The Storage for Semi-structured Data

Three types of XML database systems:

m Native XML databases

— XML data often is stored in proprietary object repositories or
in text files, in which tags encode the schema

— Lorel and Tsimmis store their data as graphs; the schema is
stored as attributes labeling the graph's edges

— Strudel stores the data externally as structured text, and
internally as a graph

— Use labeling scheme, index, structural joins
m XML-enable relational databases

— Map XML data into relational tables
— Many different mapping methods

= Hybrid database systems

— Support both relational and XML data types
— DB2 9 (IBM), Oracle 10g rel 2, SQL Server 2005 (Microsoft)



An XML Database System

XPath / XQuery Query Processing

w
N #,,...

Query Result

Data
Storage

-
ar
XML '




Native XML Databases:

In the file system

m store each XML document as a separate operating
system file and use a DOM parser to create a
DOM tree In main memory whenever the
document is accessed by a query.

m Advantages
— It is easy to implement

— It does not require the use of a database system
or storage manager.



In the file system (ont)

= Disadvantages

— XML files in ASCII format need to be parsed
every time when they are accessed for either
browsing or querying.

— the entire parsed file must be memory-resident
during query processing.

— 1t 1s hard to build and maintain indices on
documents stored this way.

— update operations are difficult to implement.



Native XML Databases:

Stored as Lists of Elements (streams)

m Use some labeling scheme to number the nodes of
the XML document

m For query processing using structural join or twig
pattern query

m XML employs tree-structured model for representing
data

m XML query can be decomposed into a set of basic
structural (parent-child, ancestor-descendant,
following, etc.) relationships between pairs of nodes
or some twig patterns



<book title="XML">
<allauthors>
<author>John</author>
<author>Tom</author>
</allauthors>
<year>2003</year>
<chapter>
<head>....</head>
<section>...</section>
</chapter>

</book>

a) XML source
parent-child

AN

Title author

XML John
¢) Twig Pattern Query

ancestor-descendant

book

RN

title allauthors year chapter

A

author author 2003 head

section

John Tom
b) XML tree

Any node in XML tree may be an element,
attribute, value of XML source.

book Title book Author

Title XML Author John

d) Basic Structural relationship



Node Labeling schemes

= The method of assigning the labels to nodes of the XML
trees Is called a node labeling scheme.

m Labels of the same tag name are stored Iin a stream iIn
document order.

m Given 2 labels of 2 nodes, we can determine parent-child,
ancestor-descendant, following, or preceding relationships,
etc. of the 2 nodes. These relationships are important parts
of XML queries.



(1) Containment (Range) labeling scheme

Each node is assigned with three values, i.e. (start, end, level).

 Property 1: Node a is an ancestor of node b if and only if a.start<b.start
and a.end>b.end

* Property 2: Node a is the parent of node b if and only if a.start<b.start,
a.end>b.end, and a.level=Db.level-1.

» Labels of the same tag name are stored as a stream in document order.

(1,34,1)
(/bidding
(2232) (24,33,2)
item K
(363) (7103) (11163) (17223 (25,28,3) (29,32,3)
;@“D |Ofat'0n incategory |n(categor)y @IDTEF date
"_(4’5’;‘{ (894)  (12154) (18.214) (26,27,4) (30,31,5)
Item "Singapore" category category "item0"  "10/07/2004"

(13,145)  (19,20,5)
“categoryl™ “category2”



Another example: An XML tree with containment labels and its streams.

An XML tree: Data streams:
(1,12,1) T, |(1,12,1), (4,11,2)
sl
2,32) ¢ 5 (4,11,2) T ](23.2), (56,3
(5,6,3) [ t2 pl | (7,10,3) T, |(8,9,4)
1
(8,9.4) Tp (7,10,3)




(1) Containment (Range) labeling scheme com,

« Ancestor-descendant. (5,6,3) is a
descendant of (1,18,1) because
interval [5,6] is contained in interval
[1,18]

(12,17,2)

« Parent-child. (5,6,3) is a child of
(4,9,2) because interval [5,6] is
contained in interval [4,9], and levels
3-2=1

(15,16,3)

e Ordering. (5,6,3) is before (10,11,2)
in document order because the "start"
of (5,6,3) i.e. 5 is smaller than the
“start” of (10,11,2) i.e. 10.

