
Enabling End-to-End Simulation for Host Networking Evaluation using SimBricks

Hejing Li
Max Planck Institute for Software Systems

Jialin Li
National University of Singapore

Keon Jang
Rubrik

Antoine Kaufmann
Max Planck Institute for Software Systems

Abstract
Full system "end-to-end" measurements in physical testbeds
are the gold standard for evaluation of network systems but
are fraught with challenges. Adequate testbeds are often not
available, as projects target next generation devices, propose
new hardware, or require larger scale. Further, evaluations
in testbeds limit what we can observe without affecting sys-
tem behavior, are frequently hard to reproduce, and are only
available to groups with sufficient funding. Yet, we lack an
accepted alternative, leaving us with ad-hoc non-end-to-end
evaluations that do not form a solid basis for future work.

We argue that full system simulations enable comparable
end-to-end evaluation and are the next best alternative when
a physical testbed is not available. To this end, we present
SimBricks, a modular full system simulation framework for
network systems. SimBricks combines multiple existing sim-
ulators for individual components, including processor and
memory, NIC, and network, into full virtual testbeds running
unmodified software. The architecture combines well-defined
component interfaces for extensibility with new simulators,
efficient communication channels for local and distributed
simulators, and a novel efficient synchronization protocol for
accurate timing across different simulators. We demonstrate
that SimBricks simulations reproduce key findings from prior
work in congestion control, NIC architecture, and in-network
computing, and show scalability to 1000 simulated hosts.

1 Introduction

The systems and networking community expects research
ideas to be implemented and evaluated as part of a complete
system "end-to-end" in realistic conditions, if at all possible.
End-to-end evaluation is important as many factors affect
system behavior in ways that are hard to reason about a priori.

Yet evaluation in full physical testbeds is frequently dif-
ficult or outright infeasible for academic research projects,
because adequate hardware testbeds are not available. Work
might require cutting edge commercial hardware that is

not available yet at the time of publication [26, 27, 29, 44],
other work designs hardware extensions to existing propri-
etary hardware [45], finally there is much work proposing
entirely new hardware architectures to be implemented as
ASICs [12, 13, 21, 23, 28, 30, 46, 47]. Evaluation on a real
hardware implementation of the system is beyond academic
researchers for these projects. This trend is getting worse and
worse in the post-Moore era, as we move towards increasingly
specialized hardware, including SmartNICs, programmable
switches, and other hardware accelerators. Finally, especially
in domains such as network protocols and congestion control,
proposals need to be evaluated at large scale in networks with
hundreds or thousands of hosts. In all of these cases, a full
end-to-end evaluation in a physical testbed is infeasible.

When a full evaluation in a physical testbed is not possible,
simulation has long offered an alternative means of system
evaluation. In networking, we use ns-2 [39], ns-3 [40], and
OMNeT++ [48] to evaluate protocols and algorithms; com-
puter architects rely on cycle accurate system simulators such
as gem5 [9], while hardware designers employ RTL simu-
lators such as Modelsim [36] or Verilator [49] for testing
hardware components. While network systems do benefit
from these simulators [4, 24, 35], they do not enable end-to-
end evaluation, as no existing simulator simulates all required
components in a testbed: host, NIC devices, full network.

In this paper, we demonstrate end-to-end evaluation in
simulation can be achieved by combining and connecting
multiple different existing simulators to cover the necessary
functionality. Instead of building a new simulator, throwing
away decades of work on existing simulators, we integrate
existing and new simulators, for hosts, NICs, and networks,
into full system simulations of complete network testbeds
capable of running unmodified operating systems, drivers,
and applications. Existing simulators, however, are not de-
signed for connecting to other simulators. To achieve modular
end-to-end simulations we need to overcome three technical
challenges: 1) no interfaces to connect simulators together,
2) efficient and scalable synchronization of simulator clocks,
and 3) combining mutually incompatible simulation models.

1

ar
X

iv
:2

01
2.

14
21

9v
2

 [
cs

.D
C

]
 4

 O
ct

 2
02

1

We present the design and implementation of SimBricks, a
modular simulation framework for end-to-end network sys-
tem simulations that is scalable, accurate, and enables repro-
ducible evaluation. SimBricks defines interfaces for simula-
tors based on natural component boundaries in physical sys-
tems. We combine these with a novel protocol that leverages
latency at component boundaries for efficient and accurate
synchronization of simulator clocks. Individual component
simulators run in parallel as separate processes, and commu-
nicate via message passing through optimized shared memory
queues.

Currently, SimBricks integrates QEMU [41] and gem5 [9]
as host simulators, Verilator [49] as an RTL hardware simula-
tor for NICs with the open source Corundum FPGA NIC [16]
as a NIC simulation, and ns-3 [40] as well as the Intel Tofino
simulator [18] for network simulation. We have also imple-
mented fast behavioral simulators for Corundum and the Intel
X710 40G NIC [19], as well as a basic network switch. In
combination, these simulators enable a broad range of differ-
ent testbed configurations for end-to-end evaluation. In our
evaluation we demonstrate that SimBricks enables flexible
end-to-end evaluation of network systems at small and large
scales. We reproduce key results from congestion control [3],
in-network compute [27], and FPGA NIC design [16] in Sim-
Bricks. SimBricks obtains more realistic results compared
to ns-3 in isolation (§2.2). SimBricks also scales to 1000
hosts and NICs with only a 14% increase in simulation time
from 40 hosts (§6.5). Finally, SimBricks also provides deeper
visibility and increased control off low-level system behavior
compared to physical testbeds (§6.8).

We make the following technical contributions:

• Modular architecture for network system simulation (§4)
with interfaces for host, NIC, and network component
simulators.

• Synchronization protocol for parallel and distributed
simulations (§4.2) using message passing to efficiently
ensure correct simulation, even at scale.

• SimBricks, a prototype implementation of our architec-
ture (§5) and with integration of multiple existing and
new component simulators. We plan for a full open
source release prior to publication.1

2 Background and Motivation

We start by providing background on simulations for com-
puter systems components, before discussing the shortcom-
ings of existing simulators for computer systems research.

1Along with simulation and plotting scripts to reproduce our results.

2.1 Simulations — Virtual Testbeds
Simulators employ various techniques, including discrete
event simulation, binary translation, and hardware virtual-
ization, to simulate networks, computer architectures, and
hardware components. Network simulators, such as ns-2 [39],
ns-3 [40], and OMNeT++ [48], rely on discrete event simu-
lation using timestamped events to model packets traversing
network topologies assembled from models of individual com-
ponents. Computer architecture simulators, such as gem5 [9],
QEMU [41], and Simics [31], simulate full computer systems
capable of running unmodified guest software, including op-
erating systems, with different and sometimes configurable
degrees of detail. Full system simulators also include I/O
devices, but typically only implemented with the bare mini-
mum of required features. Detailed RTL simulations, such as
xsim [51] and Verilator [49], are employed to test and debug
hardware designs using accurate timing against testbenches.
In all three cases – network, system, and hardware simulators
– individual components are simulated in isolation.

Advantages. The primary motivation for simulating a sys-
tem is typically that a physical implementation is not feasible.
Simulations are also portable and can be easily shared as
they completely decouple the simulated system from the host
system. A large class of simulators, e.g., discrete event simu-
lators, are deterministic (with explicit seeds for randomness),
enabling truly reproducible evaluation. Simulators also pro-
vide flexibility; they are implemented as software that can be
modified, and they usually offer parameters representing a
broad range of system configurations. Finally, simulations
offer superior visibility compared to physical hardware, as
they can be easily instrumented to log minute details about
the system, without affecting system behavior.

Problems. Simulations also have issues that limit their ap-
plicability. Long simulation times are common – detailed
architectural simulators typically only simulate hundreds or
thousands of system cycles a second [22, 47], and simulating
a few milliseconds of a large scale topology in ns-3 can take
many hours. Different simulators strike different trade-offs
between accuracy and simulation time, depending on the in-
tended use-case. Developing new simulators and maintaining
or extending existing ones require significant development
effort. Finally, results obtained from simulations are only as
good as the simulator, and may not be representative unless
validated against a physical testbed.

2.2 Simulations for Systems Research
For systems research there are additional challenges that often
preclude using simulation during prototyping and evaluation.
First off, network and distributed systems frequently require
evaluation on tens or hundreds of hosts to demonstrate scala-
bility. But for most simulators, already long simulation time

2

0

2

4

6

8

10

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t[

G
bp

s]

Marking Threshold K [1500B]

ns-3
Physical Testbed (ground truth)

SimBricks (gem5 + i40e + ns-3)

Fig. 1: Measured throughput for two dctcp flows in ns-3,
a physical testbed, and an end-to-end simulation with Sim-
Bricks.

increases super-linearly with the size of the simulated system.
Next, systems projects typically have substantial software,
and sometimes hardware, implementation components. Un-
fortunately, prototyping productivity decreases significantly
with long edit-compile-test cycles. While there exist fast sim-
ulators that omit various levels of details, prototyping in these
simulators defeats the purpose if the implemented system
can then not be evaluated properly because of insufficient
accuracy. Finally and most importantly, no existing simula-
tors covers all required components for networked systems
with sufficient features and details, precluding full end-to-end
evaluation. While existing simulators cover individual compo-
nents, such as computer architecture, hardware devices, and
networks, they only do so in isolation with no mechanism for
combining them into complete systems. As a result, systems
researchers are left with non-end-to-end "piecemeal" evalua-
tion, where different components are evaluated in isolation,
or to build ad hoc simulators which have low accuracy.

