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Abstract 

Existing work on demand-driven-based wireless 
environments has largely focused on energy- 
efficient caching strategies. While these schemes 
minimize the number of uplink requests (and hence 
conserve energy), they are still not adequate as 
clients must continue to monitor the broadcast for 
data that is not found in the cache or has been 
invalidated. Other work on disseminating data via 
periodic broadcasting of the data file has developed 
techniques that organize data to allow clients 
to selectively tune to the desired portion of the 
broadcast. Such schemes, unfortunately, cannot 
be applied to demand-driven-based context because 
demand-driven data cannot be predetermined. In 
this paper, we study the issue of selective tuning in 
a demand-driven-based environment. We propose 
and study three strategies that allow clients to 
repeatedly toggle between doze mode and active 
mode until the desired objects are obtained. One of 
the strategies is stateful-based in the sense that the 
server is aware of the schedule of doze-ofl/awake 
time determined by the clients. The other two 
strategies are stateless-based approaches where the 
clients’ schedules of doze-off/awake time depend 
on cues broadcast by the server. We conducted 
a performance study and our results demonstrate 
that the proposed schemes are energy efficient 
without sacrificing on the average access times of 
object retrievals. Furthermore, our results show 
that none of the algorithms is superior in all 
cases. 

Keywords Selective tuning, tuning time, wire- 
less network, demand-driven, energy-efficient 

1 Introduction 
In our increasingly mobile world, the ability to ac- 
cess information on demand at any location can 
satisfy people’s information needs as well as confer- 
ring on them a competitive advantage. In fact, it is 
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expected that, in the near future, tens of millions 
of users will carry small, battery-powered, portable 
computers equipped with wireless communicators 
that enable access to a large number of informa- 
tion repositories. Such a new form of comput- 
ing/communication environment has been referred 
to as mobile computing. The potential market for 
mobile computing applications is estimated to be 
billions of dollars annually [S]. For example, pas- 
sengers will access airline schedules, investors will 
access stock activities, travelers will access weather 
and/or traffic conditions. 

A wireless communication channel comprises 
two channels, a downlink channel and an uplink 
channel. In this paper, we restrict our discussions 
to a single downlink and a single uplink channel. 
In practice, there may be multiple downlink and 
uplink channels. Data objects can be delivered 
to mobile clients in two modes: the broadcasting 
mode, and the on-demand mode. Under the 
broadcasting mode, data is broadcast periodically 
on a downlink channel. Mobile clients will “listen” 
to the channel and download data by filtering 
the incoming data stream. This method of 
disseminating data has the advantage that it is 
independent of the number of clients tuning to the 
channel. On the other hand, in the on-demand 
mode, clients submit query requests on an uplink 
channel and servers respond by sending the data 
to the clients on the downlink channel. We shall 
refer to the former as a broadcast-based approach, 
and the latter as a demand-driven-based approach. 

As argued in [l, 2, 8, 91, power conservation 
is a key issue for small palmtops that typically 
run on small AA batteries. For an “average user”, 
the power source is expected to last 2 to 3 hours 
before replacing or recharging becomes necessary. 
Therefore, it is important to manage the power 
resource effectively to extend the battery life. 
Several recent papers [8, 9, lo] propose efficient 
techniques for organizing broadcast data such 
that clients can selectively tune to the desired 
records. The effect of selective tuning is that the 
battery consumption can be reduced, and hence 
the effective battery life is extended. However, 
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selective tuning mechanisms are largely studied 
in .the context of broadcast-based environment. 
Such schemes, unfortunately, cannot be applied 
to demand-driven-based context because demand- 
driven data cannot be predetermined. Existing 
work on demand-driven wireless environment 
has largely focused on energy-efficient caching 
strategies. While such schemes minimize the 
number of uplink requests (and hence conserve 
energy), they are still not adequate as clients 
must continue to monitor the broadcast for 
data that is not found in the cache or has been 
invalidated. To our knowledge, there is no 
reported study on selective tuning techniques for 
demand-driven-based environments. 

In this paper, we study the issue of selective 
tuning in a demand-driven-based environment. To 
facilitate selective tuning, clients should repeatedly 
toggle between the low energy consuming doze 
mode and the CPU operational active mode until 
the desired objects are obtained. In the active 
mode, clients will listen to the broadcast for up to 
t, time units for the objects. In the doze mode, 
clients will “rest” for up to td time units. Like 
the broadcast-based counterparts, the selective 
tuning schemes can be categorized into stateful 
and stateless schemes. The difference between the 
two schemes is that in the former clients determine 
the schedule for doze-off/wake-up, while the server 
controls the schedule under the latter approach. 