10



Containment Is bad to determine the sibling
relationship

e Sibling.
— To determine whether (7,8,3) is
a sibling of (5,6,3), containment
scheme needs to search the
parent of (5,6,3) firstly, then 3 & AL (12.17.2)
determine whether (7,8,3) is a
child of this parent.

— The containment scheme needs
to determine many parent-child
relationships to get the sibling
relationship.

— Very expensive.

(1,18,1)

(15,16,3)

11



Containment is bad to process updates

e Need to re-label all the ancestor nodes and all the nodes
after the inserted node in document order

(1,18,1)

(10,11,2) ((12,17,2)

(15,16,3)

12



Containment is bad to process updates

Need to re-label all the ancestor nodes and all the nodes
after the inserted node in document order

All the red color numbers
were changed from their
original values, very
expensive

(1,20,1)

492) 310112) (O@2,132) 1)(14,19,2)

(17,18,3)

13



Existing approaches to process the updates
In containment scheme

* Increase the Interval size and leave some values unused
for the future insertions [Li et al VLDBO1]

— When unused values are used up, have to re-label

 Use float-point value [Amagasa et al ICDEO3]

— Float-point value represented in a computer with a
fixed number of bits

— Due to float-point precision, have to re-label
 They both can not completely avoid the re-labeling

[Li et al VLDBO1] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expressions. In Proc. of
VLDB, pages 361-370, 2001.

[Amagasa et al ICDEO3] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust Numbering Scheme for
XML Documents. In Proc. of ICDE, pages 705-707, 2003.

14



(2) Prefix labeling scheme

 Three main prefix schemes
— DeweylD [Tatarinov et al SIGMODO02]
— BinaryString [Cohen et al PODS02]
— OrdPath [O'Neil et al SIGMOD04]

« Determine different relationships based on the prefix
property

 We will only discuss DeweyID scheme

[Tatarinov et al SIGMODO?2 ] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita, and C.
Zhang. Storing and querying ordered XML using a relational database system. In Proc. of SIGMOD, pages
204-215, 2002.

[Cohen et al PODS02] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Proc. of PODS, pages
271-281, 2002.

[O'Neil et al SIGMODO04] P.E. O'Neil, E.J. O'Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHS:
Insert-Friendly XML Node Labels. In Proc. of SIGMOD, pages 903-908, 2004.

15



DeweylD [Tatarinov et al SIGMODO02]

« Label the n™ child of a node with an integer n
 This n should be concatenated to the prefix (i.e. its parent’s label)

and delimiter (e.g. “.”) to form the complete label of this child node.

 The label of the root of the XML tree is an empty string (for all the
prefix labeling schemes).

 Ancestor-descendant. "2.1" is a
descendant of the root, because the label
of the root is empty which is a prefix of
"2.1"

« Parent-child. "2.1" is a child of "2"
because "2" is an immediate prefix of
"2.1", i.e. when removing "2" from the left
side of "2.1", "2.1" has no other prefixes.

[Tatarinov et al SIGMODO2 ] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita, and C.
Zhang. Storing and querying ordered XML using a relational database system. In Proc. of SIGMOD, pages

204-215, 2002.

16



Deweyl D (Cont.)

e Ordering. “2.1” 1s before “3” In
document order because the “2” In
“2.1” 1s smaller than of “3”.

« Sibling. “2.2” Is a sibling of *“2.1”

because their prefixes are the same,
I.e. their prefixes are both “2”.

Bad to process all the four basic relationships if
the XML tree is tall.

