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Abstract 

String hashing is a findamental operation, used in 
countless applications where fast access to distinct 
stn’ngs is required. In this paper we describe a 

class of string hashing functions and explore its 
performance. In particular, using experiments with 

both small sets of keys and a large key set from a 
text database, we show that it is possible to achieve 
performance close to that theoretically predicted for 
hashing functions. We also consider criteria for 

choosing a hashing function and use them to com- 
pare our class of finctions to other methods for 
string hashing. These results show that our class 
of hashing finctions is reliable and eficient, and is 
therefore an appropriate choice for general-purpose 
hashing. 

1 Introduction 

String hashing is the process of reducing a string to 
a pseudo-random number in a specified range. It 
is a fundamental operation, used widely in appli- 
cations where speed is critical. On a small scale, a 
hash table is often the basic data structure in appli- 
cations such as symbol tables in compilers and ac- 
count names in password files. Hashing is also used 
in applications such as spell checking and Bloom 
filters [15]. In databases, hashing is important, not 
just for indexing, but also for operations such as 
joins and inverted-file construction. 

The performance of a hashing scheme depends 
primarily on two factors: the efficiency of the 
overflow-handling scheme and the behaviour of the 
hashing function. There has been much research 
addressing the problems of overflow and collisions. 
Hashing functions have received less attention, but 
analytically the behaviour of hashing is now well- 
understood [3, 7, 10, 11, 141. However, in much of 
the work on hashing it is assumed that the keys 
are integers, while in practice keys are often strings 
of alphanumeric characters-an aspect of hashing 
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that has attracted surprisingly little research. 
Some recent papers have examined specific string 
hashing functions [12, 131 but how these functions 
compare to the analytically-predicted performance 
of hashing is unknown. 

Moreover, good choice of hashing function is 
crucial to efficiency. It is often assumed that for 
a given load factor access costs are independent of 
table size, but for a poor function this assumption 
breaks down. In comparison to a good hashing 
function, a badly designed function may give ac- 
ceptable performance for a small application such 
as a symbol table but be much slower when used 
for a large database application such as a join. 

In this paper we present a class of string hashing 
functions and demonstrate experimentally that the 
analytically-predicted performance can be achieved 
in practice by choosing hashing functions at ran- 
dom from this class; to our knowledge there has 
been no previous investigation of classes of string 
hashing functions. In these results performance is 
evaluated by two measures: the average number of 
probes during successful and unsuccessful search, 
and the largest number of probes during success- 
ful search, that is, the worst case. Our experi- 
mental results are based on sets of strings drawn 
from real data, including a set of over one million 
distinct words drawn from a text database. The 
results show that the class gives good average per- 
formance. 

We also identify four properties that a class of 
string hashing functions should satisfy: uniformity, 
universality, applicability, and efficiency. We use 
these properties to motivate our class of string 
hashing functions and to compare it to other 
string hashing functions that have been proposed. 
These results show that functions in the class are, 
as well as reliable, faster than other good hashing 
functions. This class of functions is therefore a 
good choice for any application involving hashing 
of strings, including schemes such as hash joins and 
external hashing as well as the chained hashing 
used in this paper to explore function performance. 

In Section 2 we describe our class of hashing 
functions. Analysis of hashing schemes is reviewed 
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in Section 3. In Section 4 we describe our test data 
and experimental results, considering both average- 
case and worst-case search lengths. Other string 
hashing functions are discussed in Section 5. 

2 Classes of hashing functions 

In this section we describe a class of string hashing 
functions. First we outline our notation. 

