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The increasing prevalence of data breaches necessitates robust data protection measures in computational
tasks. Secure computation outsourcing (SCO) presents a viable solution by safeguarding the confidentiality of
inputs and outputs in data processing without disclosure. Nonetheless, this approach assumes the existence of
a trustworthy coordinator to orchestrate and oversee the process, typically implying that data owners must
fulfill this role themselves. In this paper, we consider secure delegated data processing (SDDP), an expanded
data processing scenario wherein data owners simply delegate their data to SDDP providers for subsequent
value mining or other downstream applications, eliminating the necessary involvement of data owners
or trusted entities to dive into data processing deeply. However, general-purpose SDDP poses significant
challenges in permitting the discretionary execution of computational tasks by SDDP providers on sensitive
data while ensuring confidentiality. Existing approaches are insufficient to support SDDP in either efficiency
or universality. To tackle this issue, we propose TGCB, a TEE-based General-purpose Computational Backend,
designed to endow general-purpose computation with SDDP capabilities from an engineering perspective,
powered by TEE-based code integrity and data confidentiality. Central to TGCB is the Encryption Programming
Language (EPL) that defines computational tasks in SDDP. Specifically, SDDP providers can express arbitrary
computable functions as EPL scripts, processed by TGCB’s interfaces, securely interpreted and executed in TEE,
ensuring data confidentiality throughout the process. As a universal computational backend, TGCB extensively
bolsters data security in existing general-purpose computational tasks, allowing data owners to leverage SDDP
without privacy concerns.
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1 INTRODUCTION
In recent decades, data science has demonstrated an immense capacity to uncover valuable insights
from data [18, 26]. This data boom, unfortunately, has been accompanied by an increase in sensitive
data leakage, resulting in catastrophic consequences such as massive fraud [78], significant asset
loss [21], and even fatal public security threats [48]. Due to the growing concern over data breaches,
individuals are hesitant to hand over their personal data [39, 94], enterprises are reluctant to share
data with partners [74], and governments are enacting strict regulations [35, 62, 85] to prevent data
breaches and misuse. These issues paint a grim picture of the practicality of data processing.
Preserving data confidentiality when data undergoes computation has long been an active

research topic. In this vision of use-without-disclosure, data owners can strategically obfuscate
their data to preserve their utility for computational tasks while not leaking sensitive input,
intermediate calculations, or final results, even in the presence of adversaries. Crucially, only
the data owner can de-obfuscate the corresponding output to obtain meaningful results. The
standard approach to achieving such a vision is based on homomorphic encryption (HE) [69]. HE
enables algebraic operations directly on encrypted data. In particular, fully homomorphic encryption
(FHE) [32] supports the computations of arbitrary functions by representing them as arithmetic
circuits. Existing FHE solutions, however, are impractical due to their prohibitive computational
and storage overheads [17, 24, 45].

CoordinatorData Owner Executor
Trusted Union
Client of Secure Computation Outsourcing

Provider of Secure Delegated Data Processing
Untrusted Union

Fig. 1. Differences between trusted roles in SCO and SDDP.

To resolve this conflict between strict security measures and practicality, a class of solutions
known as Secure Computation Outsourcing [75] (SCO) has emerged. SCO encompasses various
techniques, such as random transformation [87], garbled circuits [97], partial HE [100], secret
sharing [5], and their combinations [15, 55]. To provide a clearer description of the roles involved
in data processing, we illustrate a three-party model in Fig. 1: (a) A Data Owner provides the data
for analysis and computation, with a vested interest in ensuring data security. (b) An Executor
carries out the actual computation on user data; the computation is typically done on allocatable
computational resources, e.g., a server, a computing cluster, or a cloud service; (c) A Coordinator
connects data owners and executors, managing the entire computational process, and handling all
tasks beyond pure computation. In SCO, a coordinator is responsible for formulating and driving
data processing tasks for private data, which plays a crucial role as it undertakes three primary
duties: (i) designing computational functions for specific data processing tasks that align with the
owner’s business objectives, such as extracting data value or supporting downstream applications;
(ii) selecting and deploying appropriate outsourcing protocols for designated data processing
tasks to ensure that sensitive information remains concealed from untrusted executors; and (iii)
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performing obfuscation on plaintext as a prerequisite based on the selected outsourcing solution.
Thus, SCO solutions are generally tailored to specific applications, and the corresponding data
obfuscation is dependent on the specific task. The key limitation of SCO lies in its reliance on the
coordinator, which necessitates the presence of a trusted entity deeply involved in data processing.
Typically, data owners themselves have to assume this role to mitigate potential risks.

However, in real-world scenarios, data owners may not have the capacity or inclination to be
involved in data processing tasks, making it challenging to fulfill the role of a coordinator. For
instance, a clinic requires a digital system to process medical records but may lack the expertise
to develop one in-house. Data owners act merely as the rights holders of data assets, seeking to
generate value through their data while ensuring confidentiality. Moreover, as data processing tasks
become more complex, data is often pipelined among disparate entities (e.g., sub-divisions, business
partners, and software vendors), who assume the role of coordinator by specifying computational
tasks. As these entities are not data owners, they must be assumed to be trusted entities, which
introduces significant risks as they may engage in betrayals or accidental errors that undermine
data security guarantees. These realities underscore the importance of removing the reliance on a
trusted coordinator.

Therefore, we explore secure delegated data processing (SDDP), which treats the coordinator
as an untrusted entity, i.e., the data owner no longer forms a trusted union with the coordinator.
Instead, the data owner simply delegates its data to an untrusted union of coordinator and executor,
i.e., the SDDP provider, for subsequent data mining or other downstream applications without
personal involvement, as shown in Fig. 1. The fundamental concept behind SDDP is to disentangle
the disclosure of data from its computational feasibility: the data owner only concerns the data
confidentiality and business objectives, and is incurious about detailed computational tasks con-
ducted by coordinators. In SDDP, data obfuscation is independent of computational tasks, and once
established, the entire data processing workflow, including transmission, storage, and computation,
is no longer susceptible to data breaches.

In this context, the “generality” of an SDDP framework refers to the level of discretion afforded to
SDDP providers in conducting computations on obfuscated inputs. Ideally, a general-purpose SDDP
allows SDDP providers to execute arbitrary computable functions on input data, without gaining
access to any related knowledge during the process. It should also be easily applied to existing
computational frameworks, thereby mitigating the risk of data breaches already encountered in
traditional computation applications. Moreover, sensitive applications previously unachievable due
to privacy concerns can now be performed with confidence. Regrettably, to our knowledge, current
theoretical tools are incapable of achieving this goal in practical engineering scenarios.
Recently, hardware-assisted approaches, particularly those leveraging the trusted execution

environment (TEE) [71], have emerged as promising solutions for SDDP. TEE relies on the protection
and attestation guarantees offered by hardware vendors to safely access plaintext data, and also,
executes conventional programs in a hardware-protected mode, placing few restrictions on how
tasks are expressed, which significantly improves its usability. Moreover, in comparison with
cryptographic methods, TEE achieves orders of magnitude improvement in computation and
storage efficiency. Unfortunately, TEE alone is not a panacea of general-purpose SDDP. That is,
the hardware only enforces untampered execution of the programs inside the TEE, but imposes
no semantics-level restrictions on the program. This means that the program itself is free to copy
sensitive plaintext protected by TEE to external memory or files. Consequently, data owners
must necessarily repose explicit trust in the program, i.e., the trusted code, to not violate data
confidentiality. Since this program is provided by the coordinator, data owners have to trust that
the coordinator will ensure the credibility of the program, i.e., computational task. Each program
has to be comprehensively reviewed and verified prior to its deployment for execution. Therefore,
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it remains the responsibility of a trusted union, on par with the SCO, posing a considerable gap
between the SDDP we desire.

In this paper, we present an innovative approach to shift trust of secure delegated computation
based on TEEs from data processing tasks to the interpreter, for a further stride towards general-
purpose SDDP. We propose TGCB, a TEE-based General-purpose Computational Backend, as
a cornerstone to back general-purpose computational tasks to manipulate ciphertexts without
impairing data confidentiality. The major contributions of this paper are summarized as follows:
• We present TGCB, a reliable and concise suite of trusted code to manage and manipulate sensitive
data in TEE. It serves as a computational backend that supports general-purpose data processing
and provides a long-running service with a uniform protocol, once its veracity is verified.

• We introduce the Encryption Programming Language (EPL) as the interface of the computational
backend. It is designed to represent arbitrary computable functions with ease. TGCB interprets
and executes EPL in TEE to guarantee data confidentiality, without trusting EPL scripts written
by coordinators.

