
Performance in Practice of String Hashing Functions

M-V. Ramakrishna Justin Zobel
Department of Computer Science, RMIT

{ramajz)@cs.rmit.edu.au

Abstract

String hashing is a findamental operation, used in
countless applications where fast access to distinct
stn’ngs is required. In this paper we describe a

class of string hashing functions and explore its
performance. In particular, using experiments with

both small sets of keys and a large key set from a
text database, we show that it is possible to achieve
performance close to that theoretically predicted for
hashing functions. We also consider criteria for

choosing a hashing function and use them to com-
pare our class of finctions to other methods for
string hashing. These results show that our class
of hashing finctions is reliable and eficient, and is
therefore an appropriate choice for general-purpose
hashing.

1 Introduction

String hashing is the process of reducing a string to
a pseudo-random number in a specified range. It
is a fundamental operation, used widely in appli-
cations where speed is critical. On a small scale, a
hash table is often the basic data structure in appli-
cations such as symbol tables in compilers and ac-
count names in password files. Hashing is also used
in applications such as spell checking and Bloom
filters [15]. In databases, hashing is important, not
just for indexing, but also for operations such as
joins and inverted-file construction.

The performance of a hashing scheme depends
primarily on two factors: the efficiency of the
overflow-handling scheme and the behaviour of the
hashing function. There has been much research
addressing the problems of overflow and collisions.
Hashing functions have received less attention, but
analytically the behaviour of hashing is now well-
understood [3, 7, 10, 11, 141. However, in much of
the work on hashing it is assumed that the keys
are integers, while in practice keys are often strings
of alphanumeric characters-an aspect of hashing

Proceedings of the Fifth International Confer-

ence on Database Systems for Advanced Appli-

cations, Melbourne, Australia, April l-4, 1997.

that has attracted surprisingly little research.
Some recent papers have examined specific string
hashing functions [12, 131 but how these functions
compare to the analytically-predicted performance
of hashing is unknown.

Moreover, good choice of hashing function is
crucial to efficiency. It is often assumed that for
a given load factor access costs are independent of
table size, but for a poor function this assumption
breaks down. In comparison to a good hashing
function, a badly designed function may give ac-
ceptable performance for a small application such
as a symbol table but be much slower when used
for a large database application such as a join.

In this paper we present a class of string hashing
functions and demonstrate experimentally that the
analytically-predicted performance can be achieved
in practice by choosing hashing functions at ran-
dom from this class; to our knowledge there has
been no previous investigation of classes of string
hashing functions. In these results performance is
evaluated by two measures: the average number of
probes during successful and unsuccessful search,
and the largest number of probes during success-
ful search, that is, the worst case. Our experi-
mental results are based on sets of strings drawn
from real data, including a set of over one million
distinct words drawn from a text database. The
results show that the class gives good average per-
formance.

We also identify four properties that a class of
string hashing functions should satisfy: uniformity,
universality, applicability, and efficiency. We use
these properties to motivate our class of string
hashing functions and to compare it to other
string hashing functions that have been proposed.
These results show that functions in the class are,
as well as reliable, faster than other good hashing
functions. This class of functions is therefore a
good choice for any application involving hashing
of strings, including schemes such as hash joins and
external hashing as well as the chained hashing
used in this paper to explore function performance.

In Section 2 we describe our class of hashing
functions. Analysis of hashing schemes is reviewed

215

in Section 3. In Section 4 we describe our test data
and experimental results, considering both average-
case and worst-case search lengths. Other string
hashing functions are discussed in Section 5.

2 Classes of hashing functions

In this section we describe a class of string hashing
functions. First we outline our notation.

String hashing functions can be represented in
the following generic form, in which s = cl . . . c,
is a string of m characters, v is a seed, and hi
is an intermediate hash value after examination of
i characters.

h(s,v) =
set ho t init
for each character q in s,

set hi c step(i, hi-l, ci)
return h = final (h,, v)

That is, the hash value of s is computed as follows.
Some function init is applied to v to yield the initial
ho. At each step hi is a function step of i, the hash
value computed so far, and the current character.
The hash value returned is a function final of v
and the internal hash value h,. Defining init, step,

and final describes a string hashing function. For
example, we might define

init = 0

step(i,h,c) = hfc

final(h,v) = h

yielding a simple (rather uninteresting) hashing
function in which the hash value is the sum of the
ASCII values in the given string.

