
1

The Storage for Semi-structured Data
Three types of XML database systems:



Native XML databases
– XML data often is stored in proprietary object repositories or

in text files, in which tags encode the schema

– Lorel and Tsimmis store their data as graphs; the schema is
stored as attributes labeling the graph's edges

– Strudel stores the data externally as structured text, and
internally as a graph

– Use labeling scheme, index, structural joins



XML-enable relational databases
– Map XML data into relational tables
– Many different mapping methods



Hybrid database systems
– Support both relational and XML data types
– DB2 9 (IBM), Oracle 10g rel 2, SQL Server 2005 (Microsoft)

2

3

Native XML Databases:Native XML Databases:

In the file systemIn the file system


store each XML document as a separate operating
system file and use a DOM parser to create a
DOM tree in main memory whenever the
document is accessed by a query.



Advantages
– It is easy to implement
– It does not require the use of a database system

or storage manager.

4

In the file system In the file system (cont.)(cont.)



Disadvantages
– XML files in ASCII format need to be parsed

every time when they are accessed for either
browsing or querying.

– the entire parsed file must be memory-resident
during query processing.

– it is hard to build and maintain indices on
documents stored this way.

– update operations are difficult to implement.

5

Native XML Databases:Native XML Databases:

Stored as Lists of Elements (Stored as Lists of Elements (streamsstreams))


Use some labeling scheme to number the nodes of
the XML document



For query processing using structural join or twig
pattern query



XML employs tree-structured model for representing
data



XML query can be decomposed into a set of basic
structural (parent-child, ancestor-descendant,
following, etc.) relationships between pairs of nodes
or some twig patterns

6

book

Title

Title

XML

book

Author

Author

d) Basic Structural relationship

John

parent-child
ancestor-descendant

XML

Title author

book

c) Twig Pattern Query

John

<book title=“XML”>

<allauthors>

<author>John</author>

<author>Tom</author>

</allauthors>

<year>2003</year>

<chapter>

<head>….</head>

<section>…</section>

</chapter>

</book>

a) XML source

XML section

book

title allauthors year chapter

author author 2003

John Tom

head

b) XML tree
…. ….

Any node in XML tree may be an element,
attribute, value of XML source.

7

Node Labeling schemesNode Labeling schemes



The method of assigning the labels to nodes of the XML
trees is called a node labeling scheme.



Labels of the same tag name are stored in a stream in
document order.



Given 2 labels of 2 nodes, we can determine parent-child,
ancestor-descendant, following, or preceding relationships,
etc. of the 2 nodes. These relationships are important parts
of XML queries.

(1)(1) Containment Containment ((RangeRange) labeling scheme) labeling scheme
• Each node is assigned with three values, i.e. (start, end, level).

• Property 1: Node a is an ancestor of node b if and only if a.start<b.start
and a.end>b.end

• Property 2: Node a is the parent of node b if and only if a.start<b.start,
a.end>b.end, and a.level=b.level-1.

• Labels of the same tag name are stored as a stream in document order.

bidding

item

@ID location

"Singapore""item0"

bidder

date

"10/07/2004"

incategory

category

"category1"

"item0"

@IDREF

(1,34,1)

incategory

category

"category2"

(2,23,2)

(3,6,3)

(4,5,4)

(7,10,3)

(8,9,4)

(11,16,3)

(12,15,4)

(13,14,5)

(17,22,3)

(18,21,4)

(19,20,5)

(24,33,2)

(25,28,3)

(26,27,4)

(29,32,3)

(30,31,5)

An XML tree:

Ts (1,12,1),

Tt

Tf

(2,3,2),

(8,9,4)

Data streams:

s1

s2

f1

p1

t1

t2

(1,12,1)

(2,3,2)

(5,6,3)

(4,11,2)

(7,10,3)

(8,9,4)

(5,6,3)

(4,11,2)

Another example: An XML tree with containment labels and its streams.

Tp (7,10,3)

10

(1) Containment (Range) labeling scheme (cont.)

