
1

CS 4221: Database Design

Translating Relational Schema 
into 

OODB Schema

Ling Tok Wang
National University of Singapore



2

Topics

• Inclusion dependency
• Identify object class
• Identify identifier dependency and 

complex object
• Identify ISA Hierarchy
• Identify inter-object Relationship



3

Translating Relational Schema with FD’s & 
Inclusion Dependencies into OODB Schema
Input information:

• a relational database schema
• primary/candidate keys
• inclusion dependencies (IND)

main features of the translator:

1. Identify clusters of relations that represent object classes 
and their attributes.

2. Identify Identifier Dependencies (ID) (like in ERD) 
3. Identify ISA relationships among object classes.
4. Identify relationship types among object classes together 

with the relationship attributes.
Ref. (1) Ling Ling Yan and Tok Wang Ling, Translating Relational Schema with Constraints into OODB 

Schema, DS-5, Semantics of Interoperable Database Systems, Nov 1992, Lorne Australia.
(2) Wenyue Du, Mong-Li Lee, Tok Wang Ling,  XML Structures for Relational Data, WISE (1) 2001: 

151-160, 3-6 December 2001, Kyoto, Japan.

Presenter
Presentation Notes
Updated on 2 October 2008



4

A(A#, A0, A1) 
A′(A#, A2) 

R1(A#, B#, r1) 
R1′(A#, B#, r2) 

C(C#, C1, B#) 
C′(C#, C2) 
R3(C#1, C#2) 

E(A#, E1, E2)
E′(A#, E1, E3)
R4(A#, E1, D#) 

Some relations and constraints translated from the above ER diagram:

C#1 in R3 isa C# in C
C#2 in R3 isa C# in CD# in D isa B# in B

A B C

DE

R1 R2

R3

R4

A# A1 A2 B# B1 B2 C# C1 C2

F

D#

ID

IDE1
E2 E3

ISA

F# F1 F2

n n n1

n n

n nr1
r2

A0

D1

B(B#, B1) 
B′(B#, B2) 

Note: E1 is not a 
foreign key

Main idea: We know how to 
map an ER diagram to relational 
schema. Question is how to 
construct the reverse mapping?

Q: What are the object relations and relationship relations of 
the above relational schema? How to find them?



5

An inclusion dependency is denoted in the following form:
R1 [P1] ⊆ R2 [P2]

where R1 and R2  are relations, P1 and P2 are sequences of 
attributes in relation R1 and R2 , and | P1 | = | P2 |  (i.e. same no of attributes).

This inclusion dependency states that at any time if r1 and r2 are 
instances of relation schemas R1 and R2, resp, then the following 
always holds:

r1 [P1] ⊆ r2 [P2] 

Defn: If there exists a key K of a relation R, and a sequence of 
attributes A′ of another relation R′, such that

R′ [A′] ⊆ R [K] 
We say R′ references R. (i.e. A’ is a foreign key in R’ which references  to a key K of  R).

Moreover, A′ in R′ is a foreign key.

Note: Referential constraints are also inclusion dependencies.



6

(1) Identify object classes

An object class in the translated OODB schema corresponds 
to a cluster of relations from the underlying relational 
database.

An object class consists of a core relation (which represents 
the core part of an object class, i.e. all single valued attributes 
and the OID of the object class), and some component 
relations (which represent other properties of the object class, 
i.e. multi-valued attributes and the OID of the object class).

Example: staff (S#, name, DOB, sex, address)
staffHobby (S#, hobby)
staffQual (S#, degree, university, year)

staff is a core relation of the object class staff (i.e. employee).
staffHobby and staffQual are component relations of object class staff.



7

Defn: (Core relation or main class relation)

Consider a relation R, R is a core relation of some object 
class if one of the following case is true:
Case 1: R is not involved in any inclusion dependency.

(This is the case where a relation is stand-alone. Seldom) 

Case 2: The followings hold:

(a) There is a relation R′ that references R.
(b) R does not contain more than one disjoint foreign 

key (i.e. R is not a relationship relation). 
(c) There exists no inclusion dependency whose right 

side attribute set is proper subset of the primary 
key of relation R. 

Case 3: R is identified as a core relation by ID-dependency
identification rule as discussed later (see page 9).



8

E.g. Emp (Eno, Name, Dob, Dno)
Dept (Dno, Dname, Location)

Dept is core relation (by Case 2). 

Q: How about relation EMP?

We will this discuss later. Emp will be classified as a 
mixed relation of a core relation and an inter-
object relation.



9

Defn: (Component relation)

Let R be a main class relation. Relation R1 is a 
component relation of R if the following hold:
(1) R1 references R.

(2) No relation references R1.

(3) R1 does not contain more than one disjoint foreign key.

(4) The foreign key which references R is 
(i) part of the key of R1, or
(ii) a non prime of R1, or
(iii) the key of R1.

Note: So, a component relation of R is formed by the primary key of R 
and a multi-valued attribute (m:m or 1:m, i.e. case 4(i) or 4(ii) 
resp.) or an optional m:1 attribute (case 4(iii)) of the object class 
of R.