Hash values must be truncated in some way to
give values in the range 0.. . T - 1, where T is the
table size. In general the only practical mechanism
is to take h modulo T (remainder of h after division
by T) but, for values of T of the form 2b with
integer b, bitwise AND can be used.

Operations that might be used in a hashing
function include addition (+), multiplication (x) ,
bitwise AND (V), bitwise OR (A), bitwise exclu-
sive OR (@), modulo (II), left-shift of value h by
b bits (Lb(h)), and right-shift of value h by b bits
(%!+,(h)). On most architectures today modulo is
implemented in software; multiplication, although
usually in hardware, is relatively slow; while the
other operations are typically single-cycle instruc-
tions. We assume that characters are represented
in some integer code such as ASCII.

We contend that, to be useful for general-
purpose hashing, a class of hashing functions
should satisfy the following properties.

Uniformity. If a hashing function is uniform then
the probability of an arbitrary key hashing to a
given slot is l/T for table size T, independent
of the hash values of other keys. In practical
terms, uniformity means that for a given load
factor (ratio of keys to slots) average access
time is roughly constant, regardless of table
size.

Universality. A class of hashing functions H is
universal if, for a given table size T and any
pair of valid keys sr and sz, the number of
hashing functions h E H such that h(q) =
h(sa) is less than or equal to)HI/T [2]. That
is, for a randomly-chosen hashing function the
probability that sr and 52 hash to the same
value is less than or equal to l/T.

In practice universality means that, with high
probability, a randomly-chosen hashing func-
tion will perform well. For any hashing func-
tion it is true that there exist sets of keys
that all hash to the same value-and no hash-
ing function is invulnerable to a deliberate at-
tempt to identify such a set of keys. However,
if a class of hashing functions is universal and
the functions in the class are uniform then it is
guaranteed that the class cannot be subjected
to such attack. If for some hashing function h
and set S of keys every key s E S is such that
h(s) = k for some k, it is still true that for
another randomly-chosen function h’ the set of
hash values h’(s) will be uniformly distributed.

It is somewhat difficult to test universality in
practice; such a test would require hashing
every pair of keys for every possible seed value
and table size. However, by subjecting the
class to attack of the kind outlined above-
actively searching for keys that hash to the
same value-we can obtain a strong indication
that the class is indeed universal.

Applicability. At a more pragmatic level, hashing
functions should be applicable in all circum-
stances where hashing might be used. A func-
tion that is limited to a few table sizes, can
only hash strings of a certain length, or can-
not accept seeds (thus allowing, for example,
double hashing) is not as valuable as functions
without such restrictions.

Deficiency. The primary advantage of hashing as
an access method is its speed: given a data set

216

of n keys and a table of O(n) size search time
is O(l), assuming a hashing function with time
complexity 0(1). Hashing functions should
also be small; in many applications there is
little advantage to a function that is as large
as the key set.

In practice, constant factors can be important.
For example, in some applications it is possible
for search in a array, although O(logn), to be
as fast as search in a hash table. Consider an
application in which the keys are long strings.
During search of an array, all that is required
at each element is inspection of the first few
characters of the key (up to a mismatch), then
a full comparison when the correct element
is found. During hashing, the key must be
completely inspected at least twice, once to
form the hash value and at least once to check
the key in the table. A slow hashing function,
with complex operations for each character,
could well be unacceptable.

Other valuable properties are perfection, where
the hashing function is collision-free, and order-
preservation, where the sort order of the hash
values is the same as the sort-order of the original
keys [l, 4, 161. Both are valuable in specific
applications; perfect hashing functions can be used
for lookup in static tables, for example, because
it may then not be necessary to store the keys.
However, such functions require prior knowledge
of the complete set of keys to be hashed. We do
not consider perfect or order-preserving hashing
functions in this paper.

