
A Break for Workaholics: Energy-Efficient Selective Tuning
Mechanisms for Demand-Driven-Based Wireless Environment

Kian-Lee Tan

Dept. Information Systems & Computer Science
National University of Singapore

Lower Kent Ridge, Singapore 119260

email: tankl@iscs.nus.sg email: yu@cs.anu.edu. au

Je$re y X. Yu

Dept. Computer Science
Australian National University
Canberra, ACT 0200, Australia

Abstract

Existing work on demand-driven-based wireless
environments has largely focused on energy-
efficient caching strategies. While these schemes
minimize the number of uplink requests (and hence
conserve energy), they are still not adequate as
clients must continue to monitor the broadcast for
data that is not found in the cache or has been
invalidated. Other work on disseminating data via
periodic broadcasting of the data file has developed
techniques that organize data to allow clients
to selectively tune to the desired portion of the
broadcast. Such schemes, unfortunately, cannot
be applied to demand-driven-based context because
demand-driven data cannot be predetermined. In
this paper, we study the issue of selective tuning in
a demand-driven-based environment. We propose
and study three strategies that allow clients to
repeatedly toggle between doze mode and active
mode until the desired objects are obtained. One of
the strategies is stateful-based in the sense that the
server is aware of the schedule of doze-ofl/awake
time determined by the clients. The other two
strategies are stateless-based approaches where the
clients’ schedules of doze-off/awake time depend
on cues broadcast by the server. We conducted
a performance study and our results demonstrate
that the proposed schemes are energy efficient
without sacrificing on the average access times of
object retrievals. Furthermore, our results show
that none of the algorithms is superior in all
cases.

Keywords Selective tuning, tuning time, wire-
less network, demand-driven, energy-efficient

1 Introduction
In our increasingly mobile world, the ability to ac-
cess information on demand at any location can
satisfy people’s information needs as well as confer-
ring on them a competitive advantage. In fact, it is

Proceedings of the Fifth International Confer-

ence on Database Systems for Advanced Appli-
cations, Melbourne, Australia, April l-4, 1997.

expected that, in the near future, tens of millions
of users will carry small, battery-powered, portable
computers equipped with wireless communicators
that enable access to a large number of informa-
tion repositories. Such a new form of comput-
ing/communication environment has been referred
to as mobile computing. The potential market for
mobile computing applications is estimated to be
billions of dollars annually [S]. For example, pas-
sengers will access airline schedules, investors will
access stock activities, travelers will access weather
and/or traffic conditions.

A wireless communication channel comprises
two channels, a downlink channel and an uplink
channel. In this paper, we restrict our discussions
to a single downlink and a single uplink channel.
In practice, there may be multiple downlink and
uplink channels. Data objects can be delivered
to mobile clients in two modes: the broadcasting
mode, and the on-demand mode. Under the
broadcasting mode, data is broadcast periodically
on a downlink channel. Mobile clients will “listen”
to the channel and download data by filtering
the incoming data stream. This method of
disseminating data has the advantage that it is
independent of the number of clients tuning to the
channel. On the other hand, in the on-demand
mode, clients submit query requests on an uplink
channel and servers respond by sending the data
to the clients on the downlink channel. We shall
refer to the former as a broadcast-based approach,
and the latter as a demand-driven-based approach.

As argued in [l, 2, 8, 91, power conservation
is a key issue for small palmtops that typically
run on small AA batteries. For an “average user”,
the power source is expected to last 2 to 3 hours
before replacing or recharging becomes necessary.
Therefore, it is important to manage the power
resource effectively to extend the battery life.
Several recent papers [8, 9, lo] propose efficient
techniques for organizing broadcast data such
that clients can selectively tune to the desired
records. The effect of selective tuning is that the
battery consumption can be reduced, and hence
the effective battery life is extended. However,

165

selective tuning mechanisms are largely studied
in .the context of broadcast-based environment.
Such schemes, unfortunately, cannot be applied
to demand-driven-based context because demand-
driven data cannot be predetermined. Existing
work on demand-driven wireless environment
has largely focused on energy-efficient caching
strategies. While such schemes minimize the
number of uplink requests (and hence conserve
energy), they are still not adequate as clients
must continue to monitor the broadcast for
data that is not found in the cache or has been
invalidated. To our knowledge, there is no
reported study on selective tuning techniques for
demand-driven-based environments.

In this paper, we study the issue of selective
tuning in a demand-driven-based environment. To
facilitate selective tuning, clients should repeatedly
toggle between the low energy consuming doze
mode and the CPU operational active mode until
the desired objects are obtained. In the active
mode, clients will listen to the broadcast for up to
t, time units for the objects. In the doze mode,
clients will “rest” for up to td time units. Like
the broadcast-based counterparts, the selective
tuning schemes can be categorized into stateful
and stateless schemes. The difference between the
two schemes is that in the former clients determine
the schedule for doze-off/wake-up, while the server
controls the schedule under the latter approach.

