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Abstract

Over the past decade, a large number of deductive
object-oriented database languages have been proposed.
The earliest of these languages had few object-oriented fea-
tures, and more and more features have systematically been
incorporated in successive languages. However, a language
with a clean logical semantics that naturally accounts for
all the key object-oriented features, is still missing from the
literature. Two features that are currently missing are the
encapsulation of rule-based methods in classes, and non-
monotonic behavioral inheritance with overriding, conflict
resolution and blocking. This paper introduces the syntax
of a language with these features. It then defines a class
of databases, called well-defined databases, that have an
intuitive meaning and develops a direct logical semantics
for this class of databases. The semantics is based on the
well-founded semantics from logic programming. The work
presented in this paper establishes a firm logical foundation
for deductive object-oriented databases.

1 Introduction

The objective of deductive object-oriented databases is
to combine the best of the deductive and object-oriented ap-
proaches, namely to combine the logical foundation of the
deductive approach with the modeling capabilities of the
object-oriented approach. Based on the deductive object-
oriented database language proposals as well as the work in
object-oriented programming languages and data models, it
is becoming clear that the key object-oriented features in
deductive object-oriented databases include object identity,
complex objects, typing, rule-based methods, encapsulation
of methods, overloading, late binding, polymorphism, class
hierarchy, multiple behavioral inheritance with overriding,
blocking, and conflict handling. However, a clean logical
semantics that naturally accounts for all the features is still
missing from the literature. In particular the encapsulation
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of rule-based methods in classes, and non-monotonic muiti-
ple behavioral inheritance have not been addressed properly
so far.

In object-oriented programming languages and data
models, methods are defined using functions or procedures
and are encapsulated in class definitions. They are in-
voked through instances of the classes. In deductive object-
oriented databases, we use rules instead of functions and
procedures. By analogy, methods in deductive object-
oriented databases should be defined using rules and en-
capsulated in class definitions. Such methods should be
invoked through instances of the classes as well. However,
most existing deductive object-oriented database languages,
including F-logic [9], IQL [1], Datalog™et? [2], ROL {12],
Datalog** [8], do not allow rule-based methods to be en-
capsulated in the class definitions. The main difficulty is
that the logical semantics is based on programs that are sets
of rules. If rules are encapsulated into classes, then it is not
clear how to define their semantics. Several proposals such
as Datalog™®’* and Datalog** provide encapsulation but
use rewriting-based semantics which do not address the is-
sue directly. The authors of [3] address encapsulation but
do not include other important object-oriented features, like
inheritance.

Non-monotonic multiple behavioral inheritance is a fun-
damental feature of object-oriented data models such as
O [5] and Orion {10]. The user can explicitly redefine (or
override) the inherited attributes or methods and stop (or
block) the inheritance of attributes or methods from super-
classes. Ambiguities may arise when an attribute or method
is defined in two or more superclasses, and the conflicts
need to be handled (or resolved). Unfortunately, a logical
semantics for multiple inheritance with overriding, block-
ing and conflict-handling has not been defined. The main
difficulty is that the inherited instances of a superclass may
not be well-typed with respect to its type definition because
of overriding and blocking. Most deductive object-oriented
database languages, including F-logic!, LOGRES [4], LIV-

'F-logic however supports indeterminate non-monotonic default value




ING IN LATTICE [7], COMPLEX [6], only allow mono-
tonic multiple structural inheritance, which is not powerful
enough. Some deductive object-oriented languages such
as Datalog™¢™" only support non-monotonic single inher-
itance by allowing method overriding. One extreme case
is IQL, which does not support multiple inheritance at the
class level at all. Instead, it indirectly supports it at the in-
stance level via the union type so that inherited instances
of a superclass can still be well-typed with respect to its
type definition which is the union of the type for its direct
instances and the type for its non-direct instances. ROL
has a semantics that accounts for non-monotonic multiple
structural inheritance with overriding and conflict-handling
in a limited context, but without blocking. Datalog®+ takes
a quite different approach towards non-monotonic inheri-
tance. It disallows the inheritance of conflicting attributes
and methods, like in C++. It provides mechanisms for
the user to block the inheritance of attributes and methods.
However, it only provides an indirect, rewriting-based se-
mantics for such non-monotonic inheritance.