We now define our class of string hashing func-
tions. To obtain a class of hashing functions that
meets the criteria above, we wish to use efficient
primitive operators such as addition and exclusive
OR; to use as few as possible of these operators;
to allow the function to generate large hash values;
and to design the function to scramble the input
bits as thoroughly as possible, without losing the
contribution of any characters. Thus it is essential
to use some mechanism such as left shift to make
use of higher-order bits, while operators such as
bitwise AND should be avoided because they tend
to erase information. Based on these principles we
experimented with many combinations of primitive
operators, and as a result propose the shift-add-xor
class of hashing functions, in which the components
are defined by

init = ZJ

step(i, h, c) = he3 (h(h) + RR(~) + c)

final(h,w) = hllT

in which the modulo operation in the final step can
be replaced by bitwise-AND for suitable T values.
As we discuss below, this function was the simplest
we could identify that had the required properties.
Functions of this general form are not new, but
to our knowledge they have not previously been
analysed with respect to the theoretical behaviour
of hashing functions.

Uniformity and universality are investigated in
Section 4; for now we simply note that each seed
gives a new function and hence we have defined a
class of hashing functions.

Given appropriate choice of shift magnitudes
L and R good use is made of the 32-bit space,
providing greater likelihood of a uniform distribu-
tion of hash values. For example, with 5-character
keys and L > 7 it is possible to obtain any 32-
bit string using this class of functions. We used
L = 5 and R = 2 in our experiments, but found
that variation in these values made little difference
for 4 < L 5 7 (so that only a few characters are
required to yield a large hash value) and 1 < R 5 3
(so that the contribution of the first characters is
not diminished); note that the character set was
ASCII, that is, 7-bit values. We conclude that the
class is widely applicable.

The class is fairly efficient. There is no use of
slow operations such as modulo or multiplication
(other than the necessary final use of modulo to
reduce the hash value to the table size) and only
five operations per character-one exclusive OR,
two shifts, and two additions-each of which on
our machines require only a single instruction cy-
cle. It is possible that there exists a simpler ef-
fective hashing function, but it cannot be obtained
by simplifying shift-add-xor. Considering the pos-
sible simplifications: the left-shift is required to
obtain 32-bit values; the right-shift is required for
uniformity, because, we suspect, the majority of
occurrences of letters in English, including all six
vowels, have a rightmost l-bit; and, as we discuss
below, the exclusive OR is required for universality.
Efficiency is considered further in Section 5.

Note that we do not require that table size T be
prime, or be carefully chosen in any way; hashing
functions should be effective for all table sizes.

Some readers may be curious as to why we chose
to define step as above rather than as

atep(i, h, c) = he (.C~(h)cl%~(h)cw)

given the belief that exclusive OR is appropriate
for hashing. This shift-xor-xor class is uniform
but, apparently, not universal. The reasons are
not entirely clear to us, but it seems that a mix of

217

addition and exclusive OR is required; in particular,
addition appears to be valuable because it propa-
gates change between bits, and leads to a more even
distribution of 0 and 1 at each position.

There are essentially two methods for hashing
strings. One is to directly reduce the string to a
string of bits, as in the shift-add-xor class. Another
is to convert the string to a number, then apply an
integer hashing function such as

where p is a large prime. We would expect such
functions to be well-behaved, but the operations
required in the conversion and hashing make it
unlikely that they would be faster than shift-add-
xor . For example, consider Cormen, Leiserson,
and Rivest [2] and Sedgewick [17], which are
two of the better-known recent algorithms texts.
Cormen, Leiserson, and Rivest [2] suggest that
strings be converted to numbers through radix
conversion. For alphanumeric strings, implicitly
of base 62, radix conversion requires up to two
comparisons, a subtraction, and a multiplication
for each character, with possibly further operations
because of overflow. For ASCII characters radix
conversion is rather simpler, involving only a left-
shift of 7 places-multiplication by 128-but such
conversion can lead to the contribution of the first
characters in a string being lost as they are shifted
out to the left. Thus the technique of regarding
strings as numbers and using numerical hashing is
inappropriate unless arbitrarily large numbers can
be manipulated efficiently. Sedgewick [17] suggests
a method that avoids overflow by use of a modulo
operation at each step, which is considerably more
expensive to evaluate.

