
1

CS 4221: Database Design

Physical Database Design

Ling Tok Wang
National University of Singapore

2

Physical Database Design

It is the process of transforming a logical data model into
a physical model of a database.

Unlike a logical design, a physical database design is
optimized for data-access paths, performance
requirements and other constraints of the target
environment, i.e. hardware and software.

Before you can begin the physical design, you must have:
(1) logical database design

minimally third normal form

(2) Transaction characterization, such as

most frequent transactions

most complex or resource-insensitive transactions

distributions of transactions, over time

mix of insert, update, delete and select statements

most critical transactions to the applications

(3) Performance requirements
Ref: R Gillette, D Muench, and J Tabaka. Physical Database Design for SYSBASE SQL Server.

Prentice Hall, 1995.

3

Physical database design activities
Defining Tables and Columns

Defining Keys

Defining Critical Transactions

Adding Columns:
redundant columns
derived columns

Manipulating Tables:
collapsing tables
splitting tables
supertypes and subtypes

Adding Tables:
derived data tables

Handling Integrity Issues:
generating sequence numbers
indexes
row uniqueness
domain restrictions
referential integrity
derived and redundant data

Controlling Access

Managing Objects:
sizes
placement

Note: Table and column mean
relation and attribute. Also
Supertype and Subtype mean
Superclass and Subclass, resp.

4

1. Defining Tables and Columns – The initial transformation of the logical
model into a physical model, including naming objects, choosing data
types and lengths, and handling null values.

2. Defining Keys – Choosing primary and foreign keys, including the use of
surrogate keys.

3. Identifying Critical Transactions – Identifying business transactions
that are high-value, mission-critical, frequently performed, or costly in
terms of computing resources.

4. Adding Redundant Columns – The first of a series of denormalization
techniques: adding columns to tables that exist in other tables.

5. Adding Derived Columns – Adding a column to a table based on the
values or existence of values in other columns in any table.

6. Collapsing Tables – Combining two or more tables into one table.

7. Splitting Tables – Partitioning a table into two or more disjoint tables.
Partitioning may be horizontal (row-wise) or vertical (column-wise).

5

8. Handling Supertypes and Subtypes – Deciding how to implement tables
that are involved in a supertype-subtype relationship in the logical model.

9. Duplicating Parts of Tables – Duplicating data vertically and / or
horizontally into new tables.

10. Adding Tables for Derived Data – Creating new tables that hold data
derived in columns from other tables.

11. Handling Vector Data – Deciding how to implement tables that contain
plural attributes or vector data. Row-wise and column-wise
implementations are discussed.

12. Generating Sequence Numbers -– Choosing a strategy to generate
sequence numbers, and the appropriate tables and columns to support the
strategy.

13. Specifying Indexes – Specifying indexes to improve data access
performance or to enforce uniqueness.

14. Maintaining Row Uniqueness – Maintaining the uniqueness or primary-
key values.

6

15. Handling Domain Restriction – Defining SQL Server rules and defaults
on the columns of a table to maintain valid data values in columns.

16. Handling Referential Integrity – Deciding how to handle primary-key
updates and deletes, and foreign-key inserts and updates. Using triggers to
ensure referential integrity.

17. Maintaining Derived and Redundant Data – Specifying how data
integrity will be maintained if the data model contains derived or
redundant data.

18. Handling Complex Integrity Constraints – Deciding how to handle
complex business rules such as sequence rules, cross-domain business
rules, and complex data domain rules. Using triggers to implement
complex business rules.

19. Controlling Access to Data – Restricting access to commands and data.

20. Managing Object Sizes - Calculating the estimated size of a database and
its objects.

21. Recommending Object Placement – Allocating databases and their
objects on available hardware to achieve optimal performance.

7

Physical database design goals

improve system performance

reduce disk I/O

reduce joins

embed business rules into the database design

through defaults, rules, constraints, stored procedures,
or triggers

make it understandable to users

use meaningful and indicative names for tables and
columns

8

1. Defining Keys

If there are more than one candidate key in a table, select
the primary key as below:

– select the key which transactions will know about most
often. This will avoid additional lookups.