We propose a stateful-based scheme and
two stateless-based schemes. The stateful-based
scheme is a static scheme where the doze-off and
awake time is predetermined and fixed by the
clients. The stateless-based schemes employ ctles
broadcast by server that allow clients to doze-off
and wake up as and when necessary. An extensive
simulation study was conducted and our results
demonstrate that the proposed schemes are energy
efficient without sacrificing on the average access
times of object retrievals. Our results further show
that none of the proposed schemes is superior in
terms of the average access times, average initial
response times and average tuning times.

Our work can also be seen as a supplement
to existing work on cache invalidation schemes
in demand-driven-based wireless environments.
There, energy consumption can be reduced by
salvaging the content of the client cache after a
disconnection. However, once reconnected, the
clients will have to be active to download any
cached objects that have been invalidated (and are
needed to answer a query). Here, we are interested
in how energy consumption can be minimized
during the period when the clients are operating
in a connected mode (i.e., workaholics!). This is
especially critical since the CPU will be operating
in the energy consuming active mode.

The remainder of this paper is organized as fol-
lows. In the next section, we present the context of
our study, introduce the concept of selective tun-
ing and review related work. Section 3 presents
a stateful-based selective tuning strategy. In Sec-
tion 4, we present two stateless-based selective tun-
ing strategies that differ in the cues that the serv.er
broadcast. Section 5 reports on the performance
study conducted and the results, and finally, we
conclude in Section 6 with directions for future
research.

2 Preliminaries
2.1 The Context

Our model of a wireless mobile environment, as
shown in Figure 1, is similar to that specified in [3,
81. The mobile environment consists of two distinct
sets of entities: a large number of mobile clients
(MC) and relatively fewer, but more powerful, fixed
hosts (or database servers) (DS). The fixed hosts
are connected through a wired network, and may
also be serving local terminals. Some of the fixed
hosts, called mobile support stations (MSS), are
equipped with wireless communication capability.
Each MSS can communicate with MCs that are
within its radio coverage area called a wireless cell.
A wireless cell can either be a cellular connection
or a wireless local area network. All MCs that
have identified themselves with a particular MSS
are considered to be local to that MSS. A MC can
directly communicate with a MSS if the mobile
host is physically located within the cell serviced
by the MSS. The servers manage and service on-
demand requests from mobile clients. Based on the
requests, the objects are retrieved and sent via the
wireless link to the mobile clients.

Wireless cell
___.........._.. :’

_:. . . .

Wirclss cell
._..

MC o
. . . .

. .

. .
MC0 ,,:

‘.. . .
-..._._._.-.-
Wireless cell

Figure 1: The wireless computing environment.

For simplicity, we also made several reasonable
assumptions. First, at any given instant of time, a

166

MC may logically belong to only one cell; its cur-
rent cell defines its location. Next, each database
server has a complete copy of the database, i.e.
the database is fully replicated across all the DSs.
Furthermore, data is read-only, i.e., there are no
updates either by the clients or at the DS. Finally,
clients do not cache objects. Caching is an orthog-
onal issue and has been studied in [3, 13, 201.

There are three timings that are critical to mo-
bile clients. The access time is the time elapsed
from the moment the client submits a request to
the point when all the resultant objects are down-
loaded by the client. The initial access time is the
time between the submission of the request and the
arrival of the first resultant object. A short initial
time will allow users to view some resultant objects
while waiting for the rest. This will also minimize
the frustration of impatient clients. Finally, the
tuning time is the amount of time the client spent
on listening to the channel. It essentially serves
as a measure on the amount of power consumed.
Traditionally, once a client submits a query, it will
listen to the channel until all the resultant objects
are received. This leads to the tuning time being
equal to the access time. Since listening to the
channel requires the CPU to be in full operation
(active mode), it is a power-consuming operation
that should be minimized to cut down on power
consumption.

2.2 Power Management via Selective Tun-
ing

One of the factors that can limit the functionality
of mobile computers is the lifetime of a battery.
The need to recharge/replace batteries every 2-3
hours may be too disruptive for them to be widely
accepted. What makes it worse is the predictions
by battery experts of the modest improvement in
battery capacity of only 20%30% over the next
5-10 years [5, 181. Hardware vendors have been
driven to come up with processors and memories
that require less power. For example, the Hobbit
chip by AT&T is a processor that can operate in
two modes [17]. In the active mode, it consumes
250 mW, and in the doze mode, it requires only
50 ,uw.