• We illustrate a case study where we replace Spark’s computational backend with TGCB. This
allows existing applications for traditional data processing to be translated into EPL scripts and
applied directly to ciphertext, demonstrating the practicality from an engineering perspective.

• We conduct extensive experiments to show that TGCB exhibits superior performance and versa-
tility compared to kinds of secure computation approaches, making it a cost-effective solution
for ensuring data security. Compared to non-secure Python-based plaintext computation, the
associated performance costs with TGCB, ranging from 2x to 34x, are affordable for established
data confidentiality.

2 BACKGROUND AND KEY OBSERVATIONS
In this section, we discuss the intricate dynamics of the TEE. In Section 2.1, we explore how TEEs
ensure the integrity of the execution environment through features that include remote attestation
and execution isolation. We discuss the potential of TEEs for the computation of encrypted data
while preserving confidentiality in Section 2.2, and examine how secure computational primitives
can help in structuring computation in Section 2.3. Finally, in Section 2.4, we identify current
challenges, including issues associated with conditional branching and post-hoc auditing difficulties.

2.1 Trusted Execution Environment (TEE)
TEE is a hardware feature provided by processors to execute compliant programs with integrity
and confidentiality guarantees. Without loss of generality, when elaborating on the technical
details, we shall primarily focus on Intel Software Guard Extensions (SGX) [25], a widely adopted
and mature TEE implementation, throughout the paper. To execute applications in SGX, developers
are required to partition their programs into distinct segments of untrusted code and trusted code.
SGX ensures the security of the execution environment through two essential features: remote
attestation and execution isolation. Remote attestation verifies the integrity of the trusted code
being loaded on a remote untrusted server. Execution isolation ensures that trusted code is loaded
into a designated memory area, referred to as enclave page cache (EPC), while simultaneously
creating an enclave. The processor encrypts all data using a unique enclave key prior to writing
to the EPC and subsequently verifying the integrity of the data upon loading. Since the OS is
deemed untrusted, enclaves operate in user mode with trapping to kernel mode disabled. In
instances where system calls, such as thread synchronization and IO operations, are necessitated,
the corresponding logic can only be implemented as untrusted code outside the TEE. Program
execution switches between the untrusted code and the trusted code via ECalls/OCalls. Notably,
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Fig. 2. TEE-based ciphertext calculation workflow.

each time the execution exits the enclave, any intermediate data residing in the CPU is flushed out.
In summary, attestation secures the integrity of the trusted code upon being loaded, and isolation
ensures the integrity and confidentiality of data during runtime.

2.2 SCO based on TEE
Leveraging the above security guarantees, TEE can be employed as a tool to perform calculations on
ciphertext while preserving confidentiality in an SCO manner. The high-level concept is illustrated
in Fig. 2. Given the encrypted input data and the trusted code that implements the desired functions
from the trust union (SCO client), the executor initiates the process by creating an enclave within
the EPC and loading the trusted code into it. Next, to decrypt the input data, the enclave needs to
request the data key from the data owner, and the whole process is divided into four main steps.
1 The enclave requests the CPU to generate a description of the current enclave and sign it with
the CPU’s built-in key via the REPORT instruction. This “report” includes information about the
current execution environment and the digest of the trusted code loaded. The enclave then sends a
key request to the data owner accompanied by this report. 2 Upon receiving the request, the data
owner forwards the report to Intel SGX Attestation Service to verify whether it is generated by a
valid CPU. 3 Relying on the CPU’s signature of the report, the Attestation Service communicates
the verification result to the data owner. 4 The data owner decides whether to send the data key
to the enclave for decrypting/re-encrypting the data based on the conformity between the expected
trusted code and code digest included in the report. Once the enclave acquires the data key, the
procedure becomes quite straightforward: it decrypts the input, invokes the desired computable
function (which is part of the trusted code) on the plaintext, and re-encrypts the results using
the same key for the output. The behavior of the trusted code within the enclave is controlled
and ensured by code integrity. Consequently, it can be guaranteed that both the data key and the
decrypted data will be destroyed after use and not be passed outside EPC. Furthermore, the enclave
acts as a black box during execution for any party other than the authenticated CPU, thereby
satisfying the data confidentiality requirements.

2.3 SDDP based on Secure Delegated Primitives
To alleviate the issue of credibility dependence on the coordinator in scheduling computational
tasks, while still allowing for flexibility, a type of SDDP based on secure delegated primitives
(SDP) is explored. Specifically, SDP is designed based on a particular obfuscation framework to
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manipulate obfuscated data in order to achieve specific transformations. By employing a set of
SDPs, the coordinator can create the logical structure needed to implement the desired computation.
For instance, FHE can be seen as a framework that provides two SDPs, addition and multiplication.
Another example is a kind of secret sharing protocols [53], which allows non-colluding parties to
perform a sequence of computational primitives in a share-in-share-out manner, without needing
to merge them midway to necessarily expose the plaintext. Notably, SDP frameworks should ensure
the effectiveness of secure obfuscation regardless of the order and frequency of invocation, as well
as the de-obfuscation privilege of the data owner.
Specifically, TEE-based solutions rely on the recognition by the data owner of a particular

trusted code, which is deemed non-general and application-specific when it carries out a particular
computational task. Nevertheless, we can implement a set of primitives as a suite of trusted code
and provide them to the coordinator. Similar to FHE, primitives of addition and multiplication are
sufficient to construct arbitrary computable functions. Furthermore, based on TEE, we can obtain
any desired primitive straightforwardly, especially higher-level primitives (e.g., sort), making it
much more practical to conduct the desired function in TEE compared to frameworks with limited
SDP choices. Grounded on such an idea, some studies propose TEE-based SDDP solutions with
better practicality and generality. Among them, Opaque [102] is a representative one, which focuses
on SQL query processing in a secure delegated manner. In Opaque, a particular SQL query statement
is processed by a physical plan consisting of a number of plan tree nodes (a.k.a. operators). The
required operators can be implemented in the trusted code as SDPs, enabling most SQL queries
to be supported by a fixed trusted code binary. Once the data owner recognizes this binary, the
coordinator no longer needs to be trusted to initiate data processing tasks through SQL.

2.4 Current Challenges
We observe that frameworks based on predetermined sets of SDPs still present several challenges
to widespread adoption in SDDP.

2.4.1 Conditional Branching. The execution plan constructed based on SDPs to accomplish a
specific computable function must be data-independent, due to the executor’s inability to man-
age branching dependent on inscrutable intermediate results as conditions. Thus, computation
logic predicated on conditional branching necessitates a process of data-independent rewriting to
eliminate the presence of branches. This often entails traversing all branches and subsequently
merging them at their convergence to achieve equivalent outcomes [54]. Consider the clause “if c
then a else b” as an example. Given that the condition c is invisible to the coordinator that in-
vokes primitives, it has to rewrite the expression to “a*c+b*(1-c)” to establish a data-independent
equivalence, also known as predication [23]. This necessitates the execution of both branches
irrespective of the value of condition c, thereby doubling the computational complexity if we
assume equal costs for each branch. Even worse, “nested” if-else is possible, which will result in an
exponential increase in performance cost.

if-else is not the only example of conditional branching. In cases where a primitive’s output
serves as an index to access an element in an array, rewriting this logic can be costly and directly
proportional to the array’s length, which can be significant. Furthermore, if a variable-length array
is required, “data-independent” rewriting cannot be performed [38]. That is, not all implementations
can be rewritten in a “data-independent” manner, and in such cases, schemes based on a set of
primitives are not feasible.

As such, implementing computational logic through a primitive execution plan is not a straightfor-
ward process, particularly as conditional branches become more complex. Functions with intricate
conditional branches are often perceived as impractical to execute using SDPs, which necessitates
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the creation of new primitives designed explicitly for this purpose. For TEE-based approaches, we
have to integrate additional dedicated primitives into the trusted code, as opposed to relying on
off-the-shelf primitives, which leads to a brand new trusted code binary that needs to be reviewed
again and defeats the original intention of general-purpose SDDP.

2.4.2 Post-hoc Auditing. In practical implementation scenarios, the processing of sensitive data
often necessitates adherence to stringent compliance requirements, thus demanding the effective
preservation of evidence pertaining to the consumption of sensitive data for so-called “post-hoc
auditing”. As previously elucidated, the facilitation of general-purpose data processing on ciphertext
requires the provision of a predetermined, limited set of computational primitives, without imposing
restrictions on the order and frequency of the primitive invocation. Consequently, this engenders
considerable difficulty in controlling the computations conducted.