17



DeweylD Is bad to process order-sensitive
updates

Order-sensitive updates ---- to maintain the document
order when updates are performed

Need to re-label all the sibling nodes after the inserted
node and all the descendants of these siblings

18



DeweylD Is bad to process order-sensitive
updates o)

e Order-sensitive updates ---- to maintain the document
order when updates are performed

 Need to re-label all the sibling nodes after the inserted
node and all the descendants of these siblings

« All the red color labels
were changed from the
original values, very
expensive

19



XML query processing :
XML Twig Pattern approach

o XML twig pattern matching Is a core operation
In XPath and XQuery

 Definition of XML Twig Pattern Query: an
XML twig pattern query is a small tree whose
nodes are tags, attributes or text values; and
edges are either parent-child (P-C) or ancestor-
descendant (A-D) relationships, etc.



An XML twig pattern example

Create a flat list of all the title-
author pairs for every book in
bibliography.

To answer the XQuery, we need to
match the following XML twig
pattern:

XQuery:

<results>

for $b in doc("bib.xmlI")/bib//book, \ \

$t in $brtitle,
$a in $h/author, = W

return /

<result> { $t } { $a } </result> 3t s

}

</results>




— Given an XML twig pattern Q, and an XML
database D, we need to find all the matches of Q on
D efficiently.

— E.g. Consider the following twig pattern and
document:

Twig pattern: An XML tree: Query solutions:
-
\ tl 52 (s1, t1, f1)
// . (s2, 12, f1)
N\ t2 i (s1, t2, f1)

A

Notation: s1 denote the first element of section
in XML tree by pre-order,...etc




XML-enabled relational databases

Using a relational DBMS

m XML data is stored in relations and the XML
query language (for example, XML-QL or
XQuery) Is translated to SQL and executed by the
underlying relational database system.

m Some approaches:
-- The Edge Approach
-- The Attribute Approach
-- Universal Table
-- Normalized Universal Approach
-- XRel
-- Vectorization technique
-- STORED
-- Shore
-- B-Tree approach

23



XML-enabled relational databases

(1) The Edge Approach

m Every node (XML element) in the directed
graph iIs assigned an id

m Each tuple In the edge table corresponds to
one directed edge In the directed graph

m Schema —
Edge (source, ordinal, name, flag, target)

Notes: name is the label of the edge;
source is the ID of node in the XML tree;
ordinal with value i indicates it (name) is the it child of its parent (source)
node;
flag value is to indicate whether the target value is a node id or a value.

24



(1) The Edge Approach (ont)

person

Mary 4711 Fruitdgle Ave.  painting

55 Peter 4711 Fraitdale e

S0
prersin pers

address

=2 T eyl olumbin Ay, SWimming  C¥eling 7 David 4711 Fronidale Ave

25



(1) The Edge Approach (ont)

source |ordinal |name flag target
1 1 age 1 55
1 2 name 1 peter
1 3 address 1 Fruit
1 4 child 0 3
1 5 child 0 4
2 1 age 1 38

Note: flag=1 means target is a value.
flag=0 means target is a node id.

26



(1) The Edge Approach cont)

® an index on the source column

m a combined index on the {name, target}
columns.

27



(2) The Attribute Approach

m Group all attributes with the same name into
one table

= A horizontal partitioning of the Edge table,
using name as the partitioning attributes

m A,qe (Source, ordinal, flag, target)
A me (SOUrce, ordinal, flag, target)
A_44ress (SOUrce, ordinal, flag, target)

28



(2) The Attribute Approach (ont)

person

agh ege ™, child

Mary 4711 Fruitdgle Ave.  painting

55 Peter 4711 Fraitdale e

S0
prersin pers

address

=2 T eyl olumbin Ay, SWimming  C¥eling 7 David 4711 Fronidale Ave

29



(2) The Attribute Approach (ont)

Anobby

source |ordinal |target
2 5 Painting
3 4 Swimming
3 5 cycling

Achild

source | ordinal |target
1 4 3
1 5 4
2 4 4

Note: Need a flag attribute for the tables to indicate whether

the target is a value or an node id.

