
Translation of SQL Q ueries Containing Nested Predicates into Pseudonatural Language

Hirofumi Amano

Dept. Computer Science and Communication Engineering
Kyushu University

Hakozaki, Higashi, Fukuoka 812, Japan

Abstract

An approach to support query verification by translating SQL

queries into easy-to-read pseudonatural language expressions is

proposed. The method discussed here converts various types of

SQL queries, including simple and composite nested ones. Since

it employs no complex natural language processing technique, it

is feasible even on small computers.

1 Introduction

Recent advances in computers and databases have enabled com-

puter novices to use commercially-supplied relational database

systems on their own computers. Relational databases are no

longer special tools for expert users only.

One of the criteria by which the novice users may choose a

database system is the effort required each time they retrieve

information from the database. To get necessary information,

one must specify to the system exactly what is needed. For this

purpose, formal query languages have been used most. Such an

artificial language is easy to understand for the system, but not

necessarily for novice users.

QBE[13] is a formal query language for relational databases

which is believed to be easy to learn. In an experiment[ll], how-

ever, 27% of the QBE queries written by the subjects were se-

mantically incorrect but syntactically correct. As long as a formal

query language is used, the system has no way of knowing that a

syntactically correct query is different from the user’s intention.

To offer novice users an alternative to formal query languages,

many attempts are being made to develop natural language inter-

faces which accept queries written in everyday language. Natural

language interfaces, however, also have their problems. First of

all, natural language processing is not an easy task. Our ev-

eryday language has too many rules and exceptions compared

with formal languages. If we are to develop an interface which

can accept every naturally-expressed input, and can respond in

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

Yahiko Kambayashi

Integrated Media Environment Experimental Laboratory
Kyoto University

Yoshida-Honmachi, Sakyo, Kyoto 606, Japan

a natural way, we would have to equip the system with a huge

store of human knowledge.

A more modest approach is to implement a system which can

accept only a reasonable variety of queries at the cost of reject-

ing other queries which are considered ra.re. It would need only

a limited amount of lexical, syntactic, situational or application-

specific information. Unfortunately, users must learn the lan-

guage of the interface, and must know which sentences are allowed

and which are not. Such an interface could hardly be considered

to be truly natural[4].

We can adopt another approach to cope with the problems of

formal query languages. If users can verify the semantics of their

queries, those possibly-incorrect queries will not be executed, and

thus users will not misunderstand the information returned by

the system. Natural language can be used for a feedback to

the users[6, 7, 3, 9, lo]. They can check the output given by

the system easily, and can execute the query only after they are

sure that it fits their intention. This seems to be a reasonable

compromise given the current technology.

The REMIT system[9] translates relational algebra queries into

natural language. It uses a semantic network for representing ap-

plication specific information. This network representation, how-

ever, may not be convenient in cases where the database structure

is likely to change, since a small change in the network may cause

a rippling effect throughout the network. This system also uses

complex natural language processing techniques.

The ELFS system[lO] has an preprocessor which transforms

SQL[2] queries into an SQL-like intermediate language. Then,

its translator generates a na.tural langua.ge text describing the

meaning of the query. This translator employs simple binary

relationships to store application-specific information. Binary

relationships, however, are not powerful enough for handling n-

ary ones in a natural way.

A third approach [7] employs hypergraphs and natural lan-

guage fragments for representing application specific information.

This hypergraph scheme can express n-ary relationships easily.

For each element in those hypergraphs, a natural language frag-

ment is assigned. Since these units are localized within each

relation which is a unit in a whole database, this significantly

reduces the effort required to customize the system for particu-

lar applications. The method first translates a given relational

algebra query into a query hypergraph. This hypergraph is then

116

used to determine a “skeleton” of the output sentence. Prepared

natural language fragments are assembled into a pseudonatural

language expression by simple string manipulations. The output

is a natural-language-like expression describing the meaning of

the result to be retrieved by the query.

In this paper, we extends this third approach to handle more

complex queries written in SQL. An interesting, but also trouble-

some, feature of SQL is its nesting facility. In a complex query in-

volving set comparisons or aggregations, a unit construct of SQL

is embedded into another. Unfortunately, such queries are diffi-

cult to understand. This paper discusses a translation method

for such nested SQL queries, which will be incorporated into a

prototype system of an example-based natural-language-assisted

interface[6] now under development[3].

2 Basic Concepts

2.1 Relational Databases and SPJ Queries

A relation which can be visualized as a flat table. The name of

a column of such a table is an attribute and is used to identify a

certain column in the table. Each row of the table corresponds

to an element of the relation, called a tuple. The set of attributes

of a relation R is called the relation schema, denoted R. Values

in a tuple t for an attribute set X is denoted t[X]. As long as

there is no ambiguity, we use a concatenation of attribute names

to refer to a set of attributes (such as AB for { A, B }).