To exploit the capability of dual-mode
processors to minimize energy consumption,
Imielinski, Viswanathan and Badrinath introduce
the concept of selective tuning for broadcast-based
environments [8, 91. Instead of listening to the
channel (which requires the CPU to be in active
mode) all the time, the basic idea is to organize
the data such that the CPU can operate mostly
in the less power consuming doze mode, and will
“wake up” to listen to the channel only when the
data of interest is broadcast. This is realized by
multiplexing indexes with the data file during the

broadcast. The technique was shown to reduce
the tuning time (and hence energy consumption)
significantly. However, it is not suitable for
demand-driven based applications since the data
objects to be transmitted by the server are not
predictable and vary from query to query.

To facilitate selective tuning for. demand-driven-
based environments, mechanisms are needed to al-
low clients to repeatedly toggle between doze mode
and active mode until the resultant objects are
obtained. In the active mode, clients will listen
to the broadcast for up to t, time units for the
objects. In the doze mode, clients will “rest” for
up to td time units. There are two categories of
mechanisms in which these can be achieved:

l Stateful Server. Schemes belonging to this
category have the following characteristics:

- clients determine the schedule for doze-
off/wake-up, i.e., the t, and td time units;

- once clients submit their requests, they
doze-off/wake-up according to the sched-
ule;

- the server is made known of the clients’
schedules; this can be achieved by sub-
mitting the schedule together with the

quw;

- the server follows the schedules of clients
in responding to their requests, i.e., it will
only download objects of clients during
the active period, and avoid transmitting
objects during the doze off period. Note
that the server transmits the IP-address
of the client, together with the resultant
objects.

l Stateless Server. Schemes belonging to this
category have the following characteristics:

- after submitting query requests, clients
look out for cues from the server;

- server transmits cues together with data
objects; the cues essentially indicate the
content of the data that follows the cues
and the time slot in which the next set of
cues will be broadcast;

- based on the cues, a client can doze off if
its requests cannot be met, and wake up

only when the next set of cues is broad-
cast.

Clearly, under the stateful approach, the client
has control over the schedule in which it dozes
off/wakes up. But, the server has to be very
sophisticated and complex. The server must
maintain and keep track of the schedules of all
clients that have submitted queries. In addition,
there may be several exchanges (or negotiations

167

between clients and server) before a final “optimal”
schedule can be determined. On the other hand,
the stateless approach is simple, though it requires
clients to abide by the cues of the server.

2.3 Related Work

Work on conserving energy consumption for
demand-driven-based wireless environments
has focused on caching and cache invalidation
strategies [3, 11, 201. Caching data objects at the
clients can lead to a shorter access time (if the data
objects queried are in the cache). This also implies
a corresponding reduction in energy consumption.
For objects that are not found in the cache or
have been invalidated due to disconnection, cache
invalidation schemes proposed in [ll, 201 attempt
to minimize the number of uplink requests by
salvaging as much valid cache data as possible.
This is critical since transmitting data consumes
more energy than receiving data, and minimizing
both the amount of data to receive/transmit will
save energy.

There is also some work done on reducing power
consumption by spinning down the disk when it is
idle [4, 14, 161. H owever, most of these work focus
on a stand-alone portable rather than accessing
data from a repository through wireless networks.

Exploiting selective tuning mechanisms in
broadcast-based approaches have been investigated
in [7, 8, 9, 10, 13, 191. Essentially, the techniques
multiplex indexes with the data objects broadcast.
Following the indexes, clients will know when the
desired objects will be broadcast, and so they
can operate in the doze mode most of the time.
The work in [B, 9, 131 proposed several indexing
schemes - tree-based [B], hash-based [9] and
signature-based [13] - for uniform data broadcast
(where all objects have the same average access
time). The use of secondary indexes for selective
tuning in uniform data broadcast was addressed in
[lo]. Indexing nonuniform data broadcast (where
popular objects have shorter average access time
than the less popular ones) was explored in [19].

Minimizing energy consumption has also been
addressed in the context of query optimization in
mobile databases. In [l], Alonso and Ganguly stud-
ied the generation of energy-efficient plans. They
proposed two-dimensional dynamic programming
search algorithms for query optimization. In these
algorithms, the optimization criterion involves min-
imizing the energy spent by the client, while max-
imizing the overall server throughput.

3 Stateful Selective Tuning Scheme

In a stateful selective tuning scheme, there are sev-
eral issues that need to be addressed:

l How did the client determine its schedule?

l How did the server schedule the queries?

l What measures must be taken to ensure that
the clients will eventually receive the results?