30



(3) Universal Table Approach

m Structure

Universal (source, ordinal 4, flag,,, target, ,,
ordinal ,, flag,,, target,,

ordinal ., flag,,, target,, )

31



(3) Universal Table Approach cont,

person

agh ege ™, child

Mary 4711 Fruitdgle Ave.  painting

55 Peter 4711 Fraitdale e

S0
prersin perse

address

-2 T eyl olumbin Ay, SWimming  C¥eling 7 David 4711 Fronidale Ave

32



(3) Universal Table Approach cont)

source |..[ord . [targ.ame |---| Ordehia [t@rdenia | Ordnopny | t@rGnopny
1 2 Peter |... 4 3 null null
1 2 Peter |... 5 4 null null
2 2 Mary . 4 4 5 painting
3 2 John .| null null 4 swimming
3 2 John .| null null 5 cycling
4 2 David |...| null null null null

Note: There is also a flag for each target attribute.
The universal table has a lot of redundant data because of multi-valued attributes.

33



(4) Normalized Universal Approach

= UnivNorm (source, ordinal ,, flag,,, target,,,
ordinal ,, flag,,, target,,,

ordinal ., flag,,, target,, )

m Overflow,, (source, ordinal, flag, target),

. |
Overflow,, (source, ordinal, flag, target)

Note: (1) Overflow tables are for multivalued attributes.
(2) flag,, is the flag for target,,.

34



(4) Normalized Universal Approach (cont)

person

agg egs ™, child

Mary 4711 Fruitdgle Ave.  painting

55 Peter 4711 Fraitdale e

=0
perso pets

address

T3

- Jkm 5341 Columban Ave.  SWETIMINE cycling 7 Durvid 4711 Fratdale Ave

35



(4) Normalized Universal Approach (cont)

SOUITE O s l|rIf-'f|'.E;":||.:|.1|.|.-:: FOr g e IEJ'?""'-I-rill.-.-]:-1:-;." ﬂ'ﬂ'gll.-.-h-h-;r FOr P by
1 .. 2 - Peler null null null
- .. - - Mary o - paErefing
- 2 - John 4 I null
4 2 - Dgvid null null null
Overflow
oy _ Overflow,,
source ordinal | target _
— source ordinal target
3 4 swimming
3 c i 1 4 3
cyclin
yeing 1 5 4

Note: hobby and child are mutlivalued attributes of person object.

Also need a flag attribute for the overflow tables. flag = m in
the UR table indicates the target is a multi-valued attribute and

has an overflow table.

36



(5) XRel — a path-based approach

e Labels the XML document using containment
scheme and then divide a document into four
parts: path, element, text, and attribute, and
store them into 4 relation tables

Ref. M. Yoshikawa and T. Amagasa. XRel: a path-based approach to storage and
retrieval of XML documents using relational databases. In Proc. of ACM TOIT (2001)

37



| ? i A
rat
element

OB »

5L attribute
__________———“'___ T ~ text
3 ‘5"___ ;3 abe | string-valus
editar articles ~ ~
YO A
first family article
5 7 - = s T e T ——
I-—LI &I 10() 1 /N 13/L [\
[Mickasel |[Frankln|  category title authars 5“:,"“3”’

I e

= T, —
|resea.u:': 3-111_1.'E:|"5| e .,__
12 14 ﬁ 19 :r 27 |j E 30

. e AT authior authn::r I-:e,-w::urd
Enmpal;t-.‘e_ﬁ_al'}_»n is emerging ...
of Six XML 15 -
Schema Langnazes 17 =0 5/ 74 a oG

first family first r‘md dle fanf Iy 0L
|J_L| ﬂ |£ |J_L| 5[]
|::'D""E'H.D]1|| Laa | | Wesley || W | Chn |

Figure: An XML tree
38



The four tables of the XML tree are:
(1) Element table

- Elements of the

XML data

Node 3: The database
attributes index and
reindex in the relation
Element

represent the
occurrence order of
an element node
among the sibling
element nodes of the
same node type in
document order and
reverse document
order, respectively.