Our hypothesis, then, is that by choosing
functions at random from the shift-add-xor class
of string hashing functions-that is, by making
a random selection of seed-we can in practice
obtain the analytically predicted performance of
hashing schemes. Prediction of performance is
reviewed in the next section.

3 Predicted behaviour of hashing

Hashing techniques are usually analysed under the
assumption that the hash values are uniformly dis-
tributed. Consider a set of n keys mapped into
an address range of T values. Given a key s and
a hashing function h that maps the key into this
range, the probability that the key hashes to a
particular address is 1/T and is independent of the
outcome of hashing other keys. There are Tn ways

in which n keys can be distributed among the T
addresses, that is, there are Tn functions that map
the given set of keys into the table. It is assumed
that each of these distributions is equally likely
when the n keys are hashed into T slots.

The analytically-predicted performance of a
cbs of hashing functions corresponds to the
expected performance of a randomly-chosen
function from the set of Tn functions. It is
interesting to consider both average-case and
worst-case behaviour. In the average case,
behaviour is measured by the average length of
the probe sequence (that is, the average number
of accesses) for successful and unsuccessful search.
Analytical results for the average case in a chained
hash table are given by Knuth [8, page 5351.

The worst case for hashing occurs when all the
keys hash to the same address and the search length
is 0(n). Knuth [8, page 5401 expressed fear of
this possibility by concluding that “hashing would
be inappropriate for certain real-time applications
such as air traffic control, where people’s lives are
at stake”. However, Gonnet [5] proved that such
fears of hashing are baseless, since the probability
of the worst case is, in his words, ridiculously small.

Gonnet proposed a measure for the worst case
of hashing based on the length of the longest probe
sequence, or Ups. Out of all the keys stored in the
hash table, one has the maximum successful search
length. Gonnet proposed that the expected value
of llps is a better measure of the worst case of hash-
ing than is the (extraordinarily improbable) worst
case of llps, and demonstrated theoretically that
llps is very narrowly distributed with the expected
value being quite small, that is, not dramatically
greater than would be given by dividing the keys
evenly amongst the buckets. Larson extended these
results for the general case of bucket size greater
than 1 [9].

We now use these analytical results, for both
average-case and worst-case behaviour of a class of
ideal hashing functions, as a yardstick for evalu-
ating the behaviour in practice of classes of string
hashing functions.

4 Experimental results

Our hypothesis is that, by choosing hashing
functions at random from the shift-add-xor class
of hashing functions, the analytically-predicted
performance of hashing schemes can be achieved in
practice. To support the hypothesis, in this section
we experimentally evaluate the shift-add-xor class
of string hashing functions on real data sets.

218

Exhaustively checking whether a class of hash-
ing functions is indeed uniform would require eval-
uating the function over all potential key sets for
all seeds. This or any close approximation to it
is clearly impractical, but by applying the class to
a selection of data sets with a reasonable number
of seeds we can be highly confident that the ob-
served behaviour is a good approximation to the
behaviour over the whole class.

For these experiments we had several sets of
keys available to us. We used these to explore
the performance of the hashing functions discussed
in this paper. The reported results are based on
the following key sets. (However, results for all of
the key sets were similar.) One was NAMES, a file
of 31,918 distinct surnames extracted from Inter-
net news articles and hand-edited to remove errors
and nonsense [18]. 1 Another was TREC, a file of
1,073,726 distinct words (that is, contiguous alpha-
betic strings) extracted from the first 3 gigabytes of
the TREC data [6]; this data contains the full-text
of newspaper articles, abstracts, and scientific jour-
nals. In our experiments we have focused on certain
table sizes and load factors, to allow comparison
with previously published analytical results, and
thus did not usually require the full data sets. In-
stead we used subsets of the data of the required
size: ten random subsets of 1000 strings each, from
each of TREC and NAMES; the lexicographically first
1000 strings from each of TREC and NAMES; a file,
FIVES, of the first 1000 distinct strings of exactly
five characters (that is, “aaaaa”, “aaaab”, and so
on); and a file, SEVIF, of the strings from FIVES

reversed. These last four files are pathological cases
that should help to expose flaws in weak hashing
functions.

