Host
B are connected to the same pipeline as the Server, the TCP
conntrack application works as expected. This ensures that
traffic will never “crossover” to other pipelines and all states
are maintained at the same place. This effectively treats multi-
pipeline switches as multiple single-pipeline switch instances.

However, this approach is bounded by the number of avail-
able ports (typically 16 [18]) mapped to a particular pipeline.
Consider hyper-scale data center settings where programmable
commodity switches are favored for deploying custom solu-
tions, the number of servers per rack can easily exceed the
number of ports available per pipeline on the top of the rack
switch. This complicates the applications that are designed to
co-exist with the top of the rack switch, such as caching [13]
or coherence directories [14] which were designed to treat the
whole rack of servers under a single entity and function as the
common caching layer.

2) Hierarchical Composition: To scale across multiple
racks, [12] suggests hierarchical composition of multiple
switches, e.g., by combining functionalities on the top of
the rack switch and the aggregation switches. For instance,
a switch having four pipelines is treated as four disjoint
individual switches. For all four “switches”, they are indi-
vidually connected to a few common upstream aggregation
switches. Instead of responding to the distributed training
workers immediately after computing the aggregates within
the respective pipelines, the aggregated weights are forwarded
to the upstream switch to perform further aggregation of

FlowID(B-->Server)|

CIMEEHONRG
[o[o[1]o[1[1]ofo]z] [o[o[oo[o[o]o]o]0]
|
I
N

{ Bloom filter at Pipeline 0 ".\ / Bloom filter at Pipeline 1 “\
i L i

IPipeline 0 /Pipeline 1

Programmable
Multi-pipeline
Switch, S1

=
P ey Hm
— L=

Pipelinelo|

)

Pipeline 1

E'E":'E":'E'

-

Programmable
Multi-pipeline
Switch, SO

-

7 Y 7

Host A Host B

Fig. 3: Hierarchical composition with two switches.

weights for all the pipelines. Alternatively, the responsibility
of performing weight aggregation can also be assigned to the
top-level switches only.

Following this line of thought, we adapt the TCP
conntrack example with hierarchical composition as shown
in Fig. 3, with a two-level hierarchy consisting of two
switches, SO and S1, with S1 being the upstream switch
connected to the Server. For this case, pipeline 0 in S1 keeps
track of all the TCP SYNs forwarded from the downstream
switch, S0. While hierarchy composition presents a plausible
method, if there are multiple downstream switches connected
to S1 thru pipeline 1, then the same problem about states
distributed across pipelines (discussed in §III) resurfaces.

Besides, this approach also incurs additional routing and
control complexities to the deployment. To maintain high
availability and fault tolerance, downstream switches are
typically wired to more than one upstream switches. Also,
network traffic are usually load-balanced. Hence, to ensure
that hierarchical composition works, it has to be ensured
that a particular traffic always reaches exits and enters the
same upstream switch. Otherwise, this approach would not be
feasible.

B. Packet Recirculation

1) Redirecting Traffic Across Pipelines: Another possible
solution would be to redirect traffic to the pipeline, which
contains the relevant states, as suggested in [24], [25]. Take
the TCP connt rack example in Fig. 2, specifically for Host
B’s case, the workaround would be to recirculate (or in other
words, re-inject) all the returning traffic from pipeline 0 to
pipeline 1. This way, the returning traffic from the Server
can then be inspected by the bloom filter in pipeline 1 which
contains the preceding connection state, and then forwarded
to Host B.

This method presents two down-sides. First, the data plane
program would have to handle additional routing complexity

in order to correctly recirculate the corresponding traffic to
their intended pipelines containing the preceding states (i.e.,
pipeline 0 needs to contain table entries for hosts that are
located in pipeline 1 to know which traffic needs to be recircu-
lated). Second, as the recirculated traffic are being processed
more than once by the ASIC, this ultimately penalizes the
available backplane capacity.