As a first cut, we propose a simple strategy that
employs simple heuristics to handle the above is-
sues. The scheme works as follows:

the ratio of the amount of time spent in active
and doze mode is fixed at ta/td; once the query
is submitted (t, and td are piggy-backed to
the query), the client will be active for t, time
units, after which it will doze off for td time
units, and the process repeats.

the server examines query requests using a
FIFO policy. When a query is examined,
from its t, and td values and its arrival time,
t art-, the server is able to predict whether the
corresponding client is in active or doze mode.
bet tad = t, +td, and t, = tarr - cc. Here, t,
is an estimation (by the server) of the time
that the client submits its query, and ee is the
delay between the submission of the query
by the client to the receiving of it by the
server. This corresponds to the transmission
time of the query over the uplink channel.
We determine k, which is the smallest integer
that satisfies the expression:

t, + k . tad < trmu < t, + (k + 1) ’ tad

where t,,, denotes the current time. The
client is expected to be in active mode in tm if
isActive is true as follows.

where m is an integer, m 2 k. It is worth
noting that the delay ea for the client to receive
the IP-address must be taken into considera-
tion when t, is considered. If the client is not
in active mode, then the next query will be
examined, and the process repeats.

the client is also assigned a timeout period,

hneout , so that if the client still has not re-
ceived its first result after ttimeout time units,
then it will resubmit its query. This is to avoid
the client from missing the data (especially
since the client and server may not be syn-
chronized).

The access protocol of the client is as follows:

1) submit a query (or list of referenced objects)
and a schedule;

2) tune into the downlink channel, and listen for
t, time units;

a) examine the objects broadcast;

168

b) if the query is being served (i.e., IP-
address is in the broadcast), then
download all resultant objects and
STOP;

3) go into doze mode and wake up after td time
units;

4) if timeout, goto 1; otherwise goto 2.

Under this scheme, once the IP-address is
broadcast, all the data objects required by client
with the associated IP-address are also broadcast.
The scheme, however, fails to exploit much data
sharing. For example, a client may have requested
a subset of the data that is being broadcast, but
it is unable to access them (since the objects of a
query are identified by the IP-address). This will
also lead to a long initial access time.

We would note that the above scheme is a static
scheme in that once t, and td are determined, they
cannot be changed. Clearly, an optimal [ta, td] pair
depends on the load of the system (i.e., number of
clients in the mobile environment). When the num-
ber of clients is small, the access time of a query
is expected to be low. In this case, it is probably
more suitable to set a small doze off time or a large
active time. On the other hand, if the number of
clients is large, the access time is expected to be
high, and so the doze off time can be larger to save
up in the tuning time. We shall discuss this issue
further in the experimental study.

4 Stateless Selective Tuning Schemes
For the stateless schemes, the basic protocol be-
tween clients and server is as follows:

l Besides broadcasting the data objects,
the server also broadcasts cues. The cues
essentially provide hints to the content of the
data that follows them. We also include the
time slot in which the next set of cues will be
broadcast at the end of the cues.

l Clients submit query requests. Moreover,
clients also listen to the cues. From the
cues, clients can determine whether the data
objects being broadcast in the segment are
their resultant objects. If the data objects are
for them, then they will listen to the segment;
otherwise, they will doze off for the period of
time that is determined by the length of the
segment (derived from the time slot in which
the next set of cues is to be broadcast). In
this way, clients can toggle between the doze
mode and active mode repeatedly until all the
resultant objects are received.

In some sense, the scheme is similar to
the indexing schemes used in broadcast-based

segment i+l
segment i 1; segment i+2 segment i+3

offset/pointer

Index cl Data

Figure 2: A broadcast to facilitate selective tuning.

approaches. We can consider the cues as a form
of indexes, and view the dissemination of data as
segments, where each segment comprises a set of
cues and its associated data objects (see Figure 2).
However, unlike the broadcast-based approaches,
depending on the number of clients in the system
and the size of the query results, segments are
of variable length. Moreover, the content of the
segments is also different and unpredictable.

Clearly, depending on the cues used, we can
derive different selective tuning strategies.

4.1 Client Identity as Cues

The first strategy we derive uses the client identity
as the cue. Since IP-address of a client is unique,
we shall restrict our discussion to IP-address. Each
segment then comprises:

l a list of IP-addresses

l an offset that indicates when the next segment
will be broadcast.

l all the resultant data objects of clients whose
IP-addresses are being broadcast.

This strategy includes all the resultant data for
a query in a single segment. The specific access
protocol for a client is as follows:

1) submit a query (or list of referenced objects);

2) tune into the downlink channel, and listen for
the beginning of the next segment;

3) read the offset to determine the address of
the next segment;

4) read and examine the list of IP-addresses;

a) if the client’s IP-address is being broad-
cast, examine the data objects that are
broadcast and download the referenced
objects;

b) if the client’s IP-address is not being
broadcast, go into doze mode and tune
in at the broadcast of the next segment
(based on the offset); goto 3.

Like the stateful-based scheme, this scheme cannot
exploit much data sharing, since all the data ob-
jects are broadcast together with the IP-address in
the same segment. The same object can appear

169

multiple times in a segment. Hence, it is expected
to have a long initial access time also.