A projection of a relation R onto an attribute set X, denoted

ax(R), is defined as follows:

xx(R)d~f{T[x] 1 TER}, (1)

where X c R.

Let 0 be a scalar comparison operator, and c be a constant.

A &selection of a relation R with the condition ABC, denoted

u&R), is defined as follows:

~asc(R)~~~(rl(r[Al~c)~(r~R)), (2)

where A E R. The scalar comparison between A and c is called

a selection condition. A selection condition can be a conjunction

of similar scalar comparisons.

The B-join of two relations R and S with a condition ABB,

denoted R WB S, is defined as follows:

RA~~S~f{tI(tt(R~S))A(t[Al~t[Bl)}, (3)

where A E R, B E S,, and “@J” denotes Cartesian product. The

scalar comparison between A and B is called a join condition. A

join condition can be a conjunction of similar scalar comparisons.

A and B are called join attributes.

An SPJ query on a given database is a sequence of a finite

number of selection, projection, and join operations. Any given

SPJ query Qsp~ can be transformed into the following style:

QSPJ = w(~cs(ucJ& @ Rz ~3’ . . @ Rn))), (4)

where CS is the conjunction of all the selection conditions, CJ

is the conjunction of all the join conditions, and P is the output

attributes of the query QsP J.

2.2 Hypergraphs

A hypergraph[l] is a pair (AJ, E) where N is a finite set of nodes,

and E is a set of hyperedges which are arbitrary nonempty subsets

of N. The union of all the hyperedges is equal to N.

A path from node z to y is a sequence of L(> 1) hyperedges

El,... , Ek such that: (a) z E El; (b) y E Ek; (c) Ei n Ei+l # 0

for 1 5 i 5 Ic.

The above sequence El,. . . Ek may be called an edge path from

El to Ek. Two nodes are connected if there is a path from one

to the other. Two hyperedges are connected if there is an edge

path from one to the other.

A Berge cycle in hypergraph H(N,E) is a sequence

(~~,x~,SZ,XZ,..~,S~,X,,S~+~) which
conditions:

(a) m 2 2;

tb) ~1, 22, . . . , x, are distinct nodes;

satisfies the following

Cc) Si,-.-rSm are distinct hyperedges, and Sr = S,+r ;

(d) xi E Si and xi E Si+r for 1 5 i 5 m.

A hypergraph is Berge-cyclicif it has a Berge cycle. Otherwise,

it is Berge-acyclic.

(a) (b)

(cl

Figure 1: Examples of Hypergraphs

Figure l(a) and (b) show examples of Berge-cyclic hypergraphs.

Examples of Berge-cycles are indicated by dotted lines. A Berge-

acyclic hypergraph is shown in Figure l(c).

2.3 Query Language SQL

For the rest of this paper, we concentrate on a typical SQL121

query construct, called a query block. A query block is as follows.

117

i, :.,a _--. h_l-..

SELECT << output-specification >>

FROM << relations >>

WHERE << condition >

The WHERE clause is optional, while the SELECT and FROM

clauses are mandatory. We assume that the WHERE clause may

contain a conjunction of: (a) a conjunction of selection and join

conditions (predicates) corresponding to those which appeared in

Formula (4); or (b) a logical formula’ of nested predicates (to be

summarized later).

Intuitively, the above construct is interpreted as:

Calculate the Cartesian product of the relations specified

in the FROM clause, then get only the tuples which sat-

isfy the condition in the WHERE clause. Finaliy, print

the values, following the output specification in the SE-

LECT clause.

Note that without aggregation in the output specification, a sin-

gle query block can express an SPJ query.

SQL allows a query block to be nested in a predicate of the

WHERE clause for another query block. The inner block may

contain yet another query block, and so on. In such cases, join

predicates may involve attributes of relations in the FROM clause

of the outer block or a higher block2. A reference by such a join

predicate is called an interblock reference.

The single-level nested predicates considered in this paper are

classified into the following six categories3 according to the link-

age expressed by the predicates.

(a) Category-S (Scalar comparison):

This form of nesting has an effect similar to that of a join

operation, but is allowed only when the inner block returns

only one value:

<< attribute >> 0 (<query-block >) (5)

(b) Category-Q (Quantified scalar comparison):

This form is allowed when the inner block returns a relation

with only one attribute:

<attribute>> 8 {ALL 1 ANY 1 SOME} (<<query-block>>).