While a minimal set of primitives (e.g., addition and multiplication) may theoretically satisfy the
constituents of arbitrary computable functions, as explicated in Section 2.4.1, the determination
of practical computational capabilities for a given set of primitives remains elusive, due to the
dearth of theoretical instruments capable of demarcating the boundaries of feasible computations
that can be accomplished within an acceptable level of complexity. Thus, it is inconclusive which
computational tasks can be deemed viable.

Moreover, even with the ability to reliably document and trace the historical record of primitive
invocations, the low comprehensibility nature of these records poses a challenge to effective
auditing. Imagine auditors have to check the compliance of current computational logic (like using
certain attributes of underage individuals for joint analysis) based on circuits made up of addition
and multiplication gates, or sequences of basic instructions. Such a method is generally considered
unacceptable by auditing professionals.

Overall, SDP-based approaches are inadequate in addressing the exigencies of corporate compli-
ance, risk management, and regulatory stipulations, in terms of their poor support for post-auditing.

3 TGCB APPROACH
In this paper, we propose an approach to alleviate the burden on the data owner’s trust in the data
processing procedure, termed “trust shifting”. Our approach fundamentally changes the dynamics
in delegated computation; previously, the data owner had to trust that data processing programs
sufficiently maintained data confidentiality. However, we shift the trust to the interpreter, which
is accountable for executing the data processing programs. Our proposal enables reliable data
confidentiality for any acceptable programs, once trust in the interpreter for secure computation is
confirmed. This holds true even when potentially malicious programmers have written the code.

The advantages of our approach are manifold. Theoretically, by relocating trust to the program-
ming language interpreter, data processing confidentiality becomes independent of the computa-
tional logic, satisfying a general-purpose SDDP. In practice, trusted verification of the interpreter
relies on a finite code base, providing cost-effectiveness compared to the infinite computational logic
inherent in data processing. Once in place, this trust transfer mechanism endures over time. The
subsequent subsections outline our proposed TGCB, a TEE-based computational backend that offers
a truly general-purpose SDDP and is practical to handle real-world data processing applications.

3.1 Rationale and Tradeoffs
The establishment of “trust shifting” implies the existence of a programming language - EPL, the
interpretation of which is acknowledged by the data owner, ensuring that the confidentiality of
the data is not compromised when performing arbitrary scripts. So-called trust encompasses three
levels of trust: design, implementation, and execution, which are mutually constraining factors.
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To ensure data confidentiality when executing EPL programs, TGCB implements its core compu-
tation kernel with an EPL interpreter as the TEE’s trusted code. Such a kernel is responsible for
safeguarding data keys within the enclave and ensuring that sensitive data is not revealed outside
the TEE. When computing sensitive data, TGCB decrypts the input ciphertext using its stored data
keys, requesting the data owner if the key is not available. Additionally, TGCB also encrypts all data,
no matter intermediate or final results, prior to dumping them from the EPC.

As mentioned earlier, TEE only provides integrity guarantees, and the safety of the trusted code
itself needs to be ensured by the user. In other words, as with any other application designed for
TEE, the data owner should perform a trustworthiness review of the implementation of TGCB. It
must be acknowledged that although investing in reviewing the implementation of an interpreter is
a one-time effort, it has economic advantages compared to repeatedly reviewing each computational
task. However, the implementation of a language interpreter is typically more complex than a single
simple computational task, which poses practical challenges in transferring trust to the compiler.
Specifically, the language design and implementation of the EPL require a trade-off among the
factors of minimality, sufficiency, and stability.

• Minimality: In the context of TEE applications, a fundamental consideration is to minimize
the Trusted Computing Base (TCB) size, where the complexity of trusted code plays a crucial role.
Therefore, it is important to simplify the implementation of TGCB as much as possible. This approach
has two benefits: reducing the attack surface and minimizing the code review workload for the data
owner. To achieve this goal, we carefully select the supported functionalities integrated into the EPL
language design, which is explained further in Section 4.1. Additionally, in Section 5, we provide a
detailed explanation of the implementation details of an interpreter that operates within an enclave
and adheres to the EPL language design. This interpreter is designed to be concise, highly readable,
and self-contained, implemented using C++ without relying on third-party libraries.
• Sufficiency: The core idea of TGCB is to achieve a higher level - language - of secure delegated

execution compared to primitives, by leveraging the security guarantees provided by TEE, as
an answer to address the challenges mentioned in Section 2.4. In summary, TGCB serves as a
computational backend that accepts “descriptive documents” of the data processing tasks expressed
in the EPL, and performs the tasks while maintaining data confidentiality. EPL should be Turing-
complete, allowing the execution of arbitrary computable functions. Meanwhile, EPL scripts, which
function as descriptive documents, should be highly readable to facilitate function-level audits
instead of relying on lower-level forms, such as primitive sequences. In Section 4.1, we discuss
the design of the EPL language, ensuring Turing completeness and other necessary functionalities
for readability. Furthermore, in Section 6, we present a case study that applies TGCB to Spark,
demonstrating direct operations on encrypted data in existing Spark applications, thus confirming
its feasibility in enhancing the data security of real-world data processing.
• Stability: The driving force behind the pursuit of trust shifting is based on the economic

considerations arising from the prior review of TEE applications in delegated computation. This
review ensures the implementation of trusted code for TGCB, which, once completed, can persistently
serve the general computing of SDDP. This implies that TGCB, as an established trust foundation,
needs to remain stable and cannot be frequently updated or patched. Otherwise, the entire code
review process would have to start from scratch, undermining its original intention. To achieve this,
the design of TGCB mentioned earlier strives to balance simplicity and functionality, ensuring that
its implementation remains stable after a thorough examination. In Section 4.3, we also introduce
extensions as an optional feature of TGCB. Their existence is driven by deployment considerations,
allowing additional native functions to be flexibly plugged in when needed. However, this action
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does not compromise the integrity of the TGCB implementation that has undergone a review,
facilitating flexible deployment with a stable trusted code base.

3.2 Architecture Sketch
We first elaborate on the system architecture of TGCB, as shown in Fig. 3. TGCB loads ciphertext
into the EPC for decryption and then manipulates the data by executing EPL scripts that support
general-purpose computation. TGCB is designed as the trusted code for execution in TEE, and it
exposes several ECalls as external interfaces. These interfaces support the main functionalities,
including initialization, loading ciphertext into the EPC, receiving and executing EPL scripts, and
dumping and releasing ciphertext out of the EPC. The Blob Manager is responsible for managing
the sensitive data loaded into the EPC. When data is passed in as an encrypted byte array, it will
be decrypted and deserialized into objects by the decryptor and blob serializer, respectively, and
subsequently utilized as input for EPL script execution.

The EPL interpreter is a core component of TGCB, which parses and executes the EPL scripts in
TEE to carry out arbitrary computable functions on sensitive data. In this process, the computational
logic is described in EPL scripts, and the inputs and outputs are in the format of blobs. Besides, there
are three cases: 1-1, 1-N, and N-1, corresponding to transforming, splitting, and merging interfaces,
respectively. We shall present the implementation details of the EPL interpreter in Section 5.

The Extension Manager is tasked with administering TGCB extensions, which primarily comprise
two categories: functional extensions and auditorial extensions. The former enhances the functions
that may be invoked by EPL scripts, while the latter tailors the preconditions of EPL execution to
accommodate practical necessities (e.g., communicating with external trusted logging services).
With the synergy of these components, once TGCB’s implementation is verified, loaded into

the EPC as an enclave, and initialized properly, it provides a runtime at the granularity of script
execution that manipulates the ciphertext data in a configurable and controlled manner.

3.3 Threat Model
Following the concept of SDDP, TGCB ensures data confidentiality when the data owner delegates
their data to untrusted unions for data processing. Due to the code integrity guarantee provided by
TEE, malicious adversaries cannot effectively interfere with the security mechanism of TGCB.
We target a strong adversary, the malicious untrusted union with coordinator and executor, who
can collude with each other. In particular, the coordinator can initiate arbitrary non-predefined or
review-requiring data processing tasks, while the executor has privileged access to the computing
resources: it can make full use of the OS capability to disrupt, manipulate, or hijack the data
processing tasks that are running, and can also monitor/tamper with the content of hardware
resources, e.g., memory, disk, and network. However, the adversary cannot access enclaves created
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by TEE, i.e., data and execution inside an enclave are protected with respect to both confidentiality
and integrity. In this adversarial scenario, there are no assumptions of goodwill toward untrusted
unions, which is a more stringent condition compared to the typical honest-but-curious adversary
who merely observes states passively.