We propose a stateful-based scheme and 
two stateless-based schemes. The stateful-based 
scheme is a static scheme where the doze-off and 
awake time is predetermined and fixed by the 
clients. The stateless-based schemes employ ctles 
broadcast by server that allow clients to doze-off 
and wake up as and when necessary. An extensive 
simulation study was conducted and our results 
demonstrate that the proposed schemes are energy 
efficient without sacrificing on the average access 
times of object retrievals. Our results further show 
that none of the proposed schemes is superior in 
terms of the average access times, average initial 
response times and average tuning times. 

Our work can also be seen as a supplement 
to existing work on cache invalidation schemes 
in demand-driven-based wireless environments. 
There, energy consumption can be reduced by 
salvaging the content of the client cache after a 
disconnection. However, once reconnected, the 
clients will have to be active to download any 
cached objects that have been invalidated (and are 
needed to answer a query). Here, we are interested 
in how energy consumption can be minimized 
during the period when the clients are operating 
in a connected mode (i.e., workaholics!). This is 
especially critical since the CPU will be operating 
in the energy consuming active mode. 

The remainder of this paper is organized as fol- 
lows. In the next section, we present the context of 
our study, introduce the concept of selective tun- 
ing and review related work. Section 3 presents 
a stateful-based selective tuning strategy. In Sec- 
tion 4, we present two stateless-based selective tun- 
ing strategies that differ in the cues that the serv.er 
broadcast. Section 5 reports on the performance 
study conducted and the results, and finally, we 
conclude in Section 6 with directions for future 
research. 

2 Preliminaries 
2.1 The Context 

Our model of a wireless mobile environment, as 
shown in Figure 1, is similar to that specified in [3, 
81. The mobile environment consists of two distinct 
sets of entities: a large number of mobile clients 
(MC) and relatively fewer, but more powerful, fixed 
hosts (or database servers) (DS). The fixed hosts 
are connected through a wired network, and may 
also be serving local terminals. Some of the fixed 
hosts, called mobile support stations (MSS), are 
equipped with wireless communication capability. 
Each MSS can communicate with MCs that are 
within its radio coverage area called a wireless cell. 
A wireless cell can either be a cellular connection 
or a wireless local area network. All MCs that 
have identified themselves with a particular MSS 
are considered to be local to that MSS. A MC can 
directly communicate with a MSS if the mobile 
host is physically located within the cell serviced 
by the MSS. The servers manage and service on- 
demand requests from mobile clients. Based on the 
requests, the objects are retrieved and sent via the 
wireless link to the mobile clients. 

Wireless cell 
___.........._.. :’ 

_:. . . . 

Wirclss cell 
._.. . . . . . . . . . . 

MC o 
. . . . 

. . 

. . 
MC0 ,,: 

‘.. . . 
-..._._._.-.- 
Wireless cell 

Figure 1: The wireless computing environment. 

For simplicity, we also made several reasonable 
assumptions. First, at any given instant of time, a 

166 



MC may logically belong to only one cell; its cur- 
rent cell defines its location. Next, each database 
server has a complete copy of the database, i.e. 
the database is fully replicated across all the DSs. 
Furthermore, data is read-only, i.e., there are no 
updates either by the clients or at the DS. Finally, 
clients do not cache objects. Caching is an orthog- 
onal issue and has been studied in [3, 13, 201. 

There are three timings that are critical to mo- 
bile clients. The access time is the time elapsed 
from the moment the client submits a request to 
the point when all the resultant objects are down- 
loaded by the client. The initial access time is the 
time between the submission of the request and the 
arrival of the first resultant object. A short initial 
time will allow users to view some resultant objects 
while waiting for the rest. This will also minimize 
the frustration of impatient clients. Finally, the 
tuning time is the amount of time the client spent 
on listening to the channel. It essentially serves 
as a measure on the amount of power consumed. 
Traditionally, once a client submits a query, it will 
listen to the channel until all the resultant objects 
are received. This leads to the tuning time being 
equal to the access time. Since listening to the 
channel requires the CPU to be in full operation 
(active mode), it is a power-consuming operation 
that should be minimized to cut down on power 
consumption. 