(‘5)

(c) Category-A (Attribute-aggregation comparison):

This is similar to a selection condition, except that the con-

stant is replaced by an aggregated value returned by the inner

query block:

< attribute > ti (< aggregation-query-block B), (7)

‘We assume that this formula has already been transformed so that nega-

tions appear only at the literal level, that is, at the individual predicates.

‘We assume that a join predicate can involve at most one ‘external”

attribute.

3Though Kim gave a different classification of nested predicates (in an old
syntax of SQL)[B], that work was done from a viewpoint of query optimiza-
tion, and would not suffice for our purpose.

where <aggregation-query-block>> is as follows.

SELECT { { MAX 1 MIN (COUNT 1 SUM 1 AVG }

(<<attribute) (

COUNT(*) }

FROM <<relation@

WHERE <conditions3>

(d) Category-C (Constant-aggregation comparison):

The general form of a Category-C nested predicate is:

<constant> B (<<aggregation-query-block>). (8)

This compares the constant with the aggregated value re-

turned by the inner block. If there is no interblock reference

to the outer block or a higher block, the value of this predi-
cate has nothing to do with the result of the query, and the

predicate is meaningless.

(e) Category-M (Set membership checking): This checks

whether a certain value of a tuple is contained in the set

returned by the inner block. The inner block must return a

relation with only one attribute. A general formulation is:

<attribute>> {IN) NOT IN} (<<query-block>>). (9)

(f) Category-E (Existential checking): A Category-E

nested predicate checks whether or not the set returned by

the inner block is empty. If the predicate has no interblock

reference to another block above it, it is meaningless for the

same reason as for Category-C. A general form is:

{EXISTS I NOT EXISTS} (<query-block>>). (10)

To clarify the semantics of nestings, we decompose each cate-

gory into several types.

The first subcategorization is according to interblock refer-

ences. If the inner block refers to its parent block, we distinguish

that nesting type from the one without such a reference by un-

derlining the category name. For example, a Category-S nesting

with a one-level interblock reference is Type-S.

The other subcategorization is by negations allowed in

Category-M and Category-E. A negative nesting in those cat-

egories is denoted with a superscript “-“, such as Type-M- or

Type-E-.

A nesting graph for an SQL query is a directed graph (N,E)

such that:

(a) Each block in the query is expressed as a node.

(b) If a block involves only one inner block, the nodes for the

two blocks are connected by an edge labeled with the nest-

ing type. For a logical formula of nested predicates, a con-

junction of terms is expressed as a tree which has an “AND”

node for its root and subtrees for the terms. Similarly, a dis-

junction is a tree whose root is an “OR” node. The logical

formula thus comprises a tree structure.

118

(c) An interblock reference is expressed as an edge between the

node for the block containing the join predicate and the node

for the block referred to, labeled J (which stands for “Join”).

(d) Each edge has the direction from the lower level to the higher

level.

\

iELECT S#
:ROM SUPPLY A
NH

(

-

l2
RE NOT EXISTS

SELECT * 2

FROM PARTS X
WHERE COLOR = ‘Red’

AND NOT EXISTS

(a)

(b)

1
-

i

Figure 2: An Example of a Nested SQL Query and Its Nesting
Graph

Example 1 : The nested SQL query in Figure 2(a) has the nest-

ing graph shown in Figure 2(b). The boxes in Figure 2(a) indicate

boundaries of query blocks.

3 Pseudonatural Language and SPJ

Q ueries

This section summarizes an approach[7] to convert a class of basic

relational queries, SPJ queries, into pseudonatural language.

Our text generation strategy is based on a combination of sev-

eral simple string manipulations, such as insertion of phrases and

modifiers. Natural language fragments must be prepared when

the system is customized for a new application. The basic strat-

egy is summarized as follows:

(a) Determine the attributes which are relevant to a given query;

(b) Assemble prepared natural fragments to form a natural-

language-like sentence.

The first subsection discusses the natural language expressions

to be used in pseudonatural language text generation. Then,

we consider how to generate a pseudonatural language sentence

describing a given SPJ query in the next subsection.

We assume that a given SPJ query has already been trans-

formed into the form of Formula (4). This causes no loss of

generality4. Let S be the set of selection attributes which appear

in the selection condition Cs of Formula (4), and let .7 be the set

of join attributes in CJ.

3.1 Objects and Their Natural Language Expres-
sions

To obtain suitable semantic units for string manipulation, we

decompose a relation schema into several attribute sets. We call

such an attribute set an object. An object is characterized by a

simple natural language sentence in which each attribute in the

object appears as a noun phrase. The sentence must not contain

a noun phrase which refers to any attribute not of the object5.