In these experiments we have focused on hash
tables with separate chaining, which-with their
tolerance to overflows and similarity to dynamic-
table schemes such as linear hashing and extensible
hashing-we consider to be most typical of hash
tables in practical use. However, the results are
independent of the hash table organisation: they
demonstrate properties of the class of hashing func-
tion that apply regardless of how it is used, whether
for internal or external hashing, to slots of size 1 or
buckets of many keys each, or to applications such
as hash joins.

'This file is available by ftp from

goanna,cs,rmit.edu.au

in the file

pub/rmit/fnetik/data/Surnames.Z

Average-case search length

We first investigated average search lengths
for successful and unsuccessful search. Results
are shown in Table 1. The “actual” results are
an average over 10,000 randomly-selected hashing
functions (equivalently, seeds), based on one set
of TREC keys; the “P figure is one standard
deviation. In these results the number of keys was
held at 1000 and the table size varied to give a
load factor. For example, with a load factor of 70%
the table size was [WI = 1429. The “predicted”
results are quoted from Knuth ES, page 5351. As
can be seen, the correspondence is extremely good,
thus confirming our hypothesis that functions
in the class shift-add-xor generate uniform hash
addresses. Almost identical results-usually to
within O.Ol-were observed with the other data
files, including the four “pathological” data files.
We also tried other table sizes and key set sizes,
including table sizes such as powers of 2 that
might lead to poor behaviour, but again similar
behaviour was observed. Note that we have not
reported figures for larger bucket sizes; changing
bucket size does not change the distribution or the
properties of the hashing function.

By way of comparison, consider the class of
hashing functions given by

init = 0

step(i, h, c) = Ll(h)+c

final(h,v) = hII

This function is like that used in several compilers,
as reported by McKenzie, Harries, and Bell [12].
For a load factor of 90%, on the twenty randomised
data files average successful search length
was 1.701, already significantly greater than
the prediction of 1.450, while on SEVIF it was 5.110
and on FIVES it was 9.358.

It is also interesting to consider performance
on a large data set, the more realistic case for a
hashing function to be used in a database system.
For the full set of TREC keys, 1000 randomly-chosen
hashing functions, and a load factor of 90%, sbift-
add-xor gave an average successful search length of
1.459 and the average search length was 1.310-
essentially identical to performance with a small
set of keys. With the simple function above, how-
ever, average successful search length was 19.103;
increasing the value of the left shift to 4 decreases
this value, to 4.669, a figure that is however still
unacceptable. From this experiment and similar
experiments with other large sets of keys (such as
the first l,OOO,OOO five-character strings) we have

219

Predicted successful
Actual successful
Predicted unsuccessful
Actual unsuccessful

40% 60% 70% 80% 90%
1.200 1.300 1.350 1.400 1.450
1.200f0.014 1.299f0.017 1.350f0.019 1.400f0.020 1.450f0.021
1.070 1.149 1.197 1.249 1.307
1.070f0.004 1.148f0.006 1.196f0.007 1.249f0.008 1.307f0.009

Table 1: Average search length, successful and unsuccessful for 1000 keys at load factors from 20% to
90%, averaged over 10,000 seeds (f one standard deviation). The keys are extracted from the TREC data.

observed that with a poorly-chosen hashing func-
tion performance can markedly deteriorate aa the
number of keys increases. However, a good hashing
function such as a member of shift-add-xor will in-
deed give the theoretically-predicted performance.

Worst-case search length

Experimental results for the expected length of
the longest probe sequence, or llps, are shown in
Table 2, from the same experiments reported in
Table 1. The “predicted” results are quoted from
Gonnet [S]. As can be seen llps values vary sig-
nificantly between runs, as indicated by the high
standard deviation. For a load factor of SO%, the
greatest llps observed in the 10,000 runs was 8; for
load factors of 70%, SO%, and 90% the greatest llps
was 9. The llps values varied somewhat between
data files-for example, for a load factor of 90% and
the files drawn from NAMES and TREC the minimum
average value of llps was 5.257 and the maximum
was 5.332. However, all of these values are, within
the error indicated by the standard deviation, close
to the analytically-predicted value. For FIVES, av-
erage llps was 3.034.