2.2 Power Management via Selective Tun- 
ing 

One of the factors that can limit the functionality 
of mobile computers is the lifetime of a battery. 
The need to recharge/replace batteries every 2-3 
hours may be too disruptive for them to be widely 
accepted. What makes it worse is the predictions 
by battery experts of the modest improvement in 
battery capacity of only 20%30% over the next 
5-10 years [5, 181. Hardware vendors have been 
driven to come up with processors and memories 
that require less power. For example, the Hobbit 
chip by AT&T is a processor that can operate in 
two modes [17]. In the active mode, it consumes 
250 mW, and in the doze mode, it requires only 
50 ,uw. 

To exploit the capability of dual-mode 
processors to minimize energy consumption, 
Imielinski, Viswanathan and Badrinath introduce 
the concept of selective tuning for broadcast-based 
environments [8, 91. Instead of listening to the 
channel (which requires the CPU to be in active 
mode) all the time, the basic idea is to organize 
the data such that the CPU can operate mostly 
in the less power consuming doze mode, and will 
“wake up” to listen to the channel only when the 
data of interest is broadcast. This is realized by 
multiplexing indexes with the data file during the 

broadcast. The technique was shown to reduce 
the tuning time (and hence energy consumption) 
significantly. However, it is not suitable for 
demand-driven based applications since the data 
objects to be transmitted by the server are not 
predictable and vary from query to query. 

To facilitate selective tuning for. demand-driven- 
based environments, mechanisms are needed to al- 
low clients to repeatedly toggle between doze mode 
and active mode until the resultant objects are 
obtained. In the active mode, clients will listen 
to the broadcast for up to t, time units for the 
objects. In the doze mode, clients will “rest” for 
up to td time units. There are two categories of 
mechanisms in which these can be achieved: 

l Stateful Server. Schemes belonging to this 
category have the following characteristics: 

- clients determine the schedule for doze- 
off/wake-up, i.e., the t, and td time units; 

- once clients submit their requests, they 
doze-off/wake-up according to the sched- 
ule; 

- the server is made known of the clients’ 
schedules; this can be achieved by sub- 
mitting the schedule together with the 

quw; 

- the server follows the schedules of clients 
in responding to their requests, i.e., it will 
only download objects of clients during 
the active period, and avoid transmitting 
objects during the doze off period. Note 
that the server transmits the IP-address 
of the client, together with the resultant 
objects. 

l Stateless Server. Schemes belonging to this 
category have the following characteristics: 

- after submitting query requests, clients 
look out for cues from the server; 

- server transmits cues together with data 
objects; the cues essentially indicate the 
content of the data that follows the cues 
and the time slot in which the next set of 
cues will be broadcast; 

- based on the cues, a client can doze off if 
its requests cannot be met, and wake up 

only when the next set of cues is broad- 
cast. 

Clearly, under the stateful approach, the client 
has control over the schedule in which it dozes 
off/wakes up. But, the server has to be very 
sophisticated and complex. The server must 
maintain and keep track of the schedules of all 
clients that have submitted queries. In addition, 
there may be several exchanges (or negotiations 
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between clients and server) before a final “optimal” 
schedule can be determined. On the other hand, 
the stateless approach is simple, though it requires 
clients to abide by the cues of the server. 

2.3 Related Work 

Work on conserving energy consumption for 
demand-driven-based wireless environments 
has focused on caching and cache invalidation 
strategies [3, 11, 201. Caching data objects at the 
clients can lead to a shorter access time (if the data 
objects queried are in the cache). This also implies 
a corresponding reduction in energy consumption. 
For objects that are not found in the cache or 
have been invalidated due to disconnection, cache 
invalidation schemes proposed in [ll, 201 attempt 
to minimize the number of uplink requests by 
salvaging as much valid cache data as possible. 
This is critical since transmitting data consumes 
more energy than receiving data, and minimizing 
both the amount of data to receive/transmit will 
save energy. 

There is also some work done on reducing power 
consumption by spinning down the disk when it is 
idle [4, 14, 161. H owever, most of these work focus 
on a stand-alone portable rather than accessing 
data from a repository through wireless networks. 

Exploiting selective tuning mechanisms in 
broadcast-based approaches have been investigated 
in [7, 8, 9, 10, 13, 191. Essentially, the techniques 
multiplex indexes with the data objects broadcast. 
Following the indexes, clients will know when the 
desired objects will be broadcast, and so they 
can operate in the doze mode most of the time. 
The work in [B, 9, 131 proposed several indexing 
schemes - tree-based [B], hash-based [9] and 
signature-based [13] - for uniform data broadcast 
(where all objects have the same average access 
time). The use of secondary indexes for selective 
tuning in uniform data broadcast was addressed in 
[lo]. Indexing nonuniform data broadcast (where 
popular objects have shorter average access time 
than the less popular ones) was explored in [19]. 