For each object, we construct natural language fragments to

be used as building blocks for text generation. These expressions

are classified into two categories:

Canonical Sentences: Sentences which explicitly contain at-

tribute names, and express the relationships among them;

Canonical Subclauses: Subclauses (relative clauses or prepo-

sitional phrases) which can be placed after noun phrases con-

taining attribute names.

A canonical sentence express the relationship between the at-

tributes in an object. However, combined descriptions may be

necessary to express the meaning of SPJ queries, since they are

likely to involve several relations and therefore several objects.

The easiest way to construct such a combined sentence is to em-

bed a prepared subclause for one object into a prepared sentence

for another.

To simplify the transformation process, we introduce some

modest restrictions on these natural language fragments. First,

for al1 sentences associated with the objects of a given relation,

we insist on a common subject. This avoids repeated appear-

ances of the same attribute in the case where several objects of

one relation are involved in the query. Second, those attribute

names must appear explicitly in the sentences and clauses.

These natural language fragments are concerned only with the

attributes of one object. This considerably decreases the cus-

tomization work compared to the case where we have no localized

units.

Example 2 : Suppose that we have the following database

schema:

‘Note that this query transformation is just for pseudonatural language
translation.

51f a natural sentence describing an attribute set requires such an “exter-

ml” attribute noun, the set should include that missing attribute to form an
object.

119

SUPPLIER(S#, SNAME, ADDRESS);

PART(P#, PNAME, COLOR);

SUPPLY(S#, P#, QTY).

For relation SUPPLIER, we can now make the following sen-

tences which have a noun phrase associated with S# as the com-

mon subject:

supplier with supplier-code { S#}

: is called {SNAMa ;

: is located at (ADDRESS) ;

This gives us two objects {S#, SNAME} and {S#, ADDRESS}.

The subclauses to be prepared are:

supplier called { SNAME}

: which has supplier-code {S#} ;

supplier located at {ADDRESS)

: which has supplier-code {S#} ;

Note that the subclauses for S# can easily be made from the

sentences above by inserting a relative noun.

3.2 Translating SPJ Queries into Pseudonatural
Language Expressions

The natural language fragments discussed in the previous sub-

section are localized within a relation. We now need procedures

to assemble those fragments to describe an SPJ query involving

more than one relation.

Outline of the Translation Algorithm for SPJ Queries

(Algorithm 1)

Input: Attribute sets S, P, J;

Conditions Cs, CJ;

Objects of the database and their canonical expressions.

Output: A natural language expression describing the query.

Method:

(4

(b)

(cl

Hypergraph Construction: Find an object set of mini-

mum size which covers S u P U J. Let the object set be 0.

If the hypergraph for 0 is Berge-cyclic, decompose it into a

set of Berge-acyclic hypergraphs. In this case, the next three

steps must be repeated for each Berge-acyclic hypergraph.

Base Sentence Selection: Of the objects found in the

previous step, choose one having the greatest number of at-

tributes to be the generator of the base sentence. Let the

object be B.

Sentence Skeleton Construction: Find an object in

0 - {B} whose hyperedge is connected to that of B, em-

bed the subclause for the object into the sentence for B. If

the object is associated with B by a B-join (other than ‘=‘),

insert a phrase corresponding to the scalar comparison (such

as “more than”, etc.). Repeat this until all the subclauses of

objects in 0 - {B} are embedded in the sentence.

(d) Sentence Modification: Insert a modifier phrase for each

selection condition (such as “more than c”, etc.).

(e) Formatting: Emphasize output attributes and format the

sentence(s).

In step (a), the algorithm decomposes a Berge-cyclic hypergraph

into a set of Berge-acyclic ones. In general, the relationships

expressed in a sentence cannot be cyclic. Suppose that the hy-

pergraph has a Berge cycle as in Figure l(b). In such a case,

the sentence would be lengthy, and the hea.d noun of the subject

would appear at both the head and the tail of the sequence of

words. The decomposition instead makes two or more shorter

sentences having no repetition of the subject.

Step (b) chooses the “largest” object as the generator of the

sentence and thus avoids to use it as a subclause. This is because

such a “large” object is likely to have a long natural language

string describing it and a shorter subclause is preferable to a

longer one.

SNAME .

n

sb
P#

Figure 3: The Hypergraph of Query Q1

Example 3 : Suppose that we have the following query Q,:

91 = “{ SNAME, P#,QTY }(aQTY>loo(aS~~~~~~~~~

(SUPPLTER @ SUPPLY)))

The relevant attributes are:

S u P u J = { SNAME, P#, QTY,S#}.