– select the shortest length key when used in indexes
– consider what other keys are available in other tables on

which to join.
– criteria for primary selection as mentioned in our tutorial.

Surrogate keys are columns with no business meaning that
are added to tables to represent one or more existing
columns.

Surrogate key does not replace the logical primary key;
instead it redefine the primary key for use as a foreign key
in other tables. It is for efficiency purpose.

9

E.g. The title-id column of the Titles table is a surrogate-key value and
replaces the title, pubname, and pub-date fields as the primary key.

Titles (title-id, title, type, pubname, price, pub-date, ...)

Large keys can have a significant effect on overall system
performance.

Surrogate-key candidates include:
– tables that with very large or multi-column primary keys
– text columns that require indexing

Benefits of a smaller surrogate key
– easier to write SQL code to join table
– reduce the size of the tables with use it as a foreign key
– decrease the size of foreign-key indexes
– increase performance on queries accessing tables with

surrogate key values

10

2. Identifying Critical Transactions
To understand the transactions and performance requirements,
you need to know:

types of transactions (select, insert, update, delete)

tables and column affected by each transaction

select criteria – fixed or variable
(i.e. pre-defined queries or ad-hoc queries)

frequency and volume of each transaction

how many rows (percentage) are typically affected (select or modified)

size (no. of rows and total bytes) of tables involved

when the transaction is executed

during the day or after office hours

relative importance of each transaction

who use it, how often, how critical is it to the business process

response time or throughput desired

security and integrity

how many tables will be joined

sort order

11

Identifying transactions unlikely to meet performance
requirements:
These critical transactions usually are:

most frequently performed transactions

transactions performed by key personnel

transactions affecting many rows

resource-intensive transactions

mission critical transactions

high volume transactions

Attention must be paid to the distribution of transactions
with respect to time, if this is not uniform (e.g. peak
periods and specific run times).

12

3. Adding Redundant Columns

required when an unaccepted number of joins is needed to
perform a critical transaction.

add redundant columns in order to reduce the no. of joins.
– It is a de-normalization process. Tables will not be

in 3NF.

The concept of strong FD, weak FD, relax-replicated 3NF
relation can be used as the theory for this process.

Benefits:
– better response time
– The chance to eliminate a foreign key
– The reduction of lock contention; this cut down

blocking or deadlock situations.

13

You should be aware that:
– The modified table will grow in size.
– The larger no. of data pages will slow performance of

queries not benefiting from elimination of the joins; as
the no. of I/Os required to process the table is greater.

– The duplicated column data will require maintenance.

Example

publisher (pub-id, pubname, city, state)
Titles (title-id, title, type, pub-id, price, pubname, ...)

pubname is duplicated in Titles table

(see previous notes on relax-replicated 3NF)

14

When you expect that the performance requirements for a
critical transactions will not be met because of a costly,
recurring calculation based on relative static data, then add
derived column will help.

Derived data may include:

4. Adding Derived Columns

column data aggregated with SQL aggregate function such
as sum(), avg(), over N detail rows

column data which is calculated using formulas over N
rows.

counts of details rows matching specific criteria

Example: Total-sales in Titles table

Titles (title-id, title, type, pub-id, price, total_sales,
pubdate, pubname)

15

Required when the application program must frequently
access data in multiple tables in a single query.
e.g. Combining the publishers and Titles tables will improve

the performance of the critical query

Titles (title-id, title, type, pub-id, price,
total-sales, pubname, city, state, pubdate)

de-normalization

similar to adding redundant columns

in order to get better performance

a research area:
materialized database

5. Collapsing Tables

16

Required when it is more advantageous to access a subset
of data, and no important transactions rely on a
consolidated view of the data.