• Ancestor-descendant. (5,6,3)

is a
descendant of (1,18,1)

because
interval [5,6] is contained in interval
[1,18]

• Parent-child. (5,6,3)

is a child of
(4,9,2)

because interval [5,6] is
contained in interval [4,9], and levels
3-2=1

• Ordering. (5,6,3)

is before (10,11,2)

in document order because the “start”

of (5,6,3)

i.e. 5 is smaller than the
“start”

of (10,11,2)

i.e. 10.

(1,18,1)

(2,3,2) (4,9,2) (10,11,2) (12,17,2)

(5,6,3) (7,8,3) (15,16,3)(13,14,3)

11

Containment is bad to determine the sibling
relationship

• Sibling.
– To determine whether (7,8,3)

is
a sibling of (5,6,3), containment
scheme needs to search the
parent of (5,6,3)

firstly, then
determine whether (7,8,3)

is a
child of this parent.

– The containment scheme needs
to determine many parent-child
relationships to get the sibling
relationship.

– Very expensive.

(1,18,1)

(2,3,2) (4,9,2) (10,11,2) (12,17,2)

(5,6,3) (7,8,3) (15,16,3)(13,14,3)

12

• Need to re-label all the ancestor nodes and all the nodes
after the inserted node in document order

(1,18,1)

(2,3,2) (4,9,2) (10,11,2) (12,17,2)

(5,6,3) (7,8,3) (15,16,3)(13,14,3)

Containment is bad to process updates

13

• Need to re-label all the ancestor nodes and all the nodes
after the inserted node in document order

(1,20,1)

(2,3,2) (4,9,2) (12,13,2) (14,19,2)

(5,6,3) (7,8,3) (17,18,3)(15,16,3)

(10,11,2)

• All the red color numbers
were changed from their
original values, very
expensive

Containment is bad to process updates

14

• Increase the interval size and leave some values unused
for the future insertions [Li et al VLDB01]
– When unused values are used up, have to re-label

• Use float-point value [Amagasa

et al ICDE03]
– Float-point value represented in a computer with a

fixed number of bits
– Due to float-point precision, have to re-label

• They both can not completely avoid the re-labeling

Existing approaches to process the updates
in containment scheme

[Li et al VLDB01]

Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expressions. In Proc. of
VLDB, pages 361-370, 2001.

[Amagasa

et al ICDE03] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust Numbering Scheme for
XML Documents. In Proc. of ICDE, pages 705-707, 2003.

15

(2) Prefix labeling scheme
• Three main prefix schemes

– DeweyID [Tatarinov

et al SIGMOD02]
– BinaryString [Cohen et al PODS02]
– OrdPath [O'Neil et al SIGMOD04]

• Determine different relationships based on the prefix
property

• We will only discuss DeweyID scheme

[Tatarinov

et al SIGMOD02] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita, and C.
Zhang. Storing and querying ordered XML using a relational database system. In Proc. of SIGMOD, pages
204-215, 2002.

[Cohen et al PODS02]

E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Proc. of PODS, pages
271-281, 2002.

[O'Neil et al SIGMOD04] P.E. O'Neil, E.J. O'Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In Proc. of SIGMOD, pages 903-908, 2004.

16

DeweyID [Tatarinov

et al SIGMOD02]

• Label the nth child of a node with an integer n
• This n should be concatenated to the prefix (i.e. its parent’s label)

and delimiter (e.g. “.”) to form the complete label of this child node.
• The label of the root of the XML tree is an empty string (for all the

prefix labeling schemes).

• Ancestor-descendant. “2.1”

is a
descendant of the root, because the label
of the root is empty which is a prefix of
“2.1”

• Parent-child. “2.1”

is a child of “2”

 because “2”

is an immediate prefix of
“2.1”, i.e. when removing “2”

from the left
side of “2.1”, “2.1”

has no other prefixes.

1 2 3 4

2.1 2.2 4.24.1

[Tatarinov

et al SIGMOD02] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita, and C.
Zhang. Storing and querying ordered XML using a relational database system. In Proc. of SIGMOD, pages
204-215, 2002.