We decided to examine in detail the distribu-
tion of llps values, by hashing the strings in one
data set with l,OOO,OOO randomly-selected hashing
functions. The results are shown in Figure 1. As
predicted by the analysis, the distribution of exper-
imental llps values is extremely narrow-even with
a load factor of 90%, over 95% of the llps values are
4, 5, or 6; the largest observed value was 12, which
occurred only once in the 4,000,OOO experiments.

Pushing this experiment further, we chose a ran-
dom set of 20 keys from NAMES, a table size of 20,
and measured llps for the 230 hashing functions
given by the seeds between 1 and 230. The worst
llps was 11, with only 9 in over one billion oc-
currences. That is, for even such a small table
exhaustive search of the class failed to find a hash-
ing function that maps all keys to the same value.
Average llps was 3.231.

For the full set of TREC keys, the distribution of
llps values is even narrower. With 1000 randomly-
chosen hashing functions and with a load average
of 90%, the average llps was 8.900, with a minimum
of 8 and a maximum of 11. (Note that Ups is
expected to rise slowly as table size is increased;
this is not an indicator of poor performance.) In-
terestingly, our experiments indicate that llps is a
better tool than average search length for discrim-
inating between hashing functions, particularly on
large key sets. For example, on the same data
the hashing function given by simplifying the step
operation in shift-add-xor to

step(i, h, c) = h@ (fZ~(h) + c)

has reasonable average successful search length
but average llps-the worst-case successful search
length-markedly deteriorates, to 25.886.

Note that the llps values quoted in Table 2 are
not a lower bound-it is quite possible for a hashing
function to have better worst-case performance for
a given data set. In particular, perfect hashing
functions, which are constructed with respect to
the set of keys to be hashed, have by definition
an llps of 1. The weakness of such functions is
their inefficiency for dynamic sets of keys and the
unpredictable behaviour for an arbitrary key set.

Universality

Although it is not possible to conclusively demon-
strate that a class of hashing functions is univer-
sal, there is evidence that can indicate whether
universality holds. The method we have used is
deliberate attack: for some hashing function and
table size, find a set of strings that hash to the
same value; then for that set of strings explore llps
and average search lengths. A significant increase
in llps indicates that some strings are being hashed
to the same value for more seeds than would be
expected for a universal class of hashing functions.

To use this approach to provide evidence for
universality we used the full TREC key set, assumed
a loading factor of 90% and a table size of 1111, ran-
domly chose a hashing function, then searched for

220

Predicted
AChId

60% 70% 80% 90%
4.333 4.636 4.947 5.242
4.556f0.644 4.797f0.677 5.069f0.679 5.306f0.688

Table 2: Length of the longest probe sequence (Ups) for 1000 keys at load factors from 60% to 90%,
averaged over 10,000 seeds (k one standard deviation). The keys are extracted from the TREC data.

600000 R

-A- load factor of 60%
-o- load factor of 70%
-O- load factor of 80%
+ load factor of 90%

io
Length of the longest probe sequence

is

Figure 1: Distribution of the length of the longest probe sequence (11~s) for 1000 keys and l,OOO,OOO
randomly-selected seeds. The keys are extracted from the TREC data.

any set of 1000 keys with the same hash value. We
then attacked the shift-add-xor class by choosing
l,OOO,OOO random seeds and examined the distri-
bution of llps values. After this attack the average
Ups was 5.307-almost identical to the value in
Table 2-and, aside from one occurrence of an lips
of 15 and one of an llps of 12, the values were
between 4 and 10. That is, behaviour was virtually
indistinguishable from that of a random set of keys.

This process of attack was a key tool in our
evaluation of other hashing functions. For example,
for the shift-xor-xor class defined with

step(i, h, c) = he3 (L~(h)e%3(h)ax)

only has, in effect, T distinct members for a table
size T that is a power of 2.

5 Other string hashing functions

In addition to string hashing functions proposed
in the literature, not surprisingly many different
functions are to be found embodied in software.
We now consider some of these functions.