This paper provides a direct well-defined declarative se-
mantics for a deductive object-oriented database language
with encapsulated rule-based methods and non-monotonic
behavioral inheritance with overriding, conflict resolution
and blocking. In order to keep the setting simple, we omit
some well understood features that don't affect the seman-
tics described, e.g. set-valued attribute values, and we fo-
cus on a static database rather than a dynamic database,
(see [13] for the semantics of updates to the database).
In the language, methods are declared in the class defini-
tions, and the methods are invoked through instances of the
classes. We introduce a special class, none, to indicate that
the inheritance of an attribute or method in a subclass is
blocked i.e. it won't be inherited from its superclasses. We
provide a very flexible approach to conflict resolution. Our
mechanism consists of two parts. One part, the default part
is similar to the method used in Orion, namely a subclass
inherits from the classes in the order they are declared in
the class definition. The other part allows the explicit nam-
ing of the class the attribute or method is to be inherited
from. Therefore, a subclass can inherit attribute or method
definitions from any superclasses. We then define a class
of databases, called well-defined databases, that have an in-
tuitive meaning and develop a direct logical semantics for
this class of databases. The semantics naturally accounts
for method encapsulation, multiple behavioral inheritance,
overriding, conflict handling and blocking, and is based on
the well-founded semantics [16] from logic programming.
We define a transformation that has a limit, Z* for well-
defined databases, and prove that Z*, if it is defined, is a
minimal model of the database.

inheritance. The value inherited depends on which inheritance step is done
first at run time.
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This paper is organized as follows. We introduce the syn-
tax and semantics of the language using an example in Sec-
tion 2. In Section 3 the class of well-defined databases and
the semantics of well-defined databases are defined, and the
main results are presented. Section 4 concludes the paper,
reiterating our results and comparing this work with related
work. Due to space limitation, the paper is quite terse and
we have omitted proofs. They are included in [14].

2 Example

Our language in fact supports many of the important
object-oriented features in a rule-based framework with a
well-defined declarative semantics. In this section, we in-
troduce and demonstrate concepts that are important in the
paper. A more extensive description of the syntax can be
found in [14].

The schema in Figure 1(a) defines four classes, person,
employee, student, and wstudent (working student).
The class person has three attributes, name, birthyear,
and spouse, and two methods: married(person) and
single(). The attribute birthyear has a default value of
1945. Method married(X) is true if the person the method
is applied to has a spouse, X, and method single() is true
if the person is not married. Notice, that the semantics of
negation are defined using extended negation as failure [11].
The class employee inherits all attribute declarations, de-
fault values and method declarations from class person un-
less they are blocked or overridden in class employee. We
say that class employee is a direct subclass of person and
person is a direct superclass of employee. New attributes
can also be declared in subclasses. The attribute declara-
tions for name, birthyear, and spouse, and the method
declarations for married(person), and single() are in-
herited but the default value of birthyear is overridden in
employee, i.e., the default value for attribute birthyear is
redefined to 1960. The class student also inherits from
person. Two methods are declared in student, namely
ezxtrasupport() and support().