Vertical table splits:
e.g. Emp (Eno, name, salary, tax, mgr#, dept#)
can be split to 2 tables:

Emp_bio (Eno, name, mgr#, dept#)
Emp_comp (Eno, salary, tax)

6. Splitting Tables

- The rows are smaller. This allows more rows to be stored
on each data page, therefore no. of I/Os is reduced.

- Each fragment (smaller table) must include the primary
key of the original table.

17

Horizontal table splits
e.g. You can form horizontal fragments of the Supplier table

based on values of the city column

Supplier (sno, sname, city, status)
Supplier_boston (sno, sname, status)

Benefits:
- A table is large and reducing its size reduces the no. of

index pages read in a query

- The table split corresponds to an actual physical separation
of the data rows, as in different geographical sites.

- Table splitting achieves specific distribution of data on the
available physical media

- To achieve domain key normal form.

18

Decide how to involved in a supertype/subtype relationship
in the logical data model. (i.e. superclass subclass isa relationship)

7. Handling Supertypes and Subtypes

Example From logical database design

employee (eno, name, salary, tax, mgr#, dept#)
contractor (eno, billing-rate, contracting-title)
consultant (eno, billing-rate, consulting-title, mentor)
regular-staff (eno, prof_soc_num)

Also

contractor [eno] isa employee [eno]
consultant [eno] isa employee [eno]
regular-staff [eno] isa employee [eno]

They are the 3 supertype/subtype relationships (see Fig 8.1).

19

Fig 8.1 Logical design starting point

employee_num
employee

employee_num
employee_num
name
salary
tax
manager_num
department_num

consultant

employee_num
billing_rate
consulting _title
mentor

employee_num

regular_staff

employee_num
prof_soc_num

employee_num

contractor

employee _num
billing _rate
contracting_title

employee_num

20

(1) one supertype table and multiple subtype tables

(2) one supertype table only

(3) multiple subtype tables only

There are 3 common physical design scenarios for
subtype-supertype relationships.

21

consultant

employee_num
billing_rate
consulting_title
mentor

employee_num

regular_staff

employee_num
prof_soc_num

employee_num

contractor

employee_num
billing_rate
contracting_title

employee_num

(1) Single supertype and multiple subtype tables

Fig 8.2 Single supertype/multiple subtype example

employee

employee_num
name
salary
tax
manager_num
department_num
employee_type

employee_num

22

The supertype table employee has an additional attribute,
i.e., employee_type, which determines the appropriate
sub-table for the employee.

use this technique when the subtypes have many
differences and few common attributes and reports rarely
require the supertype data and subtype data.

It is useful when the no. of subtypes is initially unknown

23

(2) Single Supertype table only

Fig 8.3 Single supertype table example

employee

employee_num
employee_num
name
salary
tax
manager_num
department_num
consulting_title
contracting_title
billing_rate
mentor
prof_soc_num
employee_type

24

This technique is appropriate if the subtypes

have similar columns

are involved in similar relationships

are frequently accessed together

are infrequently accessed separately

All columns of all the subtype tables are included (with
many null values) in the supertype table
An extra attribute employee_type is included which
determines the subtype of employee rows.

many null values

25

(3) Multiple Subtype Tables Only

Fig 8.4 Subtype tables only example.
* indicates the attribute is a subtype entity’s attribute

contractor

employee_num
 * billing_rate

 * contracting_title
name
salary
tax
manager_num
department_num

employee_num

consultant

employee_num
 * billing_rate
 * consulting_title
 * mentor

name
tax
manager_num
department_num

employee_num

regular_staff

employee_num
 * prof_soc_num

name
salary
tax
manager_num
department_num

employee_num

Use it if a supertype entity in the logical database design
existed only to clarify concepts or to add clarity to the
model, or if the supertype entity has no attributes other
than the primary key

The union of all subtype tables will return data on all
employees.

26

8. Adding Tables for Derived Data

Required when the structure of the database does not support
commonly accessed information, and the derived data does
not naturally fit on an exist table.

many applications or reports call for data summaries, often
at more than one level of grouping for the same source data.

generating summaries with large tables, may become a
performance bottleneck.