Depending on the application, the amount of traffic
that needs to be recirculated varies. For instance, in TCP
conntrack, all subsequent traffic from the external network
must be redirected in order to be inspected, and therefore,
effectively halving the available packet processing capacity.
On the other hand, for an amplification attack defense mech-
anisms [8], [9] as discussed in §IV-A3, only a small subset
of packets are affected, i.e., only the requests and responses
need to be redirected.

2) Replicating States Across Pipelines: Instead of redirect-
ing traffic to the pipeline for which the states are, one can
choose to replicate the states by mirroring (and recirculating)
the corresponding packets to the other pipelines to update the
states. Again, referring to the example in Fig. 2, whenever the
Host B’s TCP SYN packet is received, a copy of the TCP
SYN packet is made, tagged with a custom header used for
identification, then forward to the pipeline 1 for the state to
be recorded. Subsequent returning traffic can then be inspected
within pipeline 0 locally instead of needing to be recirculate
it to pipeline 1 as discussed in §V-B1.

Similar to §V-B1, this technique involves additional routing
complexities in the data plane program. In addition, this
technique is only applicable for applications which rely on data
structures for which operations are commutative, i.e., bloom
filters, sketches. The case does not hold for hash tables as hash
collisions result in destructive overwriting of states.

However, for applications demanding strong-consistency
guarantees [11], [14], [23], this technique is not a viable
option. As the replicated packets may arrive in the other
pipelines in different order and timings, linearizability of
operations cannot be guaranteed.

C. “Return” of the Control Plane

Apart from performing all the operations in the data plane
only, relying on the control plane, still, presents itself as a
viable option. For TCP conntrack example, whenever a
TCP SYN packet is seen, it is reported to the control plane.
As a response to that, the control plane updates the bloom
filters for all pipelines’ and thus maintaining synchronized
states across the ASIC.

Undeniably, the involvement of the control plane inevitably
introduces additional latency; as noted in [15], it could be
up to the scale of several seconds. While this potentially goes
against the aim of reducing overall control latency via entirely
in-network approaches, we argue that this is an inevitable
trade-off and sacrifice that has to be made, while keeping the
communication overhead between the control plane bounded.

5 Alternatively, the control plane can install forwarding rules in the match-
action tables of the switch instead of modifying the stateful data structures.

With that in mind, the control plane should mainly play
a passive role, and only reacts whenever there is a need to
do so [16]. As another example, consider the amplification
attack defense mechanism discussed in §IV-A3, the switch
keeps track of the requests and responses, optimizations can be
done in which the switch maintains the counts of the requests
and responses in their respective pipelines. The control plane
is only notified in the event of the tracked counts in the data
plane exceed a certain threshold.

VI. CONCLUDING REMARKS

In this paper, we discuss the consequences of the multi-
pipeline property of today’s commodity programmable switch-
ing ASICs. By using the ubiquitous TCP conntrack as
an example, we illustrate how and why stateful applications
can easily misbehave on multi-pipeline switches. Then, we
highlight that most in-network applications when deployed on
multi-pipeline switches, cannot function as desired; therefore,
limiting their practicality in actual deployment. Lastly, we
present several potential workarounds that can be applied to
some of the affected in-network applications; we also discuss
the inevitable trade-offs they would impose on the overall
network performance.

While the prospects of having in-network applications to
operate entirely in the data plane presents promising gains, the
issues highlighted in this paper inevitably presents a setback.
To the best of our knowledge, there exists no universal solution
to realize stateful applications entirely in multi-pipeline data
planes. To that end, we raise the following questions:

Does an algorithm that synchronize pipeline states entirely
in the data plane exists? Aside from the workarounds outlined,
are there any more efficient ways to synchronize data plane
states entirely in the data plane? If possible, what is the
consistency guarantee that such approach can provide?

What should be the proper language constructs and seman-
tics for multi-pipeline architectures? Current domain specific
languages, such as P4 [21] and NPL [22], are designed to
be target independent and are pipeline-agnostic. Should an
extended language with pipeline awareness be developed? If
so, what are the necessary constructs and proper semantics for
stateful packet processing?