17

DeweyID (Cont.)

• Ordering. “2.1” is before “3” in
document order because the “2” in
“2.1” is smaller than of “3”.

• Sibling. “2.2” is a sibling of “2.1”
because their prefixes are the same,
i.e. their prefixes are both “2”.

1 2 3 4

2.1 2.2 4.24.1

Bad to process all the four basic relationships if
the XML tree is tall.

18

DeweyID is bad to process order-sensitive
updates
• Order-sensitive updates ---- to maintain the document

order when updates are performed

• Need to re-label all the sibling nodes after the inserted
node and all the descendants of these siblings

1 2 3 4

2.1 2.2 4.24.1

19

DeweyID is bad to process order-sensitive
updates (cont.)

• Order-sensitive updates ---- to maintain the document
order when updates are performed

• Need to re-label all the sibling nodes after the inserted
node and all the descendants of these siblings

1 2 4 5

2.1 2.2 5.25.1

3

• All the red color labels
were changed from the
original values, very
expensive

XML query processing :
XML Twig Pattern approach

• XML twig pattern matching is a core operation
in XPath and XQuery

• Definition of XML Twig Pattern Query: an
XML twig pattern query is a small tree whose
nodes are tags, attributes or text values; and
edges are either parent-child (P-C) or ancestor-
descendant (A-D) relationships, etc.

An XML twig pattern example

XQuery:
<results>
{
for $b in doc("bib.xml")/bib//book,

$t in $b/title,
$a in $b/author,

return
<result> { $t } { $a } </result>
}
</results>

$b:

$t: $a:

To answer the XQuery, we need to
match the following XML twig
pattern:

bib

book

title author

Create a flat list of all the title-
author pairs for every book in
bibliography.

– Given an XML twig pattern Q, and an XML
database D, we need to find all the matches of Q on
D efficiently.

– E.g. Consider the following twig pattern and
document:

Twig pattern:

section

title figure

An XML tree:
s1

s2

f1

p1

t1

t2

Query solutions:

(s1, t1, f1)
(s2, t2, f1)
(s1, t2, f1)

Notation: s1 denote the first element of section
in XML tree by pre-order,…etc

23

XMLXML--enabled relational databasesenabled relational databases

Using a relational DBMSUsing a relational DBMS


XML data is stored in relations and the XML
query language (for example, XML-QL or
XQuery) is translated to SQL and executed by the
underlying relational database system.



Some approaches:
-- The Edge Approach
-- The Attribute Approach
-- Universal Table
-- Normalized Universal Approach
-- XRel
-- Vectorization technique
-- STORED
-- Shore
-- B-Tree approach

24

XMLXML--enabled relational databasesenabled relational databases

(1) The Edge Approach(1) The Edge Approach


Every node (XML element) in the directed
graph is assigned an id



Each tuple in the edge table corresponds to
one directed edge in the directed graph



Schema –
Edge (source, ordinal, name, flag, target)

Notes: name is the label of the edge;
source is the ID of node in the XML tree;
ordinal with value i indicates it (name) is the ith child of its parent (source)
node;
flag value is to indicate whether the target value is a node id or a value.

25

(1) The Edge Approach (1) The Edge Approach (cont.)(cont.)

26

(1) The Edge Approach (1) The Edge Approach (cont.)(cont.)

source ordinal name flag target
1 1 age 1 55
1 2 name 1 peter
1 3 address 1 Fruit
1 4 child 0 3
1 5 child 0 4
2 1 age 1 38
… … … …

Note: flag=1 means target is a value.
flag=0 means target is a node id.

27

(1) (1) The Edge Approach The Edge Approach (cont.)(cont.)



an index on the source column


a combined index on the {name, target}
columns.

28

(2) The Attribute Approach(2) The Attribute Approach


Group all attributes with the same name into
one table



A horizontal partitioning of the Edge table,
using name as the partitioning attributes



Aage (source, ordinal, flag, target)
Aname (source, ordinal, flag, target)
Aaddress (source, ordinal, flag, target)
…

29

(2) The Attribute Approach (2) The Attribute Approach (cont.)(cont.)