Minimizing energy consumption has also been 
addressed in the context of query optimization in 
mobile databases. In [l], Alonso and Ganguly stud- 
ied the generation of energy-efficient plans. They 
proposed two-dimensional dynamic programming 
search algorithms for query optimization. In these 
algorithms, the optimization criterion involves min- 
imizing the energy spent by the client, while max- 
imizing the overall server throughput. 

3 Stateful Selective Tuning Scheme 

In a stateful selective tuning scheme, there are sev- 
eral issues that need to be addressed: 

l How did the client determine its schedule? 

l How did the server schedule the queries? 

l What measures must be taken to ensure that 
the clients will eventually receive the results? 

As a first cut, we propose a simple strategy that 
employs simple heuristics to handle the above is- 
sues. The scheme works as follows: 

the ratio of the amount of time spent in active 
and doze mode is fixed at ta/td; once the query 
is submitted (t, and td are piggy-backed to 
the query), the client will be active for t, time 
units, after which it will doze off for td time 
units, and the process repeats. 

the server examines query requests using a 
FIFO policy. When a query is examined, 
from its t, and td values and its arrival time, 
t art-, the server is able to predict whether the 
corresponding client is in active or doze mode. 
bet tad = t, +td, and t, = tarr - cc. Here, t, 
is an estimation (by the server) of the time 
that the client submits its query, and ee is the 
delay between the submission of the query 
by the client to the receiving of it by the 
server. This corresponds to the transmission 
time of the query over the uplink channel. 
We determine k, which is the smallest integer 
that satisfies the expression: 

t, + k . tad < trmu < t, + (k + 1) ’ tad 

where t,,, denotes the current time. The 
client is expected to be in active mode in tm if 
isActive is true as follows. 

where m is an integer, m 2 k. It is worth 
noting that the delay ea for the client to receive 
the IP-address must be taken into considera- 
tion when t, is considered. If the client is not 
in active mode, then the next query will be 
examined, and the process repeats. 

the client is also assigned a timeout period, 

hneout , so that if the client still has not re- 
ceived its first result after ttimeout time units, 
then it will resubmit its query. This is to avoid 
the client from missing the data (especially 
since the client and server may not be syn- 
chronized). 

The access protocol of the client is as follows: 

1) submit a query (or list of referenced objects) 
and a schedule; 

2) tune into the downlink channel, and listen for 
t, time units; 

a) examine the objects broadcast; 

168 



b) if the query is being served (i.e., IP- 
address is in the broadcast), then 
download all resultant objects and 
STOP; 

3) go into doze mode and wake up after td time 
units; 

4) if timeout, goto 1; otherwise goto 2. 

Under this scheme, once the IP-address is 
broadcast, all the data objects required by client 
with the associated IP-address are also broadcast. 
The scheme, however, fails to exploit much data 
sharing. For example, a client may have requested 
a subset of the data that is being broadcast, but 
it is unable to access them (since the objects of a 
query are identified by the IP-address). This will 
also lead to a long initial access time. 

We would note that the above scheme is a static 
scheme in that once t, and td are determined, they 
cannot be changed. Clearly, an optimal [ta, td] pair 
depends on the load of the system (i.e., number of 
clients in the mobile environment). When the num- 
ber of clients is small, the access time of a query 
is expected to be low. In this case, it is probably 
more suitable to set a small doze off time or a large 
active time. On the other hand, if the number of 
clients is large, the access time is expected to be 
high, and so the doze off time can be larger to save 
up in the tuning time. We shall discuss this issue 
further in the experimental study. 

4 Stateless Selective Tuning Schemes 
For the stateless schemes, the basic protocol be- 
tween clients and server is as follows: 

l Besides broadcasting the data objects, 
the server also broadcasts cues. The cues 
essentially provide hints to the content of the 
data that follows them. We also include the 
time slot in which the next set of cues will be 
broadcast at the end of the cues. 

l Clients submit query requests. Moreover, 
clients also listen to the cues. From the 
cues, clients can determine whether the data 
objects being broadcast in the segment are 
their resultant objects. If the data objects are 
for them, then they will listen to the segment; 
otherwise, they will doze off for the period of 
time that is determined by the length of the 
segment (derived from the time slot in which 
the next set of cues is to be broadcast). In 
this way, clients can toggle between the doze 
mode and active mode repeatedly until all the 
resultant objects are received. 