Motivational example. To demonstrate the pitfalls of
piecemeal evaluation, we compare the behavior of the
dctcp [3] congestion control algorithm in the ns-3 network
simulator to a physical testbed. As network speed increases
and bottlenecks move to end-hosts, congestion control be-
havior is influenced by small variations in timing in the host
hardware and software [3,25,34]. However, ns-3 only models
network- and protocol-level behavior, and as a result, does
not simulate the host side accurately. Concretely, we set up
two clients and two servers sharing a single 10G bottleneck
link with a 4000B MTU, and with one large TCP flow gen-
erated by iperf for each client-server pair. Fig. 1 shows the
measured throughput for varying dctcp marking thresholds K.
The dctcp marking threshold K balances queuing latency and
throughput; a lower threshold reduces queue length but risks
under-utilizing links. As expected [3], the ns-3 simulation un-
derestimates the necessary threshold to achieve line rate, as it
does not model host processing variations, such as processing
delay caused by OS interrupt scheduling. Only an end-to-end

evaluation of the full system captures such intricacies.

3 Modular Simulation

We argue that rigorous end-to-end evaluation can be effi-
ciently achieved through simulations assembled from multiple
existing simulators for individual components that are inter-
connected and synchronized. To demonstrate this, we present
SimBricks, a new modular, end-to-end simulation framework
that aims to provide accurate simulation and evaluation of
network systems.

Fig. 2: SimBricks configuration for the dctcp experiment in
Fig. 1, combining gem5, ns-3, and an Intel NIC simulator.

End-to-end simulation is better. Fig. 2 shows the Sim-
Bricks end-to-end simulation that produces the result shown
in Fig. 1. We combine four instances of gem5 with four
instances of Intel i40e NIC simulator we developed, and an in-
stance of ns-3. The gem5 instances are running a full Ubuntu
image with unmodified NIC drivers and iperf. Fig. 1 shows
that our SimBricks configuration approximates the behavior
of the physical testbed closely, and capture the same insight.
We conclude that end-to-end evaluation with SimBricks im-
proves accuracy for congestion control evaluation over ns-3.

3.1 Design Goals
SimBricks has the following design goals to enable prototyp-
ing and evaluation of systems research projects using simula-
tion:

• End-to-end: simulate complete network systems, in-
cluding hosts, NICs, network hardware, and the full
software stack including OS and applications.

• Scalable: simulate large network systems consisting of
hundreds of hosts and devices.

• Fast: keep simulation times low to allow for simulation
of real systems.

• Modular: enable flexible configuration that can be mod-
ified and extended with new simulators without modifi-
cation to the rest of the system.

• Accurate: Preserve the accuracy of the constituent sim-
ulators when combining them. Ensure that validation
from individual simulators carries over to the combined
simulation.

3

• Deterministic: keep end-to-end results reproducible
when individual simulators are deterministic.

3.2 Technical challenges

Achieving these goals, however, requires us to address the
following set of technical challenges:

Simulation interconnection interfaces. Only by connect-
ing multiple simulators for different components together
can we cover the necessary functionality for end-to-end sim-
ulation. Unfortunately, existing simulators provide no suit-
able interfaces for connecting to other external simulators.
Moreover, enabling modular "plug-and-play" configurations,
where individual components can be swapped out, requires
well-defined interfaces for different component types.

Scalable synchronization and communication. Individ-
ual component simulators maintain their own separate vir-
tual simulation clocks. To obtain meaningful performance
measurements, we need a mechanism to synchronize these
clocks. However, synchronizing clocks of multiple simulators
comes at a cost, especially with increasing system scale. For
example, we measure a 3.7× increase in runtime for the dist-
gem5 [37] simulator when increasing simulation size from
2 to 16 gem5 hosts, due to synchronization overhead (§6.3).
Prior work shows that synchronization overhead can be re-
duced by sacrificing accuracy and determinism through lax
synchronization. However, results of partially synchronized
simulations are hard to reason about and less reproducible as
they depend on specific runtime factors. Modular combina-
tion of different simulators further compounds this and, we
argue, requires validation of each combination of simulators.

Incompatible simulation models. Interconnecting differ-
ent simulators is a challenge as different simulators employ
mutually incompatible simulation models. For example,
QEMU has a blocking device model where calls in device
code are expected to block till completed, while ns-3 asyn-
chronously schedules events to model networks, and Verila-
tor simulates hardware cycle by cycle. Attempting to con-
nect these simulators together requires us to address these
impedance mismatches.

3.3 Design principles

We address these challenges through four principles that un-
derpin the design of SimBricks.

Fix natural component simulator interfaces. To enable
modular composition of simulators, SimBricks defines an
interface for each component type (§4.1). We base these inter-
faces on the component boundaries in real systems: PCI ex-
press (PCIe) connects today’s NICs to servers, while data cen-

ter NICs typically connect to Ethernet networks. We choose
these interfaces as a starting point, but our approach general-
izes to other interconnects and network technologies. These
component interfaces form narrow waists decoupling innova-
tion on both sides: To integrate a simulator into SimBricks,
developers only need to add an adapter that implements the
component interface, otherwise the simulator remains unmod-
ified.

Accurate and efficient synchronization. In SimBricks,
we want to ensure accurate results and avoid requiring vali-
dation of each combination of simulators, and demonstrate
that accurate time synchronization does not have to come
at the cost of performance. To this end, we leverage three
insights in combination to design a novel synchronization
protocol (§4.2): 1) Global synchronization is not necessary
as using natural interfaces limits which simulators actually
communicate. As long as events at these pairwise interfaces
arrive on time the simulation behavior is correct. 2) Latency
at component interfaces provides slack and helps tolerate
communication overheads between simulators. An event sent
at time T only arrives at T +∆, as our natural component
interfaces have an inherent latency in physical systems that
we need to model. 3) By including synchronization in-line
with data transfers, synchronization overheads can be re-
duced and sometimes completely avoided. The SimBricks
synchronization protocol only increases simulation time of
two gem5 instances by 2% compared to unsynchronized op-
eration. Even when scaling up to a distributed simulation of
1000 hosts, simulation time only increases by 3× compared
to a simulation of 40 hosts.

Loose coupling with message passing. Instead of tightly
integrating multiple simulators into one simulation loop, Sim-
Bricks runs component simulators as separate processes that
communicate through message passing (§4.1) across our de-
fined interfaces. This drastically simplifies integration of
simulators into SimBricks, as we treat each simulator as a
black-box that only needs to implement our interfaces. Using
asynchronous message passing also maximizes compatibility
with different simulation models. Discrete event and cycle-
by-cycle simulations can naturally issue requests and process
responses at the scheduled times, while blocking simulations
can block till the response message arrives – for peer simula-
tors this is fully transparent.

Parallel execution with shared memory queues. We run
simulators in parallel on different cores and connect them
through optimized shared-memory queues (§4.3). As simula-
tors run on separate cores and only communicate explicitly
when necessary, this avoids unnecessary cache-coherence
traffic and hidden scalability bottlenecks. These mechanisms
allow us to (i) scale up to large network simulations: In-
stead of simulating the complete network in one simulation

4

Fig. 3: SimBricks architecture. Double hour glass with nar-
row waists between hosts and NICs, and NICs and networks.

instance, we simulate different parts of the network in sepa-
rate simulators running in parallel (§4.4), and (ii) scale out
using distributed simulations: We use a separate proxy that
transparently forwards messages on shared memory queues
over the network to and from simulators running on remote
hosts (§4.5).

4 Design

Following the design principles in §3, we have built a mod-
ular, end-to-end simulation framework SimBricks, with its
high-level system architecture shown in Fig. 3. In this sec-
tion, we detail the design of SimBricks’s major components,
including component simulator interfaces, a novel synchro-
nization protocol, fast message transport, and techniques to
scale up and out to larger simulations.

4.1 Component Simulator Interfaces
SimBricks’s modularity is based on well-defined interfaces
between component simulators: Host simulators connect to
NIC simulators through an interface based on PCIe; NIC
simulators interface with network simulators through an Eth-
ernet interface. This results in a double hourglass architecture
(Fig. 3) with narrow waists at component boundaries. Both
interfaces are inherently asynchronous in physical systems,
and SimBricks replicates this. We also model the physical
propagation delay at each interface as a per-interface latency
∆i.

4.1.1 PCIe: Host-NIC interface.

PCIe itself is architected as a layered protocol, ranging from a
low-level physical layer to the transactional layer responsible
for data operations. We define SimBricks’s host-NIC inter-
face (Fig. 4) solely based on the PCIe transactional layer,

PCIe: NIC→ Host
Message Type Message Fields

INIT_NIC

PCI vendor, device id, class,
subclass, revision,
of MSI vectors, # of MSI-X vectors,
table/PBA bar and offset

DMA_READ,
DMA_WRITE

Request ID, Memory address, Length
(and Payload data)

MMIO_COMPL Request ID (and Payload data)

INTERRUPT
Interrupt type,
MSI/MSI-X: vector #,
Legacy: level

PCIe: Host→ NIC
Message Type Message Fields

DMA_COMPL Request ID (and Payload data)

MMIO_READ,
MMIO_WRITE

Request ID, BAR # and offset, Length
(and Payload data)

INT_STATUS Interrupts enabled: legacy, MSI, MSI-X

Ethernet: NIC↔ Net / Net↔ Net
Message Type Message Fields

PACKET Packet length, Packet data

Fig. 4: SimBricks defines a PCI interface between host and
NIC simulators, and an Ethernet interface between NIC and
network simulators.

and abstract physical attributes of the PCIe link away with
simple parameters – link bandwidth and latency. Low-level
complexities such as encodings and signaling are unneces-
sary for most system-level simulations and would introduce
excessive complexity. Should future use-cases require low-
level modelling of PCIe, a detailed PCIe simulator could be
integrated modularly akin to how we scale up network simu-
lations (§4.4).

