
Object-Oriented DBMS Concepts

CS 4221: Database Design

Ling Tok Wang
National University of Singapore

2

• Background
• Basic OO concepts

– object, attribute, OID, class, method, encapsulation, class hierarchy,
single/multiple inheritance, extensibility, complex object,
overloading, overriding, polymorphism, user-defined type

• Query language in Object-Relational DBMS
• OO data model vs other data models
• Some problems in OO data model
• Inheritance conflicts in OO systems
• OO schema design
• Some reading materials (optional)

Topics

Some references:
• Tok Wang Ling and Pit Koon Teo, Toward Resolving Inadequacies in Object-Oriented

Data Models. Information and Software Technology, vol 35, no 5, 1993.
http://www.comp.nus.edu.sg/~lingtw/papers/IST93.teopk.pdf

• Tok Wang Ling and Pit Koon Teo, Inheritance conflicts in object-oriented systems.
Proceedings of DEXA'93, Springer-Verlag, 1993.
http://www.comp.nus.edu.sg/~lingtw/papers/dexa93.teopk.pdf

• Tok Wang Ling and Pit Koon Teo, A Normal Form Object-Oriented Entity-Relationship
Diagram. Proceedings of ER'94, Springer-Verlag, 1994.
http://www.comp.nus.edu.sg/~lingtw/papers/er94.teopk.pdf

• Tok Wang Ling, Pit Koon Teo, Ling-Ling Yan: Generating Object-Oriented Views from
an ER-Based Conceptual Schema. DASFAA 1993: pp 148-155.
http://www.comp.nus.edu.sg/~lingtw/papers/dasfaa93.teopk.pdf.

3

http://www.comp.nus.edu.sg/~lingtw/papers/IST93.teopk.pdf
http://www.comp.nus.edu.sg/~lingtw/papers/dexa93.teopk.pdf
http://www.comp.nus.edu.sg/~lingtw/papers/er94.teopk.pdf
http://www.comp.nus.edu.sg/~lingtw/papers/dasfaa93.teopk.pdf

4

Background
• Relational DBMSs support a small, fixed collection of data

types (e.g. integer, dates, string, etc.) which has proven
adequate for traditional application domains such as
administrative and business data processing. RDBMSs support
very high-level queries, query optimization, transactions,
backup and crash recovery, etc.

• However, many other application domains need complex kinds
of data such as CAD/CAM, multimedia repositories, and
document management. To support such applications, DBMSs
must support complex data types.

• Object-oriented strongly influenced efforts to enhance database
support for complex data and led to the development of object-
database systems.

5

Object-database systems have developed along two distinct paths:

(1) Object-Oriented Database Systems. The approach is heavily
influenced by OO programming languages and can be
understood as an attempt to add DBMS functionality to a
programming language environment.

– The Object Database Management Group (ODMG) has developed a
standard Object Data Model (ODM) and Object Query Language
(OQL), which are the equivalent of the SQL standard for relational
database systems.

(2) Object-Relational Database Systems. ORDB systems can be
thought of as an attempt to extend relational database systems
with the functionality necessary to support a broader class of
application domains, provide a bridge between the relational
and object-oriented paradigms. This approach attempts to get
the best of both.

– The SQL:1999 (also known as SQL3) standard extends SQL to
incorporate support for ORDB systems

– RDDMS vendors, such as IBM, Informix, ORACLE have added
ORDBMS functionality to their products.

6

• Object-oriented DBMS’s failed because they did not offer
the efficiencies of well-entrenched relational DBMS’s.

• Object-relational extensions to relational DBMS’s capture
much of the advantages of OO, yet retain the relation as
the fundamental attraction.

7

• A conceptual entity is anything that exists and can be
distinctly identified.

 E.g. a person, an employee, a car, a part

• In an OO system, all conceptual entities are modeled as
objects.

• An object has structural properties defined by a finite set
of attributes and behavioural properties defined by a
finite set of methods.

• Each object is associated with a logical non-reusable and
unique object identifier (OID).
The OID of an object is independent of the values of its
attributes.

• All objects with the same set of attributes and methods
are grouped into a class, and form instances of that class.

 Basic OO Concepts
Object and Class

8

• Classes are classified as lexical classes and non-lexical
classes.

• A lexical class contains objects that can be directly
represented by their values.

 E.g. integer, string.

• A non-lexical class contains objects, each of which is
represented by a set of attributes and methods.

• Instances of a non-lexical class are referred to by their
OIDs.

 E.g. PERSON, EMPLOYEE, PART are non-lexical
classes.

9

• In some OO systems, a class is treated as an object also,
and therefore processes its own attributes and methods.
These properties are called class attributes and class
methods.

 (Similar to static fields or class variables in Java)

E.g. A class EMPLOYEE can have class attributes called
NO_of_EMPLOYEES which holds a count of the
number of employee instances in the class, and
NEXT_ENO which holds the employee number of the
next new employee.

The class EMPLOYEE can have a class method called
NEW which is used to construct new instances of the
class.

10

 Attribute
 The domain of an attribute of a non-lexical class

A can be one of the following:

Case (a) a lexical class such as integer, string.
An attribute with this domain is called a
data-valued attribute.

Case (b) a non-lexical class B. An attribute with this
domain is called an entity-valued attribute.

* Note the recursive nature of this definition.
* There is an implicit binary relationship between

attributes A and B.
* The value of the attribute A is the OID of an instance

of B, which must exist before it can be assigned to the
attribute. This provides referential integrity.

11

* A special case exists in which the class B is in fact A. This
represents a cyclic definition in the OO model.

 E.g. PART-SUBPART
 COURSE-PREREQUISITE

* In ORION (from MCC - Microelectronics and Computer Technology Corporation -

http://en.wikipedia.org/wiki/Microelectronics_and_Computer_Technology_Corporation), the
relationship between A and B can be given semantics such as
IS-PART-OF in which case, A is a composite object
comprising B.

ORION also supports the concept of an existentially-
dependent object, in which the existence of the object
depends on the existence of its parent object.

 (Similar to EX and ID relationships in ER approach).

12

Case (c) a set, set(E), where E is either a lexical class
or a non-lexical class. An attribute with this
domain is called a set-valued attribute.

* If E is lexical, values from E are stored in the set.

* If E is non-lexical, members of the set can either be an
instance of E or its subclasses. In this case, the set
comprises instances from possibly heterogeneous
classes. Only OID of each instance is stored in the set.

* In O2 (from O2 Technology) both sets and lists are supported.
Note that a set has no duplicates, but members of a list
may be duplicated.

13

Case (d) a query type whose values range over the set
of possible queries coded in a query language.
An attribute with this domain is called a
query-valued attribute.

* The value of a query-valued attribute is the result
of the query, which is a set of objects satisfying
the query.

* POSTGRES (from UC Berkeley, or call PostgreSQL -

http://en.wikipedia.org/wiki/PostgreSQL) allows query-
valued attributes.

14

Case (e) a tuple type. An attribute with this domain is
called a tuple-valued attribute.

* This represents an aggregation of attributes of the
tuple type, which is treated as a composite attribute of A.

* An attribute of the tuple type can be a data valued,
entity-valued, set-valued, query-valued, or tuple-valued
attribute.