The class wstudent inherits from two classes, employee
and student. With multiple inheritance, there can be con-
flicting declarations i.e. default values, attributes and meth-
ods may be declared in more than one superclass. There
is one possible conflict to be resolved in wstudent, default
value birthyear is defined on both employee and student.
There are two ways that conflicts can be resolved. A con-
flict resolution declaration indicates explicitly which class a
property is to be inherited from e.g. birthyear < student
indicates that the definition of birthyear and the default
value 1970 are inherited from student. If there is a con-
flict and there is no conflict resolution declaration then the
property is inherited from the superclasses in the order the
superclasses are listed in the class declaration. Notice that
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;_type declaration

—  wvalue declaration
o default value

< explicit inheritance

class person [
name => string;
birthyear = integer;
birthyear o= 1945;
spouse = person;
married(person) {married(X) :- spouse > X}
single() {single() :— —~married(X)}

class employee isa person [
birthyear e 1960;
]
class student isa person [
birthyear e~ 1970;
extrasupport() = integer {
extrasupport() — 1000 :— married(X),
student X,
extrasupport() — 500 :— married(X),
—student X
extrasupport() — 100 :~ single() }
support() = integer {
support() — S - extrasupport() —= Sy,
S =1000+ S}
]
class wstudent isa employee, student |
birthyear < student,;
support() = none;
extrasupport() = person {
extrasupport() —» X - spouse — X}

(a) Schema

employee tom [name — “T'om”; birthyear — 1963;
spouse — pam]

student sam [name — “Sam”]

wstudent pam [name — “Pam”; spouse — tom|

(b) Instance

Figure 1. Sample Database

the method support() is blocked in wstudent (i.e. its return
type is none), and the method extrasupport() in wstudent
overrides the method extrasupport() in student. A method
declaration in a subclass overrides a method declaration in a
superclass if the methods have the same signature, indepen-
dent of their return values. A method has the same signa-
ture as another method if the method has the same method
label and the same arguments, e.g. extrasupport() in stu-
dent has the same signature as extrasupport() in wstu-
dent. While classes employee and student are direct su-
perclasses of wstudent, person is an indirect superclass of
wstudent.

The instance in Figure 1(b) contains three objects with
oids tom, sam, and pam. In the database instance, each ob-
ject is associated with a class and attributes are assigned
values. For example, object tom is a direct instance of em-
ployee, and the value of its attribute name is “Tom”. The
value of attribute birthyear is 1963, i.e. the default 1960
in employee is not used. The value of its attribute spouse
is object identifier pam. We say that employee is the pri-
mary class of object tom, and object tom is an non-direct
instance of person. The birthyear of sam is 1970, i.e. the
default in class student is used because a value for attribute
birthyear is not provided in object sam. The value of at-
tribute birthyear is not given in object pam, nor in class
wstudent. The default value 1970 is inherited from student
because there is a conflict resolution declaration in wstu-
dent.

We can ask the following queries on the sample database
in Figure 1. The queries demonstrate how methods are en-
capsulated in classes, i.e. a method is declared in a class
and invoked through instances of the class.

1. Find the birthyear of Sam.
?- student O[name — “Sam”; birthyear — X)

The default value of birthyear for instances in class
student is returned, X = 1970.

2. Find what support Sam gets.
?- student O[name — “Sam”; support() — X]

The support() method in class student invokes the
extrasupport() method. The extrasupport() rules in
turn invoke the married(person) and single() meth-
ods defined in class person. As Sam has no spouse,
Sam is not married, so Sam is single, and the third rule
for extrasupport() is used. The extrasupport() that
Sam receives is 100, so X = 1100 is returned.

3. Find what support Pam gets.

?7-wstudent Olname = “Pam”; support() — X]

This method support() is blocked on wstudent, an er-
ror message indicating that this method is undefined is
returned.



4. Find all students whose extra support is not 500.
?— student O [extrasupport() — X], X <> 500

This query returns the oids of all the objects that be-
long to class student or subclasses of student whose
value for method extrasupport is not 500. The answer

is {O = sam}.

We make the following observations. Two kinds of
classes are distinguished: value classes and oid classes.
There are two special value classes, none and void. Class
none is used to indicate that the inheritance of an attribute
or method from a superclass is blocked in a subclass. Class
void has only one value, namely nil, which is returned
by a method if no other value is returned. Like in C++ and
Java, we have a special variable, This, that is used to refer
to the current object. Variables are represented throughout
the paper using uppercase alphabetic characters.