Discovery and Initialization. A key feature of PCIe is that
hosts identify connected devices and the specific features they
support without relying on administrator’s input. To this end,
our interface defines an INIT_NIC message for initializing
and registering NIC simulators with a host simulator. The NIC
simulator adapter includes device information in the message,
including the PCI vendor, device identifiers, base address
registers (BARs), and the number and addresses of MSI(-X)
interrupt vectors. The host simulator uses this information to
expose a corresponding PCIe device to the system.

Data transfers: MMIO & DMA. PCIe data transfers are
symmetrical: both sides can initiate reads and writes, which
the other side completes. SimBricks’s PCIe interface de-

5

fines DMA_READ/WRITE messages for DMA transfers initiated
by NIC simulators, and MMIO_READ/WRITE for MMIO ac-
cesses initiated by host simulators. All data transfer opera-
tions are completed asynchronously. Once a request is fin-
ished, the NIC simulator issues a corresponding MMIO_COMPL
completion message, while the host simulator adapter sends
a DMA_COMPL. PCIe allows multiple outstanding operations
and only guarantees that they will be issued to the memory
system in the order of arrival. Completion events, however,
may arrive asynchronously and out-of-order. To match com-
pletion notifications with outstanding requests, requests carry
an opaque request identifier that the target simulator includes
in the corresponding response.

Interrupts. The final mechanism covered by the host-NIC
interface is interrupts. Our interface supports all PCI interrupt
signaling methods, including legacy interrupt pins (INTX),
message signaled interrupts (MSI), and MSI-X. Physical
PCIe devices implement MSI (including configuration, mask-
ing, and generating signalling operations) completely on the
device. To reduce repeated implementation effort in NIC
simulators and integration challenges in host simulators, we
instead opt to keep this functionality inside the host simula-
tor. NIC simulators can issue INTERRUPT messages to either
trigger an interrupt vector for MSI(-X) or (de-)assert interrupt
pins for INTX. To incorporate NICs that require knowledge
about which interrupt mechanisms the OS has enabled, our
interface also provides a INT_STATUS message issued by the
host simulator on interrupt configuration changes.

4.1.2 Ethernet: NIC-network interface.

In SimBricks’s NIC-network interface, we similarly abstract
away low-level details of the Ethernet standard, and only ex-
pose Ethernet frames – in the form of PACKET messages – to
the NIC and network simulators. A PACKET message carries
the length of the packet alongside packet payload, but omits
CRCs to reduce overhead as none of our network simulators
models them and most NICs strip them after validation. If fu-
ture network or NIC simulators require CRCs, their SimBricks
adapter can transparently generate and strip the checksums,
as we do not explicitly model data corruption on the wire. We
leave an extension of the interface with Ethernet hardware
flow control as future work.

4.2 Simulator Synchronization Protocol

To ensure accurate simulation result when connecting parallel
simulation components that run at different speeds, we design
a novel synchronization protocol that minimizes synchroniza-
tion overhead even when scaling to large simulations.

procedure INIT
for if in interfaces do

SYNCTIMER(if)
msg← POLLMSG(if)
RESCHEDULE(msg.timestamp, RXTIMER, msg, if)

procedure SYNCTIMER(if)
msg← ALLOCMSG(if)
msg.type← SYNC
SENDMSG(msg)

procedure RXTIMER(msg, if)
if msg.type 6= SYNC then

PROCESSMSG(msg)
msg← POLLMSG(if)
RESCHEDULE(msg.timestamp, RXTIMER, msg, if)

procedure SENDMSG(msg, if)
msg.timestamp← T +∆if
ENQUEUEMSG(msg, if)
RESCHEDULE(T +δif, SYNCTIMER)

Fig. 5: SimBricks synchronization protocol pseudo-code for
a discrete event-based simulator. RESCHEDULE schedules a
callback for the specified time, cancelling earlier instances.
PROCESSMSG and SENDMSG interface with the upper layer
PCI or Network protocol. ∆if is the link latency and δif the
synchronization interval.

4.2.1 Prior synchronization mechanisms do not scale

A naive approach to synchronizing components is to use a
global barrier at each time step, keeping them completely in
lockstep. When components are connected by communica-
tion links with non-zero latency, frequency of global barriers
can be reduced by dividing simulation time into epochs no
larger than the lowest link latency. Within each epoch, no syn-
chronization is required since all cross-component events will
only be delivered after the end of the current epoch. The syn-
chronization protocol, therefore, only needs to perform global
barriers at epoch boundaries [1,37,42]. Unfortunately, epoch-
based synchronization still relies on non-scalable global bar-
riers across all simulators, and the barrier frequency is con-
strained by the lowest link latency in the whole simulation,
resulting in substantial synchronization overhead.

4.2.2 Scalable synchronization in SimBricks

We avoid global synchronization while guaranteeing simu-
lation accuracy by leveraging key properties specific to the
SimBricks architecture. Fig. 5 shows pseudocode for the
SimBricks synchronization protocol described below.

Enforcing correct message processing times is sufficient.
In SimBricks, all communication between simulators are ex-
plicitly done through message passing. Thus, the only require-
ment for accurate simulation is that messages are processed at

6

the correct time. Additional synchronization would not affect
simulation behavior, as simulators cannot observe or influence
each other through other channels. To enforce this guarantee,
senders tag each message with its arrival time indicating when
the message should be processed at the receiver.

Pairwise synchronization is sufficient. All SimBricks
message passing channels are point-to-point and statically
determined based on the simulation structure. This is where
we differ from most prior synchronization schemes, as they
do not assume a known topology and thus require global syn-
chronization. For SimBricks, synchronization only needs to
be implemented pairwise, between each simulator and its a
priori known peers.

Per-channel message timestamps are monotonic. Our
message queues deliver messages in the order of transmission.
As each SimBricks connection between two simulators is
modeled with a fixed (non-zero) per-link propagation latency
∆i, a message sent at time T over interface i arrives at T +∆i.
By assuming that each simulator’s clock advances monotoni-
cally, message timestamps on each channel are therefore also
monotonic.

Message timestamps ensure accuracy. A corollary of the
monotonicity guarantee is that, a message with timestamp t is
an implicit promise that no more messages with timestamps
< t will arrive on that channel. Therefore, if a simulator has
received messages with timestamps larger than T from all of
its peers, it can safely advance its clock up to T .

Ensuring liveness with sync messages. These conditions
ensure accuracy of simulations, but do not guarantee liveness.
Simulations can only make progress as long as every channel
carries at least one message in each direction in every ∆i time
interval. To ensure progress, we introduce SYNC messages
that simulators send if they have not sent a message for δi≤∆i
time units. SYNC messages allow peers to safely advance their
clocks in the absence of data messages. In our simulations
we set δi = ∆i; lower values of δi are legal, but we have not
found configurations where the benefit of more frequent clock
advances outweighed the cost of sending and processing the
additional SYNC messages. For other simulation configura-
tions this trade-off might be different.

Link latency provides synchronization slack. Non-zero
link latencies further reduce synchronization overhead, as
even peer simulators do not need to execute in lockstep.
Specifically, a message sent at T allows its peer to advance
to T +∆i. At that point, the peer’s clock is guaranteed to
lay between T −∆i (otherwise the local clock would not be
at T) and T +∆i. While synchronized simulations are fun-
damentally only as fast as the slowest component simulator,
this slack improves efficiency by absorbing small transient

variation in simulation speed, without immediately blocking
all simulators.

4.3 Inter-Simulator Message Transport
As SimBricks runs component simulators as separate pro-
cesses communicating through message passing, inter-process
communication plays a critical role on the overall efficiency.
We use optimized shared memory queues with polling to im-
plement efficient message transport for inter-simulator com-
munication. For parallel processes running on separate cores,
shared memory queues enable low-latency communication
with minimal overhead [6, 8]. Between any pair of commu-
nicating simulators, SimBricks establishes a bidirectional
message channel consisting of a pair of unidirectional queues
in opposite directions. For initialization, SimBricks uses a
Unix socket for each channel to provide a named endpoint for
the peers to connect to, and to communicate queue parameters
and shared memory file descriptor.

SimBricks message queues are single-producer single-
consumer concurrent circular queues. They comprise an array
of fixed-sized, cache line aligned message slots. The last
byte in each slot is reserved for metadata: one bit indicat-
ing the current owner of the slot (consumer or producer)
and the remaining bits for the message type. Each message
queue has a separate head and a tail pointer. As queues are
single-producer and single-consumer, we minimize false shar-
ing by storing the tail pointer locally at the producer, while
consumers have a local exclusive head pointer. We include
pseudo-code for the queue implementation in the appendix
(§A.2) for reference.

The SimBricks message transport design avoids coherence
overhead unless it is fundamentally necessary. The head and
tail pointers are local to consumer and producer respectively,
thus only accesses to shared message slots result in coher-
ence traffic. Moreover, as long as a consumer does not poll
in between its paired producer writing a message to the cor-
responding slot and setting the ownership bit, all coherence
traffic carries necessary data from the producer to the con-
sumer [6] (more detail in §A.2).

4.4 Scaling Up by Decomposing Networks
SimBricks scales to larger simulations by adding more com-
ponent simulators. For Host and NIC simulators there is
no direct scalability limit, beyond the number of available
cores. A single network simulator that all hosts connect to
can become a bottleneck as it has to synchronize with each
NIC simulator. We leverage the SimBricks architecture to
improve scalability, by decomposing the network simulation
into multiple processes that connect and synchronize via Sim-
Bricks network interfaces. For example, in our evaluation we
demonstrate large scale simulations that simulate each switch
as a separate process (§6.5).