As discussed above, some algorithms texts de-
scribe a form of multiplicative method, which are
two-stage methods in which the string is reduced to
a number before processing with a hashing function
for integers. One form of multiplicative method is

attack increases average lips over 1000 seeds,
as follows.

to 6.229. For the class defined with init = 0

step(i, h, c) = LL(~) + RR(~) -I- c step(i,h,c) = h x r+ c

average llps is increased to 41.198, with an average
finaW,v) = ((v x Mp) IIT

successful search length of 5.491. where p is a large prime and r is a radix. In a
To survive such an attack, a class of functions variation of this form, an array P of distinct large

must be large. For example, the class defined by primes can be used as follows.

init = 21 init = 0

step(i, h, c) = &(h) + c step(i, h,c) = h + Pi x c

final(h,v) = h(lT finW, ~1 = ((v x Wllp) IIT

221

We tested several functions of this kind using
the same methodology as in Section 4. These
approaches are uniform (provided that radix r
is not a power of 2); probably universal, as they
are resistant to adversarial attack; and widely
applicable. However, Sedgewick’s function [17]
does not resist attack quite as well as other
functions on the full set of TREC strings; average
llps is 10.334, a significant increase.

Moreover, these functions are relatively slow.
On a Sun SPARC 20, functions from the shift-
add-xor class can process just over 1000 strings can
be hashed per millisecond. In contrast, the multi-
plicative methods processed under 300 strings per
millisecond and Sedgewick’s method (which uses
a modulo for each character) processed under 150
strings per millisecond. We would expect simi-
lar relative performance on other current architec-
tures.

Two recent papers concern string hashing func-
tions. Pearson [13] proposed an algorithm that can
be defined as

init = 0

step(i, h, c) = Ahec

final(h,v) = h

in which A is an array of the 256 distinct g-bit
values, randomly permuted, and Ahe, denotes the
hec’th value in A. This algorithm computes 8-
bit hash values only, albeit quickly. Pearson also
gives an extension to 16-bit hash values, which is
somewhat slower. The array A is in effect the seed,
since different permutations yield different hashing
functions. However, this function is of limited value

in practice, since it is expensive to store each seed,
and the function is only applicable to limited table
sizes. As a generalisation of Pearson’s function we
tested the class

init = w

step(i, h, c) = h@ (LL@) +A(mc)//2.w)

final(h,v) = hJIT

This class is uniform-experimental results are al-
most identical to those for shift-add-xor-resistant
to attack, and at around 800 keys per millisecond
is only slightly slower than shift-add-xor. We have
found no simplification of this algorithm that pre-
serves uniformity and universality.

The other recent paper on string hashing
functions is a survey of their use in software,
by McKenzie, Harries, and Bell [12]. Like the
function described by Pearson, these functions are
not designed to accept seeds (and thus do not

form classes) and, with respect to our criteria, are
not particularly interesting. Nor are they distinct

from the classes we have already discussed; most
are variants of simple radix or shift methods.

A more interesting class of hashing functions is
defined by

init = w

step(i, h, c) = CCB (fZL(h)V

0%24(h) A MASK))

final(h,w) = hllT

in which step is a left-rotation of h by L bits xort’ed

with c and MASK is 2L-1, that is, L one-bits. This
function, which is similar to a method attributed
by Knuth to Knott [8, page 4121 and is embodied
in the ispell spelling checking utility, has almost
exactly the same cost as shift-add-xor and is thus
about the same speed, but is slightly vulnerable to
attack, with an average lips of 6.064.

6 Conclusions

Analytically, the behaviour of hashing schemes is

well understood. In this paper we have presented
criteria by which we believe practical hashing
functions should be evaluated-uniformity,
universality, applicability, and efficiency. We
developed a class of shift-add-xor string hashing
functions and experimentally showed that, by
choosing hashing functions at random from this
class, the analytically-predicted performance can
be achieved in practice. We have also shown that
the class is likely to be universal, as it is resistant
to one method of adversarial attack. Moreover,

the functions from the class are computationally
efficient, processing more keys per unit time than
other good string hashing functions, and, as shown
in our experiments with the distinct words in

TREC, are effective even for a large key sets such
as strings in a database.

The shift-add-xor class of functions is thus an
appropriate choice for practical applications. Our
results answer an important question posed by all
users of hashing, namely, what function should be
used for hashing strings. The answer is, make a
random choice from this class; with high probabil-
ity it will work well, and will be at least as efficient
as other effective hash functions.