A schema K is a set of class declarations, which can be
represented abstractly as a tuple K = (C,isa,a,6, u, x)
where C is a finite set of oid classes, isa is a finite set of
superclass declarations, a is a finite set of attribute decla-
rations, d is a finite set of default value declarations, y is
a finite set of method declarations, and x is a finite set of
conflict resolution declarations. For simplicity, we assume
that there is no abbreviation in a, 4, and p. We write a(c),
8(e), p(c), xalc) and x4 (c) for the sets of attribute, default
value, method, attribute conflict resolution declarations, and
method conflict resolution declarations in «, d, y, and x
for the class ¢ respectively. We impose constraints on the
schema to capture the intended semantics of multiple inher-
itance with overriding, blocking and conflict handling. An
instance I is a set of object declarations, that can be repre-
sented as a tuple I = (m, A) where 7 is a set of ground oid
membership expressions called oid assignments and A is a
set of ground positive attribute expressions called attribute
value assignments. A database DB consists of two parts:
the schema K and the instance /, which can be represented
abstractly as a tuple DB = (C,isa, o, 6, u, x, 7, A) where
K = (C,isa,a,d,p,x) and I = (m, A). See Figure 1. A
query is a sequence of expressions prefixed with 7—.

3 Semantics

In this section, we define the semantics of a database
and queries. First we give the meaning of the schema
and instance of the database, then we identify a class of
databases, called well-defined databases, and finally, we de-
fine the meaning of the rule based methods of well-defined
databases, based on the meaning of the schema and in-
stance. The semantics of a database is based on the well-
founded semantics except in this case the semantics of the
rule-based methods must take into account the meaning of
the schema and the instance of the database.
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3.1 Semantics of Schema and Instance

Encapsulation is dealt with in this subsection; each at-
tribute, default value and method that are applicable to a
class are identified. In order to determine which attributes,
default values, and methods are applicable to a class, it is
necessary to consider inheritance with overriding, blocking
and conflict handling. Recall that a(c), d(c) and p(c) are
the sets of attribute declarations, default value and method
declarations respectively that are defined on c. In this sec-
tion, we define a*(c), 6*(c), and p*(c), the attribute decla-
rations, default value and method declarations that are ap-
plicable to class ¢, taking inheritance, overriding, conflict
resolution and blocking into account.

In [14], we define difference operators that
find the attribute declarations (default value declarations,
method declarations respectively) that are defined on one
class and not redefined on another class. Consider the
database in Figure 1. The difference between the sets of
attribute declarations for person and student is:

a(person) — a(student) = {

person [name = string],
person {birthyear = integer],
person [spouse = person],

}

The result is the attribute declarations in person that are not
redefined in student. In Figure 1 the difference between the
default attribute declarations for person and student is:

§(person) — §(student) =0
This is not surprising because the default value for
birthyear is redefined in student. '

The following definition outlines an algorithm to find
the applicable declarations a*(c), 6*(c), p*(c),
which are the sets of declarations that are implicitly or
explicitly declared on ¢ with the blocked declarations re-
moved, and the name of the class to which they apply
changed. For example, consider the class wstudent in Fig-
ure 1. The algorithm produces:

a* (wstudent) = {

wstudent[name = string],
wstudent[birthyear = integer],
wstudent{spouse = person],

}

d* (wstudent) = {

wstudent[birthyear e 1970],

}

Overriding with Conflict Handling and Blocking The
semantics of multiple inheritance with overriding, conflict
handling and blocking are defined using the difference op-
erators as follows:

1. If a class does not have any superclasses, then there is
no inheritance, overriding, conflict resolution or block-



ing. The declarations in the class are the only ones that
apply to the class.