7

4.5 Scaling Out with Proxies
Running simulators in parallel on dedicated cores while com-
municating via shared memory queues, maximizes paral-
lelism and minimizes communication overheads. But this
limits simulation size to the number of available cores. For
larger simulations SimBricks needs to scale out across multi-
ple hosts. The combination of message passing and modular
interfaces enables a natural means of scaling out simulations
to multiple hosts: partition simulators to hosts and replace
shared between simulators on different hosts with network
communication.

However, directly implementing network communication
in individual component simulators has two drawbacks. First,
it increases complexity for integrating component simulators,
as each individual simulator adapter needs to implement an
additional message transport mechanism. Second, and more
importantly, it increases communication overhead in compo-
nent simulators, leaving fewer processor cycles for the many
already slow simulators, further increasing simulation time.

To avoid these drawbacks SimBricks instead implements
network communication in proxies. SimBricks proxies con-
nect to local component simulators through the existing
shared memory queues and forward messages over the net-
work to the peer proxy which operates symmetrically. This
approach requires an additional processor core for the proxy
on each side, but is fully transparent to component simulators
and does not increase their communication overhead.

5 Implementation

SimBricks is implemented in 8960 lines of C/C++, 1237
lines of Python, and 1146 lines for the gem5 adapter, 724 for
QEMU, and 1303 for ns-3. (more detail in §A.3).

5.1 Core SimBricks Components
Libraries. To reduce programming effort when integrating
individual simulators, we develop a common message trans-
port library that implements the SimBricks messaging inter-
faces. The library additionally implements helper functions
for the synchronization protocol; specifically, functions to
construct and send synchronization messages to the connected
peers. We also implement a helper library with common com-
ponents for behavioral NIC simulation models (nicbm) that
we use in both our behavioral model implementations.

Proxies. The SimBricks design scales out simulations
through proxies that translate between shared memory queues
and the network on both sides. We have implemented two
proxies, one uses standard sockets for network communi-
cation and the other one RDMA. Both proxies implement
batching and try to forward multiple messages at once if mul-
tiple are in the queue. The RDMA proxy minimizes latency

and overhead by directly writing messages to remote queues
with RDMA writes.

Orchestration. Configuring and running SimBricks simu-
lations is a challenge due to the many interconnected com-
ponents involved. We streamline this with our orchestration
framework where users can assemble complete simulations in
compact python scripts, and the framework runs them (details
in §A.1).

5.2 Host Simulator

We integrate two host component simulators, gem5 and
QEMU, capable off running unmodified operating systems
and applications. We implement the integration as a regular
PCIe device within the respective abstractions in the simula-
tors.

gem5. gem5 is a flexible full system simulation with con-
figurable level of detail for memory and CPU simulation. We
use version v20.0.0.1 and extend it with a patch for Intel
DDIO support [2]. We implement support for the functional
and timing memory access protocols. The functional model
is blocking, i.e. expects accesses to immediately return re-
sults, and does not model timing. The timing protocol is a
natural fit for SimBricks as it includes asynchronous request
and response messages for each access. We do not support
the atomic protocol, where operations immediately return
and indicate how long the operation should take, as this is
incompatible with SimBricks’s asynchronous interfaces. To
reduce simulation time, we leverage flexiblity in gem5 to boot
up with a fast functional CPU, and switching to a detailed
model after. We additionally implement an Ethernet adapter
to also connect the few basic NICs in gem5 to SimBricks for
comparison.

QEMU. We use QEMU (version 5.1.92) with KVM CPU
acceleration for fast functional simulation, and also imple-
ment support for synchronized simulation with QEMU’s
instruction counting feature. With instruction counting
(icount), QEMU controls the rate of instruction execution
relative to a virtual clock. The key challenge is to model
MMIO access timings, as QEMU’s device interface does not
model timing and expects accesses to return immediately.
We work around this by aborting execution of the instruc-
tion from the MMIO handler and stopping the virtual CPU,
only re-activating it when the completion event arrives on the
PCIe interface. At that point QEMU will re-try executing the
instruction.

5.3 NIC Simulations

We integrate three NIC simulators, a detailed hardware RTL
model, and two less detailed faster behavioral models.

8

Corundum RTL simulation. To demonstrate the feasibil-
ity of integrating realistic RTL simulation into SimBricks, we
use the unmodified Verilog implementation of Corundum [16],
an open-source, FPGA NIC. We use the Verilator [49] RTL
simulator to simulate the interface module implementing
Corundum’s core data path (which includes rx, tx, descriptor
queues, checksumming, packet scheduling etc.). When im-
plementing on an FPGA, Corundum instantiates vendor IP
for the remaining components, including the PCIe interfaces,
DMA engine, and Ethernet MAC. As Verilator cannot simu-
late vendor IP, we implement this functionality directly in the
C++ testbench, where we interface with SimBricks.

Corundum behavioral model. To enable an apples-to-
apples comparison, we also implement a behavioral model
for Corundum. The model is fully compatible with the open-
source Corundum Linux driver [15]. The implementation
currently only supports a single interface and one receive and
transmit queue pair. Advanced features such as checksum
offloading and receive-side scaling are future work.

i40e behavioral model. A modern NIC simulator com-
patible with Linux and kernel-bypass frameworks such as
DPDK [20] is needed for simulating today’s network systems.
We implement a behavioral model of the common i40e Intel
40G X710 NIC. This simulator is compatible with unmodi-
fied drivers and, while not feature complete, implements the
most important features such as multiple descriptor queues,
TCP and IP checksum offload, receive-side scaling, large seg-
ment offload, interrupt moderation, and support for MSI and
MSI-X.

5.4 Network Simulations

ns-3. To integrate with ns-3.31, we implement a derived
class of NetDevice, implementing the SimBricks Ethernet
interface. NetDevice is the ns-3 base abstraction for all end-
host network hardware. When receiving Ethernet packets
from the NIC, the adapter pushes these to the connected net-
work channel. When the adapter receives a packet from the
ns-3 network channel, it simply forwards it to the SimBricks
channel. The adapter also implements the synchronization
protocol, as shown in Fig. 5. We use various ns-3 configura-
tions for our experiments. S

Ethernet switch. Similar to NIC behavioral models we
also implement a fast model of simple Ethernet switch. The
model uses L2 MAC learning with infinite MAC table size.
Each switch port is implemented using SimBricks Ether-
net interface. In each iteration of the simulation loop, the
switch polls packets from each port, performs MAC learn-
ing, switches each packet to the corresponding egress port(s)
according to the MAC table, and sends synchronization mes-
sages to each port if necessary.

Tofino. Finally, we integrate the proprietary Intel Tofino [5]
simulator provided by Intel in the development tooolkit
(SDE) [18]. This simulator includes a cycle accurate model
of the switch pipeline and an approximate model of the queu-
ing subsystem. Unfortunately our version of the simulator is
closed source and only communicates through Linux Kernel
virtual Ethernet interfaces (veth), precluding synchroniza-
tion. We thus only implement a functional adapter that trans-
fers packets between SimBricks Ethernet interfaces and veth
ports.

6 Evaluation

We have already shown that SimBricks reproduces behavior
of a physical testbed for congestion control, and improves
accuracy over ns-3. We now aim to answer the following
questions:

• Can SimBricks modularly combine component simula-
tors? How do different combinations perform? (§6.2)

• What is the synchronization overhead for component
simulators? How does it compare to prior approaches?
(§6.3)

• Can SimBricks reduce simulation time by breaking down
components into smaller pieces and parallelizing them?
(§6.4)

• How does simulation time scale with number of compo-
nents combined? (§6.5)

• Can SimBricks effectively and scalably distribute large-
scale simulations across multiple physical hosts? (§6.6)

• Can SimBricks reproduce key results of recent work on
in-network compute (§6.7), and NIC architecture (§6.8)?

• Does SimBricks enable additional insights that cannot
be obtained from physical testbeds? (§6.8)

6.1 Experimental Setup
We use servers with two 22-core Intel Xeon Gold 6152 pro-
cessors at 2.10 GHz with 187 GB of memory, hyper-threading
disabled, and 100 Gbps Mellanox RoCE NICs.

Unless otherwise stated use following simulator parameters.
All simulations are running Ubuntu 18.04 with a Linux ver-
sion 5.4.46 kernel where we disabled unneeded features and
drivers to reduce boot time. No drivers or applications were
modified. Each host has one core and 8 GB of memory. For
QEMU with synchronization (QT) we set a clock frequency
of 4GHz. For gem5, we use DDR4_2400_16x4 memory and
the TimingSimple CPU model, which simulates an in-order
CPU with the timing memory protocol required for SimBricks
synchronization (§5.2). We set parameters to achieve the

9

Use-case netperf Sim.
Simulator Combination T’put Latency Time

SW debugging 4.37 G 71 µs 00:00:32
QEMU-kvm + behavioral i40e NIC + behavioral switch

SW perf. evaluation 9.05 G 20 µs 18:18:49
gem5 + behavioral i40e NIC + ns-3

HW debugging 81 M 3.4 ms 00:00:31
QEMU-kvm + Corundum Verilog + behavioral switch

HW perf. evaluation 6.27 G 33 µs 04:23:07
QEMU-timing + Corundum Verilog + behavioral switch

Tab. 1: SimBricks configurations for four typical use-cases,
with the resulting simulation time and measured app. perfor-
mance.

same effective instruction execution performance as a rep-
resentative physical testbed [24], for a Linux network stack
benchmark at 1.3 cycles/inst = 0.43 ns/inst. We match cache
sizes and latencies of the testbed. With an in-order CPU clock
frequency 8 GHz we get the same effective instruction rate
as the testbed. Gem5 also supports an out-of-order CPU, but
at a simulation time of 4−6× higher, so we use the timing
CPU as a compromise. Network links are set to 10 Gbps
by default. The Corundum verilator model runs at 250 MHz.
Further, we set the PCIe latency, NIC-network link latency
and synchronization interval all to 500 ns, unless otherwise
reported.