In some sense, the scheme is similar to 
the indexing schemes used in broadcast-based 

segment i+l 
segment i 1; segment i+2 segment i+3 

offset/pointer 

Index cl Data 

Figure 2: A broadcast to facilitate selective tuning. 

approaches. We can consider the cues as a form 
of indexes, and view the dissemination of data as 
segments, where each segment comprises a set of 
cues and its associated data objects (see Figure 2). 
However, unlike the broadcast-based approaches, 
depending on the number of clients in the system 
and the size of the query results, segments are 
of variable length. Moreover, the content of the 
segments is also different and unpredictable. 

Clearly, depending on the cues used, we can 
derive different selective tuning strategies. 

4.1 Client Identity as Cues 

The first strategy we derive uses the client identity 
as the cue. Since IP-address of a client is unique, 
we shall restrict our discussion to IP-address. Each 
segment then comprises: 

l a list of IP-addresses 

l an offset that indicates when the next segment 
will be broadcast. 

l all the resultant data objects of clients whose 
IP-addresses are being broadcast. 

This strategy includes all the resultant data for 
a query in a single segment. The specific access 
protocol for a client is as follows: 

1) submit a query (or list of referenced objects); 

2) tune into the downlink channel, and listen for 
the beginning of the next segment; 

3) read the offset to determine the address of 
the next segment; 

4) read and examine the list of IP-addresses; 

a) if the client’s IP-address is being broad- 
cast, examine the data objects that are 
broadcast and download the referenced 
objects; 

b) if the client’s IP-address is not being 
broadcast, go into doze mode and tune 
in at the broadcast of the next segment 
(based on the offset); goto 3. 

Like the stateful-based scheme, this scheme cannot 
exploit much data sharing, since all the data ob- 
jects are broadcast together with the IP-address in 
the same segment. The same object can appear 
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multiple times in a segment. Hence, it is expected 
to have a long initial access time also. 

Clearly, the strategy is a multicasting and batch- 
ing mechanism. The batch size is a factor that 
can affect the effectiveness of the strategy. If the 
number of clients batched is small, then it may be 
repeatedly switching from one mode to the other. 
This may be bad when the number of resultant data 
objects per client is small, in which case, clients 
will be waking up almost immediately when they 
doze off. On the other hand, too large a number 
of clients may also be bad as clients in the segment 
may be listening to all the objects in the broadcast, 
resulting in a longer tuning time too. 

Another factor that affects the performance of 
the strategy is the number of clients in the system. 
When the number of clients is small, it makes no 
sense to have a large batch of clients in the segment 
since the access time will be excessively large due to 
the additional waiting time for the required number 
of clients to arrive. However, for large number of 
clients, a large batch size may be useful as this will 
help to better utilize the channel bandwidth. 

We adopt an adaptive approach. The server 
determines the batching size based on the number 
of queries in the waiting queue and a predeter- 
mined threshold value (for the maximum number 
of queries to be batched). When the number of 
queries is less than the threshold, all the queries will 
be served in the current segment; otherwise only 
the number corresponding to the threshold will be 
served. Figure 3 illustrates the scheme. Here, we 
assume that the threshold is set to four queries, 
i.e., at most four queries will be batched. At ti, 
the waiting queue contains only two queries. As 
such, both queries will be served and their data 
objects transmitted in a single segment. At t2 
which corresponds to the time when segment 1 has 
completed and the time to transmit the next seg- 
ment, the queue has increased to five queries. Since 
the threshold is set to four, we can only serve four 
queries. At t5, there is no job in the queue. As a 
result, nothing needs to be transmitted. At ts, a 
query arrives and is served immediately since it is 
the only job and the channel is available. 

t1: II, JZ rz: J3,J4,JS,Jh,J7 t3: J7,JS,J9,JIO,Jll &Ill t6: J12 

Figure 3: Client identity selective tuning scheme. 