That is, if there does not exist a class ¢’ such that
cisa c’, then

A a*(c) = apei(€) = alc)
0*(¢) = dbeilc) = d(c)
p(c) = pei(c) = p(c); otherwise

2. ifcisacy,..., cp, then

(a) we extend the sets of declarations to include new
declarations due to explicit conflict resolution
declarations

ape(c) = afc)U{c"[l = ¢;] | T c[lac’] € xalc)
and ¢"(l = ¢;] € apei(c’)}

dbe(c) =d(c) U{c" [l es o] | T cll < ') € Xulc)
and 3 c”[l 0] € ch,(c )
and -3 c[l &> 0] € §(c)}

He(c) = p(c) U{M |Tc[m(er, ..., cn
Xulc) and M € pipei(c’) such that
signature(M) = m(cy,...,cn)}

we extend the sets of declarations to include dec-

larations that are inherited from both direct and

indirect superclasses using the difference opera-
tor ‘

abc,-(c) = abc(c) U (abci(cl) — abc(c)) u...u
(- ((bei(cn) —abei(cn_1)) — apei(cn—2))
— ... = apei(er)) — ase(c))

Obei(c) and pipe:(c) are defined analogously.

y<c] €

(b)

we remove blocked declarations and change the

class names in the sets of declarations

a*(c)={cll=1]3" [l = ] € apilc)
and ¢’ # none}

3 (c) ={c{le> 0] | T [l & 0] € dpei(c)

and -3 ¢"[l = none] € ape(c)}

¢) ={M'|IM € ppci(c), the type of M is

¢ [m(er,...,¢en) = cr]er'# none, and M’

is obtained from M by substituting ¢ for ¢}

(©

e

The symbols apc(c), apei(c), etc. are used only in
the definition of applicable declarations, and are not re-
ferred to anywhere else in this paper. Let DB
(C,isa,a,d,u,x,m, A} be a database. Then o*
{a*(c) | ¢ € C}, §* = {6*(c) | ¢ € C}, and p*
{u*(c) | c € C}. If «*,4*, and p* are defined, then the
semantics of the schema K = (C,isa,a,d, u, x) is given
by a*, 6™, and u*.

We have dealt with non-monotonic inheritance within a
database schema. We now describe the semantics of inher-
itance within an instance of a database, by introducing the
notions of zsa™, 7*, and A*. We overload the isa notion so
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that if c isa ¢y, ..., ¢, then cisa ¢; for1 < ¢ < n. We de-
fine isa™ as the reflexive transitive closure of isa, that cap-
tures the general inheritance hierarchy. Note that ¢ isa* c.

We say that o is a non-direct instance of class c, (denoted
by c 0 € ") in database DB = (C, isa, @, d, u, x, m, A), iff
c is a value class, o is a value, and o is an element in the
collection which ¢ denotes, or ¢ is an oid class, o is an oid,
and there exists a ¢’ such that ¢’ isa* cand ¢/ 0 € w. The
notion of 7 captures the semantics of instance inheritance;
that is, if an oid is a direct instance of a subclass ¢, then it is
a non-direct instance of ¢ and the superclasses of c.

In the case, where there is a default value declaration for
an attribute in a class, the instances of the class inherits the
default value for the attribute. We extend the notion A to A*
to capture such intended semantics:

A =AU{ol—=0d|coemandc[l e 0] €5* and

—3Jo.l = 0" € A}

Let DB = (C,isa,,d, u, x, ™, A) be a database. If 7*
and A* are defined, then the semantics of the instance I =
(m, A) is given by 7 A*.

It is possible to define a database that has no intuitive
meaning. For example it is possible to define a database
schema with a cycle in its class hierarchy or an attribute in
a class that has two distinct default values, or a database
instance where an object is an instance of more than one
class, or an attribute has more than one value for an ob-
ject. In [14], we discuss a number of constraints that can
be used to guarantee an intended semantics of the database
and queries on the database, we give properties that demon-
strate that the set of expressions defined have the intended
semantics, and define a well-defined database. In the fol-
lowing subsection, we are concerned only with well-defined
databases, that is databases with an intuitive meaning.