* The definition of attributes of non-lexical classes is
recursive.

Users can define their own complex data types using the
mentioned attribute types.

15

• A method of an object is invoked by sending a message
(which is normally the method name) to the object. Such a
message-passing mechanism represents a binary
interaction between the sender of the message and the
recipient.

• A method’s specification is represented by a method
signature, which provides the method name and information
on the types of the method’s input parameters and its results.

The implementation of the method is separated from the
specification. This provides some degrees of data
independence.

 Method

16

• Methods play an important role in defining object semantics.

E.g. When an employee is fired, we need to delete the
employee information from the employee file, delete the
employee from the employee-project file, and insert the
employee information into a history file, etc.

One method called “Fire-employee” can be defined that
incorporates this sequence of actions.

 E.g. CPF (Central Provident Fund) method for employees.

• In OO systems that support strong encapsulation (e.g. ORION,
SMALLTALK - http://en.wikipedia.org/wiki/Smalltalk), the only
interaction with an object is through the object’s methods.

The attributes are not directly accessible, but are instead retrieved/updated
through respective get/set methods.

17

• In OO systems that support a relaxed form of encapsulation,
attributes may be accessed directly. Some protection
mechanisms are provided to restrict access to sensitive data
such as “salary”.

E.g. O2 provides a mechanism to partition an
 object’s properties into public and private.

18

Example 1 This example provides definition of non-lexical classes
EMPLOYEE and DEPARTMENT (using an O2-like notation).

add class DEPARTMENT
 type tuple(D#: string, Dname: string, Mgr: EMPLOYEE)

add class EMPLOYEE
 type tuple (E#: integer, Name: string, Salary: integer,
 Dept: DEPARTMENT,
 Address: tuple (street: string, city: string),
 Supervisor: EMPLOYEE,
 Supervisees: set (EMPLOYEE))

add method compute_tax(): integer in class EMPLOYEE

add method fire_employee(): Boolean in class EMPLOYEE

Note: A cyclic definition exists in the “Supervisor” and “Supervisees” attributes.
Redundancy exists. Data consistency checking is required when one of them is
updated.

19

Class Hierarchy

• Given 2 classes X and Y, X ISA Y means that each instance of
X is also an instance of Y. We call X a subclass of Y and Y a
superclass of X.

 E.g. Manger isa Employee

• A class hierarchy provides an inheritance mechanism which
allows a class to inherit properties (attributes and methods)
from its superclasses.

• In single inheritance systems, a class can have at most one
direct superclass and therefore can only inherit from that
superclass.
The class hierarchy forms a tree.

• In multiple inheritance systems, a class can have more than
one direct superclass.
The class hierarchy is a lattice.

Note: In multiple inheritance systems, a class may inherit properties and
methods from different super classes and therefore may have inheritance
conflicts.

20

Example 2. A multiple inheritance example.

Person

STUDENT EMPLOYEE

Student-Emp

Person is the root of the class hierarchy.

Student_Emp has 2 superclasses, STUDENT and EMPLOYEE.

Q: Does Java allow multiple inheritance?

21

Extensibility

• Extensibility is another important feature of the OO paradigm.
It allows the creation of new data types, i.e. user-defined types,
and operations on these new data types from built-in atomic
data types and user defined data types using the type
constructor.

• A type constructor is a mechanism for building new domains.

 A complex object is built using type constructors such as sets,
tuples, lists and nested combinations.

• A combination of an user-defined type and its associated
methods is called an abstract data type (ADT).

22

Extensibility (cont.)

• Hiding of ADT internals (implementation) is called
encapsulation.

• Most OODBMSs, e.g., ORION, O2, IRIS support data type
extensibility.

 E.g. A new data type called POLYGON can be added to
handle geometric objects. The user can define an operator
AE (Area Equal) which allows two polygons to be compared
for area equality. A method “draw” allows a polygon to be
plotted.

 E.g. One might define operations on an image data type
(jpeg_image) such as compress, rotate, shrink, crop on an
image, and overlay two images.

23

• In the OO paradigm, different classes may have methods
with the same name.

E.g. Consider 3 classes, PERSON, EMPLOYEE and
SECRETARY, and the ISA relationships:

 EMPLOYEE ISA PERSON
 SECRETARY ISA EMPLOYEE

 All 3 classes have a method called “Print”.

 The implementation of “Print” in SECRETARY redefines
and overrides the “Print” method in EMPLOYEE, which
in turn, redefines and overrides the “Print” method in
PERSON. All these 3 “Print” methods are different.

 An overloading of the “Print” method has occurred.

• A feature related to the use of overloaded methods is
polymorphism. Polymorphism is the ability of different
objects to respond differently to the same message.

24

Example 3 Consider a linked list comprising objects from
PERSON, EMPLOYEE and SECRETARY classes. A traversal of
the linked list can be done so that each node in the list a ‘Print’
method is invoked. This C++ like program provides a piece
of polymorphic code to perform the traversal.

 void Print (Person *p) {
 for (Person * ptr = p; ptr; ptr = ptr -> next)
 ptr -> Print();
 }

The type of the pointer ptr is resolved during runtime to be
one of PERSON, EMPLOYEE or SECRETARY.

The appropriate “Print” method is then invoked depending on
the type.

Resolution of the type of an object during runtime is referred
to as late binding.

25

Query Language in Object-Relational DBMS
Example. from SQL/X of UniSQL, Inc. UniSQL is the earliest
proposal to add object-oriented features into relational DBMS.

create class PERSON
 (Name CHAR(20),
 Sex CHAR(1),
 BirthDay DATE)
 METHOD
 Age () INTEGER;

create class EMPLOYEE
 (Job CHAR(20),
 Salary FLOAT,
 Hobby SET-OF ACTIVITY,
 WorksFor COMPANY)
 METHOD
 CPF-CONTRIBUTION () INTEGER
 AS SUBCLASS OF PERSON;

26

create class ACTIVITY
 (Name CHAR(20),
 NumPlayers INTEGER);

create class COMPANY
 (Name CHAR(30),
 Location CHAR(20),
 Budget FLOAT);

Query: Single class query

 select Name, Salary
 from EMPLOYEE
 where Job = “Engineer”;

Note: Name is inherited from the superclass PERSON

Query: Two-class Join Query

 select EMPLOYEE.Name, Job, WorksFor.Name
 from EMPLOYEE, COMPANY
 where Employee.Name = Company.Name;

Note: Both Employee and COMPANY have a property called “Name”.
Q: What is the meaning of this query?

27

Query: Path Query

 select Name, Job
 from EMPLOYEE
 where “Tennis” IN Hobby.Name AND
 WorksFor.Name = “NUS”;

Query: Query with Group By

 select Job, AVG(Salary)
 from EMPLOYEE
 where “Tennis” IN Hobby.Name
 group by Job;

Query: Query with a nested subquery.

 select Name, Salary
 from EMPLOYEE
 where Salary >
 0.01 * (select MIN (Budget)
 from COMPANY
 where Location = “Jurong”);

28

Query: Query against a class and all its subclasses

 select Name, BirthDay
 from ALL PERSON
 where Sex = “M”;

The keyword ALL is used in order to find all subclasses of person.