30

(2) The Attribute Approach (2) The Attribute Approach (cont.)(cont.)

Ahobby

source ordinal target
2 5 Painting
3 4 Swimming
3 5 cycling

Achild

source ordinal target
1 4 3
1 5 4
2 4 4

Note: Need a flag attribute for the tables to indicate whether
the target is a value or an node id.

31

(3) Universal Table Approach(3) Universal Table Approach



Structure
Universal (source, ordinaln1 , flagn1 , targetn1 ,

ordinaln2 , flagn2 , targetn2 ,
. . . ,

ordinalnk , flagnk , targetnk)

32

(3) Universal Table Approach (3) Universal Table Approach (cont.)(cont.)

33

(3) Universal Table Approach (3) Universal Table Approach (cont.)(cont.)

source … ordname targname … ordchild targchild ordhobby targhobby

1 … 2 Peter … 4 3 null null

1 … 2 Peter … 5 4 null null

2 … 2 Mary … 4 4 5 painting

3 … 2 John … null null 4 swimming

3 … 2 John … null null 5 cycling

4 … 2 David … null null null null

Note: There is also a flag for each target attribute.
The universal table has a lot of redundant data because of multi-valued attributes.

34

(4) Normalized Universal Approach(4) Normalized Universal Approach



UnivNorm (source, ordinaln1 , flagn1 , targetn1 ,
ordinaln2 , flagn2 , targetn2 ,
. . . ,
ordinalnk , flagnk , targetnk)



Overflown1 (source, ordinal, flag, target),

. . . ,
Overflownk (source, ordinal, flag, target)

Note: (1) Overflow tables are for multivalued attributes.
(2) flagn1 is the flag for targetn1 .

35

(4) Normalized Universal Approach (4) Normalized Universal Approach (cont.)(cont.)

36

(4) Normalized Universal Approach (4) Normalized Universal Approach (cont.)(cont.)

Overflowchild

source ordinal target

1 4 3

1 5 4

Overflowhobby

source ordinal target

3 4 swimming

3 5 cycling

Note: hobby and child are mutlivalued attributes of person object.
Also need a flag attribute for the overflow tables. flag = m in
the UR table indicates the target is a multi-valued attribute and
has an overflow table.

37

(5) XRel – a path-based approach

• Labels the XML document using containment
scheme and then divide a document into four
parts: path, element, text, and attribute, and
store them into 4 relation tables

Ref: M. Yoshikawa and T. Amagasa. XRel: a path-based approach to storage and
retrieval of XML documents using relational databases. In Proc. of ACM TOIT (2001)

38
Figure: An XML tree

39

The four tables of the XML tree are:

Note1: start and end
are parts of the
containment label

(2) Attribute table
- Attributes of XML

elements

(1) Element table
- Elements of the
XML data

Note2: pathID is a
foreign key to the
Path table

Note4: NodeID is just
for easier reference
purpose, not actually
required

Node 3: The database
attributes index and
reindex in the relation
Element
represent the
occurrence order of
an element node
among the sibling
element nodes of the
same node type in
document order and
reverse document
order, respectively.

40Figure A XRel storage of the XML docuents

(3) Text table

(4) Path table
- XPaths from root
to leaf nodes are
given a pathID

Note: Tag names
are not explicitly
stored in the
element, attribute,
and text tables, but
only stored in the
Path table as the last
node of the XPath
expressions. Also
levels of nodes are
not explicitly stored.

41

(6) Vectorising Large XML repositories

An XML document is decomposed into 2
parts

• a compressed skeleton describing the
structure of the document, where string data
is replaced by a placeholder “#”

• Data vector files containing the string data.
The root-to-leaf path determines the file that
the string data is written to.