We emphasize that TGCB does not depend on the coordinator to be trusted for data processing.
This means that the programs used for data computation need not be concerned about being
harmful. The untrusted unions, i.e., SDDP providers, have the freedom to decide what computation
to performwithout the need for the data owner’s involvement. Moreover, in addition to safeguarding
against SDDP providers exposing data through “malicious services,” TGCB also encompasses the
detection capability against “passive services” (e.g., denial-of-service or false service), enabling
data owners to monitor actual computations performed on their encrypted data to ensure that data
processing aligns with their expectations.

We exclude TEE side-channel attacks [30], since these vulnerabilities are mostly implementation-
specific (e.g., SGX leaks memory access patterns). In the context of TEEs, side-channel attacks are
usually “passive”. Several related studies have proposed defense-enhancing techniques orthogonal
to our approach, e.g., building the memory layer of the EPL interpreter on an oblivious memory
model [72, 79, 92], in cases where the corresponding performance costs are worth. We also acknowl-
edge “active” side-channel attacks, as EPL scripts written by untrusted programmers can potentially
facilitate such attacks, encoding sensitive data through execution behaviors, such as time and
output size. Apparently, aided by the post-hoc auditing capability of TGCB, it is easy to detect the
execution behaviors of such EPL scripts with the intention of stealing data. However, TGCB still
suffers from limitations in that it currently lacks any effective preventive defense mechanisms,
bringing risks of data leakage. To alleviate this, a possible strategy is to add noise in TGCB, e.g., (i)
introduce uncertain latency when executing EPL statements, (ii) mix dummy into ciphertext before
it leaves TEEs, so that the signal-to-noise ratio of encoding the plaintext is lowered. Exploring the
possibility of establishing additional security assumptions with theoretical guarantees should also
be considered as part of future research efforts.

4 SYSTEM DESIGN
4.1 Encryption Programming Language (EPL)
To support general-purpose computation as a secure computation backend on a language level,
the naïve solution is to integrate a modern language runtime directly into TEE. Nevertheless,
this not only results in an overly large trusted code, but also has three major drawbacks. First,
it is highly difficult for data owners to initiate an effective code review to ensure that there
are no malicious implants or underlying vulnerabilities. Second, the overly rich functionalities
pose a serious challenge in determining the boundaries of the supported behaviors and possible
operations, e.g., disclosing sensitive data directly by undefined behaviors. Third, frequent updates
to the runtimes of modern programming languages are necessary to patch vulnerabilities that
arise from their inherent complexity. This renders the trusted code that integrates them inherently
unstable, preventing it from being exposed to known attack patterns. In order to overcome such
limitations and support arbitrary computable functions, TGCB proposes the use of a scripting
language, EPL, to capture the computation logic to be executed on decrypted data, the runtime of
which isminimal, sufficient, and stable.

EPL, as a descriptive document for cryptographic data processing tasks, serves the fundamental
purpose of describing a computable function that is expected to transform plaintexts. Its focus
is on the operations performed on the data and the control flow of logic, rather than providing
other functionalities, such as scheduling hardware resources for process management, memory
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allocation, and I/O operations. Consequently, the computational logic of any EPL script can be
regarded as a function with a single input and a single output channel, ensuring that function
execution does not involve intermediate side effects that could lead to data leakage. To support the
representation of arbitrary computable functions in EPL, the language needs to be Turing-complete.
This means that the language should, at a minimum, support basic data types and their algebraic
and logical operations, allowing for control flow capabilities equivalent to a Turing machine.
The simplest Turing complete control flow paradigm, which FORTRAN relies on, is if-goto.

However, EPL has chosen not to incorporate goto into the language. The reasons are two-fold:
firstly, goto is not a commonly used method for expressing computational logic from today’s
perspective, particularly in higher-level computation where it could easily introduce subtle logical
errors that are difficult to detect; secondly, goto does not facilitate the creation of a more easily
auditable descriptive document.
In the absence of conditional jumps in the control flow, there are two paradigms that are also

Turing complete: (a) 𝜆-calculus [14], with LISP being a typical implementation that achieves
this through supporting function definitions and conditionally recursive calls [47]; (b) structured
program theorem (a.k.a. Boehm-Jacopini theorem [16]), encompassing conditional infinite iterations
(while-if), which is widely used in most imperative programming languages today. EPL chooses
to support both paradigms because they are widely adopted in existing data processing tasks.
Although it is possible to rewrite either paradigm equivalently, such a transformation might be
nondirect and less readable.

Meanwhile, we choose to introduce flow statements, that is, continue, break, return, as compen-
sation for not introducing goto. Otherwise, when expressing certain existing functions depending
on these flow controls in EPL, we would have to use nested conditional blocks, which significantly
compromises readability. For a similar reason, we also choose to support structural variables to
avoid cumbersome token flattening. However, we choose not to introduce other more complex mod-
ern language features such as exceptions, reflections, object-oriented programming, etc. We believe
that the absence of these does not hinder the effective expression and auditing of computational
functions, as our guiding principle is minimality.
In summary, to ensure the ease of interpreter implementation as well as the usability of the

programming language, EPL supports the following five syntaxes:
(1) Conditional branching (if-else)
(2) Function defining (with early return)
(3) Recursive function invoking
(4) Loop (for, while, break, continue)
(5) Composite structural variable

These features enable EPL to adhere to the conventions of imperative programming, facilitating
the migration of extant computational logic. Furthermore, EPL satisfies the need for complex and
dynamic computational flow, which cannot be expressed in a data-independent manner.

Further, given that such a script interpreter will be executed in TEE, which generally provides the
C/C++ SDK, EPL is designed as a C++-embedded scripting language with its interpreter execution
environment and the native code interoperating in both directions. Concretely speaking, the
interpreter receives a script string by providing C++ interfaces, executes it, and then returns the
results. Meanwhile, the script interpreter also provides C++ interfaces to allow the native code to
incorporate the references of variables and functions into the interpreter’s execution environment,
thereby allowing them to be utilized by the scripting language. In this way, the EPL serves as a
glue language to invoke C++ functions, enabling intricate control flows that rely on conditional
branching. The security of EPL is bounded because it only provides the ability to control the flow
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uuid: 1234
[

(alice, 19),
(bob, 15),
(carol, 23),
…

]

uuid: 5678
[

(alice, 19),
(carol, 23),
…

]

def is_adult(x) = {
if (x[1] >= 18) {

return true
} else {

return false
}

}
return filter(input, is_adult)

verifiable database

outputEPLinput

………

5678“def is_ad…”1234

………

Fig. 4. TGCB’s DAG computational flow model.

of computation on visible plaintext, which addresses the drawbacks of existing primitive-based
approaches that must perform computation in a data-independent manner.

4.2 Computational Flow Model
TGCB manages sensitive data as blobs that reside in plaintext format within the EPC, and executes
EPL scripts with these blobs serving as inputs and outputs. Each data blob is uniquely identified
with a Universally Unique Identifier (UUID) and may originate from decrypting an encrypted byte
array loaded externally to the TEE or from the output of an EPL script execution.
In Fig. 4, we show an example of executing an EPL script for a transformation logic, i.e., a 1-1

computational task that takes one UUID as the input, and returns one blob’s UUID as the output. In
this example, given a blob (UUID: 12341) with a list of pairs (name, age), our aim is to run an EPL
script to select all adults (age>=18), so the script execution will generate a blob with another UUID
assigned, e.g., 5678, recording the output result in the EPC. Then the execution behaviors of an
EPL script correspond to a triplet that is composed of: the UUID of the input blob, the EPL script
string, and the UUID of the output blob, respectively. We can log this triplet in a trusted way, i.e.,
let logs persist on verifiable databases, to ensure that every EPL execution is recorded. As an active
research direction, the design of verifiable databases is orthogonal to TGCB, with typical solutions
such as blockchain-based [29, 31] and TEE-based [104], in order to guarantee that all logs persist
successfully and are tamper-proof. Now, if we treat the blobs as nodes and the EPL scripts as edges,
the trusted logs consisting of triplets will constitute a Directed Acyclic Graph (DAG). One special
case is that when the data owner encrypts the data into a blob, TGCB will assign a UUID to this blob
and record this encryption behavior in trusted logs, as a node without in-degrees.