4.2 Data Groups as Cues 

An alternative strategy is to partition a database 
into groups, and use the group-ids as the cues. Like 

[20], the grouping function can be simply a modulo 
function, or can be different for different types of 
objects, or can be generated on-the-fly (such as 
using signatures). Whatever a grouping function is 
chosen, it must be agreed upon between the server 
and the mobile clients. In this case, the cues is a 
list of group-ids that indicates the groups that the 
data in the segment belong to. However, not all the 
objects in the group need to be broadcast. In other 
words, the groupids provide only a hint on the 
objects that will be broadcast, but not the actual 
objects that will be broadcast. Clients will examine 
the group-ids; if their desired objects belong to the 
groups, it will listen to the broadcast, otherwise 
it will doze off. Under this scheme, the access 
protocol for a client is as follows: 

1) submit a query (or list of referenced objects); 

2) tune into the downlink channel, and listen for 
the beginning of the next segment; 

3) read the offset to determine the address of 
the next segment; 

4) read the list of group-ids, and examine them; 

a) if the objects referenced by the client’s 
query belong to one of the groups being 
broadcast; 

i> 

ii) 

examine the data objects that 
are broadcast and download the 
referenced objects, if any; 

if all the objects have been down- 
loaded, then STOP; otherwise doze 
off and tune in at the broadcast of the 
next segment (based on the offset), 
got0 3; 

b) if none of the groups broadcast are 
needed by the client, go into doze mode 
and tune in at the broadcast of the next 
segment; got0 3. 

This scheme has the advantage that, like 
broadcast-based approaches, all clients whose 
data objects belong to the groups in the current 
segment can tune in (even though the required 
objects may not be in the current segment). 
However, it is expected to result in a larger tuning 
time as “false drops” (i.e., the client requests for 
an object whose group-id is being broadcast, but 
the object is not being broadcast) may occur. 

The number of groups is a factor that is critical 
to the effectiveness of this approach. Too small a 
number of groups will increase the chances of false 
drops (since the number of objects per group is 
large), and hence result in a larger tuning time. 
Too large a number of groups may also result in 
poor utilization of the channel as more group-ids 
has to be transmitted. Like the IP-based scheme, 
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the server determines the number of queries to 
batch adaptively (based on a threshold value). 
However, in this scheme, it is the group ids that 
form the cues, i.e., the group ids from all the 
resultant objects of the batched queries. Since 
different objects may belong to the same group, 
we only need to broadcast one group-id for these 
objects. Thus, the number of groups can vary 
from segment to segment. 

Another factor that can affect the group-based 
scheme is the data access patterns. If the distri- 
bution of clients’ accesses is uniform, then the false 
drop is expected to be small. On the contrary, if the 
distribution is skewed, then false drop may increase 
(especially when the group size is large). 

5 A Performance Study 

To evaluate the performance of the proposed 
strategies, we developed an event-driven simulator 
to model a wireless environment as described in 
Section 2. The model was implemented using the 
Modula-2-based DeNet simulation package [15]. 

The model comprises a set of clients and a 
server. The server contains a database of D 
objects. The objects are partitioned into G equal- 
sized groups, Each object is 0 bytes. The object 
id is G;d bits, and the group id is G;d bits. The 
server will batch at most the results of batchSize 
queries for downloading. Clients enter the wireless 
cell covered by the server, submit queries, and 
leave the cell once the data objects are received. 
The IP address of client is IP bits long. Clients’ 
arrival is a Poisson process with mean interarrival 
time of X. We assume that all queries are read-only 
and are processed in the mobile computer. The 
object ids of referenced objects are transmitted to 
the server and the server sends the data objects 
back. The number of objects referenced in a query 
is uniformly distributed between Q/2 and 3&/2, 
where Q is the mean. To determine the objects to 
be retrieved, we adopt a two phase strategy. In 
the first phase, the groups in which the objects 
belong to are determined, and in the second phase, 
objects within the groups are selected. To model 
the access frequency of the groups, we use the 
Zipf-like distribution [12]. Under the distribution, 
if the total number of accesses on the database is 
totalAccess, then the number of accesses of the 
it” most frequently accessed group is given by the 
following expression: 

totalAccess 
CKCeSSi = 

ie . cj”=, $7 

where 6’ is known as the Zipf factor. When 0 = 0, 
the distribution becomes uniform, and all groups 
are equally likely to be accessed. On the other 
hand, when 0 = 1, then the distribution becomes 

the highly skewed pure Zipf distribution [21]. Ob- 
jects within a group are picked randomly. 

The uplink and downlink channel bandwidths 
are fixed at ~,,,li,,k Kbps and W&,,,,&ink Kbps re- 
spectively. For the stateful-based algorithm, the 
amount of doze time and active time are given by 
td and t, respectively. The notations and defini- 
tions, together with the default values, for all the 
simulation parameters are summarized in Table 1. 