The worst-case performance results for the
shift-add-xor class of string hashing functions
are of particular interest. We have provided
experimental evidence-including, for one set of
strings, exhaustive search amongst one billion
hashing functions-confirming the theoretical

222

prediction that the length of the longest PI
probe sequence is narrowly distributed. To
our knowledge these are the first experiments
testing this prediction. These results are also a
further confirmation that, with an appropriately
chosen class of hashing functions, hashing is indeed PI
safe in practice-the likelihood of the theoretical
worse-case of many keys hashing to the same value
is extraordinarily low. WI
Acknowledgements

We thank Evan Harris for suggesting several hash-
ing functions. We also thank Kotagiri Ramamoha-
narao. This work was supported by the Australian
Research Council. WI

References

PI

PI

PI

PI

PI

PI

G.V. Cormack, R.N.% Horspool and
M. Kaiserwerth. Practical perfect hashing. [I2]
Computer Journal, Volume 28, Number 1,
pages 54-55, February 1985.

T.H. Cormen, C.E. Leiserson and R.L. Rivest.
Introduction to Algorithms. The MIT Press, [I31
Massachusetts, 1990.

R.F. Deutscher, P.G. Sorenson and J.P. Trem-
blay. Distribution dependent hashing func- P4
tions and their characteristics. In Proc. ACM-
SIGMOD International Conference on the
Management of Data, pages 224-236, 1975.

E.A. Fox, Q.F. Chen, A.M. Daoud and L.S.
Heath. Order-preserving minimal hash func- P51
tions and information retrieval. ACM Trans-
actions on Information Systems, Volume 9,
Number 3, pages 281-308,199l.

D.E. Knuth. The Art of Computer Program-
ming, Volume 3: Sorting and Searching, Sec-
ond Edition. Addison-Wesley, Massachusetts,
1973.

P. Larson. Expected worst-case performance
of hash files. Computer Journal, Volume 25,
Number 3, pages 347-352,1982.

V.Y. Lum. General performance analysis of
key-to-address transformations methods using
an abstract file concept. Communications of
the ACM, Volume 16, Number 10, pages 603-
612, 1973.

V.Y. Lum, PST. Yuen and M. Dodd. Key-to-
address transform techniques: A fundamen-
tal performance study on large existing files.
Communications of the ACM, Volume 14,
Number 4, pages 228-239, 1971.

B.J. McKenzie, R. Harris and T. Bell. Select-
ing a hashing algorithm. Software-Practice
and Experience, Volume 20, Number 2, pages
209-224, 1990.

P.K. Pearson. Fast hashing of variable-length
text strings. Communications of the ACM,
Volume 33, Number 6, pages 677-680, 1990.

M.V. Ramakrishna. Hashing in practice,
analysis of hashing and universal hashing. In
Proc. ACM-SIGMOR International Confer-

ence on the Management of Data, pages 191-
199, 1988.

M.V. Ramakrishna. Practical performance of
Bloom filters and parallel free-text searching.
Communications of the ACM, Volume 32,
Number 10, pages 1237-1239,1989.

G. Gonnet. Expected length of the longest [16] M.V. Ramakrishna and P.A. Larson. File
probe sequence in hash code searching. Jour- organization using composite perfect hashing.
nal of the ACM, Volume 28, Number 2, pages ACM Transactions on Database Systems, Vol-
289-304, 1981. ume 14, Number 2, pages 231-263,1989.

D.K. Harman. Overview of the first Text Re- [17] R. Sedgewick. Algorithms in C Addison-
trieval Conference. In D.K. Harman (editor), Wesley, Reading, Massachusetts, second edi-
Proc. TREC Text Retrieval Conference, pages tion, 1990.
l-20, Washington, November 1992. National
Institute of Standards Special Publication

[18] J. Zobel and P. Dart. Phonetic string match-

500-207.
ing: Lessons from information retrieval. In
Proc. ACM-SIGIR International Conference

G.D. Knott. Hashing functions. Computer on Research and Development in Information

Journal, Volume 18, Number 3, pages 265- Retrieval, pages 166-173, Zurich, Switzerland,
278, 1975. August 1996.

223