We note that the design of TGCB’s DAG computational flow is crucial. First, the complete history
of any manipulation of the ciphertext is secured, which delivers full data provenance support.
More precisely, the combination of trusted execution and trusted logging ensures that any data
manipulation via EPL is authentically recorded. This further brings TGCB the capability of post-hoc
auditing on the basis of non-repudiation evidence. In addition, it is straightforward to support
reachability queries on DAGs. This, thus, renders all the dependency and consumption of a particular
ciphertext definite in SDDP. Finally, as all EPL scripts are recorded in the trusted logs as edges,
TGCB’s DAG computational flow model is also equipped with the capability of replay/recovery,
which enables the verification of data integrity.

1The UUID format is simplified for illustration, the same below.
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Fig. 5. Onion model of EPL extension.

4.3 Extension Model
In this subsection, we introduce an optional feature provided by TGCB, the extensions. Grounded on
the design rationale of the EPL’s functionalities described in Section 4.1, the interpreter itself does
not build in any functions and supports merely five kinds of syntaxes. Theoretically, any computable
functions can be written in EPL and then executed in TEE. In other words, any computational
tasks can be accomplished by interpreting the execution of EPL-only scripts. As a result, the
execution process is fully trusted. Nonetheless, from a practical perspective, the EPL interpreter
can also import libraries for the EPL scripts on extra functions via the extension. Therefore, when
the EPL interpreter reaches a function call statement, the corresponding function body can be
either an abstract syntax tree (AST) parsed by an EPL function definition or a native function
wrap. There is a clear trade-off between the two: while EPL scripts offer higher reliability without
necessitating reviews on implementations, they are slower to execute than the native code for the
same computation. Moreover, stringently requiring all code to be written in EPL scripts would be
detrimental to the wide deployment/adoption of TGCB.
Considering all the factors above, we propose to abstract the functions that are required in

general-purpose SDDP in a hierarchical manner, i.e., the onion model of the EPL extension for
function calls in the EPL TEE runtime, as illustrated in Fig. 5. The EPL base refers to the EPL
interpreter without any extensions, with which, as the core, the EPL interpreter can be extended
layer by layer to enrich the native functions that can be called. The examples of typical functions
in each layer are also given in the figure.
As an example, let us consider the computational task of filtering out all prime numbers from

input data, with the corresponding EPL script shown in Fig. 6. In line 25, this task is completed by
calling the filter with the input data and a Boolean expression. We first dive into the details of the
function is_prime as defined in line 1, which determines if a number is prime. For the sake of this
example, we adopt the implementation of na"ive enumeration, which involves the sqrt function
(line 2) to compute the square root, in addition to the basic loop and conditional branching. On the
premise that there are no extensions, we need to implement sqrt by defining the EPL function on
line 20. Further, in lines 7-19, we implement a filter function that enables access to the filtered data
after providing an input iterator and a Boolean expression to accomplish this task.
In this example, according to our onion model, sqrt belongs to the EPL Standard Extension,

filter falls into the Data Processing Framework, whereas is_prime lies on the outer layer and can
be regarded as a Mathematical Function or Application-specific Function. With the onion model,
the basic trust is first established by the EPL base as a premise, and it serves as the core for further
outward extensions.While maintaining the stability of TGCB’s trusted code, these extensions provide
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1 def is_prime(x) = {
2 for (var i = 2; i <= sqrt(x); ++i) {
3 if (x % i == 0) return false
4 }
5 true
6 }
7 def filter(iter , func) = {
8 def hd = nil
9 def hdDefined = false
10 def hasNext = {
11 if hdDefined return true
12 do {
13 if (!iter.hasNext) return false
14 hd = iter.next
15 } while (!func(hd))
16 hdDefined = true
17 }
18 def next = { if (hasNext) {hdDefined = false; hd }}
19 }
20 def sqrt(x) = {
21 var y = x
22 while (! y * y - x < 1) { y = (y + x / y) / 2 }
23 y
24 }
25 filter(input , is_prime)

Fig. 6. EPL script example of “prime number filtering”.

the capability to include additional native functions. It is crucial to highlight that executing these
native functions inside TEEs can expand the potential attack surface. This necessitates a degree of
confidence when integrating native code into the extension payloads. Therefore, incorporating
new extensions hinges on either a comprehensive evaluation or the data owner’s acknowledgment
of the related risk.
Nonetheless, this design allows the TGCB framework to detach itself from a fixed reliance on

the trustworthiness of extensions, the adoption of which can earn additional bonuses on prac-
tical deployment considerations, i.e., the use of extensions allows for dynamic adjustments in
collaboration within SDDP. To be specific, data owners and SDDP providers can then determine
the appropriate level of extension in the onion model based on specific application scenarios,
cooperation modes, and other relevant factors. By selectively configuring the extension layers,
they can optimize the system set-ups for practical use. Meanwhile, the onion model also provides
space for flexible adjustments in dynamic partnerships, e.g., a partial rollout of attaining the target
extension level. For instance, SDDP can be initiated from the outermost layer of the onion model.
For existing computational tasks, with the primary goal of boosting data security, we can start by
wrapping most functions with existing static library implementations and then gradually express
part of the corresponding logic in EPL. In this way, we reduce the unnecessary use of native code to
achieve improved security. In another direction, SDDP can also be initiated without any consensus
of trusted code except TGCB, and serve computational tasks solely through EPL scripts without
native functions. In this process, users would begin by developing and reviewing EPL extensions
that contain native function implementations, gradually expanding the trusted function calls into
the runtime for execution in a native manner.
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Fig. 7. EPL AST of the is_prime function.

5 EPL INTERPRETER IMPLEMENTATION
This section provides implementation details of the EPL interpreter, showcasing how it achieves
simplicity, intuitiveness, and ease of verification and trust for data owners, while adhering to
TGCB’s design philosophy regarding necessary language features and security boundaries. Our EPL
interpreter is written entirely in C++ and utilizes only the Standard Template Library (STL), ensuring
complete control of implementation and minimizing the risk of hidden security vulnerabilities
like underwater icebergs due to the dependencies of third-party libraries. The interpreter consists
of three main parts: the AST node for representing the computational logic, the boxed value for
holding the data, and the execution context.

5.1 AST Node
AstNode is an essential data structure of the EPL interpreter, which denotes a tree node of EPL AST.
As a base class, AstNode includes the following primary members: (i) an enumerated type of the
node, (ii) a vector of references to its children nodes, (iii) a string containing auxiliary information,
and (iv) a virtual function returning a boxed value, which serves to evaluate the interpretation
execution results of the AST corresponding to a tree node. Hence, an AST node can also denote the
subtree rooted in itself, i.e., a corresponding series of computational programming logic.
When the EPL script is input as a string, the EPL parser will process it, construct the script’s

corresponding AST which is composed of several AST nodes, and finally return the root node.
For example, for the is_prime function in Fig. 6, the parser will build a corresponding AST, as
shown in Fig. 7. The types of AstNode are shown in colored boxes, and some are accompanied by
white boxes indicating extra information in a string. The EPL interpreter’s execution of scripts is
determined by the traversal of the AST. Specifically, when evaluating a subtree with an AstNode as
the root, the interpreter implements the Eval virtual interface, depending on the node’s derived
class type, and traverses its child nodes in a specific manner. For the example ForAstNode (i.e.,
AstNode for “For” in Fig. 7), we display the partial code implementation of the base class AstNode
and its derived class ForAstNode in Fig. 8. The syntax of the for loop in EPL is the same as in
C++; that is, ForAstNode has four child nodes: three statements (children0,1,2) and one loop body
(children3), which are in bold font in Fig. 7. We declare a local variable i in children0 (line 11)
and evaluate children1 before entering the loop (line 12). If the result of casting to bool from the
evaluation of children1 is true, then the loop body, which is children3, is evaluated (see line 15).
After every execution of the loop body, children2 is evaluated (see line 13) to manipulate the
variable i, influencing the result of children1’s Eval.

In addition, the EPL interpreter turns to the exception mechanism in C++ for event passing
between nodes when traversing AST. The children3, as the loop body, is expected to throw two
types of exceptions, Continue and Break. During the traversal of the children3 subtree, these two
exceptions will be thrown upon encountering ContinueAstNode and BreakAstNode, and caught
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1 class AstNode {
2 const AstNodeTypes type_;
3 const std:: string extra_;
4 std::vector <std:: reference_wrapper <AstNode > > children_;
5 virtual BoxedValue Eval(ExecutionContext &ec) const = 0;
6 }
7 class ForAstNode final : AstNode {
8 BoxedValue Eval(ExecutionContext &ec) const override {
9 ec.PushStack ();
10 try {
11 for (children_ [0]. Eval(ec);
12 CastBoolCondition(children_ [1]. Eval(ec));
13 children_ [2]. Eval(ec)) {
14 try {
15 children_ [3]. Eval(ec);
16 } catch (exceptions :: Continue &) {}
17 }
18 } catch (exceptions ::Break &) {}
19 ec.PopStack ();
20 return BoxedValue.Void ();
21 }
22 }

Fig. 8. Code snippet of AstNode.

by ForAstNode inside the loop (line 16) and outside the loop (line 18), respectively. After the
exceptions are caught, no more operations are required, and the expected control flow is thereby
achieved. There are also other types of AstNode involved in Fig. 7, such as another crucial branching
syntax IfAstNode, the implementation of which greatly resembles that of ForAstNode. Due to
space limitations, we will not delve into them further.