Notation ( Definition (Default Values) 
D 1 server database size (10000 objects) 

0 reference skew by query 
Zipf distribution factor 

G 
0 
Oiri 

(0%) 
number of groups (100) 
object size (256 b YW 

] object id size (64 bits) 
1 IP address (32 bil 

Gid ] group id size (8 bits) 

Wdownlink ] downlink channel bandwidth 
(100 Kbps) 

(.4qdink uplink channel bandwidth 
(25 Kbps) 

batchSize maximum batch size (5 queries) 

cl amount of time in active mode 
(1 set) 

td amount of time in doze mode 
1 (5 set) 

Table 1: System and workload parameters. 

The average initial response time, the average 
access time and the average tuning time of the 
queries are used as metrics to compare the various 
strategies. We have conducted a large number of 
experiments, and can only present the more inter- 
esting ones here. 

5.1 Exp 1: On Stateful Scheme 

In this experiment, we study the stateful tuning 
mechanism. Specifically, we look at the effect of 
varying the amount of time to be in active and 
doze mode. Figures 4(a) and 5(a) show the results 
when the amount of active time is fixed while the 
amount of doze time is varied from I to IO sec. 
Figures 4(b) and 5(b) show the results when the 
amount of doze time is fixed while the amount of 
active time is varied from 0.2 to 2.0 sec. The results 
in Figure 4 is for a heavily loaded context (X = 0.2), 
while that in Figure 5 represents a lightly loaded 
scenario (X = 0.8). 

From the results, we note the tradeoffs in the 
choice of the amount of doze time and active time. 
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Figure 4: On stateful schemes (X = 0.2) 
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Figure 5: On stateful schemes (X = 0.8) 

When the system is heavily loaded (Figure 4(a)), 
choosing a high doze time may reduce tuning time. 
The relative difference in access time is not signifi- 
cant as the access time is high. On the other hand, 
when the system is lightly loaded (Figure 5(a)), 
the access time increases with a longer doze time. 
Moreover, the difference in access time becomes 
more significant. The tuning time is fairly constant 
when the system load is light since most of the 
clients would have been served before they need to 
switch into doze mode. 

The result is slightly different when we vary the 
amount of active time. As shown in Figure 4(b), 
under heavy load, as the amount of active time 
increases, the tuning time also increases. This is 
expected since the access time is large which in turn 
implies that the number of times that the clients 
must be in active mode also increases. However, 
the access time when the system load is light de- 
creases with higher active time (see Figure 5(b)). 
This is so since a long active time would mean that 
the chances of dozing off is kept low (i.e., most of 
the clients need not doze off). 

Since the workload cannot be predetermined, an 
adaptive mechanism is needed for optimal perfor- 
mance. We shall leave this issue for future research, 
and fix td and t, at the default values. 

5.2 Exp 2: On IP-based Scheme 

In this experiment, we study the IP-based state- 
less scheme. We also look at two variations of 
the IP-based scheme. The first is essentially the 
basic strategy that broadcasts all objects of a query. 

(b) 

(4 

Figure 6: Comparing IP-based stateless schemes. 

The second, however, exploits batching to avoid 
downloading objects multiple times in a batch. We 
shall denote the first method as IPB (IP-basic) and 
the second method as IPI (IP-Improved). Figure 6 
shows the results of the average access time, aver- 
age tuning time and average initial access time as 
the maximum batch size increases from 1 to 10. 

As expected, we note that IPI outperforms IPB 
in all cases since it downloads fewer objects in each 
batch. We also note that there is a tradeoff be- 
tween reduction in access/initial time and increased 
tuning time as the batch size increases. Access 
time is reduced since a larger batch size will imply 
more common objects within a batch. Tuning time 
increases as more clients will have to examine more 
objects before all their results are received. In view 
of these results, for the subsequent experiments, we 
shall restrict to IPI and use the default batch size. 

5.3 Exp 3: On Group-based Scheme 

In this experiment, we study the effect of batch 
sizes on the group-based scheme. The results are 
shown in Figure 7. As shown in the figure, a larger 
batch size can reduce the access and tuning times 
slightly. This is because as the batch size increases, 
more data is transmitted in a segment, and so the 
chances of false drops will decrease. However, the 
average initial access time increases as the batch 
size increases. This is due to the larger number of 
cues and the longer segment length. 