Can alternative hardware designs that provide coherent
memory regions across pipelines be possible? The issue with
multi pipeline switches stem from their disjoint nature. If there
exists shared memory across pipelines, developing stateful
applications that operate across multiple pipelines would be
trivial. Is it expected that upcoming switch architectures (e.g.,
dRMT [51]) will address this issue? Is it feasible to develop
an alternative hardware design that can provide some coherent
and shared memory across pipelines?

ACKNOWLEDGEMENT

This work is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Corporate
Laboratory @ University Scheme, National University of Sin-
gapore, and Singapore Telecommunications Ltd.

[1]
[2]

[3]

[4

=

[5]

[6]

[7

—

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

P. G. Kannan and M. C. Chan, “On Programmable Networking Evolu-
tion,” CSI Transactions on ICT, vol. 8, no. 1, pp. 69-76, Mar 2020.
R. Ben Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Design-
ing Heavy-Hitter Detection Algorithms for Programmable Switches,”
IEEE/ACM ToN, vol. 28, no. 3, 2020.

C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “FCM-
Sketch: Generic Network Measurements with Data Plane Support,” in
ACM CoNEXT, 2020.

N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable Load Balancing Using Programmable Data Planes,” in ACM
SOSR, 2016.

K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and D. Walker,
“Adaptive Weighted Traffic Splitting in Programmable Data Planes,” in
ACM SOSR, 2020.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: High Precision
Congestion Control,” in ACM SIGCOMM, 2019.

Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu, “Flow Event
Telemetry on Programmable Data Plane,” in ACM SIGCOMM, 2020.
X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S. Kang, “DIDA: Dis-
tributed In-Network Defense Architecture Against Amplified Reflection
DDoS Attacks,” in IEEE NetSoft, 2020.

M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating Volumetric DDoS Attacks
with Programmable Switches,” in NDSS, 2020.

H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,”
ACM SIGCOMM CCR, vol. 46, no. 2, May 2016.

J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-Free Con-
sistent Transactions Using In-Network Concurrency Control,” in ACM
SOSP, 2017.

A. Sapio, M. Canini, H. Chen-Yu, J. Nelson, P. Kalnis, K. Changhoon,
A. Krishnamurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling Dis-
tributed Machine Learning with In-Network Aggregation,” in USENIX
NSDI, 2021.

X.Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“NetCache: Balancing Key-Value Stores with Fast In-Network Caching,”
in ACM SOSP, 2017.

J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports, “Pegasus:
Tolerating Skewed Workloads in Distributed Storage with In-Network
Coherence Directories,” in USENIX OSDI, 2020.

S. Wang, C. Sun, Z. Meng, M. Wang, J. Cao, M. Xu, J. Bi, Q. Huang,
M. Moshref, T. Yang, H. Hu, and G. Zhang, “Martini: Bridging the Gap
between Network Measurement and Control Using Switching ASICs,”
in IEEE ICNP, 2020.

J. Kucera, D. A. Popescu, H. Wang, A. Moore, J. Kofenek, and
G. Antichi, “Enabling Event-Triggered Data Plane Monitoring,” in ACM
SOSR, 2020.

X.Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“NetChain: Scale-Free Sub-RTT Coordination,” in USENIX NSDI, 2018.
D. R. K. Ports and J. Nelson, “When Should The Network Be The
Computer?” in ACM HotOS, 2019.

X. Z. Khooi, L. Csikor, J. Li, M. S. Kang, and D. M. Divakaran, “Revis-
iting Heavy-Hitter Detection on Commodity Programmable Switches,”
in IEEE NetSoft, 2021.

Intel, “P416 Intel Tofino Native Architecture - Public Version,” Appli-
cation Note, https:/bit.ly/3mtpzJz, Mar 2021 [Accessed: Apr 2021].

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” ACM SIG-
COMM CCR, vol. 44, no. 3, p. 87-95, Jul. 2014.

NPLang.org, “NPL Specifications,” https://bit.ly/3cROvaE, [Accessed:
Mar 2021].

J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports,
“Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering,” in USENIX OSDI, 2016.