Query: Query with method

 select Name, Hobby, Age
 from EMPLOYEE
 where Job = “Sales” AND
 CPF-contribution > 500;

Note: Queries cannot involve methods with side effects. Why?

29

OO data model vs hierarchical data model

• The nested structure of objects and the nested structure of
records in hierarchical databases are similar.

• The essential difference is that the OO data model uses logical
and non-reusable OIDs to link related objects while the
hierarchical model uses physical reusable pointers to physically
link related records. Hierarchical model has no object and OID
concepts.

• Another difference is that the OO data model allows cyclic
definition within object structures.

 E.g. a course can refer to other courses as its pre-requisite courses.

To support cyclic definition in the hierarchical data model,
dummy record types (e.g. prerequisite record) are needed.

30

OO Data Model vs Nested Relations

• In the nested relation approach, an attribute of a relation can
itself be a relation.

The nested relation is stored physically within the base
relation.

This approach does not allow the nested relation to be shared
among relations.

There may be a redundant storage of data which can lead to
updating anomalies.

• In the OO approach, nested relations are simulated by using
the OIDs of tuples of a relation that are to be nested within a
base relation.

Because OIDs are used, sharing of tuples of nested relation
is possible. There is less redundancy.

 Question: Any redundancy? Yes! Why?

31

OODBMS vs OOPL

• There is a strong parallel between developments in
OODBMS’s and OO programming languages (OOPL’s).

• Developments in OOPL’s have taken one of the two
approaches:
(a) Take an existing PL and extends it with OO

constructs.
E.g. C++ and objective-C extend C
 CLOS and LOOPS extend LISP

(b) Develops a new OOPL
E.g. Java, Smalltalk, Eiffel

• In the OODBMS community, 2 similar approaches:
(a) Extend the relational DBMS to incorporate OO concepts (i.e.

object relational model).
E.g. POSTGRES, UNISQL, DB2, ORACLE, Informix,
Microsoft SQL Server

(b) Develop a DBMS around an OO data model.
E.g. ORION, IRIS, O2

32

• Differences between OOPL’s and OODBMS’s

(a) OOPL’s do not have the amenities of databases
such as data persistency and concurrency.

 E.g. an OOPL does not have inherent data persistence
and cannot share data across multiple sessions, except
through a programmer-manipulated file system.

(a) The type systems of OOPL’s and OODBMS’s differ.
Database calls are declarative and operate on a set at a
time basis, while an OOPL is imperative and suited
for handling a record at a time processing.

33

Some problems and proposed solutions in
Object-Oriented Data Models

1. General disagreement on OO concepts
• Several OO data models have been proposed that offer

somewhat different interpretation of OO concepts. No
common agreement for a long period.

• Wide diversity in implementation of the data models.
E.g. Gemstone (from Servio Logic) adopts the object/message

paradigm, and Vbase (from Ontologic) uses an abstract data
type paradigm to encapsulate data and operation

E.g. IRIS (from HP) uses a functional approach in which methods and
attributes are modeled by mathematical functions and POSTGRES
(from UC Berkeley) extends the relational model to support OO
concepts.

• Despite this diversity, a core set of OO concepts is common
across these data models, such as object, attribute, method,
class, class hierarchy, encapsulation, and polymorphism.

34

2. Navigational Model of Computation
• The value of an attribute of an object may be an OID (object

identifier) of another object, which is in turn may reference
another object, leading to a complex and nested structure.
Wide diversity in implementation of the data models.

• The use of explicit reference is similar to the CODASYL
approach - network model, which uses pointers.

• This navigational component causes several problems:
(a) Consider the schema and below 2 person objects:

 (Ob1, < name: “John”, spouse: Ob2>)
 (Ob2, < name: “Mary”, spouse: Ob1>)

 where Ob1 and Ob2 are OIDs.

This example uses an inverse relationship reference.
This causes the update problem, contradicts to the easy
maintainability objective of the OO paradigm.

35

(b) For a navigational interface, access to data is hard-coded and
therefore does not enjoy the benefit of a query optimizer.

(c) The navigational approach does not preserve data
independency any better than the hierarchical or
network model.

• An OODBMS can be augmented with a declarative query
language to complement the navigational access.

36

3. Issues in Use of Methods
The message passing mechanism that is used to trigger methods
in OO systems presents some problems.
(a) Message passing is binary.

n-ary (n>2) relationships need to be redefined as binary
relationships. This will result in information loss.

(b) The OID of the receiving object must be known before
a message can be sent. Such OID may sometimes not be
available.
E.g. Find the names of Employees who are younger than 30 and

are male.

However, it is useful to have methods that provide better
semantics for object behaviour,

E.g. fire-employee method
E.g. CPF computation for employee objects

Unlike attributes, it may not be possible to index methods.
Why?

37

4. Standard Declarative Query Language

• Unlike relational DBMS’s which have adopted SQL as the de
facto standard, no generally agreed upon standard declarative
query language was available for OODBMS’s for a long
period.

• Object Data Management Group (ODMG)
http://www.odbms.org/odmg designed a query language
Object Query Language (OQL) modeled after SQL as a
query language standard for OODBMS. Because of its
overall complexity no vendor has ever fully implemented the
complete OQL.

38

• In OODBMS’s that lack query language, methods
need to be defined to handle queries. It faces at least
2 problems:

(a) It is impossible to pre-empt all possible queries and provide
methods for them.

(b) Consider the following query on SPJ db:

 Find all suppliers who supply at least one red part to
more than one project.

 This is not a trivial method to write.

 This method cannot be defined as a method for supplier
object. A more appropriate level is either declare it as a
class method, or as a method at meta class level.

39

• A query language is needed to handle complex
queries.

• Optimizing queries in the presence of arbitrary
methods is a difficult issue.

• IRIS only allows methods without side-effects to
participate in queries.

POSTGRES restricts methods to contain only data
manipulation commands that can be optimized.

Other systems do not permit methods in queries.

40

5. Access Methods and Data Type Extensibility
• Most OODBMS’s such as ORION, O2, IRIS allow new

data types (i.e. user-defined types) to be added.

 E.g. Add a new type POLYGON together with an operator
called AE (Area Equal) and a method ‘draw’.

• Conventional DBMS’s already provide standard access
methods (e.g. B-trees, hash tables, etc.) to support an efficient
database access. To provide efficient access instances of new,
specialized user-defined types, access methods beyond those
provided by the DBMS’s are required.

• Some proposed that users provide their own access methods to
support their new data types. However, supporting these user-
defined access methods is difficult. Query optimizers have
problem to use user defined access methods for query
optimization processing.

41

6. Support for complex objects
• Many applications need to define and manipulate a set of

objects as a single logical complex entity.

• Complex objects can be built using list, set, record and
nested combinations of these.

• Most OODBMS’s e.g. O2, ORION, support complex
objects.
In ORION, semantic relationships such as IS-PART-OF are
assigned to inter-object references within complex objects.

• ORION also supports the concept of an existentially-
dependent object (weak entity in ER approach), in which
the existence of the object depends on the existence of its
parent object.