Clearly, the strategy is a multicasting and batch-
ing mechanism. The batch size is a factor that
can affect the effectiveness of the strategy. If the
number of clients batched is small, then it may be
repeatedly switching from one mode to the other.
This may be bad when the number of resultant data
objects per client is small, in which case, clients
will be waking up almost immediately when they
doze off. On the other hand, too large a number
of clients may also be bad as clients in the segment
may be listening to all the objects in the broadcast,
resulting in a longer tuning time too.

Another factor that affects the performance of
the strategy is the number of clients in the system.
When the number of clients is small, it makes no
sense to have a large batch of clients in the segment
since the access time will be excessively large due to
the additional waiting time for the required number
of clients to arrive. However, for large number of
clients, a large batch size may be useful as this will
help to better utilize the channel bandwidth.

We adopt an adaptive approach. The server
determines the batching size based on the number
of queries in the waiting queue and a predeter-
mined threshold value (for the maximum number
of queries to be batched). When the number of
queries is less than the threshold, all the queries will
be served in the current segment; otherwise only
the number corresponding to the threshold will be
served. Figure 3 illustrates the scheme. Here, we
assume that the threshold is set to four queries,
i.e., at most four queries will be batched. At ti,
the waiting queue contains only two queries. As
such, both queries will be served and their data
objects transmitted in a single segment. At t2
which corresponds to the time when segment 1 has
completed and the time to transmit the next seg-
ment, the queue has increased to five queries. Since
the threshold is set to four, we can only serve four
queries. At t5, there is no job in the queue. As a
result, nothing needs to be transmitted. At ts, a
query arrives and is served immediately since it is
the only job and the channel is available.

t1: II, JZ rz: J3,J4,JS,Jh,J7 t3: J7,JS,J9,JIO,Jll &Ill t6: J12

Figure 3: Client identity selective tuning scheme.

4.2 Data Groups as Cues

An alternative strategy is to partition a database
into groups, and use the group-ids as the cues. Like

[20], the grouping function can be simply a modulo
function, or can be different for different types of
objects, or can be generated on-the-fly (such as
using signatures). Whatever a grouping function is
chosen, it must be agreed upon between the server
and the mobile clients. In this case, the cues is a
list of group-ids that indicates the groups that the
data in the segment belong to. However, not all the
objects in the group need to be broadcast. In other
words, the groupids provide only a hint on the
objects that will be broadcast, but not the actual
objects that will be broadcast. Clients will examine
the group-ids; if their desired objects belong to the
groups, it will listen to the broadcast, otherwise
it will doze off. Under this scheme, the access
protocol for a client is as follows:

1) submit a query (or list of referenced objects);

2) tune into the downlink channel, and listen for
the beginning of the next segment;

3) read the offset to determine the address of
the next segment;

4) read the list of group-ids, and examine them;

a) if the objects referenced by the client’s
query belong to one of the groups being
broadcast;

i>

ii)

examine the data objects that
are broadcast and download the
referenced objects, if any;

if all the objects have been down-
loaded, then STOP; otherwise doze
off and tune in at the broadcast of the
next segment (based on the offset),
got0 3;

b) if none of the groups broadcast are
needed by the client, go into doze mode
and tune in at the broadcast of the next
segment; got0 3.

This scheme has the advantage that, like
broadcast-based approaches, all clients whose
data objects belong to the groups in the current
segment can tune in (even though the required
objects may not be in the current segment).
However, it is expected to result in a larger tuning
time as “false drops” (i.e., the client requests for
an object whose group-id is being broadcast, but
the object is not being broadcast) may occur.

The number of groups is a factor that is critical
to the effectiveness of this approach. Too small a
number of groups will increase the chances of false
drops (since the number of objects per group is
large), and hence result in a larger tuning time.
Too large a number of groups may also result in
poor utilization of the channel as more group-ids
has to be transmitted. Like the IP-based scheme,

170

the server determines the number of queries to
batch adaptively (based on a threshold value).
However, in this scheme, it is the group ids that
form the cues, i.e., the group ids from all the
resultant objects of the batched queries. Since
different objects may belong to the same group,
we only need to broadcast one group-id for these
objects. Thus, the number of groups can vary
from segment to segment.

Another factor that can affect the group-based
scheme is the data access patterns. If the distri-
bution of clients’ accesses is uniform, then the false
drop is expected to be small. On the contrary, if the
distribution is skewed, then false drop may increase
(especially when the group size is large).

5 A Performance Study

To evaluate the performance of the proposed
strategies, we developed an event-driven simulator
to model a wireless environment as described in
Section 2. The model was implemented using the
Modula-2-based DeNet simulation package [15].