10

Each core relation together with all its component relations 
form a cluster of relations that represents an object class. 
The name of the class will be the Name of the core relation.

Example 1. Consider the following RDB
Person (Pno, Name, Age) 
PersonPhone (Pno, Phoneno) 
PersonEmail (Email, Pno)
Parent (Pno, ChildPno)

with the following inclusion dependencies: 
PersonPhone [Pno] ⊆ Person[Pno]
PersonEmail [Pno] ⊆ Person [Pno]
Parent [Pno] ⊆ Person [Pno]
Parent [ChildPno] ⊆ Person [Pno]

Clearly, person is a core relation with PersonPhone and 
PersonEmail are its component relations. 
However parent is not a component relation of Person (since 
Parent consists 2 foreign keys). It is a (recursive) inter-object 
relationship relation (to be discussed later).



11

We have the following cluster of relations.
Person = { Person, PersonEmail, PersonPhone}

The object class Person has the following definition:
class Person {

string Pno;
string Name;
integer Age;
setof (string) Email;
setof (integer) Phoneno;

};
where string, integer are data type and setof is a structure. Phoneno is a 
m:m multivalued attribute. Email is a 1:m multivalued attribute but 
cannot be expressed exactly. A person can have more than one email but 
an email is only owned by one person.

Note: The ER of the db is:
Person

Pno Name

Age

Email

P#

Parent

Pno ChildPnon n



12

(2) Identifier dependency and complex object

• ID-dependency is a term from ER-approach.

• An entity type B is ID dependent on entity type A if B does 
not have its own key so that it has to depend on the identifier 
of A in order to be identified.
e.g. Wards in hospital

• In OO term,  B is a component object of the object A.
e.g. Object Ward should be a component object of the object 

hospital.   (Similar to ID weak entity type in ERD)

• In OODB, we say Ward IS-PART-OF hospital.



13

ID-Dependency Identification Rule

Let R0 be a core relation with primary key K0. Consider a 
relation R, with primary key K, that satisfies the followings:

(1) K0 ⊂ K  and  R[ K0] ⊆ R0 [ K0].
(2) The primary key of R does not contain more than one

disjoint foreign key.
(3) There exists a relation that references R or R has a non-

prime attribute.

Note: Without condition 3 in the above, the relation R will be taken as 
a component relation of relation R0.
Condition 3 basically says that R qualifies to be an independent 
object class.

Then R is identified as a core relation. Moreover, object class of R 
is ID-dependent on object class of R0 via the inclusion dependency

R [ K′] ⊆ R0 [ K0].



14

Example 2. We continue from Example 1 with the following extra 
relations and IND’s: 

Hospital (HName, address)
Ward (Hname, WardNo,#beds)
WardPatient (HName, Wardno, PatientPno) 

Ward [HName] ⊆ Hospital [HName]
WardPatient [HName, WardNo] ⊆ Ward [HName, WardNo]
WardPatient [PatientPno] ⊆ Person [Pno]

Apply the ID-dependency Rule: relations Ward and Hospital 
will be identified as core relations, and object class of Ward is 
ID-dependent object class of Hospital via

Ward [HName] ⊆ Hospital [HName] 



15

The translation will produce the following two class definitions:

class Hospital {
string HName;
string Address;
own setof (Ward) WardNo;
};

class Ward {
Hospital HName;
string WardNo;
integer #beds;
};



16

Note: The keyword “own” preceding the specification indicates the 
identifier dependency of Ward on Hospital. Also Wardno is a set of 
objects of Ward.

The corresponding ER diagram is:

Person

Pno Name

Age

Email

P#

Parent

n n

Ward_
Patient

ID

Hospital

Hname Address

Ward

WardNo #beds

n

n



17

(3) ISA Hierarchy and 1:1 relationship Type
After identifying all the core relations and their component relations, 
we want to identify the ISA relationship or 1:1 relationship type 
between object classes (core relations).

ISA Hierarchy and 1:1 relationship type Identification Rule

Consider two core relations R1 and R2. If there exist K1 and K2, 
keys in relations R1 and R2, resp., such that

R1 [ K1] ⊆ R2 [ K2]

then either one of the below cases is true for object classes R1
and R2.

(Case 1)  R1 ISA R2 via     R1 [ K1] ⊆ R2 [ K2].

Note. If both   R1 ISA R2 and  R2 ISA R1 are true, then we 
should combine them to one object class. 



18

(Case 2) There is a 1:1 relationship type between the object classes 
representing R1 and R2.

It is difficult to know which case is correct without additional 
information from user.
e.g. DB1={Person (nric, name, dob), 

Student (s#, year, degree, nric)}
with Student[nric] ⊆ Person[nric]

DB2={Mgr (m#, name, dob), 
Dept (d#, name, location, m#)}

with Dept[m#] ⊆ Mgr[m#]
These 2 RDBs and their inclusion dependencies (referential 
constraints) are isomorphic, cannot be distinguished between 
them without knowing the meanings of the attributes. 
Note that DB1 is a ISA relationship however DB2 is a 1:1 
relationship type.