(2) Attribute table
- Attributes of XML
elements

Element
docID | pathID | start | end | index | reindex
1 1 0| 729 1 1
1 2 7 70 1 1
1 3 15 36 1 1
1 4 37 61 1 1
1 5 71 721 1 1
1 6 81 710 1 1
1 8 118 180 1 1
1 9 181 335 1 1
1 10 190 | 248 1 2
1 11 198 | 219 1 1
1 12 220 | 239 1 1
1 10 249 | 325 2 1
1 11 257 | 277 1 1
1 13 278 | 296 1 1
1 12 297 | 316 1 1
1 14 336 | 700 1 1
1 15 348 | 369 1 1
Attribute
docID | pathID | start | end value
1 7 2 82 research surveys

NodelD
2
3
4

Notel: start and end
6
g are parts of the
o containment label
11
I3 Note2: pathlD is a
14 foreign key to the
15 path table
17
19
2
55 Noted: NodelD is just
24 for easier reference
56  PUrpose, not actually
>3 required
NodelD
10

39



(3) Text table

(4) Path table

- XPaths from root
to leaf nodes are
given a pathID

Text

docil) | parhil) | ztarr | ena Vvalue Nodelld
1 3 X2 28 Michael 5
1 4 45 52 Framklin 7
1 3 125 | 172 | Comparatre Analy=sis . | 12
1 11 205 1 211 Dongwon 14
1 12 228 | 230 Lae 18
1 11 264 | 269 Waslew 21
1 13 286 | 287 W 23
1 12 305 | 307 Ch 25
1 14 345 | 347 As 7
1 1= 357 | 3530 XML it
1 14 370 | 650 15 emergmz as the 20
Path
ra pathexp
#1z5ue

:.r:l.[_.::._-_:Ir\.\_;:_:'::;'ﬁﬂlu-'.l-d-:h.'_.ﬁ.l'_l..uh:l—-'.
L

#hzsneseditor

#lssued edibon® first
& 1ssues editor= Tamm by
#zsues articles

#1ssued arficles# aticle

&1ssues articles® arhicled @icategory
&'1zsues articles® arhicled title
&'1zsuesaticles=/article® authors
#'1zsuer articles® articles authors# auther

#hzsnes articles= article & author=5 author= Tirst
&hzsuedarticles=articles authors# author® fanm by
EhzsuesarticlesE artiele® anthor=+ auther mad dle

&1ssues articles= article® summary

&1ssues articles= article® sumumaryE kevword

Figure A XRel storage of the XML docuents

Note: Tag names
are not explicitly
stored in the
element, attribute,
and text tables, but
only stored in the
Path table as the last
node of the XPath
expressions. Also
levels of nodes are
not explicitly stored.

40



(6) Vectorising Large XML repositories

An XML document is decomposed into 2
parts

e a compressed skeleton describing the
structure of the document, where string data
IS replaced by a placeholder “#”

o Data vector files containing the string data.

The root-to-leaf path determines the file that
the string data Is written to.

Ref: Peter Buneman, Byron Choi, Wenfei Fan, Robert Hutchison, Robert Mann, Stratis
Viglas: Vectorizing and Querying Large XML Repositories. ICDE 2005: 261-272

41



/N

book B P book article - article - article
- T \ P T - 1 A P - ' - g LI
publisher snthor title publisher anthor title publisher anthor title anthor title anthor antheor title anthor anthor titls
L T L L} ' L L) L L L L L} T T T L) T
SBP RH Curation SBP EH XML AW SB AXMI. BC PP RH BC XSiore DD RH XPath
(3) bib bib/book/publisher
\‘ SEP bib/hook/author
SEBEF
bﬂﬂk artu:le article AW i
SH
bib/book/title
Curatien . .
- bib/article/author
publisher aul.hur uue AHML BC
EH
bib/article/title BC
# DD
# # F2P kH
K owe
Skeleton e Vectors

Notes:

(1) There are two “article” nodes in the skeleton. One type of articles
node has one author, and another type of articles has 2 authors.