Ref: Peter Buneman, Byron Choi, Wenfei Fan, Robert Hutchison, Robert Mann, Stratis
Viglas: Vectorizing and Querying Large XML Repositories. ICDE 2005: 261-272

42

Notes:
(1) There are two “article” nodes in the skeleton. One type of articles

node has one author, and another type of articles has 2 authors.
(2) The number (3) indicates bib has 3 child book nodes.
(3) Q: How to find which title is published by which publisher?

43

(7) STORED(7) STORED


use relational database management
systems to store and manage semistructured
data



a mapping between the semistructured data
model and the relational data model



When a semistrcutured data instance is given,
a STORED mapping can be generated
automatically using data-mining techniques.
Q: How to find the mapping?

44

(7) STORED (7) STORED (cont.)(cont.)

45

(7) STORED (7) STORED (cont.)(cont.)



Model is an ordered version of the OEM
model



A complex object is an ordered set of
(attribute, object) pairs



An atomic object is an atomic value of
type int, string, video, etc.

46

(7) STORED (7) STORED (cont.)(cont.)

Q: How to know there are two types of taxpayers, i.e.
Taxpayer1 and Taxpayer2?

Q: How to find the address (which is a composite
attribute) in Taxpayer1?

Q: How to find and store the node ID of the owner of
the Company?

Q: In general, how many relations are needed for a
given XML doc?

47

(8) Shore(8) Shore

value

48

(8) Shore (8) Shore (cont.)(cont.)



store each XML element of the XML file as
a separate object



The format of each lw_object (light weight object)

49

(8) Shore (8) Shore (cont.)(cont.)

Each circular box corresponds to a lw_object
File_Object – the manager object corresponding to the XML document

Note: Bad! It uses length and offset as id.

50

(8) Shore (8) Shore (cont.)(cont.)



drawback
Since updated lw_objects that grow in size
must be validated and then appended to the
end of the file_object, the file_object tends to
be fragmented, and space utilization
deteriorates. Such updates also need to update
linking information of other lw_objects.

51

(9) B(9) B--tree Approachtree Approach

value

52

(9) B(9) B--tree Approach tree Approach (cont.)(cont.)
This method uses B-tree to store the nodes of the XML tree, easier for XML
data updates.

	The Storage for Semi-structured Data�
	Slide Number 2
	Native XML Databases:�In the file system
	In the file system (cont.)
	Native XML Databases:�Stored as Lists of Elements (streams)
	Slide Number 6
	Node Labeling schemes
	 (1) Containment (Range) labeling scheme
	Slide Number 9
	(1) Containment (Range) labeling scheme (cont.)
	Containment is bad to determine the sibling relationship
	Slide Number 12
	Containment is bad to process updates
	Existing approaches to process the updates in containment scheme
	(2) Prefix labeling scheme
	DeweyID [Tatarinov et al SIGMOD02]
	DeweyID (Cont.)
	DeweyID is bad to process order-sensitive updates
	DeweyID is bad to process order-sensitive updates (cont.)
	XML query processing : � XML Twig Pattern approach
	An XML twig pattern example
	Slide Number 22
	XML-enabled relational databases �Using a relational DBMS
	 XML-enabled relational databases�(1) The Edge Approach
	(1) The Edge Approach (cont.)
	(1) The Edge Approach (cont.)
	(1) 	The Edge Approach (cont.)
	(2) The Attribute Approach
	(2) The Attribute Approach (cont.)
	(2) The Attribute Approach (cont.)
	(3) Universal Table Approach
	(3) Universal Table Approach (cont.)
	(3) Universal Table Approach (cont.)
	(4) Normalized Universal Approach
	(4) Normalized Universal Approach (cont.)
	(4) Normalized Universal Approach (cont.)
	(5) XRel – a path-based approach
	Slide Number 38
	Slide Number 39
	Slide Number 40
	(6) Vectorising Large XML repositories
	Slide Number 42
	(7) STORED
	(7) STORED (cont.)
	(7) STORED (cont.)
	(7) STORED (cont.)
	(8) Shore
	(8) Shore (cont.)
	(8) Shore (cont.)
	(8) Shore (cont.)
	(9) B-tree Approach
	(9) B-tree Approach (cont.)