19

Example 3. Consider the following relations and INDs.

Person (Pno, Name, Age)
PersonEmail (Email, Pno)
PersonPhone (Pno, Phoneno)
Employee (Eno, Pno, DateJoin)
Projstaff (ProjNo, Eno, Position)
SalaryHistory (Eno, Date, Amount)
Project (ProjNo, ProjName)

PersonEmail [Pno] ⊆ Person [Pno]
PersonPhone [Pno] ⊆ Person [Pno]
Employee [Pno] ⊆ Person [Pno]
Projstaff [Eno] ⊆ Employee [Eno]
Projstaff [ProjNo] ⊆ Project [ProjNo]
SalaryHistory [Eno] ⊆ Employee [Eno]



20

By applying the rules, we can identify 3 core relations with 
their component relations:

Person = { Person, PersonEmail, PersonPhone}
Project = { Project} /* No component relation */
Employee = { Employee, SalaryHistory}

and the following ISA relationship
Employee ISA Person

via Employee [Pno] ⊆ Person [Pno].

Note: Projstaff is an inter-object relationship relation.



21

The object class definition are:
class Person {

string Pno;
string Name;
integer Age;
setof (string) Email;
setof (integer) Phoneno;
};

class Employee: isa Person {
string Eno;
Project ProjNo;
DATE DateJoin;
setof (tuple < DATE: Date, integer: Amount >)

SalaryHistory;
};

class Project {
string ProjNo;
string ProjName;
};

Note: 1. Employee ISA Person is represented in the class definition of 
Employee.

2. SalaryHistory is a set of tuples in Employee.



22

The corresponding ER diagram is:

Notes:
(1) Salary_History is a composite multivalued attribute of Employee. 

It could be represented as an weak entity set of Employee also.
(2) Projstaff is relationship type.

Salary
_History

Person

Pno Name

Age

Email

P#

ISA

n

Employee

Pno

Eno

DateJoin

Date

Amoun
t

Projstaff

Project

ProjNo

ProjName

n Position



(4)    Inter-object Relationships
Inter-object relationships may exist in relational database in 3 forms:

(1) A relation whose key consists of disjoint foreign keys.  
(Similar to  m:m relationship type in ER approach)
e.g. Projstaff (ProjNo, Eno, Position)

There is a m:m relationship type between Project and Employee.

(2)  A relation which has non-prime(s) as a foreign key representing 
some object class.
(e.g. similar to m:1 relationship type in ER approach).

(1) e.g. Emp (Eno, Dno, DateJoinDept)
where non-prime Dno is a foreign key referencing Dept.

There is a m:1 relationship between Employee and Department. 
Note that DateJoinDept is semantically dependent on Eno. It is a 

relationship attribute.
Eno –sem→ DateJoinDept

e.g. EMP’ (Eno, Name, Dob, DateJoin, Dno) and Dno is a foreign key.
It is a mixed relation of a core relation and an inter-object relation.



24

Q: Is DateJoin an attribute of the employee or an attribute of 
the m:1 relationship type between employee and department?

e.g. EMP” (Eno, Name, Dob, Mgr#, Mname)
where Mgr# is a role name of Eno  and Mname is a role 

name of Name, i.e. the name of the manager Mgr#.
EMP is a mixed relation of core relation (employee) and an 
inter-object relation (recursive relationship between employee 
and the manager).

(3) As all key relations (i.e. all attributes form the key of the 
relation) which contain more than one foreign key and some 
other attributes.
e.g. Progress (ProjNo, Eno, Date, ProgressReport)

where Date and ProgressReport is a composite multi-valued 
attribute of the relationship between Project and Employee.



25

Example 4. Consider the Projstaff in Example 3
Projstaff (ProjNo, Eno, Position)

ProjNo and Eno are foreign keys of object classes Project and 
Employee.

Relation Projstaff represents the inter-object relationship as 
follows:

class Projstaff {
Project       ProjNo;
Employee  Eno;
string         Position;

};

Note that the 2 attributes ProjNo and Eno are types Project 
and Employee resp., i.e., they are references (pointers, foreign 
keys). There is a m:m relationship type between Project and 
Employee.



26

Example 5. Consider the following

Student (Sno, Sname, Dno)  
// this is a mixed relation of core and inter-object relations)

Department (Dno, DName)
StudentHobby (Sno, Hobby)

Student[Dno] ⊆ Department [Dno] 
StudentHobby[Sno] ⊆ Student[Sno]

The class definitions are:

class Student {
string Sno;
string Sname; 
setof (string) Hobby;
Department  Dno;
};

class Department {
string Dno;
string DName;
};



27

The ER diagram is:

Student_Dno is a  m:1 relationship type.

Student

Sno Sname

Hobby

Student_Dno

Department

Dno

Dname

n

1

Presenter
Presentation Notes
Deleted last pages on OID generation.


	CS 4221: Database Design���Translating Relational Schema �into �OODB Schema
	Topics
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