(2) The number (3) indicates bib has 3 child book nodes.

(3) Q: How to find which title is published by which publisher?

42



(7) STORED

m use relational database management
systems to store and manage semistructured
data

m a mapping between the semistructured data
model and the relational data model

m When a semistrcutured data instance Is given,
a STORED mapping can be generated
automatically using data-mining techniques.
Q: How to find the mapping?

43



(7) STO R E D (cont.)

Audit

COMpAnY

payer

{axevasiont na
amount 44t 1 i
NEIME LA unt i

a
audlitedy 4

FLAITHE:

Agire s anfditd WL W

stredtape P street pombee 2P e e

Audit: Kol

{taxpayer: ko2i
{name : koil "Fluschlkto",

address : koS4 {street : LL0G "Tyuragam",
appartment : kof23 "W2CM
zip : kL2L "QTOgoN}
andited ; kolG "LO/L2/63V,
taxamount : &odT L2332},
taxpayer : ko2l
{name : kol32 "Kosberg",
addreszs : ko2t {strest : £427 "Tyuratam",
number : 925 206,
zip @ kLi2l "D24i43n}
andited : kodd "LLSLSGEN,
andited : kol "LOSLISTTY,
taxamount @ ko2& Q,
taxevasion : kof¥2 "likely'}
taxpayer : Lol

{name : &old2 "Korolev",
address : &o253 "Bailkonur, Russial,
andited : LodSd "LOSLZ EEV,
taxamount @ &o2&S O,
taxevasion : Eof32 "lLikely"l
company : ko2
{name : Eef2F "Rocket Propulsien Inc.",
owner : koRdil

44



(7) STO R E D (cont.)

m Model iIs an ordered version of the OEM
model

m A complex object Is an ordered set of
(attribute, object) pairs

m An atomic object is an atomic value of
type Int, string, video, etc.

45



(7) STO R E D (cont.)

Taxpayerl . _ . .

o3 | Twen | Truwas | 3¢ | orow | TR | otmeE

o2l | Resberg | Iyurata=m | 206 p2eds | 11/i/eg | LOJL2/7T ] Likaly

Ta_xp-ayer? ad ndited = i tompany = owTLeT

::2-"'; Ei:ra-:-_l,?mr Bae-l.il:-::i.ui' 1a"-J.-"' llzt.-"'ﬁﬁ ta-“aamt tii?;ii;m Rockat Pripﬂaic-n. InG. o2k

Q: How to know there are two types of taxpayers, I.e.
Taxpayerl and Taxpayer2?

Q: How to find the address (which is a composite
attribute) in Taxpayerl?

Q: How to find and store the node ID of the owner of
the Company?

Q: In general, how many relations are needed for a

given XML doc?

46



(8) Shore

<dblp><article key="sample_1">

<title>Sample One</titel>

<author>Author1</author=>

<author>Author2</author>

<cite label="sampart2">
sample_2

dblp
[ artice

<[cite></article> key || fitle ][ author ][ author ][ cite |

</dblp> 7

T value Sample One

Author2

| label

sample_2

sampart2

a7



(8) Shore (cont.)

m store each XML element of the XML file as
a separate object

m The format of each Iw_object qigntweight object

| leneth | flag | tag | parent | prev | next | opt_child | opt_attr | opt_text

48



(8) Shore (cont.)