Example Summary table

Titles (title-id, title, type, pub-id, price, pubdate)
Summary-table (type, total-sales)

The total-sales attribute stores the total sales for the same
type of books

Triggers are required to update the summary-table.

27

Indexes can be used to improve data access performance, to
enforce uniqueness, or to control data distribution.

Indexes may be clustered or non clustered,
unique or non unique, or concatenated.

Testing and trial-and-error during production may indicate
other index choices.

A table’s indexes must be maintained with every insert, update,
and delete operation performed on the table.

Be careful not to over index.
Incorrect index selection can adversely affect the performance.

The greatest problem will be deriving the best set of indexes for
the database when conflicting applications exist (i.e.
applications whose access needs and priorities are in conflict).

9. Specifying Indexes

28

You may need to split up or duplicate a database into
another database in order to support equally critical but
opposing indexing strategies, particularly with request to
the clustered index, where only one is allowed per table.

Index density = 1/ total no. of unique values
e.g. If there are 20 colors for cars then the index density for colors is

1/20 = 0.05.
e.g. The index density of the primary key of a table is

1/no_of_row

Selectivity = Index density * total no. of rows

The more selective (lower selectivity value) this number is, the more
likely the SQL query optimizers will choose to use the index since it
can assume fewer rows will be required to answer the query.

E.g. If three are 200 values and 400 rows, then the selectivity value is 1/200*400=2,
indicating that on average only 2 rows should be returned for each index value.

The selectivity for primary key is 1. Q: Why? The most selectivity?

With a composite index, the density should get lower for each
additional column specified in the index, hence making the index
more selective.

29

Data-value uniqueness

Indexes can enforce uniqueness of data values in the
column on which they are placed.

With Sybase SQL server 10.x, you can use primary
key or unique constraints to enforce uniqueness.
Both of these constraints will cause an index to be
formed for the named columns.

30

Clustered indexes

an index in which the physical order of rows and the logical
(indexed) order are the same. The leaf level of a clustered
index represents the data pages themselves.

Only one clustered index is allowed for each table.
Usually, the primary key is the clustered index on the tables,
but not always.
Instead you may want to choose the attribute which is used to
specify a range in a where clause.

Clustered indexes are implemented as B-trees in SQL servers.
Insertions may cause the splitting of the leaf nodes of a B-tree.

31

Non clustered indexes

an index which maintains a logical ordering of data rows
without altering the physical ordering of the rows.

Foreign keys are good candidates for non cluster indexes.

Non clustered indexes are implemented by B-trees.
A B-tree of pointers (to the rows in the table) is
maintained for the indexed column values in a sorted
order, even though the data rows themselves are not
physically ordered according to the column values.

E.g. Emp (eno, name, mgr#, dept#)

We can define a non clustered index for dept# of the table Emp.

Note: dept# is a foreign key in Emp table.

32

Tables that should be considered as candidates for indexes
are:

tables that are used in critical transactions and that have
a set of search criteria (or limit ranges)

tables involved in multi-table joins

tables with a large no. of rows

tables that require enforcement of uniqueness

33

Identifying Columns for Indexes

columns used to specify range in the where clause
(clustered index)

columns used to join one or more tables, usually
primary and foreign keys

columns likely to be used as search arguments

columns used to match an equi-join query

columns used in aggregate functions

columns used in a group by clause

columns used in an order by clause

34

In environment where deletes and inserts are frequent, such
as many real-time transaction processing applications, you
may avoid the clustered index.

Notes: An index with low selectivity (higher value) will
never be used by the query optimizer.

E.g. Sex attribute in person table has index density = ½, and selectively is
equal to half of the no of rows of the table (very high value). It has very low
selectivity. Should not index it. Query optimizer will not use its index.

The optimizer will not use a clustered index of a table with
very few rows (e.g. tables with less than 3 to 5 data pages
total).

	CS 4221: Database Design��Physical Database Design �
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