String hashing functions can be represented in 
the following generic form, in which s = cl . . . c, 
is a string of m characters, v is a seed, and hi 
is an intermediate hash value after examination of 
i characters. 

h(s,v) = 
set ho t init 
for each character q in s, 

set hi c step(i, hi-l, ci) 
return h = final (h,, v) 

That is, the hash value of s is computed as follows. 
Some function init is applied to v to yield the initial 
ho. At each step hi is a function step of i, the hash 
value computed so far, and the current character. 
The hash value returned is a function final of v 
and the internal hash value h,. Defining init, step, 

and final describes a string hashing function. For 
example, we might define 

init = 0 

step(i,h,c) = hfc 

final(h,v) = h 

yielding a simple (rather uninteresting) hashing 
function in which the hash value is the sum of the 
ASCII values in the given string. 

Hash values must be truncated in some way to 
give values in the range 0.. . T - 1, where T is the 
table size. In general the only practical mechanism 
is to take h modulo T (remainder of h after division 
by T) but, for values of T of the form 2b with 
integer b, bitwise AND can be used. 

Operations that might be used in a hashing 
function include addition (+), multiplication ( x ) , 
bitwise AND (V), bitwise OR (A), bitwise exclu- 
sive OR (@), modulo (II), left-shift of value h by 
b bits (Lb(h)), and right-shift of value h by b bits 
(%!+,(h)). On most architectures today modulo is 
implemented in software; multiplication, although 
usually in hardware, is relatively slow; while the 
other operations are typically single-cycle instruc- 
tions. We assume that characters are represented 
in some integer code such as ASCII. 

We contend that, to be useful for general- 
purpose hashing, a class of hashing functions 
should satisfy the following properties. 

Uniformity. If a hashing function is uniform then 
the probability of an arbitrary key hashing to a 
given slot is l/T for table size T, independent 
of the hash values of other keys. In practical 
terms, uniformity means that for a given load 
factor (ratio of keys to slots) average access 
time is roughly constant, regardless of table 
size. 

Universality. A class of hashing functions H is 
universal if, for a given table size T and any 
pair of valid keys sr and sz, the number of 
hashing functions h E H such that h(q) = 
h(sa) is less than or equal to )HI/T [2]. That 
is, for a randomly-chosen hashing function the 
probability that sr and 52 hash to the same 
value is less than or equal to l/T. 

In practice universality means that, with high 
probability, a randomly-chosen hashing func- 
tion will perform well. For any hashing func- 
tion it is true that there exist sets of keys 
that all hash to the same value-and no hash- 
ing function is invulnerable to a deliberate at- 
tempt to identify such a set of keys. However, 
if a class of hashing functions is universal and 
the functions in the class are uniform then it is 
guaranteed that the class cannot be subjected 
to such attack. If for some hashing function h 
and set S of keys every key s E S is such that 
h(s) = k for some k, it is still true that for 
another randomly-chosen function h’ the set of 
hash values h’(s) will be uniformly distributed. 

It is somewhat difficult to test universality in 
practice; such a test would require hashing 
every pair of keys for every possible seed value 
and table size. However, by subjecting the 
class to attack of the kind outlined above- 
actively searching for keys that hash to the 
same value-we can obtain a strong indication 
that the class is indeed universal. 

Applicability. At a more pragmatic level, hashing 
functions should be applicable in all circum- 
stances where hashing might be used. A func- 
tion that is limited to a few table sizes, can 
only hash strings of a certain length, or can- 
not accept seeds (thus allowing, for example, 
double hashing) is not as valuable as functions 
without such restrictions. 

Deficiency. The primary advantage of hashing as 
an access method is its speed: given a data set 
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of n keys and a table of O(n) size search time 
is O(l), assuming a hashing function with time 
complexity 0( 1). Hashing functions should 
also be small; in many applications there is 
little advantage to a function that is as large 
as the key set. 

In practice, constant factors can be important. 
For example, in some applications it is possible 
for search in a array, although O(logn), to be 
as fast as search in a hash table. Consider an 
application in which the keys are long strings. 
During search of an array, all that is required 
at each element is inspection of the first few 
characters of the key (up to a mismatch), then 
a full comparison when the correct element 
is found. During hashing, the key must be 
completely inspected at least twice, once to 
form the hash value and at least once to check 
the key in the table. A slow hashing function, 
with complex operations for each character, 
could well be unacceptable. 