 The deletion of an object triggers a cascading delete of all
objects that are existentially dependent on the deleted object. This
adds to the integrity features of the ORION data model.

42

• While the use of complex objects has an important semantic
value, the efficient retrieval of complex object (and its
components) is still a difficult issue.

• Several techniques e.g. clustering & indexing, have been
proposed to improve the performance of complex object
retrieval for navigational based or query-based retrieval.

• Clustering is suitable when an object is navigated using inter-
object references. In clustering, components of a complex
objects are stored together on a physical transfer unit (e.g.
page), and hence they can be retrieved efficiently.

 However, any clustering of objects is optimal for one type of
access to the objects, but sub-optimal for most other types of
access. It is left to the users to specify a preferred clustering
strategy.

43

• The idea of using indexes (of RDBMS’s) has been extended to
OODBMS’s.

 The notion of a class hierarchy index and nested attribute index
have been proposed.

- A class hierarchy index is defined on an attribute of a class
and instances that are indexed belong to the class and its
subclasses, if any (e.g. ORION).

E.g. A query “Find all students who are 21 years old” on the class hierarchy in
Example 2 (page 20) has the search condition that he or she should be a Student
as well as the predicate that he or she should be 21 years old. Here, all TAs can
also be considered Students by the ISA relationship imposed on the class
hierarchy. Therefore, objects of all classes in the hierarchy rooted at Student
should be searched for this example query. How to index the age attribute of the
classes?

- A nested attribute is an attribute of a nested component object
of a complex object. Queries on a complex object can be
predicated on a nested attribute.

 By defining an index on the nested attribute, the queries can be
more efficiently supported. How?

44

7. Object Identity

 There have been debates on the relative merit of supporting
OIDs and user-defined keys (as in RDBMS’s)

 Some proposed that OIDs should be assigned if keys are not
available.

 Some believed that OIDs are unnecessary and undesirable because:

(1) All keys e.g. SSN, E#, PART#, etc. are actually user
created. In fact, all attributes are artificially created by
users. Therefore, a key can always be artificially created
by the user for an object class that does not possess one.

(2) Keys are more natural and human readable comparable to
OIDs, which are implementation specific (e.g. pointer-
based OIDs).

45

(3) Overhead incurred by OIDs.

 4 common implementation techniques of OIDs:

 1. Physical Address (memory address or disk address)
 2. Structured Address (logical page no. + record no. in the page)
 3. Untyped Surrogate key (positive integer value)
 4. Typed surrogate key (record type + positive integer value)

 If physical addresses are used for implementing OIDs,
reorganization of disk storage (e.g. remove deleted objects in order
to improve disk usage and performance) may not be possible.

On the other hand, if logical pointers are used for implementing
OIDs, one more table lookup access is required to access an object.

(4) While values of keys can change because of changing conditions,
such changes represent a conscious effort on the part of the user,
and can be done in a controlled environment.

 E.g. Change all 7 digit house phone numbers to 8 digit phone numbers
 by adding a leading digit 6. The changes can be done offline.

46

(5) Multi-databases. In order to identify or find a real world object,

key value (or some attribute value) is needed. Also a real world
object which appears in two different databases, sure have
different (system generated) OID values. To determine whether
two objects from 2 different databases are referred to the same
real world object, key values are needed.

(6) Object migration problem. When an object moves to its superclass
or subclass (e.g. an employee is promoted to manager position)
whether the object’s OID should be changed or not? How to
implement OIDs in order to avoid changing of OIDs when objects
migrate?

 One approach: Implement OIDs by untyped surrogate keys. Why?

 Q: Does Java allow object migration such as promotion of
employees?

47

(7) Weak entity. The semantics of a weak entity requires that it should

be accessed in conjunction with its parent entity. However, the use
of OIDs allows the weak entity (i.e. existentially dependent object)
to be directly accessed. This weakens the semantics of weak
entities.

(8) View object. For RDB, we can create view relations (external
relations). For example, we want to create a view relation called
GoodStudent, to store all the good students who have CAP >=4.50.
If we can create view objects, then how to design/create the OIDs
for the view objects?

48

8. Should attributes be directly accessible?

There were debates on whether attributes of an object
should be directly accessible.

• Approach 1: access to an object’s attribute (e.g. Sex,
DOB of a person) should be through the object’s
(public) methods. This approach shields applications
from changes in the implementation of attributes and
provide data independence. However, it appears
trivial and redundant to generate public access
methods (e.g. get/set) for attributes.

• Approach 2: subject to a separate authorization
scheme, attributes of objects should be directly
accessible. This is because a query language
optimizer needs to access the object’s values directly.

49

• Use methods to access object’s attribute values generate
unnecessary overhead. Approach one will have difficulty to
write methods to answer queries such as:

 E.g. Find all male employees who are older than 30 but younger than
 50 and work for Sales or Personnel Department .

• However, e.g. the CPF contribution of an employee should be
implemented as a method. Whenever the CPF contribution
computation formula changes, only the method’s
implementation needs to be changed; applications that use this
method are not affected.

 Note that CPF contribution of an employee is not an attribute.
CFP contribution rates can be found on

 http://mycpf.cpf.gov.sg/Members/Gen-Info/Con-Rates/ContriRA

 Note: Java provides different types of access control using
field (attributes) modifiers such as public, protected, no
modifier, and private.

http://mycpf.cpf.gov.sg/Members/Gen-Info/Con-Rates/ContriRA
http://mycpf.cpf.gov.sg/Members/Gen-Info/Con-Rates/ContriRA
http://mycpf.cpf.gov.sg/Members/Gen-Info/Con-Rates/ContriRA
http://mycpf.cpf.gov.sg/Members/Gen-Info/Con-Rates/ContriRA
http://mycpf.cpf.gov.sg/Members/Gen-Info/Con-Rates/ContriRA

50

9. Everything as Objects?

• SMALLTALK has “successfully” demonstrated the
usefulness of a consistent treatment of everything as
objects in a programming environment.

• It may be less useful to treat everything as objects in a
database environment.

• In database design, it is important to distinguish among
attributes, entities, and relationships.

The following slides discuss some OO data modeling
issues which can be resolved by applying concepts
and techniques from ER data modeling.

51

10. Formal Foundation for OO paradigm

• RDBS have the relational model, which has a mathematical basis
in first order logic. Normalization and data dependency
theories can be applied to a RDB schema to determine its quality.

• Initially, no equivalent theories (e.g. FD, MVD theories and
normalization) were available for OO database design, it is
difficult to judge whether an OO schema is ‘good’.

• [1] extended ER Diagram with methods, called OOER diagram,
to represent OO schemas. Normal form OOER diagram was
proposed to determine quality of an OO schema.

 [1] Tok Wang Ling, Pit Koon Teo: A Normal Form Object-Oriented Entity
Relationship Diagram. ER 1994: 241-258, 1993

52

11. Lack of support for explicit relationships
• Most OO data models (e.g. O2, ORION) use inter-object

references (using OIDs) and the class hierarchy to support
relationship among objects.
Inter-object references provide only implicit binary
relationship between 2 objects.

• Using this approach, the modeling of m:m, n-ary and
recursive relationships are problematic and introduce
problems similar to those faced by hierarchical and network
models.