6.2 Modular Simulation

We start by evaluating modular combinations of component
simulators in SimBricks. For this, we use the netperf TCP
benchmark to run a 10s throughput test (TCP_STREAM) fol-
lowed by a 10s latency test (TCP_RR) on two simulated hosts.
We focus on a subset of four combinations for common sys-
tems research use-cases in: debugging and performance eval-
uation of hardware and software prototypes respectively.

For debugging HW & SW we are most productive when we
can interactively use the system, while accurate performance,
and thus synchronization is not required. Here we combine
QEMU with kvm for fast host simulation with the fast basic
switch, and either the intel NIC model for SW testing or Veri-
lator with Corundum as a HW example. During performance
evaluation we do want accurate performance results, but can
tolerate longer simulation times. For software performance
measurements we rely on a more detailed host simulator with
gem5, while here we assume that we need less detail of the
host for benchmarking our HW prototype.

Navigating speed-accuracy trade-offs with modularity.
Our results reported in Tab. 1 confirm the trade-off between

simulation time and model detail; simulation times range
from 31s to 18 hours for the same workload. The results show
that, SimBricks can effectively help navigate this trade-off by
only using detailed simulators for components where detail
matters. The measured performance for unsynchronized con-
figurations, especially for the QEMU-kvm and Corundum,
while not representative, are still sufficient to test and debug
the system. Modularity also allows us to late bind simulator
choices, e.g. if we later realize that QEMU-timing is not
sufficiently accurate, we can replace it with gem5 without
additional changes.

All combinations are functional. We evaluate the full
cross-product of simulator choices and confirm that Sim-
Bricks supports all combinations (performance results in
§A.4).

6.3 SimBricks Synchronization

We now use gem5 as a case study to measure synchronization
behavior in three experiments.

Synchronization overhead. To measure the overhead of
SimBricks synchronization, we run two workloads with gem5,
once standalone and once in SimBricks, and compare sim-
ulation time. Neither experiment uses the network, but for
SimBricks we connect the the Intel NIC model, and that to the
switch. The SimBricks adapter thus exchanges sync messages
every 500 ns.

The first workload has a low-event density in gem5: execut-
ing sleep 10. The standalone simulation takes 2.25 min and
in SimBricks 2.91 min, a 30% overhead. Here gem5 is almost
exclusively handling SimBricks synchronization events, as
the CPU is mostly halted. As a high-event density workload
we use dd to read from /dev/urandom to keep the CPU busy.
This simulation takes 100.26 min standalone and 101.06 min
in SimBricks, a mere 0.8% overhead. In both cases, SimBricks
integration incurs manageable synchronization overhead, and
is unlikely to significantly slow down already slow simulators.

Comparison to dist-gem5. Next, we compare to dist-
gem5 [37] as a baseline system that employs a conventional
epoch-based global synchronization protocol over TCP sock-
ets, to interconnect multiple gem5 instances. We configure
simulations with 2 to 32 instances of gem5 that communicate
pairwise using iperf, through the e1000 NIC in gem5 and
a switch. For SimBricks we use our gem5 Ethernet adapter
to connect to our switch model. Our simulation time mea-
surements in Fig. 6 show that SimBricks is significantly more
efficient than dist-gem5, especially at scale. With 2 hosts
SimBricks reduces simulation time by 27% and for 32 hosts
by 74%.

10

Sensitivity to link latency. SimBricks synchronization
overhead is fundamentally linked with the configured link
latency, as a lower bound for how frequently sync messages
are required. So does SimBricks synchronization grow un-
reasonably expensive at lower latencies? To answer this, we
measure synchronization time for a pair of gem5 hosts running
netperf connected to the Intel NIC and the switch, while
we vary the configured PCIe latency and sync interval. We
report our results in Fig. 9, and find that while synchroniza-
tion time does increase, lowering the latency by two orders of
magnitude from 1 µs to 10 ns, only increases simulation time
by 38%.

6.4 Decomposition for Performance

In SimBricks, we can partition individual simulators into mul-
tiple connected smaller simulators for increased parallelism
and scalability, in two separate instances.

Running NIC outside of gem5 is faster. We simulate
NICs separately for modularity, while gem5 and qemu also
directly include NICs. We evaluate the performance implica-
tions of this design choice, by comparing two gem5 configu-
rations in SimBricks: first, gem5 with the built-in e1000 NIC
connected via our Ethernet adapter, and second, gem5 con-
nected to our Intel NIC. In both cases we run a pair of hosts
connected to our switch. The first configuration takes 350
minutes, and the second only 138 minutes. Despite simulating
a more complex NIC with additional features, the parallelism
from the external NIC simulator reduces simulation time by
60%.

Network simulator as scalability bottleneck. Network
simulators are potential scalability bottlenecks in SimBricks,
as they often connect to many NICs, while hosts and NICs
only connect to one and two peers, respectively. We first
confirm this with a microbenchmark. We implement a packet
generator as a dummy NIC that implements the SimBricks
Ethernet interface and synchronization protocol, and simply
injects packet at a configured rate. We now measure simula-
tion time for 2 and 32 dummy NICs connected to one switch
for 1 second of virtual time. First we set the packet rate to
0, to only measure synchronization overhead, and measure
an increase from 2.6 s to 17.6 s. Next, we set the packet rate
to 100 Gbps, and measure an increase from 12.6 s to 211.6 s.
A single network simulator can become a bottleneck for fast
simulations, but we have so far not observed this outside of
this microbenchmark.

Scaling by parallelizing network simulation. To address
this bottleneck in SimBricks, we can run multiple network
simulators carved up at natural boundaries (e.g. switches
or groups thereof). We demonstrate this by modifying the
previous microbenchmark to divide the 32 hosts to 4 "ToR"

switches that each connect to the fith "core" switch. With this
configuration the simulation time for rate 0 is 9.6 s down by
45% compared to the single switch, and 96.8 s at 100 Gbps,
53%. Decomposing networks reduces simulation time at
scale.

6.5 Local Scalability

A design goal for SimBricks is to scale to simulate systems
with many hosts. Here we measure how simulation time
changes as we vary the number of simulated gem5 hosts and
Intel NICs on a single physical host, connected to a single
switch. We set up one server and a variable number of client
hosts, running the same UDP benchmark. To avoid overload-
ing the server, we fix the aggregate throughput to 1 Gbps.
The results in Fig. 7 show the simulation time increases with
the number of clients, from 138 min with 2 hosts by 48% to
205 min with 21 hosts.

Surprisingly this is not because of scalability bottlenecks
in SimBricks synchronization. Instead, we discovered that
this increase is due to thermal throttling in of our host CPU
slowing down all cores as more active. To confirm this, we
run multiple independent instances of the 1-client experiment
and measure how this affects simulation time. When running
4 independent instances, using a total of 20 cores in the same
NUMA node, the simulation takes 171 min. This matches the
runtime of the 10-host simulation above, which uses 21 cores
in total. We conclude that SimBricks scales at least to the
moderate cluster sizes typical for many of our evaluations.

6.6 Distributed Simulations

So far the limiting factor for simulating larger systems is
the number available cores. Now we move on to SimBricks
simulations running across multiple physical hosts, using our
proxies. Fig. 11 shows the configuration.

Overhead of distributed simulation. First we compare
performance for small local simulations to distributed sim-
ulations with the SimBricks sockets and RDMA proxy, to
measure overheads. We use two qemu-kvm hosts running
netperf connected to Intel NICs which connect to the same
switch. Locally, this unsynchronized simulation again yields
a throughput of 4.4 Gbps, and a latency of 71 µs. Next we dis-
tribute the simulation by running one pair of Qemu and NIC
on a second server and proxying the Ethernet connection to
the switch running locally. With the sockets proxy the latency
increases to 305 µs and throughput remains constant, and with
RDMA both remain constant. Next we measure simulation
time for the same configuration but with QEMU timing and
gem5, and find that simulation time does not change with
either proxy. The SimBricks proxies are no bottleneck for
synchronized simulations.

11

0

500

1000

1500

2000

2 8 16 32

Si
m

ul
at

io
n

Ti
m

e
[M

in
.]

Number of Simulated Hosts

dist-gem5
SimBricks

-27%
-47%

-58%

-74%

Fig. 6: dist-gem5 vs. SimBricks.

0

50

100

150

200

5 10 15 20

Si
m

ul
at

io
n

Ti
m

e
[M

in
.]

Number of Simulated Hosts

Fig. 7: SimBricks local scalability.

0

200

400

600

800

1000

0 200 400 600 800 1000

Si
m

ul
at

io
n

Ti
m

e
[M

in
.]

Number of Simulated Hosts

gem5
QEMU-timing

Fig. 8: Distributed memcached.

0

100

200

300

400

500

600

10 50 100 500 1000

Si
m

ul
at

io
n

Ti
m

e
[M

in
.]

PCIe latency [ns]

Fig. 9: Sensitivity to link latency.

0
10
20
30
40
50
60
70
80
90

0 20 40 60 80 100 120

L
at

en
cy

[u
s]

Throughput [Krequest/sec]

End-host Sequencer
Switch Sequencer

Fig. 10: NOPaxos in SimBricks with ns-3 switch se-
quencer and sequencer on a simulated host.