Other valuable properties are perfection, where 
the hashing function is collision-free, and order- 
preservation, where the sort order of the hash 
values is the same as the sort-order of the original 
keys [l, 4, 161. Both are valuable in specific 
applications; perfect hashing functions can be used 
for lookup in static tables, for example, because 
it may then not be necessary to store the keys. 
However, such functions require prior knowledge 
of the complete set of keys to be hashed. We do 
not consider perfect or order-preserving hashing 
functions in this paper. 

We now define our class of string hashing func- 
tions. To obtain a class of hashing functions that 
meets the criteria above, we wish to use efficient 
primitive operators such as addition and exclusive 
OR; to use as few as possible of these operators; 
to allow the function to generate large hash values; 
and to design the function to scramble the input 
bits as thoroughly as possible, without losing the 
contribution of any characters. Thus it is essential 
to use some mechanism such as left shift to make 
use of higher-order bits, while operators such as 
bitwise AND should be avoided because they tend 
to erase information. Based on these principles we 
experimented with many combinations of primitive 
operators, and as a result propose the shift-add-xor 
class of hashing functions, in which the components 
are defined by 

init = ZJ 

step(i, h, c) = he3 (h(h) + RR(~) + c) 

final(h,w) = hllT 

in which the modulo operation in the final step can 
be replaced by bitwise-AND for suitable T values. 
As we discuss below, this function was the simplest 
we could identify that had the required properties. 
Functions of this general form are not new, but 
to our knowledge they have not previously been 
analysed with respect to the theoretical behaviour 
of hashing functions. 

Uniformity and universality are investigated in 
Section 4; for now we simply note that each seed 
gives a new function and hence we have defined a 
class of hashing functions. 

Given appropriate choice of shift magnitudes 
L and R good use is made of the 32-bit space, 
providing greater likelihood of a uniform distribu- 
tion of hash values. For example, with 5-character 
keys and L > 7 it is possible to obtain any 32- 
bit string using this class of functions. We used 
L = 5 and R = 2 in our experiments, but found 
that variation in these values made little difference 
for 4 < L 5 7 (so that only a few characters are 
required to yield a large hash value) and 1 < R 5 3 
(so that the contribution of the first characters is 
not diminished); note that the character set was 
ASCII, that is, 7-bit values. We conclude that the 
class is widely applicable. 

The class is fairly efficient. There is no use of 
slow operations such as modulo or multiplication 
(other than the necessary final use of modulo to 
reduce the hash value to the table size) and only 
five operations per character-one exclusive OR, 
two shifts, and two additions-each of which on 
our machines require only a single instruction cy- 
cle. It is possible that there exists a simpler ef- 
fective hashing function, but it cannot be obtained 
by simplifying shift-add-xor. Considering the pos- 
sible simplifications: the left-shift is required to 
obtain 32-bit values; the right-shift is required for 
uniformity, because, we suspect, the majority of 
occurrences of letters in English, including all six 
vowels, have a rightmost l-bit; and, as we discuss 
below, the exclusive OR is required for universality. 
Efficiency is considered further in Section 5. 

Note that we do not require that table size T be 
prime, or be carefully chosen in any way; hashing 
functions should be effective for all table sizes. 

Some readers may be curious as to why we chose 
to define step as above rather than as 

atep(i, h, c) = he (.C~(h)cl%~(h)cw) 

given the belief that exclusive OR is appropriate 
for hashing. This shift-xor-xor class is uniform 
but, apparently, not universal. The reasons are 
not entirely clear to us, but it seems that a mix of 
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addition and exclusive OR is required; in particular, 
addition appears to be valuable because it propa- 
gates change between bits, and leads to a more even 
distribution of 0 and 1 at each position. 