5.2 Boxed Value
BoxedValue serves as a versatile data container within the EPL interpreter. It is, by nature, a
wrapping of C++ variables (via a pointer void* and std::type_info that can be either a C++
built-in type or any C++ class). BoxedValue serves as a uniform data format when executing EPL
scripts, i.e., evaluating AST.

Among BoxedValue’s supported types, there are two wrapped classes that we need to highlight.
One is the wrapping of callable, i.e., BoxedValue holds a std::function object pointer, which
involves two cases: (i) a native function as described in Section 4.3; (ii) a function defined by EPL,
the execution of which is then in nature Eval of DefAstNode parsed from the function definition.

The other is the wrapping of epl::DynamicObject, which maintains a std::map<std::string,
epl::BoxedValue>, to represent the mapping between the member names and BoxedValue in a
compound type. DynamicObject handles all compound types in the EPL interpreter; in other
words, the dot (.) operator is used for direct member selection via the object name. As for
children0 of DotAccessAstNode, the BoxedValue of the result returned by its Eval should wrap
epl::DynamicObject. According to the Eval result of children1, we then direct the child object
for access in the mentioned map, regardless of whether it is just a variable or a callable. In the EPL
interpreter, all objects of supported dot access operators are processed in this manner, e.g., (i) a
compound structural variable defined in EPL discussed in Section 4.1, and (ii) a C++ class object
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1 class EncMapPartitionsRDD[U, T] (
2 prev: EncRDD[T], f: EncIterator[T] => EncIterator[U])
3 extends MapPartitionsRDD[U, T] with EncRDD[U] {
4 def compute (): EncIterator[U] = prev.compute ().map(f) }
5 class EncIterator[T] (
6 var payload: Either[TEEEntry[T], EncTransform[T, _]])
7 extends Iterator[T] {
8 def map[U](f: T => U): EncIterator[U] = {
9 val transf = (iter: Iterator[T]) => {
10 new AbstractIterator[U] {
11 def hasNext: Boolean = iter.hasNext
12 def next (): U = f(iter.next ()) }}
13 new EncIterator[U](
14 new EncIteratorTransform[U, T](this , transf )) }}
15 class TEEEntry[T] (var blob: UUID) extends Serializable {}
16 class EncIteratorTransform[U, T] (
17 val prev: EncIterator[T],
18 val func: Iterator[T] => Iterator[U]) {}

Fig. 9. Code snippet of Spark backend switching.

wrapped by BoxedValue as variables in EPL, the members of which can be accessed via the dot
operator in EPL.

5.3 Execution Context
The EPL interpreter requires an ExecutionContext to be maintained during runtime. There are
three types of context information for the EPL interpreter, namely Functions, Stacks, and Global-
Variables, which are wrapped in epl::ExecutionContext. When executing Eval of AstNode, as
shown in line 8 of Fig. 8, this context information will be passed as an argument.

Functionsmaintain themapping between names and definitions.When evaluating FunCallAstN-
ode, Functions further link the DefAstNode given a function name to execute the function call.
Stacks maintain local variables at the level of scope through stack< std::map<std::string,

epl::BoxedValue> >. Each element in the stack denotes a scope. When declaring a local variable,
the pair of its name and BoxedValue will be inserted into the map on the stack top (the current
scope). When searching for a variable given the id token, we will start from the top of the stack,
that is, we will traverse the scope levels inside out to check if the corresponding variable name and
BoxedValue exist in these maps.
GlobalVariables share a high similarity with Stacks, except that there is only one scope for

maintaining global variables (e.g., global pi = 3.14). Explicit declarations of global variables
(GlobalDeclAstNode) will directly add the variable value into global variables, so that its lifetime is
not impacted by the scope of the declaration statement. Besides, EPL does not distinguish between
global and local when searching for a variable. Instead, we search in Stacks in sequence first; if the
variable is not found, we further search in GlobalVariables.

6 CASE STUDY: SPARK PLUGIN
In this section, we present the TGCB-enabled Spark plugin as a case study. Such a plugin enables
untrusted coordinators to leverage existing Spark applications to support SDDP seamlessly, without
requiring any modifications. This is particularly valuable considering the widespread usage and
well-established ecosystem of Spark, highlighting the engineering significance of TGCB and the
adequate functionality provided by the EPL. Due to space constraints, we refer interested readers
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Fig. 10. Wide dependency topology of EncRDD.

to [99] for a detailed technical overview of Spark. We focus on the implementation details of three
major components in the Spark plugin for TGCB.

6.1 Computational Backend Switching
We replace Spark’s computational backend with TGCB, modifying its data manipulation functions to
accommodate ciphertext transformations, all while preserving Spark’s distributed features. Spark
handles data as Resilient Distributed Datasets (RDDs), and processing these datasets necessitates
dependence on multiple parent RDDs. These dependencies can be categorized as narrow and wide.
Narrow Dependency. We use the map operator as an example shown in Fig. 9. Spark uses
Iterator to access materialized results in the RDD abstraction. We have incorporated an EncRDD
trait into every RDD that represents the ciphertext. As a result, we have EncMapPartitionsRDD
that abstracts the map transformation results on the parent RDD. EncIterator is used to represent
the ciphertext. It has two possible payload forms: TEEEntry or EncIteratorTransform. TEEEntry
signifies a blob managed by TGCB with a UUID identifier. EncIteratorTransform indicates data
yet to be converted into a blob and should be abstracted using the parent EncIterator and the
transformation function.
Wide Dependency. This involves data shuffling or redistribution, managed by partitioner[T-
>Int] in Spark, which assigns a partition ID to each record. Handling EncRDD’s wide dependency
requires the partitioner to run in TGCB via EPL, as it needs access to each record’s plaintext. The
transformation of EncRDD’s wide dependency results in three RDDs in Spark’s DAG is illustrated
in Fig. 10. EncShuffledWriteRDD materializes the parent EncRDD’s EncIterator into TEEEntry.
Through TGCB’s split interface, the partitioner’s logic inputs are given, dividing the blob into
multiple blobs. We serialize and encrypt each blob into a byte array, shifting it from EPC to JVM
memory, forming an RDD[(Int, ByteArray)]. Spark’s original functionalities shuffle EncShuf-
fledWriteRDD according to Int, ending with EncShuffledReadRDD after shuffling. The ByteArray
is transferred to the same partition, creatingmultiple blobs, andmerged into a TEEEntry through the
merge interface of TGCB. EncShuffledResultRDD recovers TEEEntry to EncIterator, producing
a new EncRDD, marking the completion of the EncRDD shuffling.

6.2 EPL’s Spark Transformation Translator
When handling narrow and wide dependencies, due to the requirement of accessing the plaintext,
the execution of f and partitioner should be conducted in TGCB via EPL. As Spark is a sophisticated
large-scale data processing platform with a mature application ecosystem, we develop an EPL
Spark transformation translator to leverage this advantage. This translator enables the execution
of Spark applications on ciphertext based on EncRDD without explicitly writing computational
logic in EPL, allowing for the continued use of existing application codes (in Scala). Specifically,
for Scala-written functions (i.e., lambda expressions), we obtain the JVM bytecode (.class file)
of the function body through ClassLoader. Subsequently, after disassembling and decompiling
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the bytecode, we generate the corresponding Java AST and further translate it into EPL scripts.
As a result, the translator converts Scala functions into EPL scripts for execution within TGCB.
This approach facilitates the direct utilization of existing Spark applications written in Scala on
ciphertext in TGCB with “zero-modification”2.