 Note: Object Definition Language (ODL) from Object Data Management
Group (ODMG) allows user to define the reverse relationship of a m:m
binary relationship in a class.

• The class hierarchy allows object classes that are related by
ISA relationship to be organized into a hierarchy. However,
special relationship types such as UNION, INTERSECTION,
DECOMPOSE, etc. are not supported.

53

Several problems arise from this.
 (a) Nested relations

 Consider the nested relation

 DEPT (D#, Dname, EMP (E#, Name, Sex))

 in which EMP attribute is itself a relation.
Such a nested relation imposes a strictly hierarchical
structure which does not facilitate symmetric queries.

* In OODBMS’s, there are at least 2 approaches to support
the DEPT nested relation.

(i) Approach 1: Treat the EMP attribute in DEPT as a
multivalued attribute, as its value, a list of OIDs that
identifies the employee working in the department.
This approach is adopted in O2 and allows object sharing.
However, it is difficult to handle symmetric queries.

54

(ii) Approach 2: This approach is adopted in POSTGRES.
It allows the value of an attribute in a relation to be a
relational query.

 It assume that there exist 2 physical tables:
 EMP(E#, Name, Sex, D#)
 DEPT(D#, Dname, EMPS)

 The EMPS attribute in DEPT can be defined to hold a query
such as:

 select E#, Name, Sex
 from EMP
 where EMP.D# = D#;

 The problem with this approach is that update on the EMPS
attribute (which is a view) of DEPT must be translated to
updates on the base EMP tables. This may not always be
possible in general.
The performance may not be good.

 Question: Where to store the query?

55

(b) M:M, N-ary and Recursive Relationships

Consider the SP database, in which S and P are related by an m:m
relationship type SP.

* One can store S, P, and SP as objects with (logical) pointers
linking them.
ORION adopted this approach, which provides a navigational
component that may be hard to maintain.

* An alternative is to store P within S. This impose a hierarchical
structure which cannot handle symmetric queries effectively.

 It also introduces redundancy and leads to updating anomalies.
 Recall: Object Definition Language (ODL) from Object Data Management Group

(ODMG) allows user to define the reverse relationship of an m:m binary relationship
in a class.

* The above modeling problems are amplified when n-ary (n>2)
relationships are considered, e.g. SPJ database.

* There is no feasible solution for modeling an n-ary relationship
using inter-object binary references in the OO paradigm.

56

* Some suggested that new “relationship” object classes must
be created to represent ternary (and higher degree)
relationships.

* Similar problems occur for modeling recursive relationships
such as course-prerequisite, part-subpart, etc.

One way to represent this in ORION and O2 is to define a
set valued attribute called pre-requisite in a course class,
with data type course also.

Deeper levels and transitive closures must be computed.
The recursive nature is lost in this representation.

In some OODBMS’s, the query language is enhanced with
syntactic constructs to support the computation of the
transitive closure of a recursive relation.

E.g. POSTGRES has a transitive operator “*”.

57

12. Lack of General View Support

• Except for those OODBMS’s that are based on the extended
relational model (e.g. POSTGRES), most OODBMS’s do not
fit into the 3-level schema architecture framework as spelled
out in ANSI/X3/SPARC proposal (American National
Standards Institute, Standards Planning And Requirements
Committee) in 1975.

 Note: The ANSI-SPARC model however never became a formal standard.

58

• Users of most OODBMS’s are often presented with a large-
grained conceptual schema, with little or no facility for
defining views.

The 3 level of schemas are:

• External Level (User Views) : A user's view of the database
describes a part of the database that is relevant to a particular
user. It excludes irrelevant data as well as data which the user is
not authorised to access.

• Conceptual Level : The conceptual level is a way of describing
what data is stored within the whole database and how the data is
inter-related. The conceptual level does not specify how the data
is physically stored.

• Internal Level : The internal level involves how the database is
physically represented on the computer system. It describes how
the data is actually stored in the database and on the computer
hardware.

59

(i) Approach 1: Some only allows to define multiple views to
a class.
Joins of classes and selections on classes are not allowed
for defining views. A view of a class contains a subset of
methods and attributes of the class.
Question: What is the value of a view object’s OID?

(ii) Approach 2: Use a query based view mechanism to derive
subclasses from superclass.
Such views are not updatable or updates apply only to non-
recursive views that are based on a join of the primary key
of the base tables.
They cannot handle other kinds of relationships, such as
m:m, n-ary relationships.

• Several proposal have been made to incorporate views in
OODBMS’s, but most of the proposals do not provide
the same generality and flexibility of a declarative
relational view mechanism.

60

13. Conflicts in Class Hierarchy and Multiple Inheritance

• There may have attribute and/or method name conflicts
among a class and its superclasses.

• Details in the following slides.

(iii) Approach 3: An OO schema is represented by an
 OOER (schema) diagram. Mapping rules are proposed
 to generate external schemas (i.e. views) from the
 OOER diagram. Views of the OO schema are
 represented as views of the OOER diagram.

61

Inheritance Conflicts in OO Systems
• In the OO paradigm, classes related through the ISA

relationship are organized into a class hierarchy.
• There may have attribute and/or method name conflicts

among a class and its superclasses.
• A class inherits properties (attributes and methods) from its

superclasses in the class hierarchy.
• When a class inherits several commonly named properties of

its superclasses, a conflict situation occurs which is resolved
differently in different OO systems.

 Ref: Tok Wang Ling, Pit Koon Teo: Inheritance Conflicts in Object-Oriented Systems.
 DEXA 1993: 189-200

62

Example
Print() Print()

STUDENT EMPLOYEE

ISA ISA

Student-Employee

Print()

E#
Position

Qualification

S#

Major

• “Print” is a method in EMPLOYEE that display information
such as E#, Position, and Qualifications of an EMPLOYEE
object. STUDENT has a similarly named method “Print”
which displays information such as S# and Major of a
STUDENT object.

 Note: We append “()” to a string to denote the string is the name of a
method. Method is represented by a round rectangle in the OOER diagram.

• The semantics of “Print” in these 2 classes are different.

63

• The subclass Student-Employee can define a similarly
named method “Print” which has a different semantics
from the 2 “Print” methods of its superclasses.
“Print” is an overloaded method.

• The use of a common method name in a class hierarchy
allows the exploitation of the notion of polymorphism,
i.e. the ability of different objects to response differently
to the same message (method name).

• There is no conflict.

64

1. Motivating Example
• In Figure 1, the class SUBMARINE needs to determine “SIZE”

attribute to inherit from its 2 direct superclasses, i.e..
 MOTORISED_VEHICLE and WATER_VEHICLE.

• Several resolution techniques have been proposed for
OODBMS’s to handle conflicts in multiple inheritance situations.

Fig. 1. Motivating Example

SIZE

MOTORISED_VEHICLE

ISA ISA

SUBMARINE

WATER_VEHICLE

ISA ISA

VEHICLE

SIZE

Q: Which SIZE to be inherited
by SUBMARINE?

65

(i) The method used in ORION is to choose the first in the
list of superclasses.

* This approach is somewhat arbitrary and may not
yield the required semantics

Q: We want C to inherit p from A and q from B. How
to express these 2 requirements in ORION?