5.4 Exp 4: A Comparative Study 

In this experiment, we study the effect of query 
interarrival time on the strategies by varying the 
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Figure 7: On group-based scheme. 

interarrival time from 0.1 to 1.0. We shall denote 
the stateful-based scheme, the IP-based algorithm 
and the group-based algorithm as SS, IP and GP 
respectively. The basic exclusive on-demand strat- 
egy (denoted OD) is also used as a reference to 
study the benefits of the proposed schemes. Under 
scheme OD, clients listen to the broadcast until all 
data objects have been received (without dozing off 
at all). The results are shown in Figure 8. 

From the results, we note that none of the 
strategies performs best in all cases. In terms 
of tuning time (Figure 8(a)), we see that all the 
proposed schemes (IP,GP and SS) are superior over 
scheme OD. This demonstrates the effectiveness of 
the schemes in minimizing power consumption. As 
expected, when the load is light, all the schemes 
require the same amount of tuning time (since the 
opportunity for dozing off is low). However, under 
high load, the tuning time of the proposed schemes 
is drastically reduced. For IP, its tuning time can 
be reduced to only 3% that of OD, while SS and 
GP can have tuning time of down to 20% and 
30% that of OD respectively. GP is less effective 
because of the simple grouping strategy that we 
have adopted which can lead to high false drops. 

For the average access time (Figure 8(b)), all 
the schemes perform equally well (or poorly) ex- 
cept for the stateful-based scheme (SS). Algorithm 
SS performs poorly (in access time) under lightly 
loaded context, but is superior when the system is 
heavily loaded. When the load is light, the access 
time is expected to be low. By allowing clients to 
doze-off for a long time (relative to the access time) 
inevitably increases the access time unnecessarily. 

6) 

(4 

Figure 8: Comparison of various schemes. 

However, as the system load increases, algorithm 
SS can lead to better average access time. While 
this appears unintuitive, three reasons account for 
this behavior. First, under other strategies (IP and 
GP) the cues are at the front of the segment, and 
every client’s access time includes all the cues. But, 
under SS, objects that are broadcast earlier will 
have a smaller number of IP-addresses to exam- 
ine. Second, the scheduling policy adopted mini- 
mizes the number of times a client needs to doze 
off since the next query to be addressed is examined 
in FCFS policy. Finally, under SS, some queries are 
processed earlier, while others are delayed. It turns 
out that the net effect is a gain in our study. 

It is also worth noting, from Figure 8(c), that 
OD performs best in the average initial access time. 
This is so since every client is listening to the broad- 
cast, and objects that are broadcast in response to 
other queries may also be relevant to it. SS per- 
forms the worst, in most cases for the same reason 
given above for its access time performance since 
the client can only receive its data objects, if any, 
when it is in active mode. 

Finally, we note that the utilization of the band- 
width is the same for all schemes except SS which 
is slightly better (see Figure 8(d)). This also helps 
to explain why SS performs poorer than the other 
schemes under light load - it may doze off “unneces- 
sarily” and fail to utilize the bandwidth effectively. 

6 Conclusion 

In this paper, we have addressed the issue of seiec- 
tive tuning in a demand-driven-based environment. 
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Specifically, we addressed how energy can be saved 
when the clients are operating in connected mode. 
We proposed three strategies that allow clients to 
repeatedly toggle between doze mode and active 

mode until the desired objects are obtained. In 
the active mode, clients will listen to the broadcast 
for up to t, time units for the objects. In the 
doze mode, clients will “rest” for up to td time 
units. One of the strategies is based on the stateful 
approach where the clients determine the schedule 
and the server is made known of the schedule. The 
other two strategies are stateless-based approaches 
where the clients’ schedules depend on cues broad- 
cast by the server. We conducted a performance 
study and our results demonstrate that the pro- 
posed schemes are energy efficient without sacrific- 
ing on the average access times of object retrievals. 
Furthermore, our results showed that none of the 
algorithms is superior in all cases in terms of aver- 
age access times, average initial access times and 

average tuning times. Thus, the algorithms are 
useful for different applications. 

We plan to extend the work in the following 
aspects. First, we will explore how to improve the 
various proposed schemes in terms of robustness 
and further reduction of the tuning time. For ex- 
ample, the stateful scheme can be fine tuned so 
that the doze off and awake time can adapt to 
the changing workload of the system. As another 
example, different grouping schemes may perform 
differently for the group-baaed scheme. Second, we 
will integrate our schemes with the cache invali- 
dation technique and study the combined effect in 
minimizing energy consumption. Finally, we plan 
to implement and study the techniques in a real 
wireless environment. 
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