Fig. 11: Large scale sim-
ulation configuration

Large-scale memcache cluster. To evaluate scalability to
realistic data center systems, we next run multiple distributed
simulations ranging from 40 to 1000 simulated hosts, on up to
26 physical servers. We run these simulations on Amazon ec2
c5.metal instances, with 96 hyperthreads each, and 20 Gbps
network connectivity in a single proximity placement group.
We structure the simulation with a varying number of racks
of 40 hosts with Intel NICs and a top of rack (ToR) switch
each, that then connect to a single core switch, as shown
in Fig. 11. When distributing the core switch gets assigned
to a dedicated server, and each rack is assigned a dedicated
server. A separate sockets proxy pair (ec2 does not have
RDMA support) connects each ToR to the core switch. As
the workload, we run memcached on half of all hosts in each
rack, and the memaslap client on the other half. Each client
randomly connects to the 20 servers on the same rack, and to
20 random servers in other racks. The experiment runs for 10
(simulated) seconds.

Fig. 8 shows the measured simulation time as we vary the
number of simulated hosts by adding racks. As we increase
from one rack and 40 hosts to 25 racks and 1000 hosts, the
simulation time with gem5 hosts increases by 13.8% from
15.5 h, to 17.6 h. With QEMU-timing hosts, simulation time
increases from 2.2 h to 5.6 h by 2.5×. With profiling and
instrumentation we found that this is a "straggler" problem
to do with QEMU’s of dynamic binary translation. When a

QEMU instance misses in its code cache and has to recompile
a block, the instance sometimes blocks for a while. While
rare, at scale these occurrences are more frequent and because
of the synchronization can slow down other hosts. But even
then QEMU simulation time remains well below gem5. We
conclude that SimBricks scales to simulate systems with 100s
of hosts.

6.7 Use-Case: In-Network Processing

Leveraging programmable switches for application acceler-
ation is another use-case that requires end-to-end measure-
ments. Much of this work relies on switch features that are
not yet available in off-the-shelf hardware, but can be easily
implemented in simulation. We use Network-Ordered Paxos
(NOPaxos) [27] to demonstrate that SimBricks can serve as
a virtual testbed for these systems too. NOPaxos introduces
a new network-level primitive, the ordered unreliable multi-
cast (OUM), which requires a single sequencer device in the
network. The ideal place to implement the sequencer is in a
programmable network switch. But as the required hardware
was not yet available, the authors relied on emulation on a
network processor or implementation on a network end-host.
We implement switch support for OUM in ns-3 and combine
this with gem5 and the Intel NIC to evaluate NOPaxos. Inside
the simulation we run the unmodified open source NOPaxos

12

code.

Performance evaluation with ns-3. In Fig. 10, we show
throughput-latency curves for two configurations, with the
switch sequencer and with the end-host-sequencer (included
in the NOPaxos source). We compare this to figure 6 in the
NOPaxos paper, where NOPaxos achieves a latency of 110 µs,
while the end-host sequencer has latency about 35% higher
and both systems achieve the same throughput of 230 K/s.
In SimBricks we find a lower baseline latency of 32 µs and
34% higher for the end-host sequencer. This is expected
as the authors used a slower network processor to emulate
functionality. Both systems saturate at the same throughput of
130 K/s. The lower throughput is because we are measuring
on a single-core host, where application and packet processing
run on the same core. We confirmed this in a physical testbed
by disabling all but one core, and measured a throughput
within 10%. We conclude that SimBricks can evaluate in-
network processing systems.

Testing P4 implementation on Tofino. Now that P4
switches are readily available, the NOPaxos authors have
implemented OUM in P4. We have obtained the implementa-
tion from the authors, and deploy it in the Tofino simulator.
In combination with QEMU-kvm and the Intel NIC we ver-
ify that we can run the full unmodified NOPaxos from the
physical testbed in SimBricks. As the Tofino simulator does
not support synchronization we cannot use it for performance
measurements.

6.8 Use-Case: NIC Hardware Architecture

We have already demonstrated that both the simulation of the
unmodified Corundum RTL and our behavioral model support
integration into end-to-end systems with unmodified drivers.
Next, we show that SimBricks simulations can provide in-
sights that are challenging to obtain from physical testbeds.
The original Corundum evaluation shows that, especially for
1500B MTU, Corundum achieves significantly throughput
than the ConnectX-5 NIC they compare to. While develop-
ing our Corundum simulators, we found a likely reason for
this: unlike other NICs, Corundum relies on reading the head
index registers of receive descriptor queues to identify new
entries. For most NICs drivers instead directly poll descrip-
tors in memory. This incurs overhead as MMIO reads stall the
processor until the device returns a result, while with DDIO
descriptor reads typically hit in the L3 cache. For CPU-bound
workloads this can significantly degrade performance.

Leveraging simulation visibility & flexibility. We ob-
served this behavior from inspecting detailed simulator logs
to debug high latencies we observed. For synchronized sim-
ulations, logging can be enabled without affecting system
behavior. We leveraged this to log detailed PCI activity, NIC

activity, and CPU activity, and combined those into an end-to-
end view of the latency. We further confirm this hypothesis by
doubling the simulated PCIe latency to 1 µs in gem5 with the
corundum behavioral model and the Intel behavioral model.
When PCIe latency doubles, Corundum throughput reduces
by 21.2%, while the Intel NIC throughput remains consistent.
Simulators have two key advantages here, visibility and the
flexibility to change key parameters that are fixed in physical
systems.

7 Discussion

Going forward we see three challenges for SimBricks: reduc-
ing validation effort, efficiently simulating multi-core hosts,
and moving beyond our current focus of networking.

7.1 Validation

Simulations are only useful for system performance evalua-
tion if they produce meaningful results representative of an
equivalent physical system. To obtain meaningful results,
users have to validate the combination of simulators and
configuration parameters against physical testbeds. Initial
validation effort creates a hurdle for using simulation, and
when simulators or configuration parameters are modified,
the complete simulation needs to be re-validated. This is
further complicated when a comparable physical testbed is
not available.

Modular validation. While SimBricks cannot avoid the
need for validation, we argue that our approach reduces vali-
dation effort through modularity. Instead of validating each
combination of simulators, components can be validated indi-
vidually and then composed. As SimBricks ensures correct
synchronization, composition does not affect accuracy of
individual components, as long as the interfaces have also
been validated. This enables users to combine previously
validated component configurations into a full system. And
when changing a component simulator, users only need to
re-validate that component.

Repository of validated configurations. We propose a
public repository of validated component simulator configu-
rations to simplify re-use. This allows users to find configura-
tions to start with, and contribute their own validated configu-
rations, both reducing the effort for building simulations and
for validating them. Ensuring correctness and validity of such
configurations over time is a challenge. We are planning to
address this in an automated continuous-integration system,
periodically re-running configurations, recording the results,
and making the history of results available.

13

7.2 Multi-Core Hosts
We limit our evaluation to single-core hosts for a pragmatic
reason: for gem5 and QEMU with synchronization, simula-
tion time increases super-linearly with the number of simu-
lated cores, as both simulate multi-cores sequentially. The
scalable X86 simulators we are aware of [17, 33] only simu-
late applications and do not include an operating system and
I/O devices.

Scalable multi-core simulation. For scalable multi-core
simulation we envision applying our techniques inside the
boundaries of a single machine. Today’s multi-cores are fun-
damentally distributed systems [7] with cache interconnects
acting as the network. Cache interconnects incur latencies
in the range of what we have already evaluated (§6.3). We
thus believe our techniques could be applied to simulating
multi-cores with greater parallelism and reduced simulation
time.

7.3 Beyond Networking
While we evaluate SimBricks for network systems, our design
is generally applicable to other types of systems. For example,
integration of PCIe attached accelerators does not require
changes to SimBricks, as our PCIe protocol is not specific to
networking. The SimBricks architecture can also be easily
extended with additional components or interfaces, such as
CXL [14].

A natural first extension of SimBricks we envision is to
include simulators for accelerators, which are also attracting
growing interest in the systems and networking community.
Especially for ASIC accelerator designs, such as Google’s
TPU [21], simulation is often the only way to evaluate these
systems. As these accelerators typically form parts of larger
distributed systems, our approach that enables end-to-end
evaluation is essential. We also expect the emergence of fur-
ther use-cases as computer architects and systems researcher
delve deeper into the realm of specialized hardware.

8 Related Work

Parallel Simulation. dist-gem5 [37] and pd-gem5 [1] con-
nect multiple gem5 instances to enable simulation of dis-
tributed systems and use global barriers for synchronization.
Graphite [33] also parallelizes a multi-core simulation across
cores and machines, but uses approximate synchronization
where causality are possible. Similar to gem5, Simics [31]
also supports full system simulation and runs unmodified oper-
ating systems and applications, and multiple Simics processes
can be connected to simulate networked systems. SimBricks
connects multiple different simulators together using fixed
interfaces, and synchronizes them accurately with a synchro-
nization protocol that leverages the simulation structure.

Co-Simulation of Multiple Simulators. gem5 supports
the integration of systemC code [32] to implement hardware
models, by linking them into the gem5 binary and embedding
the systemC event loop with the gem5 event loop. SimBricks
instead aims to interconnect multiple heterogeneous simula-
tors with potentially completely different simulation models.
The Structural Simulation Toolkit (SST) [43] is a modular sim-
ulation framework for HPC clusters, uses a parallel discrete
event simulator as the core, and defines common interfaces to
link in various component simulators. Unlike SimBricks, SST
requires deep integration of simulators into one simulation
loop resulting in integration challenges. SST does also not
define fixed component interfaces for specific components,
instead compatibility is up to individual simulators.

Evaluating network systems in simulation. Simulations
and emulations have been used by past systems to facilitate
end-host networking research. SINIC [11] is a NIC design
that leverages M5 [10] to perform full-system simulation run-
ning network workloads. Scale-Out NUMA [38] uses the
Flexus [50] full-system simulator to evaluate their remote
memory controller design in a distributed memory system.
NeBuLa [47] similarly uses Flexus to simulate their new NIC
and memory architecture design targeting RPC systems. In-
stead of ad-hoc simulations tied to a particular simulator, Sim-
Bricks enables component simulators that can be combined
with different host and network simulators.