The model comprises a set of clients and a
server. The server contains a database of D
objects. The objects are partitioned into G equal-
sized groups, Each object is 0 bytes. The object
id is G;d bits, and the group id is G;d bits. The
server will batch at most the results of batchSize
queries for downloading. Clients enter the wireless
cell covered by the server, submit queries, and
leave the cell once the data objects are received.
The IP address of client is IP bits long. Clients’
arrival is a Poisson process with mean interarrival
time of X. We assume that all queries are read-only
and are processed in the mobile computer. The
object ids of referenced objects are transmitted to
the server and the server sends the data objects
back. The number of objects referenced in a query
is uniformly distributed between Q/2 and 3&/2,
where Q is the mean. To determine the objects to
be retrieved, we adopt a two phase strategy. In
the first phase, the groups in which the objects
belong to are determined, and in the second phase,
objects within the groups are selected. To model
the access frequency of the groups, we use the
Zipf-like distribution [12]. Under the distribution,
if the total number of accesses on the database is
totalAccess, then the number of accesses of the
it” most frequently accessed group is given by the
following expression:

totalAccess
CKCeSSi =

ie . cj”=, $7

where 6’ is known as the Zipf factor. When 0 = 0,
the distribution becomes uniform, and all groups
are equally likely to be accessed. On the other
hand, when 0 = 1, then the distribution becomes

the highly skewed pure Zipf distribution [21]. Ob-
jects within a group are picked randomly.

The uplink and downlink channel bandwidths
are fixed at ~,,,li,,k Kbps and W&,,,,&ink Kbps re-
spectively. For the stateful-based algorithm, the
amount of doze time and active time are given by
td and t, respectively. The notations and defini-
tions, together with the default values, for all the
simulation parameters are summarized in Table 1.

Notation (Definition (Default Values)
D 1 server database size (10000 objects)

0 reference skew by query
Zipf distribution factor

G
0
Oiri

(0%)
number of groups (100)
object size (256 b YW

] object id size (64 bits)
1 IP address (32 bil

Gid] group id size (8 bits)

Wdownlink] downlink channel bandwidth
(100 Kbps)

(.4qdink uplink channel bandwidth
(25 Kbps)

batchSize maximum batch size (5 queries)

cl amount of time in active mode
(1 set)

td amount of time in doze mode
1 (5 set)

Table 1: System and workload parameters.

The average initial response time, the average
access time and the average tuning time of the
queries are used as metrics to compare the various
strategies. We have conducted a large number of
experiments, and can only present the more inter-
esting ones here.

5.1 Exp 1: On Stateful Scheme

In this experiment, we study the stateful tuning
mechanism. Specifically, we look at the effect of
varying the amount of time to be in active and
doze mode. Figures 4(a) and 5(a) show the results
when the amount of active time is fixed while the
amount of doze time is varied from I to IO sec.
Figures 4(b) and 5(b) show the results when the
amount of doze time is fixed while the amount of
active time is varied from 0.2 to 2.0 sec. The results
in Figure 4 is for a heavily loaded context (X = 0.2),
while that in Figure 5 represents a lightly loaded
scenario (X = 0.8).

From the results, we note the tradeoffs in the
choice of the amount of doze time and active time.

171

O-0 0 0.4 0.8 1.2 1.6 2
doze the (h set, .CP”L) &ne (rn MC,

(4 tb)

Figure 4: On stateful schemes (X = 0.2)

.

Om
doI* time (in see, se”. time (in SW,

(4 (b)

Figure 5: On stateful schemes (X = 0.8)

When the system is heavily loaded (Figure 4(a)),
choosing a high doze time may reduce tuning time.
The relative difference in access time is not signifi-
cant as the access time is high. On the other hand,
when the system is lightly loaded (Figure 5(a)),
the access time increases with a longer doze time.
Moreover, the difference in access time becomes
more significant. The tuning time is fairly constant
when the system load is light since most of the
clients would have been served before they need to
switch into doze mode.

The result is slightly different when we vary the
amount of active time. As shown in Figure 4(b),
under heavy load, as the amount of active time
increases, the tuning time also increases. This is
expected since the access time is large which in turn
implies that the number of times that the clients
must be in active mode also increases. However,
the access time when the system load is light de-
creases with higher active time (see Figure 5(b)).
This is so since a long active time would mean that
the chances of dozing off is kept low (i.e., most of
the clients need not doze off).

Since the workload cannot be predetermined, an
adaptive mechanism is needed for optimal perfor-
mance. We shall leave this issue for future research,
and fix td and t, at the default values.

5.2 Exp 2: On IP-based Scheme

In this experiment, we study the IP-based state-
less scheme. We also look at two variations of
the IP-based scheme. The first is essentially the
basic strategy that broadcasts all objects of a query.

