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Abstract 

Over the past decade, U large number of deductive 
object-oriented database languages have been proposed. 
The earliest of these languages had few object-oriented fea- 
tures, and more and more features have systematically been 
incorporated in successive languages. Howeve6 a language 
with a clean logical semantics that naturally accounts f o r  
all the key object-oriented features, is still missing from the 
literature. Two features that are currently missing are the 
encapsulation of rule-based methods in classes, and non- 
monotonic behavioral inheritance with overriding, conjict 
resolution and blocking. This paper introduces the syntax 
of a language with these features. It then defines a class 
of databases, called well-defined databases, that have an 
intuitive meaning and develops a direct logical semantics 
f o r  this class of databases. The semantics is based on the 
well-founded semantics from logic programming. The work 
presented in this paper establishes a firm logical foundation 
for  deductive object-oriented databases. 

1 Introduction 

The objective of deductive object-oriented databases is 
to combine the best of the deductive and object-oriented ap- 
proaches, namely to combine the logical foundation of the 
deductive approach with the modeling capabilities of the 
object-oriented approach. Based on the deductive object- 
oriented database language proposals as well as the work in 
object-oriented programming languages and data models, it 
is becoming clear that the key object-oriented features in 
deductive object-oriented databases include object identity, 
complex objects, typing, rule-based methods, encapsulation 
of methods, overloading, late binding, polymorphism, class 
hierarchy, multiple behavioral inheritance with overriding, 
blocking, and conflict handling. However, a clean logical 
semantics that naturally accounts for all the features is still 
missing from the literature. In particular the encapsulation 

of rule-based methods in classes, and non-monotonic multi- 
ple behavioral inheritance have not been addressed properly 
so far. 

In object-oriented programming languages and data 
models, methods are defined using functions or procedures 
and are encapsulated in class definitions. They are in- 
voked through instances of the classes. In deductive object- 
oriented databases, we use rules instead of functions and 
procedures. By analogy, methods in deductive object- 
oriented databases should be defined using rules and en- 
capsulated in class definitions. Such methods should be 
invoked through instances of the classes as well. However, 
most existing deductive object-oriented database languages, 
including F-logic [9], IQL [ 11, Datalogmeth [2], ROL [12], 
Datalog++ [8], do not allow rule-based methods to be en- 
capsulated in the class definitions. The main difficulty is 
that the logical semantics is based on programs that are sets 
of rules. If rules are encapsulated into classes, then it is not 
clear how to define their semantics. Several proposals such 
as Da ta Iogmeth  and Da ta log++  provide encapsulation but 
use rewriting-based semantics which do not address the is- 
sue directly. The authors of [3] address encapsulation but 
do not include other important object-oriented features, like 
inheritance. 

Non-monotonic multiple behavioral inheritance is a fun- 
damental feature of object-oriented data models such as 
0 2  [5] and Orion [IO] .  The user can explicitly redefine (or 
override) the inherited attributes or methods and stop (or 
block) the inheritance of attributes or methods from super- 
classes. Ambiguities may arise when an attribute or method 
is defined in two or more superclasses, and the conflicts 
need to be handled (or resolved). Unfortunately, a logical 
semantics for multiple inheritance with overriding, block- 
ing and conflict-handling has not been defined. The main 
difficulty is that the inherited instances of a superclass may 
not be well-typed with respect to its type definition because 
of overriding and blocking. Most deductive object-oriented 
database languages, including F-logic' , LOGRES [4], LIV- 

I F-logic however supports indeterminate non-monotonic default value 
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ING IN LA'ITICE [7], COMPLEX [6], only allow mono- 
tonic multiple structural inheritance, which is not powerful 
enough. Some deductive object-oriented languages such 
as Datalogmeth only support non-monotonic single inher- 
itance by allowing method overriding. One extreme case 
is IQL, which does not support multiple inheritance at the 
class level at all. Instead, it indirectly supports it at the in- 
stance level via the union type so that inherited instances 
of a superclass can still be well-typed with respect to its 
type definition which is the union of the type for its direct 
instances and the type for its non-direct instances. ROL 
has a semantics that accounts for non-monotonic multiple 
structural inheritance with overriding and conflict-handling 
in a limited context, but without blocking. Datalog++ takes 
a quite different approach towards non-monotonic inheri- 
tance. It disallows the inheritance of conflicting attributes 
and methods, like in C++. It provides mechanisms for 
the user to block the inheritance of attributes and methods. 
However, it only provides an indirect, rewriting-based se- 
mantics for such non-monotonic inheritance. 