A

ISA ISA

C

B

p

q

p

q

66

(ii) POSTGRES does not allow the creation of a subclass
that inherits conflicting attributes.
* This approach is not flexible.

(iii) O2 allows the explicit selection of the properties to
inherit by specifying the inheritance path.

(iv) IRIS: the property of the most specific class is chosen.
If a single most specific property cannot be found, user
specified rules will apply.

67

2. A Model of Inheritance

Fig. 2. An Inheritance Diagram

ISA

A

B

ISA

C

J R

ISA ISA

ISA

Z

X

ISA

Y

ISA ISA

W

ISA

P1 P2

P3

P1

P4

P1

P1

68

• A property is specified in a class if it is either defined or
redefined for the class.

• A redefined property overloads a similar property in some
superclass(es) of the class.

• An inherited property is well defined if it is specified in
one and only one superclass, possibly indirect.

• A conflict situation exists when an inherited property is not
well-defined, i.e., 2 or more superclasses specify the same
property.

 E.g. In Fig. 2,

* Property p1 is redefined in classes Y, J, and C.
* Class B inherits p1 from class J, and p2, p3 from classes Z, X.
* P1 contributes to a conflict situation in class A, but p2 is well-

defined in class A.
 Most OODBMS’s consider p2 in class A as a conflict situation.

69

3. Conflict Resolution Algorithm
Given an OO schema with ISA hierarchies

FOR each conflict situation in the hierarchy DO
 IF it is a single-inheritance situation THEN /* Case I: SI (section 5.1) */
 adopt precedence rule that prefers subclass properties, and ensure semantics is understood

IF it is a multiple-inheritance situation THEN
 /* Check for ISA redundancy arising from ISA transitivity property */
 IF conflicts arises because of ISA redundancy THEN
 /* Case II: MI with ISA Redundancy (Section 5.2) */
 resolve conflict by removing ISA redundancy
 ELSE
 BEGIN
 Let the MI conflict situation be classes A, B1, …, Bn (n > 1) where B1, …, Bn are
 the nearest superclasses of A that specify a property p.
 /* Note that a superclass of some Bi may itself specify a property p. */
 /* Check the semantics of p in B1, …, Bn */
 IF semantics of p is the same in B1, …, Bn THEN
 BEGIN
 IF intersection of B1, …, Bn is empty THEN
 /* Case III: MI-same semantics (Empty Subclass) (Section 5.3) */
 Design error, since class A (which is, in fact, the intersection of B1, …, Bn) is empty

70

 ELSE /* Case IV: MI-same semantics (Factoring) (Section 5.4) */
 IF there exists a more general class K which is UNION of B1, …, Bn THEN
 Factor p to class K /* see section 5.4 for explanation */
 ELSE
 Resolve the conflict by either:

(a) creating a general class K that is the UNION of B1, …, Bn and factoring p to
K. Add new ISA relationships Bi ISA K for i = 1, …, n. For each maximal
superclass Ci of Bi such that K is a superset of Ci, add the ISA relationship
Ci ISA K and remove the redundant ISA relationship BI ISA K.
IF there exists a class Y such that Y is a minimal superset of K THEN
 Insert new ISA relationship K ISA Y.
/* Option (a) removes data redundancy but may create some ISA
redundancies which will be removed by applying Case II */

OR
(b) Explicitly choosing one superclass to inherit the property.

/* data redundancy exists which must be managed */

 END

71

 ELSE
 BEGIN /* Case V: MI-properties with different semantics (Section 5.5) */

(a) redefine p in class A, /* not a good solution: see Section 5.5 */ or
(b) Rename p in Gj to, say, p_Gj for j = 1, …, m to reflect their different

semantics. To conform to the unique name assumption. Each p in the schema
that has the same semantics as P_Gj must be renamed to p_Gj.
FOR each group Gj (j = 1, …, m) with 2 or more classes having property
p_Gj DO
/* An MI situation exists between class A and the classes in Gj; */
/* p_Gj has the same semantics in the classes of Gj */
 Resolve the conflict in class A using the method described in class III and
IV.
ENDFOR

END
 END
ENDFOR

Let G1, G2, …, Gm be sets of mutually exclusive classes from B1, …, Bn such
that classes in a group share the same semantics for p. Resolve the conflict in A
by adopting one of the following:

72

Case 1 Single Inheritance Situation.

Fig. 3. PHONE# is overridden in MANGER and treated as multi-valued

* From a conventional database design viewpoint, Fig. 3 is erroneous.
However, OO approach allows this. Here MANAGER overrides the
PHONE# of its superclass EMPLOYEE and redefines PHONE# as a
multivalued attribute in MANAGER.

ENPLOYEE

ISA

Manager

 PHONE#

PHONE#

73

Case 2 Multiple inheritance with ISA Redundancy

Fig 4. Removing Redundant ISA Relationship

* The ISA link between ELEPHANT and CIRCUS_ELEPHANT is
redundant and can be removed.

ROYAL_ELEPHANT

ISA

ELEPHANT

ISA

CIRCUS_ELEPHANT

ISA

COLOR

COLOR='white'

74

Case 3 Multiple Inheritance - Same Semantics
 (Empty Subclass)

Fig. 5. ‘PACIFIST’ is overloaded and should be renamed to resolve conflict

• We assume that NIXON in Fig. 5 refers to a class of NIXON-like
people.

• If the property PACIFIST has the same semantics in both QUAKER
and REPUBLICAN, then there is clearly a design error.

 A quaker is a member of the Society of Friends, a Christian religious group that meets without any formal
ceremony or priests and that is opposed to violence.

 A pacifist is someone who believes that wars are wrong and who refuses to use violence.

REPUBLICAN

ISA

NIXON

ISA

QUAKER

PACIFIST='NO' PACIFIST='YES'

75

Case 4 Multiple Inheritance - Same Semantic (Factoring)

Both P in classes B and C are of same semantics

C

ISA

A

ISA

B
P

P

D

ISA ISA

76

Case (4.a) If D = B ∪ C, then factor P to D.

Case (4.b) IF D ⊃ B ∪ C, then create D1 such that
 D1 = B ∪ C, and factor P to D1.

C

ISA

A

ISA

B

P
D

ISA ISA

C

ISA

A

ISA

B

P
D1

ISA ISA

ISA

D

77

Case 5 Multiple inheritance -
Properties with different semantics

(1) user can redefine or overload the property “SIZE” in
SUBMARINE, e.g., explicitly mention

 “SIZE” in SUBMARINE is “SIZE” in WATER_VEHICLE.
 Problem: SUBMARINE can’t inherit SIZE of

MOTORISED_VEHICLE.

(2) Rename the property “SIZE” in either
MOTORISED_VEHICLE or WATER_VEHICLE or both.

E.g. In Fig. 1, if the 2 SIZE are of different semantics,
there are 2 options:

78

Summary on inheritance conflict resolution
approaches:

• renaming properties

• redefining (or overriding) an overloaded property

• removing redundant ISA relationship

• explicitly selecting an inheritance class

• redesigning the schema (e.g. factoring)

79

OO Schema Design
• Entity-Relationship Diagrams can be extended to support

OO schema design.
• All the structural properties of the OO approach can be

expressed in or derived from an ER diagram.
 E.g. subclass-superclass relationship: ISA, UNION

 composite object: IS-PART-OF
 existentially dependent object: EX and ID dependent relationships

• Methods and derived attributes can be defined for
both entity types and relationship types

• An ER diagram augmented with methods is called an
OOER diagram.