There are essentially two methods for hashing 
strings. One is to directly reduce the string to a 
string of bits, as in the shift-add-xor class. Another 
is to convert the string to a number, then apply an 
integer hashing function such as 

where p is a large prime. We would expect such 
functions to be well-behaved, but the operations 
required in the conversion and hashing make it 
unlikely that they would be faster than shift-add- 
xor . For example, consider Cormen, Leiserson, 
and Rivest [2] and Sedgewick [17], which are 
two of the better-known recent algorithms texts. 
Cormen, Leiserson, and Rivest [2] suggest that 
strings be converted to numbers through radix 
conversion. For alphanumeric strings, implicitly 
of base 62, radix conversion requires up to two 
comparisons, a subtraction, and a multiplication 
for each character, with possibly further operations 
because of overflow. For ASCII characters radix 
conversion is rather simpler, involving only a left- 
shift of 7 places-multiplication by 128-but such 
conversion can lead to the contribution of the first 
characters in a string being lost as they are shifted 
out to the left. Thus the technique of regarding 
strings as numbers and using numerical hashing is 
inappropriate unless arbitrarily large numbers can 
be manipulated efficiently. Sedgewick [17] suggests 
a method that avoids overflow by use of a modulo 
operation at each step, which is considerably more 
expensive to evaluate. 

Our hypothesis, then, is that by choosing 
functions at random from the shift-add-xor class 
of string hashing functions-that is, by making 
a random selection of seed-we can in practice 
obtain the analytically predicted performance of 
hashing schemes. Prediction of performance is 
reviewed in the next section. 

3 Predicted behaviour of hashing 

Hashing techniques are usually analysed under the 
assumption that the hash values are uniformly dis- 
tributed. Consider a set of n keys mapped into 
an address range of T values. Given a key s and 
a hashing function h that maps the key into this 
range, the probability that the key hashes to a 
particular address is 1/T and is independent of the 
outcome of hashing other keys. There are Tn ways 

in which n keys can be distributed among the T 
addresses, that is, there are Tn functions that map 
the given set of keys into the table. It is assumed 
that each of these distributions is equally likely 
when the n keys are hashed into T slots. 

The analytically-predicted performance of a 
cbs of hashing functions corresponds to the 
expected performance of a randomly-chosen 
function from the set of Tn functions. It is 
interesting to consider both average-case and 
worst-case behaviour. In the average case, 
behaviour is measured by the average length of 
the probe sequence (that is, the average number 
of accesses) for successful and unsuccessful search. 
Analytical results for the average case in a chained 
hash table are given by Knuth [8, page 5351. 

The worst case for hashing occurs when all the 
keys hash to the same address and the search length 
is 0(n). Knuth [8, page 5401 expressed fear of 
this possibility by concluding that “hashing would 
be inappropriate for certain real-time applications 
such as air traffic control, where people’s lives are 
at stake”. However, Gonnet [5] proved that such 
fears of hashing are baseless, since the probability 
of the worst case is, in his words, ridiculously small. 

Gonnet proposed a measure for the worst case 
of hashing based on the length of the longest probe 
sequence, or Ups. Out of all the keys stored in the 
hash table, one has the maximum successful search 
length. Gonnet proposed that the expected value 
of llps is a better measure of the worst case of hash- 
ing than is the (extraordinarily improbable) worst 
case of llps, and demonstrated theoretically that 
llps is very narrowly distributed with the expected 
value being quite small, that is, not dramatically 
greater than would be given by dividing the keys 
evenly amongst the buckets. Larson extended these 
results for the general case of bucket size greater 
than 1 [9]. 

We now use these analytical results, for both 
average-case and worst-case behaviour of a class of 
ideal hashing functions, as a yardstick for evalu- 
ating the behaviour in practice of classes of string 
hashing functions. 