The covering object set 0 is:

0 = { { SNAME, S# 1, { s#, P#, QTY 11

(11)

(12)

(13)

Q1 has the hypergraph shown in Figure 3. The base sentence

chosen by the algorithm is:

supplier with supplier-code {S#} supplies parts with

part-code {P#} in quantity { QTY).

The sentence skeleton is obtained by inserting the subclause for

the object {S#, SNAME}:

supplier with supplier-code {S#} (who is called

[SNAME]) supplies parts with part-code (P#) in quan-

tity { QTfi.

120

Finally, Qr is translated into the following pseudonatural lan-

guage sentence:

List [SNAME], [P#], [QTY] such that:

supplier with supplier-code {S#} (who is called

[SNAME]) supplies parts with part-code [P#] in quan-

tity [QTY] (more than 100).

4 Nested SQL Queries and Their Pseudo-
natural Language Expressions

This section discusses our translation method for SQL queries

containing such nested predicates. In the first subsection, the

algorithm of Section 3 is slightly modified to cope with single

nested predicates in Categories-S and -A. The second subsec-

tion analyzes other single nested predicates to be expressed us-

ing quantified expressions in natural language, and presents an

approach to incorporate such quantified expressions into pseudo-

natural language. The last subsection introduces heuristics to

translate SQL queries containing composite nested predicates,

using the above results.

4.1 Single Nested Predicates in Categories-S and
-A

As summarized in Section 2, single nested predicates in

Categories-S and -A have semantics similar to SPJ queries.

(a) Modifications to Algorithm 1 for Category-S

Nestings

Two-block queries in Category-S are special cases of SPJ queries.

They can be translated into pseudonatural language by Algo-

rithm 1, after obtaining a hypergraph for each query block and

join the two hypergraphs. In practice, a warning concerning the

restraint on the result of the inner block should be issued to the

user.

(b) Modifications to Algorithm 1 for Category-A

Nestings

A query with a single nested predicate in Category-A has two

query blocks whose hypergraphs cannot be joined directly. The

inner block, however, returns an aggregated value which is

to be compared with an attribute in the outer block. Since

this is similar to a selection operation, we first translate the

outer block by Algorithm 1. At this point, selection constants

should be replaced by a noun phrase such as “the maximum of

<noun-for-aggregated-attribute>> for.” The aggregate nouns,

such as minimum, average etc., must be built into the system.

The inner block should be a sequence of noun phrases for the

attributes determining the set of values on the aggregated at-

tribute.

(c) Modifications to Algorithm 1 for Nested Predicates

in Category-C except COUNT Function

If aggregate nouns are supported by the system, the algorithm

can be applied also to all types of Category-C nestings ex-

cept those using the COUNT function (Category-C nesting using

COUNT is discussed in the next subsection). We simply trans-

late the outer block, and add additional descriptions of the com-

parison between the constant and the aggregated value. The

aggregated value can be paraphrased in the same way as with

Category-A.

Type

S,S

C(al1 but COUNT)

c(all but COUNT)

Table 1

Parapharasing Strategy

Use the same algorithm as SPJ
queries. Add the warning about
the number of the tuples returned
the inner block.

-

Describe the nested predicate in a
separate text.

Use the same algorithm as SPJ
queries, except that an aggrega-
tion noun should be used instead of
a selection constant.

-I

Simple Nesting Types and Their Translation Strategy

Table 1 gives a summary of the handling of the above nesting

types.

SELECT S#
FROM SUPPLY
WHERE P# = ‘001’

AND QTY>(

Figure 4: An Example of a Type-A Nested Query

Example 4 : For the Type-A nested query shown in Figure 4,

the modified version of Algorithm 1 gives the following pseudo-

natural language expression:

List [S#] such that:

supplier with supplier-code [S#] supplies parts with part-

code ‘001’ in quantity QTY (greater than the average of

quantities for parts with part-code ‘001’).

4.2 Single Nested Predicates and Natural Quanti-
fiers

Single-level nested predicates which handle a value with respect

to a set or which check the size of a set are useful for expressing

such requests as: “Who supplies at least one type of red parts?”

or “List the parts supplied by no suppliers in London.”

Unfortunately, quantified expressions in natural language have

ambiguities in quantifier scope. Suppose that we have the follow-
ing sentence:

Every supplier supplies a red part.

121

It may mean that every supplier has its own red part to sup-

ply. It is, however, logically possible that there exists a red part

supplied by all suppliers without exception. We have to cope

with the problem of such quantifier scopings, since any ambi-

guity in pseudonatural language translation may be hazardous

rather than helpful for naive users.