A database instance does not have an intuitive meaning
if an object is a direct instance of more than one class; or if
an attribute has more than one value for an object.

3.2 Semantics of Databases and Queries

In this paper, we focus on static databases rather than
dynamic databases i.e. databases where classes of oids
and their attribute values remain the same. The semantics
for dynamic databases can be found in [13]. The classes
of oids and their attributes form our extensional database
(EDB) in the traditional deductive database sense. The
methods, however, are represented intensionally by method
rules. They define our intensional database (IDB). In this
section, we define the semantics of methods based on the
well-founded semantics proposed in [16]. Our definition
differs from [16] in the following ways. We are concerned
with a typed language with methods rather than an untyped
language with predicates. We introduce a well-typed con-
cept and take typing into account when deducing new facts



from methods. The definition of satisfaction of expressions
is simple in [16] and more complex in this paper because of
the many kinds of expressions. Our definition reflects the
fact that our model effectively has two parts, an extensional
database (EDB) that models oid membership and attribute
expressions, and an intensional database (IDB) that models
method expressions. The EDB is a 2-valued model while
the IDB is a 3-valued model. In the EDB, expressions are
true if they're in the model otherwise they are false. In the
IDB, method expressions are true if they are in the model,
false if their complement belongs to the model, otherwise
they are undefined. When a method expression is undefined,
either the method isn't defined on the invoking object, or it
isn't possible to assign a truth value to that expression. Ev-
ery well-defined program has a total model, unlike in the
well-founded semantics, where a program may have a par-
tial model. In fact we prove that every well-defined pro-
gram has a minimal model. We first define terminology that
is needed later in this section.

Herbrand Base Let DB = (C,isa,a,d,p,x, ™, A) be a
well-defined database. The Herbrand base Bps based on
DB is the set of all ground simple positive method expres-
sions formed using the method names in DB (without ab-
breviations).

The definition for compatible sets of expressions can be
found in [16]. Consider the set

E3 = {~tom[married()], tom[married()],
—pam[married()], ~sam[married()], pam[single()],
—~sam[single()]}

Because {—tom[married()],tom[married()]} € E3, and
E3N —FE3 # 0, the set is incompatible.

Ground method expressions are required to be well-
typed with respect to the appropriate class declarations. Let
DB = (C,isa,a,é, pu, x, 7, A) be a well-defined database,
and ¥ = o.m(o01,...,0n) = o Or Y = —o.m(01,...,0p)
— o, a ground method expression. Then ) is well-typed in
DB iff the following hold:

1. there exists a class ¢ such that ¢ 0 € 7; and

there exists a method in p*(c) with the method type
¢ [m(ey,...,en) = ¢;] such that ¢; 0; € 7™ for 1 <
i<nandc¢, 0o, €ET".

2.

A set of ground method expressions is well-typed in DB
iff each ground method expression is well-typed in DB.
Methods can return values. However, for the same argu-
ments, a method should return only one value. We formal-
ize this using the notion of consistency. A set of ground
method expressions are consistent iff there do not exist
0.m(01,...,0,) = o, € S and 0.m(0y, ...,0,) = 0. € S
such that o, # o).

Interpretation Let DB (C,isa,a,6,p1,x,m,A) be a
well-defined database. A partial interpretation of DB is a
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tupleZ = (=, A, §) where S is a compatible, consistent, and
well-typed set of method expressions in D3, and each atom
in § is an element of the Herbrand base. A total interpreta-
tion is a partial interpretation that contains every well-typed
method atom of the Herbrand base or its negation. For an
interpretation Z = (m, A, S), = and X form an extensional
database whereas S forms an intensional database.

Note that S contains both positive and negative expres-
sions, and different interpretations of D3 have the same ex-
tensional database but different intensional databases. A
ground substitution 0 is a mapping from variables to oids
and values. It is extended to terms and expressions in the
usual way.