(b)

(4

Figure 6: Comparing IP-based stateless schemes.

The second, however, exploits batching to avoid
downloading objects multiple times in a batch. We
shall denote the first method as IPB (IP-basic) and
the second method as IPI (IP-Improved). Figure 6
shows the results of the average access time, aver-
age tuning time and average initial access time as
the maximum batch size increases from 1 to 10.

As expected, we note that IPI outperforms IPB
in all cases since it downloads fewer objects in each
batch. We also note that there is a tradeoff be-
tween reduction in access/initial time and increased
tuning time as the batch size increases. Access
time is reduced since a larger batch size will imply
more common objects within a batch. Tuning time
increases as more clients will have to examine more
objects before all their results are received. In view
of these results, for the subsequent experiments, we
shall restrict to IPI and use the default batch size.

5.3 Exp 3: On Group-based Scheme

In this experiment, we study the effect of batch
sizes on the group-based scheme. The results are
shown in Figure 7. As shown in the figure, a larger
batch size can reduce the access and tuning times
slightly. This is because as the batch size increases,
more data is transmitted in a segment, and so the
chances of false drops will decrease. However, the
average initial access time increases as the batch
size increases. This is due to the larger number of
cues and the longer segment length.

5.4 Exp 4: A Comparative Study

In this experiment, we study the effect of query
interarrival time on the strategies by varying the

172

(4
Figure 7: On group-based scheme.

interarrival time from 0.1 to 1.0. We shall denote
the stateful-based scheme, the IP-based algorithm
and the group-based algorithm as SS, IP and GP
respectively. The basic exclusive on-demand strat-
egy (denoted OD) is also used as a reference to
study the benefits of the proposed schemes. Under
scheme OD, clients listen to the broadcast until all
data objects have been received (without dozing off
at all). The results are shown in Figure 8.

From the results, we note that none of the
strategies performs best in all cases. In terms
of tuning time (Figure 8(a)), we see that all the
proposed schemes (IP,GP and SS) are superior over
scheme OD. This demonstrates the effectiveness of
the schemes in minimizing power consumption. As
expected, when the load is light, all the schemes
require the same amount of tuning time (since the
opportunity for dozing off is low). However, under
high load, the tuning time of the proposed schemes
is drastically reduced. For IP, its tuning time can
be reduced to only 3% that of OD, while SS and
GP can have tuning time of down to 20% and
30% that of OD respectively. GP is less effective
because of the simple grouping strategy that we
have adopted which can lead to high false drops.

For the average access time (Figure 8(b)), all
the schemes perform equally well (or poorly) ex-
cept for the stateful-based scheme (SS). Algorithm
SS performs poorly (in access time) under lightly
loaded context, but is superior when the system is
heavily loaded. When the load is light, the access
time is expected to be low. By allowing clients to
doze-off for a long time (relative to the access time)
inevitably increases the access time unnecessarily.

6)

(4

Figure 8: Comparison of various schemes.

However, as the system load increases, algorithm
SS can lead to better average access time. While
this appears unintuitive, three reasons account for
this behavior. First, under other strategies (IP and
GP) the cues are at the front of the segment, and
every client’s access time includes all the cues. But,
under SS, objects that are broadcast earlier will
have a smaller number of IP-addresses to exam-
ine. Second, the scheduling policy adopted mini-
mizes the number of times a client needs to doze
off since the next query to be addressed is examined
in FCFS policy. Finally, under SS, some queries are
processed earlier, while others are delayed. It turns
out that the net effect is a gain in our study.

It is also worth noting, from Figure 8(c), that
OD performs best in the average initial access time.
This is so since every client is listening to the broad-
cast, and objects that are broadcast in response to
other queries may also be relevant to it. SS per-
forms the worst, in most cases for the same reason
given above for its access time performance since
the client can only receive its data objects, if any,
when it is in active mode.

Finally, we note that the utilization of the band-
width is the same for all schemes except SS which
is slightly better (see Figure 8(d)). This also helps
to explain why SS performs poorer than the other
schemes under light load - it may doze off “unneces-
sarily” and fail to utilize the bandwidth effectively.

6 Conclusion

In this paper, we have addressed the issue of seiec-
tive tuning in a demand-driven-based environment.

173

Specifically, we addressed how energy can be saved
when the clients are operating in connected mode.
We proposed three strategies that allow clients to
repeatedly toggle between doze mode and active

mode until the desired objects are obtained. In
the active mode, clients will listen to the broadcast
for up to t, time units for the objects. In the
doze mode, clients will “rest” for up to td time
units. One of the strategies is based on the stateful
approach where the clients determine the schedule
and the server is made known of the schedule. The
other two strategies are stateless-based approaches
where the clients’ schedules depend on cues broad-
cast by the server. We conducted a performance
study and our results demonstrate that the pro-
posed schemes are energy efficient without sacrific-
ing on the average access times of object retrievals.
Furthermore, our results showed that none of the
algorithms is superior in all cases in terms of aver-
age access times, average initial access times and

average tuning times. Thus, the algorithms are
useful for different applications.