The cause of such an ambiguity is that there is no clear dis-

tinction between the prerequisite of the domain of the quantified

variable and the restriction to be satisfied on the domain. One

solution, suggested in [12], is as follows:

Type Natural Quantifier

Q, B W-1 “all”

(ANY, SOME) “at least

one”

Quantified Noun

The attribute returned
by the inner block

C -

;COU NT)

For <naturaLquantifZer3> <variab@ which satisfy

< domain-specification >> ,

<< restriction-on-the-domain >>. (14)

The first interpretation of the previous example should be:

c (=)
(>)
(2)
(<I
(5)
(‘)

“exactly tn>”

“less than <n>”

“at most <n>”

nmore than <n>”

“more than <n>”

mnore or less than <n >’

For COUNT(*),
The inter block
reference attribute;

For
COUNT(Gattribule%>)),

dattribute9;

M,M “at least one” The attribute returned
by the inner block

For every supplier, a red part is supplied by the supplier. M-,&c “no” The attribute returned
by the inner block

The other interpretation is:
I

E, E- 1 -

For a red part, the part is supplied by every supplier. “at least one” The inter block
reference attribute

We can adopt this format for our pseudonatural language text

generation by preparing some more natural language fragments

for plural forms of noun phrases. The general format of a quan-

tified pseudonatural language expression is:

The inter block
reference attribute

Table 2: Nesting Types Associated to Natural Quantifiers

For <<quantifie@>, <<quantified-nou@> <subclause-for-

domain-specification >,

<restriction-on-the-domain >. (15)

The previous algorithm should be slightly modified so that it can

choose the head noun of the quantified attribute instead of the

base sentence. The other phases of the algorithm (except the

formatting phase) can then be used for generating the domain

specification in Template (15). The restriction can be generated

easily.

(b) Modifications to Algorithm 1 for Category-E

Nestings

Type-E and Type-E- nestings can be translated into quanti-

fied pseudonatural expressions with quantifiers ‘at least one” and

“no”, respectively. The domain specification is in the inner block,

and the restriction is in the outer block.

Category-Q, -M and -E nestings in SQL can be handled

with quantified pseudonatural language expressions. The nesting

types related to natural quantifiers are shown in Table 2.

(a) Modifications to Algorithm 1 for Category-Q

Nestings

A Category-Q nesting with ANY or SOME quantifier checks

whether or not there exists one value, in the set returned by

the inner block, which satisfies the scalar comparison 0 with the

attribute value in the outer block. This can be described using

‘at least one” as the quantifier in Template (15). The domain

specification is obtained from the inner block by the modified

version of the algorithm in Section 3.

(c) Modifications to Algorithm 1 for Category-C

Nestings with the COUNT Function

A Category-C predicate using the COUNT function also expresses

the natural quantifier. In this case, <constant >> must be a

cardinal number. Let B be ‘5’ and the number be n(> 0). Then,

the predicate checks whether the interblock reference attribute

has “at least n” values associated with it.

Figure 5: An Example of a Type-M Nested Query

A Type-Q nesting with ALL returns TRUE if the attribute value Example 5 : Suppose that we have a Type-M nested query in

satisfies the 0 relationship for all the values returned by the inner Figure 5. The domain specification is expressed in the inner

block. This can be expressed using “all” as the quantifier. block. The modified algorithm attaches the subclause for the

122

domain specification just after the phrase L%or at least one type

of part n. The restriction part, in the outer block, is translated

into a sentence in the same manner as. an SPJ query, except that

the quantified attribute noun must be replaced with its plural.

List [S#] such that:

For at least one type of parts (those supplied by supplier

with supplier-code ‘OOS’),

supplier with supplier-code [S#] supplies such parts.

4.3 Composite Nested Predicates in SQL

The inner block of a nested predicate may contain another block,

or it may contain a conjunction or disjunction of several nested

predicates. Such composite nested predicates are used to express

more complex quantifications or to describe a combination of

several quantified expressions.

iELECT Q outpupt B 1
-ROM R1 X
JVHERE <condition1 P

AND NOT EXISTS

(SELECT * 2

FROM R2 Y
WHERE Qcondition2P

AND NOT EXISTS

iELECT * outpupt P
:ROM R1 X

(b)

Figure 6: Two Equivalent Nested Queries

Example 6 : The SQL query previously shown in Figure 2 con-

tains a composite nesting. It is not easy to interpret such a com-

plex query. In [lo], however, the equivalence between the two

nested queries shown in Figure 6 is proved. The query in Fig-

ure 6(b) uses a now-abolished operator CONTAINS. The meaning

of the operation is more obvious in this formulation than in the

original one. From this equivalence, we can now interpret the

meaning of the query in Figure 2. This form of nested predicates

are used for queries involviag the quantifier “all”. The quantified

pseudonatural expression of the query in Figure 2 is:

List [S#] such that:

For all types of parts (those which have color ‘Red’),

supplier with supplier-code /S#] supplies those parts.