9 Conclusion

End-to-end simulation offer an alternative for rigorous evalua-
tion when a physical testbed is not available. With SimBricks,
we have presented a novel modular simulation framework tar-
geted at end-to-end evaluation of network systems by combin-
ing multiple tried-and-true simulators for system components.
SimBricks can replicate key findings from a broad range of
prior work, including congestion control, in-network com-
pute, and NIC hardware architecture. Moreover, SimBricks
simulations are portable and reproducible. As we increas-
ingly to look to hardware for performance improvements, we
believe that end-to-end simulations are an essential tool for
systems research.

Acknowledgments

We would like to thank the anonymous reviewers for their
comments and feedback so far. We also thank Jeff Mogul, Pe-
ter Druschel, Simon Peter, Trevor E. Carlson, Aastha Mehta,
and Katie Lim, for their input on early drafts of this paper.

14

References

[1] Mohammad Alian, Daehoon Kim, and Nam Sung Kim.
Pd-Gem5: Simulation infrastructure for parallel/dis-
tributed computer systems. IEEE Computer Architec-
ture Letters, 15(1):41–44, January 2016.

[2] Mohammad Alian, Yifan Yuan, Jie Zhang, Ren Wang,
Myoungsoo Jung, and Nam Sung Kim. Data direct i/o
characterization for future i/o system exploration. In
2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 160–
169, 2020.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In 2010 ACM SIGCOMM Conference
on Data Communication, SIGCOMM, 2010.

[4] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed NICs. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI,
2020.

[5] Barefoot Networks. Barefoot Tofino.
https://barefootnetworks.com/products/
product-brief-tofino/.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The Multikernel: A new OS architecture for scalable
multicore systems. In 22nd ACM Symposium on Oper-
ating Systems Principles, SOSP, 2009.

[7] Andrew Baumann, Simon Peter, Adrian Schüpbach,
Akhilesh Singhania, Timothy Roscoe, Paul Barham, and
Rebecca Isaacs. Your computer is already a distributed
system. why isn’t your OS? In 12th Workshop on Hot
Topics in Operating Systems, HOTOS, 2009.

[8] Brian N. Bershad, Thomas E. Anderson, Edward D.
Lazowska, and Henry M. Levy. User-level interpro-
cess communication for shared memory multiprocessors.
ACM Transactions on Computer Systems, 9(2):175–198,
May 1991.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The Gem5 simulator. SIGARCH Computer Architecture
News, 39(2):1–7, August 2011.

[10] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu,
Kevin T. Lim, Ali G. Saidi, and Steven K. Reinhardt.
The M5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52–60, July 2006.

[11] Nathan L. Binkert, Ali G. Saidi, and Steven K. Rein-
hardt. Integrated network interfaces for high-bandwidth
TCP/IP. In 12th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS, 2006.

[12] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In 2013 ACM SIGCOMM Conference on Data
Communication, SIGCOMM, 2013.

[13] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
Ariel Orda, and Tom Edsall. dRMT: Disaggregated pro-
grammable switching. In 2017 ACM SIGCOMM Con-
ference on Data Communication, SIGCOMM, 2017.

[14] CXL Consortium. Compute express link
(CXL). https://www.computeexpresslink.org/
spec-landing, October 2020. Revision 2.0.

[15] Alex Forencich, Alex C. Snoeren, George Porter, and
George Papen. Corundum github repository. https:
//github.com/corundum/corundum.

[16] Alex Forencich, Alex C. Snoeren, George Porter, and
George Papen. Corundum: An open-source 100-Gbps
NIC. In 28th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines,
FCCM, 2020.

[17] Yaosheng Fu and David Wentzlaff. PriME: A parallel
and distributed simulator for thousand-core chips. In
2014 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, 2014.

[18] Intel. Intel P4 Studio. https://www.intel.
com/content/www/us/en/products/network-io/
programmable-ethernet-switch/p4-suite/
p4-studio.html.

[19] Intel Corporation. Intel Ethernet controller X710/
XXV710/XL710 datasheet. https://cdrdv2.intel.
com/v1/dl/getContent/332464, October 2020. Re-
vision 3.7.

[20] Intel data plane development kit. http://www.dpdk.
org/.

15

https://barefootnetworks.com/products/product-brief-tofino/
https://barefootnetworks.com/products/product-brief-tofino/
https://www.computeexpresslink.org/spec-landing
https://www.computeexpresslink.org/spec-landing
https://github.com/corundum/corundum
https://github.com/corundum/corundum
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://cdrdv2.intel.com/v1/dl/getContent/332464
https://cdrdv2.intel.com/v1/dl/getContent/332464
http://www.dpdk.org/
http://www.dpdk.org/

[21] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter perfor-
mance analysis of a tensor processing unit. In 44th
Annual International Symposium on Computer Architec-
ture, ISCA, 2017.

[22] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pember-
ton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy
Katz, Jonathan Bachrach, and Krste Asanović. FireSim:
FPGA-accelerated cycle-exact scale-out system simula-
tion in the public cloud. In 45th Annual International
Symposium on Computer Architecture, ISCA, 2018.

[23] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with FlexNIC. In 21st
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS, 2016.

[24] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP acceleration as an OS ser-
vice. In 14th ACM European Conference on Computer
Systems, EuroSys, 2019.

[25] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. In 2020 ACM SIGCOMM Conference on
Data Communication, SIGCOMM, 2020.

[26] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, Shanghai, China, 2017. Association for
Computing Machinery.

[27] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just say NO to paxos
overhead: Replacing consensus with network ordering.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI, 2016.

[28] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A high-
performance programmable NIC for multi-tenant net-
works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI, 2020.

[29] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. Incbricks: Toward
in-network computation with an in-network cache. In
22nd International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS, 2017.

[30] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez,
and Michael Bedford Taylor. Asic clouds: Specializing
the datacenter. In 43rd Annual International Symposium
on Computer Architecture, ISCA, 2016.

[31] Peter S Magnusson, Magnus Christensson, Jesper Eskil-
son, Daniel Forsgren, Gustav Hallberg, Johan Hogberg,
Fredrik Larsson, Andreas Moestedt, and Bengt Werner.
Simics: A full system simulation platform. IEEE Com-
puter, 35(2):50–58, August 2002.

[32] Christian Menard, Jeronimo Castrillon, Matthias Jung,
and Norbert Wehn. System simulation with gem5
and SystemC: The keystone for full interoperability.
In 2017 International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation,
SAMOS, 2017.

[33] Jason E. Miller, Harshad Kasture, George Kurian,
Charles Gruenwald, Nathan Beckmann, Christopher
Celio, Jonathan Eastep, and Anant Agarwal. Graphite:
A distributed parallel simulator for multicores. In 16th
IEEE International Symposium on High-Performance
Computer Architecture, HPCA, 2010.

[34] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-based congestion control for the
datacenter. In 2015 ACM SIGCOMM Conference on
Data Communication, SIGCOMM, 2015.

16

[35] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for RDMA.
In 2018 ACM SIGCOMM Conference on Data Commu-
nication, SIGCOMM, 2018.

[36] ModelSim ASIC and FPGA design – Mentor Graph-
ics. https://www.mentor.com/products/fv/
modelsim/.

[37] Alian Mohammad, Umur Darbaz, Gabor Dozsa,
Stephan Diestelhorst, Daehoon Kim, and Nam Sung
Kim. dist-gem5: Distributed simulation of computer
clusters. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS,
2017.

[38] Stanko Novakovic, Alexandros Daglis, Edouard
Bugnion, Babak Falsafi, and Boris Grot. Scale-out
NUMA. In 19th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS, 2014.

[39] The network simulator - ns-2. https://www.isi.edu/
nsnam/ns/.

[40] ns-3 | a discrete-event network simulator for internet
systems. https://www.nsnam.org/.

[41] QEMU – the FAST! processor emulator. https://
www.qemu.org/.

[42] Steven K Reinhardt, Mark D Hill, James R Larus,
Alvin R Lebeck, James C Lewis, and David A Wood.
The Wisconsin Wind Tunnel: virtual prototyping of
parallel computers. In 1993 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of
Computer Science, SIGMETRICS, 1993.

[43] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,
C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. Cooper-Balis, and B. Jacob. The struc-
tural simulation toolkit. ACM SIGMETRICS Perfor-
mance Evaluation Review, 38(4):37–42, March 2011.

[44] Naveen Kr. Sharma, Antoine Kaufmann, Thomas An-
derson, Arvind Krishnamurthy, Jacob Nelson, and Si-
mon Peter. Evaluating the power of flexible packet
processing for network resource allocation. In 14th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI, 2017.

[45] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing on
reconfigurable switches. In 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI,
2018.

[46] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In 2016 ACM SIGCOMM Con-
ference on Data Communication, SIGCOMM, 2016.

[47] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Viren-
dra Marathe, Dionisios Pnevmatikatos, and Alexandros
Daglis. The NeBuLa RPC-optimized architecture. In
47th Annual International Symposium on Computer Ar-
chitecture, ISCA, 2020.

[48] András Varga and Rudolf Hornig. An overview of the
OMNeT++ simulation environment. In 1st Interna-
tional Conference on Simulation Tools and Techniques
for Communications, Networks and Systems & Work-
shops, Simutools, 2008.

[49] Verilator – the fastest verilog HDL simulator. https:
//www.veripool.org/wiki/verilator.