4 Experimental results 

Our hypothesis is that, by choosing hashing 
functions at random from the shift-add-xor class 
of hashing functions, the analytically-predicted 
performance of hashing schemes can be achieved in 
practice. To support the hypothesis, in this section 
we experimentally evaluate the shift-add-xor class 
of string hashing functions on real data sets. 
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Exhaustively checking whether a class of hash- 
ing functions is indeed uniform would require eval- 
uating the function over all potential key sets for 
all seeds. This or any close approximation to it 
is clearly impractical, but by applying the class to 
a selection of data sets with a reasonable number 
of seeds we can be highly confident that the ob- 
served behaviour is a good approximation to the 
behaviour over the whole class. 

For these experiments we had several sets of 
keys available to us. We used these to explore 
the performance of the hashing functions discussed 
in this paper. The reported results are based on 
the following key sets. (However, results for all of 
the key sets were similar.) One was NAMES, a file 
of 31,918 distinct surnames extracted from Inter- 
net news articles and hand-edited to remove errors 
and nonsense [18]. 1 Another was TREC, a file of 
1,073,726 distinct words (that is, contiguous alpha- 
betic strings) extracted from the first 3 gigabytes of 
the TREC data [6]; this data contains the full-text 
of newspaper articles, abstracts, and scientific jour- 
nals. In our experiments we have focused on certain 
table sizes and load factors, to allow comparison 
with previously published analytical results, and 
thus did not usually require the full data sets. In- 
stead we used subsets of the data of the required 
size: ten random subsets of 1000 strings each, from 
each of TREC and NAMES; the lexicographically first 
1000 strings from each of TREC and NAMES; a file, 
FIVES, of the first 1000 distinct strings of exactly 
five characters (that is, “aaaaa”, “aaaab”, and so 
on); and a file, SEVIF, of the strings from FIVES 

reversed. These last four files are pathological cases 
that should help to expose flaws in weak hashing 
functions. 

In these experiments we have focused on hash 
tables with separate chaining, which-with their 
tolerance to overflows and similarity to dynamic- 
table schemes such as linear hashing and extensible 
hashing-we consider to be most typical of hash 
tables in practical use. However, the results are 
independent of the hash table organisation: they 
demonstrate properties of the class of hashing func- 
tion that apply regardless of how it is used, whether 
for internal or external hashing, to slots of size 1 or 
buckets of many keys each, or to applications such 
as hash joins. 

'This file is available by ftp from 

goanna,cs,rmit.edu.au 

in the file 

pub/rmit/fnetik/data/Surnames.Z 

Average-case search length 

We first investigated average search lengths 
for successful and unsuccessful search. Results 
are shown in Table 1. The “actual” results are 
an average over 10,000 randomly-selected hashing 
functions (equivalently, seeds), based on one set 
of TREC keys; the “P figure is one standard 
deviation. In these results the number of keys was 
held at 1000 and the table size varied to give a 
load factor. For example, with a load factor of 70% 
the table size was [WI = 1429. The “predicted” 
results are quoted from Knuth ES, page 5351. As 
can be seen, the correspondence is extremely good, 
thus confirming our hypothesis that functions 
in the class shift-add-xor generate uniform hash 
addresses. Almost identical results-usually to 
within O.Ol-were observed with the other data 
files, including the four “pathological” data files. 
We also tried other table sizes and key set sizes, 
including table sizes such as powers of 2 that 
might lead to poor behaviour, but again similar 
behaviour was observed. Note that we have not 
reported figures for larger bucket sizes; changing 
bucket size does not change the distribution or the 
properties of the hashing function. 

By way of comparison, consider the class of 
hashing functions given by 

init = 0 

step(i, h, c) = Ll(h)+c 

final(h,v) = hII 

This function is like that used in several compilers, 
as reported by McKenzie, Harries, and Bell [12]. 
For a load factor of 90%, on the twenty randomised 
data files average successful search length 
was 1.701, already significantly greater than 
the prediction of 1.450, while on SEVIF it was 5.110 
and on FIVES it was 9.358. 