6.3 Unified Storage Management
Recall that the sensitive data maintained by TGCB in the EPC is identified and managed by Spark as
TEEEntry. In Spark’s original storage management, data storage assumes various forms depending
on RDD’s storage levels, e.g., Java objects and serialized byte arrays. Through the implementation
of relevant interfaces for EncRDD and TEEEntry, the Spark plugin of TGCB adapts ciphertext to
the Spark platform, achieving unified storage management. To be specific, when Spark memory
management deserializes an RDD, EncRDD loads the byte array from JVM to EPC through the
load_blob interface of TGCB for decryption, and finally returns the corresponding blob UUID
forming a TEEEntry. On the contrary, when the serialization interface is invoked, EncRDD will
access the UUID corresponding to TEEEntry, based on which TGCB will serialize and encrypt
sensitive data in a byte array and transmit it from EPC to JVM. In addition, the data in the memory
is stored in different memory modes (e.g., ON_HEAP and OFF_HEAP). On account of this, we add
another memory mode ON_TEE in order to manage TEEEntry stored in the EPC in Spark.

7 EVALUATION
We conduct extensive experiments3 to demonstrate that TGCB provides a practical supplement
to the universality of SDDP. To our knowledge, there are no perfectly suitable counterparts of
TGCB. Hence, we first examine the EPL execution performance of TGCB in a view as a language
interpreter to clearly demonstrate the performance cost it incurs for additional security properties.
Then, we compare TGCB with the most relevant studies from several research directions related to
confidential computation.

7.1 EPL Interpretation Performance
Introducing security guarantees in computations comes at a high cost, including storage and
communication scale, deployment complexity, and especially increased execution time, which
generally results in a significant performance overhead of several orders of magnitude. To provide
readers with a clear understanding of the performance costs associated with using TGCB in general-
purpose data processing for enhanced confidentiality, we compare EPL with Python, an established
interpreter that works on plaintext in a traditional insecure environment, and the experimental
results are shown in Fig. 11. The computable functions selected are (a) the Miller-Rabin test [51],
(b) Pi estimation by the Monte Carlo method [50], and (c) K-means clustering [46]. We select three
typical benchmarking tasks for general-purpose computation4 that are challenging for traditional
confidential computational approaches due to their reliance on (pseudo)randomness and data-
dependent conditional branches. In the meanwhile, for each evaluated application, we select a
key component5 to load into the EPL interpreter runtime via an extension, so that the relevant
2The translator is only applicable to the lambda expressions of which all computational logics are expressed in JVM bytecode,
and its output includes a complete implementation of all computations in EPL, without relying on any TGCB extensions.
3All experiments are conducted on a machine with Linux 4.19.91, equipped with Intel(R) Xeon(R) Platinum 8369B CPU @
2.70GHz and 32GB memory.
4In particular, the detailed workloads are: (a) 3 times of Miller-Rabin primality test on each positive integer that is smaller
than 5 × 104; (b) uniform generation of 105 points in the unit square to record the frequency of falling in the unit circle area;
and (c) 10 K-means iterations on the D31 [84] dataset.
5The embedded native functions are: (a) 𝑎𝑏 mod 𝑐 ; (b) generate a random point in the unit square; and (c) find the nearest
one among a set of points.
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Table 1. Performance comparison between GoogleFHE and TGCB.

function / approach TFHE OpenFHE TGCB
fibonacci number 60.9 secs 48.4 secs < 1 ms
integer square root 71.1 secs 60.5 secs < 1 ms
string capitalization 151.5 secs 118.8 secs < 1 ms

functionalities are performed as native code. As observed from the experimental results, compared
with Python, EPL is 5x-34x slower across applications when executed by TGCB’s interpreter in
TEE. Further, loading common operators as native functions through extensions can speed up the
execution of TGCB by about 2x-3x and make EPL scripts easier to program simultaneously. There
exists an apparent performance gap between Python and TGCB, as the price for data confidentiality,
which is due to (1) TGCB running in TEE, introducing inherent performance overhead, and (2) the
performance of the EPL interpreter being less superior to Python. Besides the fact that Python
is more mature and well-engineered, which integrates a number of optimization techniques, the
compromise made by the EPL interpreter, facilitating a reliability verification of the trusted code, is
also part of the reason. For instance, (i) compared with Python, which generates bytecode (.pyc)
in advance for execution by the PVM, EPL employs AST traversal, i.e., the execution of each AST
node relies on recursive calls to C++’s virtual interface; (ii) ID searching in EPL relies entirely
on std::map<std::string> to complete the search for the corresponding boxed value, which
introduces considerable overhead. Thus, such designs in EPL relatively sacrifice performance to a
certain extent in order to make the interpreter implementation more concise, straightforward, and
easy to review.

7.2 FHE-based General Computation
In terms of executing arbitrary computable functions on ciphertext, FHE-based general-purpose
transpilers are the most suitable competitors, amongwhich GoogleFHE [38] is a recent and advanced
solution. GoogleFHE converts computable functions written in C++ into circuits composed of FHE
gates, enabling the corresponding computation on ciphertext encrypted by specific FHE schemes.
The comparison of execution performance between GoogleFHE and TGCB is shown in Table 1. The
computable functions involved are three built-in benchmarking samples6 of GoogleFHE, and TGCB
implements them with exactly the same logics.

6In particular, these three benchmarking computable functions are: (a) calculating the 10th Fibonacci number; (b) computing
the square root of 15875 (rounded down to an integer); (c) converting a fixed-length char array (“do or do not; there is no
try”) into uppercase, respectively.
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Specifically, we test both FHE execution backends, TFHE [22] and OpenFHE [6], supported by
GoogleFHE. It is clear that the runtime comparison is not particularlymeaningful, as it is not practical
to execute arbitrary functions by constructing FHE circuits based on the latest available FHE
schemes, even in the case of tiny data sizes. Conversely, our proposed TGCB presents a substantially
more efficient alternative solution. Besides, there exists an explicit restriction on the C++ functions
that GoogleFHE can translate, i.e., the computation represented by the FHE circuit must be data-
independent. Since the gates cannot access true values as explained in Section 2.4.1, many syntaxes
of traditional imperative programming languages are not possible, such as variable-length loops
and arrays, recursion, and early return of functions. These limitations make it inconvenient for
GoogleFHE to write real-world functions. On the contrary, EPL does not have such restrictions and
hence is more practically useful.

7.3 Cryptography SCO Component
Given the significant performance limitations of extant tools based on perfect FHE, SCO solutions
have been widely explored and applied as a compromise solution in privacy-preserving computing.
Specifically, a particular SCO solution is typically composed of multiple key components and is
operated by a trusted coordinator in a specific organizational manner, i.e., protocols. Due to the
complexity and diversity of various protocols, as well as space limitations, we select one of the
most representative components, private set intersection (PSI), for experimental comparison. PSI
generally involves two parties, each holding a set, with the goal of obtaining the intersection of the
two sets through joint computation without exposing non-intersecting elements.

We select several representative studies from this research line as baselines. Mea86 [49] stands as
one of the pioneering PSI protocols, which utilizes public-key cryptography and the multiplicative
homomorphic attribute of the Diffie-Hellman key exchange. As the field evolves, more promising
strategies based on Oblivious Transfer (OT) are conceived. In particular, DCW13 [28] realizes an OT
protocol by integrating Bloom filters, employing a semi-honest adversary. RR16 [67] then improves
and enhances this concept by extending the threat model to a malicious adversary with concessions.
Furthermore, RR17 [68] integrates hashing techniques and implements the standard malicious
secure model. Performance comparison among these PSI solutions is shown in Fig. 12. In this
comparison, we implement the same functionality using TGCB in four different ways: (a) hash table
(bucketing and chaining); (b) binary search (via defining a function in EPL) on the sorted array;
(c) extension with std::unordered_set; and (d) extension with a native function to calculate
shared elements in two given arrays. We note that (a) and (b) are based on pure EPL, and (c) and (d)
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use extensions embedded with native code. To demonstrate the scalability of multiple evaluated
approaches, we conduct experiments using different data sizes. As shown, baseline PSI solutions
achieve relatively acceptable performance by application-specific optimization in a medium-sized
workload. For TGCB-based methods, with EPL-only interpretation, the performance is comparable to
that of the best-performing baseline, whether based on vanilla bucketing or binary search. Moreover,
the implementations are quite straightforward compared to the sophisticated protocol design of
application-specific PSI approaches. The performance of TGCB is greatly improved when completing
PSI tasks with the standard container std::unordered_set loaded via extension. Further, if a close-
to-native speed is desired, this can be achieved by loading a specific native function with trusted
implementation. Meanwhile, compared to TGCB which targets a strong adversary as described
in Section 3.3, PSI baselines introduce assumptions that weaken security, e.g., participants being
honest-but-curious or certain leakage of data distributions.