We plan to extend the work in the following
aspects. First, we will explore how to improve the
various proposed schemes in terms of robustness
and further reduction of the tuning time. For ex-
ample, the stateful scheme can be fine tuned so
that the doze off and awake time can adapt to
the changing workload of the system. As another
example, different grouping schemes may perform
differently for the group-baaed scheme. Second, we
will integrate our schemes with the cache invali-
dation technique and study the combined effect in
minimizing energy consumption. Finally, we plan
to implement and study the techniques in a real
wireless environment.

References

PI

PI

[31

[41

[51

R. Alonso and S. Ganguly. Query optimization
for energy efficiency in mobile environment. In
Proceedings of the 1993 Workshop on Optimization
in Databases, Aigen, Austria, September 1993.

R. Alonso and H. Korth. Database systems
in nomadic computing. In Proceedings of the
1993 ACM-SIGMOD International Conference on
Management of Data, pages 388-392, June 1993.

D. Barbara and T. Imielinski. Sleepers and worka-
holics: Caching in mobile distributed environ-
ments. In Proceedings of the 1994 ACM-SIGMOD
International Conference on Management of Data,
pages l-12, June 1994.

F. Doughs, P. Krishnan and B. Marsh. Thwarting
the power hungry disk. In Proceedings of the 1994
Winter USENIX Conference, 1994.

Eager. Advances in rechargeable batteries pace
portable computer growth. In Proceedings of the
1991 Silicon Valley Personal Computer Confer-
ence, 1991.

I61

I71

PI

PI

WI

WI

WI

P31

1141

[I51

k51

[I71

1181

PA

PO1

Pll

Y. Huang, P. Sistla and 0. Wolfson. Data
replication for mobile computers. In Proceedings of
the 1994 ACM-SIGMOD International Conference
on Management of Data, pages 13-24, June 1994.

T. Imieiinski and S. Viswanathan. Adaptive
wireless information systems. In Proceedings of the
SIGDBS Conference, pages 19-41, Tokyo, Japan,
October 1994.

T. Imiehnski, S. Viswanathan and B.R. Badrinath.
Energy efficient indexing on air. In Proceedings of
the 1994 A CM-SIGMOD International Conference
on Management of Data, pages 25-36, June 1994.

T. Imielinski, S. Viswanathan and B.R. Badri-
nath. Power efficient filtering of data on air. In
Proceedings of the 4th International Conference
on Extending Database Technology, pages 245-258,
March 1994.

T. Imielinski, S. Viswanathan and B.R. Badrinath.
Data on air: Organization and access. in IEEE
TKDE (to appear), 1996.

J Jing, 0. Bukhres, A. Elmagarmid and R. Alonso.
Bit-sequences: A new cache invalidation method
in mobile environments. Technical report, Dept.
Computer Sciences, Purdue University, 1994.

D.E. Knuth. The Art of Programming, Vol. 3:
Sorting and Searching. Addison Wesley, 1973.

W.C. Lee and D. Lee. Using signature and caching
techniques for information filtering in wireless and
mobile environments. Journal of Distributed and
Parallel Databases (to appear), 1996.

K. Li, R. Kumpf, P. Horton and T. Anderson. A
quantitative analysis of disk drive power manage-
ment in portable computers. In Proceedings of the
1994 Winter USENIX Conference, 1994.

M. Livny. Denet user’s guide, version 1.0. Techni-
cal report, Computer Sciences Dept, University of
Wisconsin-Madison, 1988.

B. Marsh, F. Doughs and P. Krishnan. Flash
memory file caching for mobile computers. In
Proceedings of the 27th HICSS Conference, pages
451-460, January 1994.

P.V. Argade, et. al. Hobbit: A high-performance,
low-power microprocessor. In Proceedings of
COMPCON’93, pages 88-95, February 1993.

S. Sheng, A. Chandrasekaran and R. E. Broderson.
A portable multimedia terminal for personal com-
munications. IEEE Communications Magazine,
pages 64-75, December 1992.

K.L. Tan and J.X. Yu. Energy efficient iilter-
ing of nonuniform broadcast. In Proceedings of
the 16th IEEE International Conference on Dis-
tributed Computing Systems, pages 520-527, May
1996.

K.L. Wu, P.S. Yu and M.S. Chen. Energy-
efficient caching for wireless mobile computing. In
Proceedings of the lltk International Conference
on Data Engineering, February 1996.

G.K. Zipf. Human Behavior and the Principle of
Least Effort. Addison Wesley, 1949.

174