E- J
3
f J

E-

(1) “all”

(3) “exactlyt <n >“, etc.

Domain
’ Specifications

0 Restrictions

(2) “only”

0
J J

~~
V

K N-

(4) *‘no”

Figure 7: Composite Nested Predicates and Natural Quantifiers

We have analyzed various composite nested predicates and ob-

tained nesting forms which can be translated into a quantified

pseudonatural language expression. Figure 7 shows some of the

cases for which we have obtained results so far. Shaded squares

and half shaded squares indicate the domain specification and

the restrictions, respectively.

Suppose that we have a nesting graph obtained from a given

SQL query containing a composite nested predicate. If the graph

is equivalent to one of those shown in Figure 7, we can obtain

a pseudonatural language expression using the method discussed

in the previous subsection.

Some composite nested predicates may have a structure similar

(but not equivalent) to one of those in Figure 7. The following

heuristics find such a similarity, if any. If the transformed graph

matches one of those in Figure 7, our algorithms for text gener-

ation can generate a compact expression. Otherwise, we should

translate each nested predicate separately.

Heuristic 1 (Subgraph Contraction) If there is a subgraph

which is connected to only one block node directly or through an

AND-node, collapse that subgraph into the node. If the whole

graph matches any of the forms shown in Figure 7, use the mod-

ified algorithm for text generation. This will cause a nesting of

quantified pseudonatural language expressions, if the collapsed

subgraph expresses quantification.

Heuristic 1 searches a subgraph which is essentially a part of the

domain specification or the restriction of the upper level quan-

tification. If the subgraph itself corresponds to a quantified ex-

123

pression, its pseudonatural language translation is embedded in

the domain specification or the restriction of the upper level.

I
;ELECT SNAME 1

‘ROM SUPPLIER 5X
NHERE NOT EXISTS

(SELECT *
FROM PARTS PX
WHERE EXISTS

(SELECT *
FROM SUPPLY SPX

I I WHERE SPX.S# = ‘012’
AND SPX.P# = PX.P# I I)

I ’
I

AND NOT EXISTS
I I I I

(SELECT * I I FROM SUPPLY SPY

(a)
cl t-2
E- J

2 E
9

B
3 E J

4

(b) (cl

Figure 8: An Example of an Application of Heuristic 1

Example 7 : For an SQL query in Figure S(a), Heuristic 1 col-

lapses Block 3 into Block 2. We obtain the following pseudonat-

ural language expression:

List [SNAME] such that:

FOT all types of parts (those which satisfy: FOT at least

one of the same type of parts, supplier with supplier-code

‘01.2’ supplies those parts.),

supplier with supplier-code {S#} (called [SNAME]) sup-

plies those parts.

Heuristic 2 (Branch Split) If there is an OR node which has

no interblock reference between a block beneath it and a block

above it, split up the branches below the OR node by copying its

outer block node and raising the OR node. Repeat this until:

- The OR node jumps over the outermost block node;

or,

- The outer block node of the OR node is adjacent to a Category-

A nesting edge.

Heuristic 2 splits up OR-branches, and generates several pseudo-

natural language expressions to be combined with “or” in the

output text. Aggregations, however, prohibit this transforma-

tion, since we cannot in general calculate an aggregated value

for a set on its subsets. This heuristic is based on the obser-

vation that a pseudonatural language expression is conjunction-

oriented. Since it assumes a conjunction when there are several

modifiers in one sentence, the occurrence of “or” in the middle

of the expression may obscure its meaning.

iELECT SNAME 1
:ROM SUPPLIER
WHERE S# IN

I
(SELECT S#

FROM SUPPLY
WHERE QTY>lOO
AND (P# IN

L?

1 -

OR P# NOT IN

(a) 0 1
IV2

0
M
$ 2

El El
Mt Mf

/A l-7 F-l

(b)

Figure 9: An Example of an Application of Heuristic 2

Example 8 : For an SQL query in Figure 9(a), Heuristic 2

transforms the nesting graph shown in Figure 9(b) into the one in

(c). We obtain the following pseudonatural language expression:

List [SNAME] satisfying (a) OT (b):

(a) FOT at least one supplier with supplier-code {S#}

(those which satisfy:

FOT at least one type of purts (those which are

called ‘Bolts ‘),

supplier with supplier-code { S#} supplies

those parts in quantity { QTY) (more than loo)),

the supplier with supplier-code {S#} are called

[SNA ME].