It is also interesting to consider performance 
on a large data set, the more realistic case for a 
hashing function to be used in a database system. 
For the full set of TREC keys, 1000 randomly-chosen 
hashing functions, and a load factor of 90%, sbift- 
add-xor gave an average successful search length of 
1.459 and the average search length was 1.310- 
essentially identical to performance with a small 
set of keys. With the simple function above, how- 
ever, average successful search length was 19.103; 
increasing the value of the left shift to 4 decreases 
this value, to 4.669, a figure that is however still 
unacceptable. From this experiment and similar 
experiments with other large sets of keys (such as 
the first l,OOO,OOO five-character strings) we have 
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Predicted successful 
Actual successful 
Predicted unsuccessful 
Actual unsuccessful 

40% 60% 70% 80% 90% 
1.200 1.300 1.350 1.400 1.450 
1.200f0.014 1.299f0.017 1.350f0.019 1.400f0.020 1.450f0.021 
1.070 1.149 1.197 1.249 1.307 
1.070f0.004 1.148f0.006 1.196f0.007 1.249f0.008 1.307f0.009 

Table 1: Average search length, successful and unsuccessful for 1000 keys at load factors from 20% to 
90%, averaged over 10,000 seeds (f one standard deviation). The keys are extracted from the TREC data. 

observed that with a poorly-chosen hashing func- 
tion performance can markedly deteriorate aa the 
number of keys increases. However, a good hashing 
function such as a member of shift-add-xor will in- 
deed give the theoretically-predicted performance. 

Worst-case search length 

Experimental results for the expected length of 
the longest probe sequence, or llps, are shown in 
Table 2, from the same experiments reported in 
Table 1. The “predicted” results are quoted from 
Gonnet [S]. As can be seen llps values vary sig- 
nificantly between runs, as indicated by the high 
standard deviation. For a load factor of SO%, the 
greatest llps observed in the 10,000 runs was 8; for 
load factors of 70%, SO%, and 90% the greatest llps 
was 9. The llps values varied somewhat between 
data files-for example, for a load factor of 90% and 
the files drawn from NAMES and TREC the minimum 
average value of llps was 5.257 and the maximum 
was 5.332. However, all of these values are, within 
the error indicated by the standard deviation, close 
to the analytically-predicted value. For FIVES, av- 
erage llps was 3.034. 

We decided to examine in detail the distribu- 
tion of llps values, by hashing the strings in one 
data set with l,OOO,OOO randomly-selected hashing 
functions. The results are shown in Figure 1. As 
predicted by the analysis, the distribution of exper- 
imental llps values is extremely narrow-even with 
a load factor of 90%, over 95% of the llps values are 
4, 5, or 6; the largest observed value was 12, which 
occurred only once in the 4,000,OOO experiments. 

Pushing this experiment further, we chose a ran- 
dom set of 20 keys from NAMES, a table size of 20, 
and measured llps for the 230 hashing functions 
given by the seeds between 1 and 230. The worst 
llps was 11, with only 9 in over one billion oc- 
currences. That is, for even such a small table 
exhaustive search of the class failed to find a hash- 
ing function that maps all keys to the same value. 
Average llps was 3.231. 

For the full set of TREC keys, the distribution of 
llps values is even narrower. With 1000 randomly- 
chosen hashing functions and with a load average 
of 90%, the average llps was 8.900, with a minimum 
of 8 and a maximum of 11. (Note that Ups is 
expected to rise slowly as table size is increased; 
this is not an indicator of poor performance.) In- 
terestingly, our experiments indicate that llps is a 
better tool than average search length for discrim- 
inating between hashing functions, particularly on 
large key sets. For example, on the same data 
the hashing function given by simplifying the step 
operation in shift-add-xor to 

step(i, h, c) = h@ ( fZ~(h) + c) 

has reasonable average successful search length 
but average llps-the worst-case successful search 
length-markedly deteriorates, to 25.886. 