Satisfaction Let DB = (C, isa, a,d, u, x, T, A) be a well-
defined database and Z = (r, A, ) an interpretation of DB.
The notion of satisfaction of expressions, denoted by =, and
its negation, denoted by |£, are defined as follows.

1. The satisfaction of ground positive and negative oid
membership expressions, ground positive and negative
attribute expressions, and ground arithmetic compari-
son expressions are defined in the usual way.

2. For a ground positive method expression ¥, T = 9 iff
YES; ITHEYiff-ypes.
3. For a ground negative method expression ¢, Z |= -9
iff-veS;ITHE-yiffy €S.
4. For a ground composite expression =
co[Vi;...; Vi),
e IEYiffTIlEco, I oViforl <i<m;
o T YIffZ £ coorZ lE 0.V for some ¢ with
1<i<n.
For a ground composite expression ¥ = o[Vy; ...; Vo,
e T EYIffT k=o.V; forevery 1 <i<n;
o Ty iffT fo.V; forsomeiwithl < i< n.
5. Foramethod rule r = ¢[A :- Ly, ..., L,)), I | riff for

each ground substitution 6,

o T=0A;0r

e 7 {~ 0A and for each ground method rule with
head 6 A there exists an L; with 1 < ¢ < n such
thatZ = —0L;; or

e there exists an L; with 1 < ¢ < n such that nei-
therZ = 6L;,norT |- 6L;.

In other words, Z |= ¢ means that ¢ istrue inZ; Z £~ ¢
means that v is false in Z; if neither Z |= ¢, nor Z £ ¥,
then v is unknown in Z.

Model Let DB = (C, isa, o, 0, u, X, T, A) be a well-defined
database and Z = (7, A, S) an interpretation of DB. Then



T is a model of DB if T satisfies every ground method rule
in p*.
Consider the following database:
class person [
spouse = person;
married() {
married() :— spouse = X;
married() :— X.married(),
X.spouse — This}
single(){single() :——married()}

person sam[spouse — pam|
person pam
The following set is a model of this database:
I = ({person sam, person pam},
{sam.spouse — pam},
{sam.married(), pam.married(),
—sam.single(), ~pam.single()}).
~ Due to the typing and compatibility constraints as in
ROL [12], it is possible that a database has no models. Also,
a well-defined database may have several models. Our in-
tention is to select a proper minimal model as the intended
semantics of the database. .

An unfounded set for a database with respect to an inter-
pretation provides a basis for false method expressions in
our semantics. The greatest unfounded set (GUS) is the set
of all the expressions that are false in a database with re-
spect to an interpretation and is used to provide the negative
expressions when finding the model of a database. The def-
inition for unfounded sets and greatest unfounded sets can
be found in [16]. The greatest unfounded set is used in the
definition of a model, i.e. a limit of the following transfor-
mation.

Transformation Let DB = (C,isa,,8, 4, x, 7, A) be a
well-defined database. The transformation Tpi of DB is
a mapping from interpretation to interpretation defined as
follows.

(m, A\ W(Z)) if W(Z) is well-typed and
Tps(Z) = compatible

undefined otherwise
where

T(Z)={6A|A:~Ly,.., L, isamethod rule in DB
and there exists a ground substitution 6 such that
IE6L,...TE0L,}
U(Z) = =G where G is the GUS of DB with respect to Z.
W(T) =T (Z)VU(T)
Model For all countable ordinals A the tuple Z,, for database
DB = (C,isa,a,d, j1, X, T, A), the limit of the transforma-
tion Tp p is defined recursively by:

1. For limit ordinal h, Zj, = (7, A, Uj<aW(Z;))
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2. For successor ordinal k + 1, Z41 = Tpis(Zk).

Note that 0 is a limit ordinal, and Zo = (7, A, @#). This
sequence reaches a limit Z*.