124

(b) For at least one supplier with supplier-code {S#}

[those which satisfy:

For no types of parts (those which are supplied

by supplier with supplier-code ‘OO,$ ‘),

supplier with supplier-code {S#} supplies

those parts in quantity (more than IOO)),

the supplier with supplier-code {S#} are called

[SNA ME].

5 Concluding Remarks

In this paper, we discussed how to translate SQL queries into

pseudonatural language expressions. This will reduce burdens

on novice users who want to retrieve information satisfying com-

plex specifications. This approach employs no complex natural

language processing technique. Localized information for indi-

vidual application can be prepared by a database administrator

or the user in the case of personal databases. SQL queries an-

alyzed in this paper contain both simple and composite nested

predicates difficult to understand. Our method will help novice

users to learn and use the more difficult features of SQL. It can

be used for SQL tutoring systems.

Pseudonatural language has other possible applications. First,

it can be used for translating stored queries. As the needs and

uses of databases grow, an increasing number of queries will be

written and executed. Those queries themselves may be too

precious to be abandoned after only one execution. If a query

database facility[5] is established, users can compose a new query
from components stored in a database. The readability problem

of these stored queries can be solved by our method.

Furthermore, it can be used in a cooperative environment.

When a user works with others, he or she must understand their

works. A pseudonatural language translator will help him or her

to understand queries written by others. Since the translator will

add application specific information to these queries, the user will

find it easier to relate these queries with the work at hand.

Acknowledgments

The authors would like to thank Mr. Mohamed E. El-Sharkawi

and Mr. Sunao Sawada for their discussions and collaborations.

They are also grateful to Dr. Michael E. Houle who gave valuable

comments concerning this paper.

This research was supported in part by the Ministry of Educa-

tion, Science, and Culture of the Government of Japan, under a

Grant-in-Aid for Co-operative Research (Grant-No. 01302059).

References

[I] Berge, C.: “Graphs and Bypergraphs,” North-Holland, 1976.

[2] Date, C. J.: “A Guide to the SQL Standard,” Addison-

Wesley, 1987.

[3] El-Sharkawi, M. E. and Kambayashi, Y.: “The Architec-

ture and Implementation of ENLI: Example-Based Natu-

ral Language-Assisted Interface, ” Proc. PARBASE-90: Int.

Conf. on Databases, Parallel Architectures, and Their Ap-

plications, pp. 430-432, March 1990.

[4] Epstein, S. S.: “Transportable Natural Language Process-

ing through Simplicity - The PRE System,” ACM Tmns.

Office hf. Syst., Vol. 3, No. 2, pp. 107-120, April 1986.

[5] Kambayashi, Y.: “Functions of Database Workbench,” Proc.

AFIPS National Comput. Conf, Vol. 53, pp. 547-553, July

1984.

[6] Kambayashi, Y.: “An Overview of Natural Language-

Assisted Database User Interface: ENLI,” Proc. IFZP 10th

World Comput. Gong., pp. 1055-1060, September 1986.

171 Kambayashi, Y. and Amano, H.: “Transformations of Natu-

ral Language Expressions by Basic Relational Database Op-
erations,” Trans. IPS Japan, Vol. 30, No. 10, pp. 1316-1323,

October 1989 (in Japanese).

[S] Kim, W.: “On Optimizing an SQL-Like Nested Query,”

ACM Trans. Database Syst., Vol. 7, No. 3, pp. 443-469,

September 1982.

[9] Lowden, B. G. T. and De Roeck, A. N.: “The REMIT

System for Paraphrasing Relational Query Expressions into

Natural Language,” Proc. 12th Int. Conf. on Very Large

Data Bases, pp. 365-371, August 1986.

[lo] Luk, W. S. and Kloster S.: “ELFS: English Language from

SQL,” ACM Trans. Database Syst., Vol. 11, No. 4, pp. 447-

472, December 1986.

[ll] Thomas, J. C.and Gould, J. D.: “A Psychological Study of

Query by Example,” Proc. AFIPS National Comput. Conf.,

pp. 439-445, May 1975.

[12] Woods, W. A.: “Semantics and Quantification in Natural

Language Question Answering,” Advances in Computers,

Vol. 17, pp. l-87, Academic Press, 1978.

[13] Zloof, M. M.: “Query by Example,” Proc. AFZPS National

Comput. Conf., pp. 19-22, May 1975.

125

^: ^ _*.. *_ -. -:-i -