Note that the llps values quoted in Table 2 are 
not a lower bound-it is quite possible for a hashing 
function to have better worst-case performance for 
a given data set. In particular, perfect hashing 
functions, which are constructed with respect to 
the set of keys to be hashed, have by definition 
an llps of 1. The weakness of such functions is 
their inefficiency for dynamic sets of keys and the 
unpredictable behaviour for an arbitrary key set. 

Universality 

Although it is not possible to conclusively demon- 
strate that a class of hashing functions is univer- 
sal, there is evidence that can indicate whether 
universality holds. The method we have used is 
deliberate attack: for some hashing function and 
table size, find a set of strings that hash to the 
same value; then for that set of strings explore llps 
and average search lengths. A significant increase 
in llps indicates that some strings are being hashed 
to the same value for more seeds than would be 
expected for a universal class of hashing functions. 

To use this approach to provide evidence for 
universality we used the full TREC key set, assumed 
a loading factor of 90% and a table size of 1111, ran- 
domly chose a hashing function, then searched for 
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Predicted 
AChId 

60% 70% 80% 90% 
4.333 4.636 4.947 5.242 
4.556f0.644 4.797f0.677 5.069f0.679 5.306f0.688 

Table 2: Length of the longest probe sequence (Ups) for 1000 keys at load factors from 60% to 90%, 
averaged over 10,000 seeds (k one standard deviation). The keys are extracted from the TREC data. 

600000 R 

-A- load factor of 60% 
-o- load factor of 70% 
-O- load factor of 80% 
+ load factor of 90% 

io 
Length of the longest probe sequence 

is 

Figure 1: Distribution of the length of the longest probe sequence (11~s) for 1000 keys and l,OOO,OOO 
randomly-selected seeds. The keys are extracted from the TREC data. 

any set of 1000 keys with the same hash value. We 
then attacked the shift-add-xor class by choosing 
l,OOO,OOO random seeds and examined the distri- 
bution of llps values. After this attack the average 
Ups was 5.307-almost identical to the value in 
Table 2-and, aside from one occurrence of an lips 
of 15 and one of an llps of 12, the values were 
between 4 and 10. That is, behaviour was virtually 
indistinguishable from that of a random set of keys. 

This process of attack was a key tool in our 
evaluation of other hashing functions. For example, 
for the shift-xor-xor class defined with 

step(i, h, c) = he3 (L~(h)e%3(h)ax) 

only has, in effect, T distinct members for a table 
size T that is a power of 2. 

5 Other string hashing functions 

In addition to string hashing functions proposed 
in the literature, not surprisingly many different 
functions are to be found embodied in software. 
We now consider some of these functions. 

As discussed above, some algorithms texts de- 
scribe a form of multiplicative method, which are 
two-stage methods in which the string is reduced to 
a number before processing with a hashing function 
for integers. One form of multiplicative method is 

attack increases average lips over 1000 seeds, 
as follows. 

to 6.229. For the class defined with init = 0 

step(i, h, c) = LL(~) + RR(~) -I- c step(i,h,c) = h x r+ c 

average llps is increased to 41.198, with an average 
finaW,v) = ((v x Mp) IIT 

successful search length of 5.491. where p is a large prime and r is a radix. In a 
To survive such an attack, a class of functions variation of this form, an array P of distinct large 

must be large. For example, the class defined by primes can be used as follows. 

init = 21 init = 0 

step(i, h, c) = &(h) + c step(i, h,c) = h + Pi x c 

final(h,v) = h(lT finW, ~1 = ((v x Wllp) IIT 
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We tested several functions of this kind using 
the same methodology as in Section 4. These 
approaches are uniform (provided that radix r 
is not a power of 2); probably universal, as they 
are resistant to adversarial attack; and widely 
applicable. However, Sedgewick’s function [17] 
does not resist attack quite as well as other 
functions on the full set of TREC strings; average 
llps is 10.334, a significant increase. 