We now prove that Z* is a model.
Theorem 3.1 Let DB be a well-defined database. If 7* =
(m, A, S) is defined, then it is a model of DB. a

Minimal model Let M- = (7, A, S) be a model of a
database DB. We say that model M is minimal if there
does not exist an expression v in S such that (7, A\, S —1)
is still a model.

We now prove that for a well-defined database DB, Z* is
a minimal model of DB if it is defined.
Theorem 3.2 Let DB be a well-defined database. If 7* =
(m, A, S) is defined, then it is a minimal model of DB. O

Semantics of Databases The semantics of a well-defined
database DB = (C,isa, o, 6, p, x, 7, A) is represented by
the limit Z* if it is defined.

Semantics of Queries Let DB = (C,isa,o,0, p, x, 7, A)
be a well-defined database, () a query of the form
?-Ly, ..., Ly, and 8 a ground substitution for variables of
Q. Assume I~ is defined. Then the answer to @ based on
DB is one of the following:

1. trueifZ* = 0Ly, .., I E0L,,

2. false if there exists an L; with 1 < ¢ < n such that
Z* £ 6L;, and

3. unknown otherwise.

In other words, for a method expression ¥, if Z* =
then expression ¥ is true, if Z* = - then expression 1
is false, and if Z* [~ ¢ and ™ [£ — then expression 1
is undefined. Let us consider an example with unknown
answers. Consider the following database:

class person |
spouse = person;
married() {married() :~ ~single()}
single(){single() :— —married()}

person sam[spouse — pam)|

person pam
Then Z* = ({person sam, person pam}, {sam[spouse —
pam}}, ) is a three-valued model, in which the answers to
the following queries are unknown.

7—sam[married()]

?—sam[single()]

There are two reasons why 7* may be undefined. One is
that the inferred set of method expressions is not well-typed.
The other is that it is not consistent. For the first problem,
we could define another constraint on method rules using
type substitution as in [13] to constrain the database. For
the second problem, run-time checking is necessary.



4 Conclusion

Logical semantics have played an important role in
database research. However, the object-oriented approach
to databases was dominated by “grass-roots” activity where
several systems were built without the accompanying theo-
retical progress. As a result, many researchers feel the area
of object-oriented databases is misguided [9]. The deduc-
tive object-oriented database research, however, has taken
quite a different approach. It has logical semantics as its
main objective and started with a small set of simple fea-
tures taken from the object-oriented paradigm such as F-
logic [9], and gradually incorporates more and more diffi-
cult features that can be given a logical semantics such as
ROL [12] and Datalog++ [8].

The main contribution of the paper is the addition of two
outstanding object-oriented features to deductive object-
oriented databases together with a direct logical semantics.
The two outstanding features were rule-based methods and
the encapsulation of these methods in classes, and multiple
behavioral inheritance, with overriding, blocking, and con-
flict handling. We have shown that these object-oriented
features which are believed to be difficult to address, can
indeed be captured logically. We believe that the seman-
tics given in this paper have a far reaching influence on
the design of deductive object-oriented languages and even
object-oriented languages in general. The language and se-
mantics defined on the language form the theoretical basis
for a practical query language. Indeed, the practical deduc-
tive object-oriented database language ROL2 [15] supports
the theory discussed here.

Our work differs from the work of others in many ways.
Most existing deductive object-oriented database languages
do not allow rule-based methods to be encapsulated in the
class definitions. Those that do, do not address the is-
sue directly. Also, most existing deductive object-oriented
database languages do not allow non-monotonic multiple.
behavioral inheritance. ROL does, but deals with conflict
handling only in a limited context and doesn't have block-
ing. Datalog** provides blocking and disallows the inheri-
tance of conflicting properties. F-logic supports monotonic
structural inheritance and indeterminate non-monotonic de-
fault value inheritance by allowing a database to have mul-
tiple possible models. For a class, not only its subclasses
but also its elements can inherit its properties.
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