[50] Thomas F Wenisch, Roland E Wunderlich, Michael Fer-
dman, Anastassia Ailamaki, Babak Falsafi, and James C
Hoe. SimFlex: statistical sampling of computer system
simulation. IEEE Micro, 26(4):18–31, August 2006.

[51] Xilinx. Vivado simulator. https://www.xilinx.
com/products/design-tools/vivado/simulator.
html.

17

https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://www.isi.edu/nsnam/ns/
https://www.isi.edu/nsnam/ns/
https://www.nsnam.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://www.xilinx.com/products/design-tools/vivado/simulator.html
https://www.xilinx.com/products/design-tools/vivado/simulator.html
https://www.xilinx.com/products/design-tools/vivado/simulator.html

A Appendix

A.1 Modular Simulation Orchestration

Finally, an operational challenge arises for running simula-
tions with SimBricks. Because we design SimBricks without
any centralized control, a simulation consists entirely of in-
terconnected component simulators. Thus to run a complete
end-to-end simulation, a user has to start each individual
component simulator, while providing unique paths for the
Unix sockets and shared memory regions for each channel.
While this is manageable with very small simulations, the
complexity rapidly grows with simulation size, along with
the additional channels of cleanup, collecting simulation logs,
and monitoring for crashes. An additional challenge, espe-
cially when running multiple simulations in parallel, is that
performance drastically degrades when overcommitting cores
or memory. SimBricks addresses both challenges with an
orchestration framework for assembling, running, and, if nec-
essary, scheduling simulations.

from s i m b r i c k s import *
f o r r a t e in [1 0 , 100 , 200 , 500 , 1 0 0 0] :

e = Exper imen t (’ udp − ’ + s t r (r a t e))
n e t = SwitchBM (e)

s = Gem5Host (e , ’ s e r v e r ’)
s . n i c = I40eNIC (e)
s . n o d e _ c o n f i g = I40eLinuxNode ()
s . n o d e _ c o n f i g . i p = ’ 1 0 . 0 . 0 . 1 ’
s . n o d e _ c o n f i g . app = Ipe r fUDPServe r ()

c = Gem5Host (e , ’ c l i e n t ’)
c . n i c = I40eNIC (e)
c . n o d e _ c o n f i g = I40eLinuxNode ()
c . n o d e _ c o n f i g . i p = ’ 1 0 . 0 . 0 . 2 ’
c . n o d e _ c o n f i g . app = I p e r f U D P C l i e n t ()
c . n o d e _ c o n f i g . app . s e r v e r = ’ 1 0 . 0 . 0 . 1 ’
c . n o d e _ c o n f i g . app . r a t e = r a t e

e x p e r i m e n t s . append (e)

Fig. 12: An example of a simulation configuration in the
SimBricks orchestration framework.

Similar to other simulators with modular configuration we
also implement our orchestration in a scripting language. The
SimBricks orchestration framework is designed as a collec-
tion of python modules, and simulation experiments can be
assembled by relying on arbitrary python features. In addition
to the previously mentioned tasks, we also integrate function-
ality to automatically generate customized disk images for
host simulators, e.g. with different IP address configurations
or to run applications with separate parameters in individual
hosts. In Fig. 12 we show an example script.

rxQueue, rxLen← MAPQUEUE(rx)
rxHead← 0
txQueue, txLen← MAPQUEUE(tx)
txTail← 0

procedure POLLMSG
msg← &rxQueue[rxHead]
while msg->owner 6= CONSUMER do

SPIN()
READMEMORYBARRIER()
rxHead← (rxHead + 1) % rxLen
return msg

procedure RELEASEMSG(msg)
msg->owner← PRODUCER

procedure ALLOCMSG
msg← &txQueue[txTail]
while msg->owner 6= PRODUCER do

SPIN()
txTail← (txTail + 1) % txLen
return msg

procedure ENQUEUEMSG(msg)
WRITEMEMORYBARRIER()
msg->owner← CONSUMER

Fig. 13: SimBricks multi-core shared memory message pass-
ing queue. READMEMORYBARRIER and WRITEMEMORY-
BARRIER are compiler barriers to prevent re-ordering during
optimization.

A.2 Inter-Simulator Message Transport

Fig. 13 shows pseudo-code for the SimBricks queue imple-
mentation. To enable zero-copy implementation in simulators
producer and consumer each have separate functions for get-
ting access to an available queue slot, POLLMSG for the con-
sumer and ALLOCMSG for the producer, and then releasing
in when processing is complete, RELEASEMSG for the con-
sumer and ENQUEUEMSG for the producer. The consumer
uses its local head pointer to determine the slot the next mes-
sage is or will be in and then checks the type and ownership
byte, re-trying if the slot is marked by as owned by the pro-
ducer. After the consumer completes processing a message
it marks the message as owned by the consumer. Symmetri-
cally, the producer uses its local tail pointer to determine the
slot for the next message, if necessary waits until the slot is
marked as producer-owned, and resets the ownership bit to
consumer after it places the message in the slot. Compiler
memory barriers are necessary to prevent the compiler from
reordering memory accesses across accesses to the ownership
bit, but with the strong X86 memory model no CPU memory
barriers are necessary.

18

A.2.1 Coherence Behavior

To understand the performance properties, consider three key
cases, the queue is empty, the queue is full, and the queue
is neither empty nor full. When the queue is empty, the
consumer will spin on the last cache line, which will be in the
local L1 after the first access, and only incurs an additional
when the producer updates that cache line. When the queue
is full, the producer similarly waits for the next slot to free
up with the same coherence behavior. Finally, when neither
is the case, the consumer immediately finds a message when
polling and incurs a necessary miss that will fetch the message.
Further, the CPU hardware prefetcher will likely already fetch
the next message as they are laid out sequentially in memory,
thereby avoiding a demand miss (but of course incurring the
same coherence traffic). The producer does have to read the
ownership flag incurring a miss, but also immediately finds
the empty slot, and the same prefetcher behavior applies.

A.3 Implementation effort for SimBricks

SimBricks Component Lines
common
libraries

message transport library 766
NIC behavioral model library 484

host
simulators

gem5 integration 1146
QEMU integration 724

NIC
simulation

Corundum Verilator 1394
i40e model 3055

Corundum model 979
network
simulation

ns-3 integration 1303
Ethernet switch model 165

runtime runtime orchestration 1237
proxy distributed simulation proxy 2117

Tab. 2: Lines of code for the various components in Sim-
Bricks, excluding blank lines and comments.

A.4 Performance for SimBricks Simulator
Configurations

Tab. 3

Simulators Sim.
Host NIC Net T’put Latency Time

QK IB SW 4.37 G 71 µs 00:00:32
QK IB NS 409 M 141 µs 00:00:32
QK IB TO 1.92 M 6.6 ms 00:00:33
QK CB SW 1.84 G 211 µs 00:00:29
QK CB NS 429 M 294 µs 00:00:30
QK CB TO 2.18 M 6.7 ms 00:00:33
QK CV SW 81 M 3.4 ms 00:00:31
QK CV NS 82 M 3.4 ms 00:00:32
QK CV TO 2.31 M 23 ms 00:00:33

QT IB SW 8.88 G 17 µs 02:03:17
QT IB NS 8.87 G 17 µs 02:14:43
QT CB SW 6.39 G 25 µs 02:01:36
QT CB NS 6.41 G 25 µs 02:02:41
QT CV SW 6.27 G 33 µs 04:23:07
QT CV NS 6.52 G 33 µs 04:37:17
G5 IB SW 9.05 G 20 µs 18:18:49
G5 IB NS 9.02 G 20 µs 17:01:53
G5 CB SW 3.01 G 33 µs 11:50:48
G5 CB NS 3.00 G 33 µs 12:09:29
G5 CV SW 6.69 G 37 µs 11:57:34

Tab. 3: Complete cross-product combinations of our compo-
nent simulators. Host simulators: QK is QEMU with KVM
(functional simulation), QT is QEMU with timing, and G5
is gem5. NIC Simulators: IB is the Intel behavioral model,
CB the Corundum behavioral model, and CV the Corundum
verilator model. Network Simulators: SW is the switch be-
havioral model, NS is ns-3.

19

	1 Introduction
	2 Background and Motivation
	2.1 Simulations — Virtual Testbeds
	2.2 Simulations for Systems Research

	3 Modular Simulation
	3.1 Design Goals
	3.2 Technical challenges
	3.3 Design principles

	4 Design
	4.1 Component Simulator Interfaces
	4.1.1 PCIe: Host-NIC interface.
	4.1.2 Ethernet: NIC-network interface.

	4.2 Simulator Synchronization Protocol
	4.2.1 Prior synchronization mechanisms do not scale
	4.2.2 Scalable synchronization in SimBricks

	4.3 Inter-Simulator Message Transport
	4.4 Scaling Up by Decomposing Networks
	4.5 Scaling Out with Proxies

	5 Implementation
	5.1 Core SimBricks Components
	5.2 Host Simulator
	5.3 NIC Simulations
	5.4 Network Simulations

	6 Evaluation
	6.1 Experimental Setup
	6.2 Modular Simulation
	6.3 SimBricks Synchronization
	6.4 Decomposition for Performance
	6.5 Local Scalability
	6.6 Distributed Simulations
	6.7 Use-Case: In-Network Processing
	6.8 Use-Case: NIC Hardware Architecture

	7 Discussion
	7.1 Validation
	7.2 Multi-Core Hosts
	7.3 Beyond Networking

	8 Related Work
	9 Conclusion
	A Appendix
	A.1 Modular Simulation Orchestration
	A.2 Inter-Simulator Message Transport
	A.2.1 Coherence Behavior

	A.3 Implementation effort for SimBricks
	A.4 Performance for SimBricks Simulator Configurations