Each circular box corresponds to a lw_object

File_Object — the manager object corresponding to the XML document

0--= | Length=40, dblp, parent=null, prev=null, next=null
firstchild=40, lastchild=40

File_Object
in Shore

ifr/ LS

¢ ™,
Length = 60, article, parent=0, prev =null, next=null,
40--= | firstchild = 100, lastchild = 460, attribute(“key”="samp
f e

le_17) }

x 460--f Length=80

100--> Length=60 \-\_\ cite

title ™ parent=40
parent=4() I <+ — prev=400
prev=null next=null
next=160 ——1——m > ——# attribute(

text= \ / | ) “label”=
“Sample One™ “sampart2”)

text =
— L “sample 27 )

Note: Bad! It uses length and offset as id.

49



(8) Shore (cont.)

m drawback

Since updated lw_objects that grow in size
must be validated and then appended to the
end of the file_object, the file_object tends to
be fragmented, and space utilization
deteriorates. Such updates also need to update
linking Information of other lw_objects.

50



(9) B-tree Approach

<dblp><article key="sample_1"> [ dblp |

<title=Sample One</titel=

<author=Author1</author=

<author>Author2</author> | artice |

<cite label="sampart2">

sample_2

</cite></article> key titte | [ author ][ author ][ cite

</dblp>
Eamp|>_‘ Author T
Sample One Author2 sample_2

sampart?2

51



(9) B-tree Approach (cont.)

This method uses B-tree to store the nodes of the XML tree, easier for XML
data updates.

B-tree Root

- & & & & &

~,

...,100,200....

/ B-tree leaf
Key= 101 Key =102 Key=105 Koyl
d';ﬂp" article title cite
arent—null parent=101 parent=102 parent=102
prev=mll prev=null prev=null prev=105
nest—null next=null next=104 nextfnull
e firstchild=103 nochild I Ft‘?t":?]‘;"‘tl el
lnctelyld102 lastchild=106 text="Sample A ‘jfj >
attr(“key™= One” - sampart )
“sample_17) text="sample_2

52



	The Storage for Semi-structured Data� 
	Slide Number 2
	Native XML Databases:�In the file system
	In the file system (cont.)
	Native XML Databases:�Stored as Lists of Elements (streams)
	Slide Number 6
	Node Labeling schemes
	 (1) Containment (Range) labeling scheme
	Slide Number 9
	(1) Containment (Range)  labeling scheme (cont.)
	Containment is bad to determine the sibling relationship
	Slide Number 12
	Containment is bad to process updates
	Existing approaches to process the updates in containment scheme
	(2)  Prefix labeling scheme
	DeweyID [Tatarinov et al SIGMOD02]
	DeweyID (Cont.)
	DeweyID is bad to process order-sensitive updates
	DeweyID is bad to process order-sensitive updates (cont.) 
	XML query processing : �      XML Twig Pattern approach
	An XML twig pattern example
	Slide Number 22
	XML-enabled relational databases �Using a relational DBMS 
	 XML-enabled relational databases�(1) The Edge Approach
	(1) The Edge Approach (cont.)
	(1) The Edge Approach (cont.)
	(1) 	The Edge Approach (cont.)
	(2) The Attribute Approach
	(2) The Attribute Approach (cont.)
	(2) The Attribute Approach (cont.)
	(3) Universal Table Approach
	(3) Universal Table Approach (cont.)
	(3) Universal Table Approach (cont.)
	(4) Normalized Universal Approach
	(4) Normalized Universal Approach (cont.)
	(4) Normalized Universal Approach (cont.)
	(5) XRel – a path-based approach
	Slide Number 38
	Slide Number 39
	Slide Number 40
	(6) Vectorising Large XML repositories
	Slide Number 42
	(7)  STORED
	(7) STORED (cont.)
	(7) STORED (cont.)
	(7) STORED (cont.)
	(8) Shore
	(8) Shore (cont.)
	(8) Shore (cont.)
	(8) Shore (cont.)
	(9) B-tree Approach
	(9) B-tree Approach (cont.)