7.4 SDP-based Secure Computation on Spark
In this experiment, we contrast TGCBwith Opaque [102], an SDP-based solution on Spark. Although
both rely on TEE, TGCB accommodates arbitrary functions, whereas Opaque is limited to SQL
queries. We investigate two widely used database workloads [61], namely PageRank and Least
Squares, which are also benchmark cases established in the Opaque. We conduct a comparative
analysis of the performance of SparkSQL [3] (insecure), Opaque, and Spark-TGCB. The results
are shown in Fig. 13. For Spark-TGCB, as described in Section 6, the normal applications written
in Scala are submitted to Spark directly. After that, our EPL translator transpiles the specified
tasks into EPL scripts, which are executed by TGCB as the computational backend. We observe
that Opaque, being TEE-based, is similar to or even faster than SparkSQL7, indicating that TEE-
based SDDP schemes achieve superior engineering practicability over cryptography solutions. By
implementing pre-defined SDPs in the trusted code, computational tasks that can be represented
in a data-independent execution plan, such as PageRank and Least squares8, can securely and
efficiently process the ciphertext. In cases where such conditions are not ideally met, and there is a
heightened requirement for universality that existing solutions struggle to fulfill, TGCB can serve as
a timely alternative. Furthermore, since TGCB operates at a higher level of granularity, specifically
focusing on functions rather than primitives, it can provide improved assistance for conducting
post-hoc audits of the computations carried out.

7The main reason is that SparkSQL is executed by JVM, whereas Opaque is executed in TEE with C++ native code. The
overhead introduced by JVM compared to native code is higher than the TEE cost in certain cases.
8However, it is not straightforward to do so in Opaque, since tasks need to be represented through SQL queries. In the
case of PageRank, it projects data into a flattened table (src, dst, rank, weight) by join and select in advance and then
completes an iteration through groupby and aggregate.
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8 RELATEDWORK
Privacy-preserving Computation. The concept of HE is introduced in 1978 [69] as an intuitive
method for SDDP. Early HE research allows only a single operation type on ciphertext, such as
addition [58], multiplication [70], and XOR [37]. The first FHE algorithm emerges in 2009 [32],
theoretically supporting arbitrary functions. While FHE opened new possibilities, its performance
overhead led to various optimization efforts [33, 59, 91]. However, achieving practical efficiency
has been a persistent challenge. To mitigate this, researchers start to make compromises for
practical performance: (i) application-specific solutions for different fields, e.g., Linear Equation [19],
Matrix Multiplication [13], Matrix Factorization [103], Regression [55], and Aggregation [66]; (ii)
semi-honest adversary assumptions [36], wherein participants will strictly follow computation
protocols [20, 44, 95], preventing data leakage from observing intermediate results; (iii) secure
computation protocols [88, 93] that permit certain knowledge disclosure.
TEE-based Security Enhancement. In order to render the security enhancements brought by TEE
more pervasive, several research lines emerge targeting to make legacy applications adapt to TEE at
a lower cost. Among these, some studies consider combining techniques such as LibOS [12, 76, 82],
Docker [4], Sandbox [40], and micro-container [77] on top of TEE, by which legacy applications are
protected against attacks from the execution platform or other platform users. In the meanwhile,
delicate implementations for specific application areas are proposed, including search index [52, 65],
secure storage [7, 42, 80], distributed lease [81], networking [63], machine learning [57], and query
processing [1, 2, 8, 43, 83, 90]. In the realm of data analytics, there are solutions designed to safeguard
against malicious computing platforms. These solutions involve managing distributed tasks using
frameworks such as MapReduce [27, 56, 73] and Spark [64, 102].
TEE-integrated Language Environment.TEEs require developers to devise customized “artifacts”
for their applications, adhering to specific programming models or container abstractions, adding
engineering complexity. To address this, several studies have suggested the use of higher-level
language abstractions, enabling compilers or runtimes to manage TEE and non-TEE hardware
during the execution of source code. For example, Uranus [41] implements a Java solution that
operates two separate JVMs both inside and outside of the TEE, using annotations to designate
the execution environment for functions. GOTEE [34] capitalizes on the unique features of the
Go language, promoting communication and execution between independent Go runtimes within
and outside of the TEE on a per-goroutine basis. In a similar vein, MesaPy [89] enhances the
Python language. These studies operate under the assumption that both the source code and its
compilers/interpreters of the “high-level language” are trustworthy, as are the pre-compilation
facilities that generate enclaves, typically unprotected by TEE. At their core, these strategies simplify
the tasks of trusted coordinators when leveraging untrusted computational resources.
TEE-based Bilateral Barrier. The original purpose of TEE is to create a unidirectional barrier that
could house sensitive programs, rendering execution within the barrier inaccessible to the outside
world; however, certain studies suggest the construction of a bilateral barrier, where programs
executed within the TEE also cannot cross over and impact the outside. Examples include Ryoan [40]
which adapts NaCl sandbox [98] within the enclave, and VC3 [73] which employs CFI-style memory
isolation by a variant of C# compiler, restricting the enclave’s potential impact on the outside. In
broad terms, TEE-based bilateral barriers share similarities with TGCB, but the selected technical
solution results in a large and complex TCB, making it challenging for most data owners to verify
the trustworthiness of their code. Instead, they have to trust that open-source implementations from
reputable developers are benign, increasing the possibility of diverse vulnerabilities. Furthermore,
their threat models should not include “Denial-of-Service” attacks. While programs within the
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enclave have limited ability to collaborate with external entities, the underlying computations
remain beyond the control of the data owner.
Privacy-preserved Data Federation. Data federation enables the management of multiple data
sources in away that allows each source to operate independently, yet still support joint computation.
Unlike traditional distributed databases, this does not necessitate direct sharing or exposure,
thereby ensuring the confidentiality of each data source. To uphold this confidentiality, much of the
associated research relies on the Secure Multi-party Computation (SMC) framework [101]. This either
presupposes the existence of an honest broker to convert the joint analysis task into relevant SMC
functions [9], or requires that all participating parties strictly adhere to predetermined protocols [86],
known as the semi-honest adversary. However, it is clear that the decentralization and security
benefits of data federation are often accompanied by significant performance costs. This prompts
a series of research initiatives with the aim of optimizing performance for specific use cases. For
example, Hu-Fu [60] is designed for spatial data analysis; ShrinkWrap [10] incorporates differential
privacy to reveal more intermediate data; SAQE [11] boosts overall performance through the use
of approximate query processing. TGCB differs from these studies as it does not make assumptions
about the data intake. Nevertheless, integrating TGCB with these methods holds promise and
feasibility when a complex data source is being deployed. As a TEE-based computational backend,
TGCB’s behavior is restricted, weakening the data federation’s semi-honest adversary assumption
to meet stronger threat models.
Data Escrow. The primary challenge in privacy-preserving data analysis is the irreversible na-
ture of data disclosure. TGCB stands from the perspective of the data owner to ensure that the
data remain confidential during SDDP. In practical scenarios, data consumers encounter a sim-
ilar challenge of assessing the quality of a particular data source to meet specific analysis tasks
while respecting its privacy, i.e., the negotiation process preceding data consumption. To tackle
this issue, DataStation [96] suggests achieving “Data Escrow” by leveraging TEEs and encryption
technologies. Due to centralized data management, both “negotiation” and subsequent “analysis”
can be performed locally and in plaintext, resulting in a significant performance improvement.
Specifically, DataStation focuses on trusted data flow control and data quality inspection, requiring
that the “functions” agreed upon by both the data owner and the consumer be provided in advance.
Despite sharing similar technology stacks, TGCB accomplishes the trust shift in delegated computa-
tion by proposing EPL, eliminating the need for pre-setting functions, and ensuring ownership
transitivity of outputs. However, TGCB, as a computational backend, does not take into account the
specific methods of storage, sharing, and transmission of encrypted data. Therefore, DataStation
and TGCB are complementary, meaning that DataStation can serve as a specific implementation of
the computational flow model (Section 4.2), and the EPL interpreter can enhance the generality of
delegated computation in the data-sharing consortia that DataStation focuses on.

9 CONCLUSION
We propose TGCB as a means of supporting SDDP for arbitrary functions without requiring prior
inspection and ensuring data confidentiality, aided by its capability of executing EPL scripts in TEE.
As a suite of concise, comprehensible, and stable trusted code, once verified reliable, TGCB is able to
provide long-lasting services as the computational backend. Through a case study in which TGCB
functions as the computational backend of Spark, we demonstrate the benefits that TGCB brings to
data confidentiality in general-purpose computational tasks, which renders it more universal and
attainable to achieve SDDP from a practical engineering perspective.
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