N. Gebara, A. Lerner, M. Yang, M. Yu, P. Costa, and M. Ghobadi,
“Challenging the Stateless Quo of Programmable Switches,” in ACM
HotNets, 2020.

The P4 Architecture Working Group, “P4_16 Portable Switch Architec-
ture (PSA),” https://bit.ly/3sTDN9e, Mar 2018.

[26]
[27]

[28]
[29]

[30]

(31]
[32]
[33]
[34]
(35]
[36]
[37]
(38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

Broadcom, “Trident3-X7 / BCM56870 Series,” https://bit.ly/3wvZ4b9,
[Accessed: Feb 2021].

Broadcom, “Trident4 / BCM56880 Series,” https://bit.ly/2R3cPOE, [Ac-
cessed: Feb 2021].

Intel, “Intel®) Tofino™” https://bit.ly/3sY7beD, [Accessed: Feb 2021].
Intel, “Intel® Tofino™ 2. https://bit.ly/3oer5ShX, [Accessed: Feb
2021].

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware for SDN,” ACM
SIGCOMM CCR, vol. 43, no. 4, p. 99-110, Aug. 2013.

A. Arcilla and T. Palmer, “Broadcom Trident 3 Platform Performance
Analysis,” Technical validation, https://bit.ly/2PxCAGe, May 2021.

“A Deeper Dive Into Barefoot Networks Technology.”
https://bit.ly/3iKB5i3, 2017.

“[PSA] Document effect of multiple ’pipelines’ on Register extern?”
https://github.com/p4lang/p4-spec/issues/353, [Accessed: Feb 2021].

B. Wheeler, “Tomahawk 4 Switch First TO 25.6Tbps,” Microprocessor
Report - Newsletter, https://bit.ly/3dFePnn, Dec. 2019.

N. Farrington, E. Rubow, and A. Vahdat, “Data Center Switch Archi-
tecture in the Age of Merchant Silicon,” in JEEE HOTI, 2009.

Cisco, “Cisco Silicon One Product Family,” White paper, https://bit.ly/
39019Xx, 2021.

S. Iyer and N. W. McKeown, “Analysis of the Parallel Packet Switch
Architecture,” IEEE/ACM ToN, vol. 11, no. 2, 2003.

p4.org, “Implementing A Basic Stateful Firewall,” https://github.com/
p4lang/tutorials/tree/master/exercises/firewall, [Accessed: Mar 2021].
B. H. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, Jul. 1970.

R. Sommer and A. Feldmann, “NetFlow: Information Loss or Win?” in
ACM IMW, 2002.

X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “BeauCoup:
Answering Many Network Traffic Queries, One Memory Update at a
Time,” in ACM SIGCOMM, 2020.

R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo, “BurstRadar:
Practical Real-Time Microburst Monitoring for Datacenter Networks,”
in ACM APSys, 2018.

X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-Grained Queue Measurement in the
Data Plane,” in ACM CoNEXT, 2019.

P4.org Applications Working Group, “In-band Network Telemetry (INT)
Dataplane Specification Version 2.1,” May 2020.

R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “PINT: Probabilistic In-Band Network Telemetry,” in ACM
SIGCOMM, 2020.

C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “MP-HULA:
Multipath Transport Aware Load Balancing Using Programmable Data
Planes,” in ACM SIGCOMM NetCompute, 2018.

K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra:
A Programmable System for Performance-aware Routing ,” in USENIX
NSDI, 2020.

Z.Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“DistCache: Provable Load Balancing for Large-Scale Storage Systems
with Distributed Caching,” in USENIX FAST, 2019.

Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin, “NetLock:
Fast, Centralized Lock Management Using Programmable Switches,” in
ACM SIGCOMM, 2020.

H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and X. Jin,
“Harmonia: Near-Linear Scalability for Replicated Storage with in-
Network Conflict Detection,” VLDB Endow., vol. 13, no. 3, p. 376-389,
Nov. 2019.

S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “dRMT: Disaggregated Programmable Switching,” in ACM
SIGCOMM, 2017.