• An OOER diagram is a normal form OOER diagram if its
corresponding ER diagram is a NF-ER diagram, and there
are no inheritance conflicts in its ISA hierarchies.

Ref: Tok Wang Ling, Pit Koon Teo: A Normal Form Object-Oriented Entity Relationship Diagram. ER 1994:

241-258

80

Fig. 1. An OOER diagram

(1) ward# floor →

 floor

(2) NURSE, PATIENT attdDate →

(3)

redundant ISA between

PAEDIATRICIAN and EMPLOYEE

Notes:

name

EMPLOYEE
age()

dob

empNo

PAEDIATRICIAN

empNo

ISA

DEPARTMENT

dName head

 attachTo DOCTOR

 UNION

NURSE

ISA

joinDate

bonus()

empNo

degree year workWith

checkUpDate attdDate

PATIENT

regNo

name

dob

sex age()

ward#

floor

update()

m

1

m m

m

empNo rank

bonus()

81

Fig. 2. Normal Form OOER Diagram

(1) ward# → floor
• create a new entity type ward

(2) NURSE, PATIENT → attdDate
• create a new relationship type attendTo

(3) Remove redundant ISA between
PAEDIATRICIAN and EMPLOYEE

name

EMPLOYEE
age()

dob

empNo

PAEDIATRICIAN

empNo

DEPARTMENT

dName head

attachTo DOCTOR

UNION

NURSE

ISA

joinDate

bonus()

empNo

degree year workWith

checkUpDate
attdDate

PATIENT

regNo

name

dob

sex age()

floor update()

m

1

m m

m

empNo rank

bonus()

attendTo

m

m

stay WARD
m 1

ward#

82

Deriving Normal Form OOER Diagrams

Step 1 Ensure all property names within each entity type and
relationship type are distinct and of different semantics.
Ensure all key attributes are unique.

Step 2 Convert the ER diagram to normal form ER diagram.

Step 3 Remove any inheritance conflicts from ISA hierarchies.

Note: In step 1, we adopt the relaxed universal relation assumption mentioned
earlier.

Steps to convert an OOER diagram to a normal form OOER
diagram:

83

Generating OO Schemas

(1) Approach 1. The underlying OO data model supports
the notion of relationship directly.

• Three approaches can be adopted.

• Each entity type, m:m, n-ary or recursive relationship type
can be mapped directly into a class in the OO schema.

E.g. The attendTo relationship type of Fig. 2.
class NURSE inherits EMPLOYEE type tuple
 (rank: string)
 method bonus(): integer;
end;
class attendTo type tuple
 (nurse: NURSE,
 patient: PATIENT,
 attdDate: integer)
end;

 Ref: Tok Wang Ling, Pit Koon Teo, Ling-Ling Yan: Generating Object-Oriented
Views from an ER-Based Conceptual Schema. DASFAA 1993: 148-155

http://www.informatik.uni-trier.de/~ley/db/conf/dasfaa/dasfaa93.html#LingTY93

84

(2) Approach 2. The underlying OO data model does not
support relationship.

• Each entity type is mapped into a class.

• Each relationship type is mapped into each of its
participating entity type’s object class using
inter-object references.

Problem. Redundancies may occur.
 However, these redundancies are known and can be controlled.

85

class NURSE inherits EMPLOYEE type tuple
 (rank: string,
 attendTo: set(tuple(patient: PATIENT, attdDate: string)),
 workWith : set(tuple(doc : DOCTOR, patient : PATIENT,

 checkUpDate : string)))
 method bonus() : integer
end;

class PATIENT type tuple
 (regNo : string,
 name : string,
 dob : string,
 sex : char,
 attendTo : set(tuple(nurse : NURSE, attdDate : string)),
 workWith : set(tuple(doc : DOCTOR, nurse : NURSE,
 checkUpDate : string)))
 method age() : integer,
 update()
end;

E.g. The relationship type attendTo and workWith in Fig. 2.

Note: FDs such as NURSE, PATIENT --> attDate, are not captured.

86

(3) Approach 3. Treat each OO schema as a view of a
normal form OOER diagram

• Rules for generating OO external views are needed.
Updatability of view objects needed to be determined.

• Any redundancies in the external view is virtual.

87

class EMPLOYEE type tuple
 (empNo : string,
 name : string,
 dob : integer)
 method age() : integer
end;
class DOCTOR inherits EMPLOYEE type tuple
 (qual : set(tuple(year : string, degree : string)),
 Doc-Pat : set(PATIENT))
 method bonus() : integer
end;
class NURSE inherits EMPLOYEE type tuple
 (rank: string,
 Nurse_Pat : set(tuple(patient : PATIENT,
 attdDate : integer))) /* via attendTo */
 method bonus() : integer
end;
class PATIENT type tuple
 (regNo : string,
 name : string,
 dob : string,
 sex : char,
 Pat-Doc : set(DOCTOR),
 Pat-Nurse : set(NURSE)) /* via workWith */
 method age() : integer,
 update()
end;

E.g. An external schema of Fig. 2

Note: Some information may
be dropped,

E.g. workWith relationship type
is not included in NURSE.

88

Summary

• Basic OO concepts
• OO data model vs hierarchical data model, nested

relation model, and OOPL
• Some problems in OO data model

– OID vs key, relationships among objects, view,
multiple inheritance, etc.

– You may want to study on whether Java and Object-
Relational Database Systems have resolved some or all
of these mentioned problems.

• OO schema design



89

You may want to read materials on the
below topics: (These topics will not be covered in
the examination)

• Object Query Language (OQL)
• Object Relational Model (OR Model)
• SQL 1999 (SQL3), SQL 2003, SQL 2008
• Unified Modeling Language (UML)

90

1. Object Query Language (OQL)
• Object Query Language (OQL) is a query language standard for

object-oriented databases modelled after SQL. OQL was developed
by the Object Data Management Group (ODMG).

• Object Definition Language (ODL):
 Closer in spirit to object-oriented models
 To define classes in an OODB

 ODL Class Declarations

Interface <name> {

 attributes: <type> <name>;

 relationships <range type> <name>;

 methods

}

Method example:

 float CAP (in: Student)

Arbitrary function can compute the value of CAP, based on a

student object given as input.

91

 interface Student (extent Students, key SID) {
 attribute integer SID;
 attribute string name;
 attribute integer age;
 attribute float GPA;
 relationship Set<Course> takeCourses
 inverse Course::students;
 relationship Course assistCourse
 inverse Course::TAs;
};

 interface Course (extent Courses, key CID) {
 attribute string CID;
 attribute string title;
 relationship Set<Student> students
 inverse Student::takeCourses;
 relationship Set<Student> TAs
 inverse Student::assistCourse;
};

Example: a student can take many courses but may as TA of at
most one course

92

Example: find CID and title of the course assisted by Lisa.