Moreover, these functions are relatively slow. 
On a Sun SPARC 20, functions from the shift- 
add-xor class can process just over 1000 strings can 
be hashed per millisecond. In contrast, the multi- 
plicative methods processed under 300 strings per 
millisecond and Sedgewick’s method (which uses 
a modulo for each character) processed under 150 
strings per millisecond. We would expect simi- 
lar relative performance on other current architec- 
tures. 

Two recent papers concern string hashing func- 
tions. Pearson [13] proposed an algorithm that can 
be defined as 

init = 0 

step(i, h, c) = Ahec 

final(h,v) = h 

in which A is an array of the 256 distinct g-bit 
values, randomly permuted, and Ahe, denotes the 
hec’th value in A. This algorithm computes 8- 
bit hash values only, albeit quickly. Pearson also 
gives an extension to 16-bit hash values, which is 
somewhat slower. The array A is in effect the seed, 
since different permutations yield different hashing 
functions. However, this function is of limited value 

in practice, since it is expensive to store each seed, 
and the function is only applicable to limited table 
sizes. As a generalisation of Pearson’s function we 
tested the class 

init = w 

step(i, h, c) = h@ (LL@) +A(mc)//2.w) 

final(h,v) = hJIT 

This class is uniform-experimental results are al- 
most identical to those for shift-add-xor-resistant 
to attack, and at around 800 keys per millisecond 
is only slightly slower than shift-add-xor. We have 
found no simplification of this algorithm that pre- 
serves uniformity and universality. 

The other recent paper on string hashing 
functions is a survey of their use in software, 
by McKenzie, Harries, and Bell [12]. Like the 
function described by Pearson, these functions are 
not designed to accept seeds (and thus do not 

form classes) and, with respect to our criteria, are 
not particularly interesting. Nor are they distinct 

from the classes we have already discussed; most 
are variants of simple radix or shift methods. 

A more interesting class of hashing functions is 
defined by 

init = w 

step(i, h, c) = CCB ( fZL(h)V 

0%24(h) A MASK)) 

final(h,w) = hllT 

in which step is a left-rotation of h by L bits xort’ed 

with c and MASK is 2L-1, that is, L one-bits. This 
function, which is similar to a method attributed 
by Knuth to Knott [8, page 4121 and is embodied 
in the ispell spelling checking utility, has almost 
exactly the same cost as shift-add-xor and is thus 
about the same speed, but is slightly vulnerable to 
attack, with an average lips of 6.064. 

6 Conclusions 

Analytically, the behaviour of hashing schemes is 

well understood. In this paper we have presented 
criteria by which we believe practical hashing 
functions should be evaluated-uniformity, 
universality, applicability, and efficiency. We 
developed a class of shift-add-xor string hashing 
functions and experimentally showed that, by 
choosing hashing functions at random from this 
class, the analytically-predicted performance can 
be achieved in practice. We have also shown that 
the class is likely to be universal, as it is resistant 
to one method of adversarial attack. Moreover, 

the functions from the class are computationally 
efficient, processing more keys per unit time than 
other good string hashing functions, and, as shown 
in our experiments with the distinct words in 

TREC, are effective even for a large key sets such 
as strings in a database. 

The shift-add-xor class of functions is thus an 
appropriate choice for practical applications. Our 
results answer an important question posed by all 
users of hashing, namely, what function should be 
used for hashing strings. The answer is, make a 
random choice from this class; with high probabil- 
ity it will work well, and will be at least as efficient 
as other effective hash functions. 

The worst-case performance results for the 
shift-add-xor class of string hashing functions 
are of particular interest. We have provided 
experimental evidence-including, for one set of 
strings, exhaustive search amongst one billion 
hashing functions-confirming the theoretical 
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prediction that the length of the longest PI 
probe sequence is narrowly distributed. To 
our knowledge these are the first experiments 
testing this prediction. These results are also a 
further confirmation that, with an appropriately 
chosen class of hashing functions, hashing is indeed PI 
safe in practice-the likelihood of the theoretical 
worse-case of many keys hashing to the same value 
is extraordinarily low. WI 
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