 SELECT s.assistCourse.CID, s.assistCourse.title
 FROM Students s
 WHERE s.name = "Lisa";

Example: find CID and title of the courses taken by Lisa

• /* WRONG Answer! */

 SELECT s.takeCourses.CID, s.takeCourses.title
 FROM Students s
 WHERE s.name = "Lisa";

 Problem: “.” must be applied to a single object, never to a collection
 of objects
 Solution: use correlated variables in the FROM clause

• /* Correct answer */

 SELECT c.CID, c.title
 FROM
 (SELECT s.takeCourses
 FROM Students s
 WHERE s.name = "Lisa") c;

93

Two more examples

Simple query
 The following example illustrates how one might retrieve the CPU-speed of all

PCs with more than 64MB of RAM from a fictional PC database:

SELECT pc.cpuspeed
FROM PCs pc
WHERE pc.ram > 64;

Query with grouping and aggregation
 The following example illustrates how one might retrieve the average amount of

RAM on a PC, grouped by manufacturer:

SELECT manufacturer, AVG(SELECT part.pc.ram FROM partition part)
FROM PCs pc
GROUP BY manufacturer: pc.manufacturer;

The GROUP BY operator creates a set of tuples with two fields. The first has the

type of the specified GROUP BY attribute. The second field is the set of tuples
that match that attribute. By default, the second field is called PARTITION.

Note the use of the keyword partition, as opposed to aggregation in traditional SQL.

94

2. Object Relational Model (OR Model)
• http://codex.cs.yale.edu/avi/db-book/db4/slide-dir/ch9.pdf
• http://en.wikipedia.org/wiki/Object-relational_database
• Extend the relational data model by including object

orientation and constructs to deal with added data types.
• Allow attributes of tuples to have complex types, including non

atomic values such as nested relations.
• Preserve relational foundations, in particular the declarative

access to data, while extending modeling power.
• Upward compatibility with existing relational languages.

http://en.wikipedia.org/wiki/Object-relational_database
http://en.wikipedia.org/wiki/Object-relational_database
http://en.wikipedia.org/wiki/Object-relational_database

95

3. SQL 1999 (SQL3), SQL 2003, SQL 2008

• SQL:1999. SQL3 Added regular expression matching, recursive
queries, triggers, support for procedural and control-of-flow statements,
non-scalar types, and some object-oriented features.

• http://www.objs.com/x3h7/sql3.htm
 The parts of SQL3 that provide the primary basis for supporting object-

oriented structures are:
– user-defined types (ADTs, named row types, and distinct types)
– type constructors for row types and reference types
– type constructors for collection types (sets, lists, and multisets)
– user-defined functions and procedures
– support for large objects (BLOBs and CLOBs)

• SQL:2003. Introduced XML-related features, window functions, standardized

sequences, and columns with auto-generated values (including identity-
columns).

• SQL:2006. ISO/IEC 9075-14:2006 defines ways in which SQL can be used in
conjunction with XML. It defines ways of importing and storing XML data in
an SQL database, manipulating it within the database and publishing both XML
and conventional SQL-data in XML form. In addition, it enables applications to
integrate into their SQL code the use of XQuery, to concurrently access
ordinary SQL-data and XML documents.

• SQL:2008. Legalizes ORDER BY outside cursor definitions. Adds INSTEAD
OF triggers. Adds the TRUNCATE statement.

http://www.objs.com/x3h7/sql3.htm

96

Complex Types and SQL:1999
• Extensions to SQL to support complex types include: Collection (set and

array) and large object types (clob: Character large objects and blob: binary large objects).
– Nested relations are an example of collection types

• Structured types
– Nested record structures like composite attributes

• Inheritance
 E.g. create type Person

 (name varchar(20),
 address varchar(20))
 create type Student
 under Person
 (degree varchar(20),
 department varchar(20))
 create table people of Person
 create table students of Student
 under people

• Object orientation
– Including object identifiers and references
E.g. create type Department
 (name varchar(20),
 head ref(Person) scope people)
 We can then create a table departments as follows
 create table departments of Department

97

Initializing Reference Typed Values in SQL:1999

E.g. to create a department with name CS and head being the
person named John, we use

 insert into departments
 values (`CS’, null)

 update departments
 set head = (select ref(p)
 from people as p
 where name=`John’)
 where name = `CS’

98

• Defining Types
 Oracle allows users to define types similar to the types of

SQL. The syntax is

 CREATE TYPE t AS OBJECT (
 list of attributes and methods
);
 /

 Note the slash at the end, needed to get Oracle to process the type
definition. We will omit “/” in our examples.

 E.g. define a point type as two numbers:

 CREATE TYPE PointType AS OBJECT (
 x NUMBER,
 y NUMBER
);

Object-Relational Features of Oracle

99

• Then we might define a line type by:

 CREATE TYPE LineType AS OBJECT (
 end1 PointType,
 end2 PointType
);

• Then, we could create a relation that is a set of lines with ``line ID's'' as:

 CREATE TABLE Lines (
 lineID INT,
 line LineType
);

100

• Constructing object values

 INSERT INTO Lines
 VALUES(27, LineType (
 PointType(0.0, 0.0),
 PointType(3.0, 4.0)
)
);

• Declaring and Defining Methods

 CREATE TYPE LineType AS OBJECT (
 end1 PointType,
 end2 PointType,
 MEMBER FUNCTION length(scale IN NUMBER) RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES(length, WNDS)
);

101

4. Unified Modeling Language (UML)

• It is a standardized general- purpose modeling language in the
field of software engineering. The standard is managed, and
was created by, the Object Management Group (OMG).

• The OMG specification states:

 "The Unified Modeling Language (UML) is a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system.

• The UML offers a standard way to write a system's blueprints,
including conceptual things such as business processes and
system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components."

Hierarchy of UML 2.0 Diagrams, shown as below:

http://upload.wikimedia.org/wikipedia/commons/7/74/Uml_diagram.svg
http://en.wikipedia.org/wiki/File:Uml_diagram.svg

103

Class Diagram

104

Relationships and Identity
 Association is a relationship between 2 classes.

105

106

Class diagram

107

108

109

Object diagram
• Although we design and define classes, in a live

application classes are not directly used, but instances or
objects of these classes are used for executing the business
logic. A pictorial representation of the relationships
between these instantiated classes at any point of time
(called objects) is called an "Object diagram."

• It looks very similar to a class diagram, and uses the
similar notations to denote relationships.

110

Figure: An object diagram for the College-Student class diagram

Object name: class

	Object-Oriented DBMS Concepts
	Topics
	Some references:
	Background
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Summary
	You may want to read materials on the below topics: (These topics will not be covered in the examination)�
	Slide Number 90
	Example: a student can take many courses but may as TA of at most one course
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Complex Types and SQL:1999
	Slide Number 97
	Object-Relational Features of Oracle��
	Slide Number 99
	�
	4. Unified Modeling Language (UML)
	Slide Number 102
	Class Diagram
	Relationships and Identity � Association is a relationship between 2 classes.
	Slide Number 105
	Class diagram
	Slide Number 107
	Slide Number 108
	Object diagram
	Slide Number 110