This paper provides a direct well-defined declarative se- 
mantics for a deductive object-oriented database language 
with encapsulated rule-based methods and non-monotonic 
behavioral inheritance with overriding, conflict resolution 
and blocking. In order to keep the setting simple, we omit 
some well understood features that don't affect the seman- 
tics described, e.g. set-valued attribute values, and we fo- 
cus on a static database rather than a dynamic database, 
(see [13] for the semantics of updates to the database). 
In the language, methods are declared in the class defini- 
tions, and the methods are invoked through instances of the 
classes. We introduce a special class, none ,  to indicate that 
the ,inheritance of an attribute or method in a subclass is 
blocked i.e. it won't be inherited from its superclasses. We 
provide a very flexible approach to conflict resolution. Our 
mechanism consists of two parts. One part, the default part 
is similar to the method used in Orion, namely a subclass 
inherits from the classes in the order they are declared in 
the class definition. The other part allows the explicit nam- 
ing of the class the attribute or method is to be inherited 
from. Therefore, a subclass can inherit attribute or method 
definitions from any superclasses. We then define a class 
of databases, called well-defined databases, that have an in- 
tuitive meaning and develop a direct logical semantics for 
this class of databases. The semantics naturally accounts 
for method encapsulation, multiple behavioral inheritance, 
overriding, conflict handling and blocking, and is based on 
the well-founded semantics [ 161 from logic programming. 
We define a transformation that has a limit, 2' for well- 
defined databases, and prove that I*, if it is defined, is a 
minimal model of the database. 

inheritance. The value inherited depends on which inheritance step is done 
first at run time. 

This paper is organized as follows. We introduce the syn- 
tax and semantics of the language using an example in Sec- 
tion 2. In Section 3 the class of well-defined databases and 
the semantics of well-defined databases are defined, and the 
main results are presented. Section 4 concludes the paper, 
reiterating our results and comparing this work with related 
work. Due to space limitation, the paper is quite terse and 
we have omitted proofs. They are included in [ 141. 

2 Example 

Our language in fact supports many of the important 
object-oriented features in a rule-based framework with a 
well-defined declarative semantics. In this section, we in- 
troduce and demonstrate concepts that are important in the 
paper. A more extensive description of the syntax can be 
found in [ 141. 

The schema in Figure l(a) defines four classes, person ,  
employee, s tuden t ,  and wstudent  (working student). 
The class person  has three attributes, n a m e ,  bir thyear,  
and spouse,  and two methods: marr ied(person)  and 
s ing le ( ) .  The attribute birthyear has a default value of 
1945. Method m a r r i e d ( X )  is true if the person the method 
is applied to has a spouse, X, and method s ing le ( )  is true 
if the person is not married. Notice, that the semantics of 
negation are defined using extended negation as failure [ 113. 
The class employee inherits all attribute declarations, de- 
fault values and method declarations from class person  un- 
less they are blocked or overridden in class employee. We 
say that class employee is a direct subclass of person  and 
person is a direct superclass of employee. New attributes 
can also be declared in subclasses. The attribute declara- 
tions for n a m e ,  bir thyear,  and spouse, and the method 
declarations for m a r r i e d ( p e r s o n ) ,  and s ing le ( )  are in- 
herited but the default value of birthyear is overridden in 
employee, i.e., the default value for attribute birthyear is 
redefined to 1960. The class s tudent  also inherits from 
person.  Two methods are declared in s tuden t ,  namely 
ex t rasuppor t ( )  and suppor t ( ) .  

The class wstudent inherits from two classes, employee 
and student. With multiple inheritance, there can be con- 
flicting declarations i.e. default values, attributes and meth- 
ods may be declared in more than one superclass. There 
is one possible conflict to be resolved in wstudent ,  default 
value birthyear is defined on both employee and student. 
There are two ways that conflicts can be resolved. A con- 
flict resolution declaration indicates explicitly which class a 
property is to be inherited from e.g. birthyear Q s tudent  
indicates that the definition of birthyear and the default 
value 1970 are inherited from student. If there is a con- 
flict and there is no conflict resolution declaration then the 
property is inherited from the superclasses in the order the 
superclasses are listed in the class declaration. Notice that 
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Ice y 1 j t y p e  declaration 
-+ value declaration 
o+ de f a u l t  value 
a explicit inheritance 

class person [ 
n a m e  =+- s t r ing ;  
birthyear 3 integer;  
birthyear e) 1945; 
spouse 3 person; 
marr ied(person)  { m a r r i e d ( X )  :- spouse -+ .U} 
s ing le ( )  { s i n g l e ( )  :- I m a r r i e d ( X ) }  
3 

1 

class employee isa person [ 
birthyear o+ 1960; 

class student i sa person [ 
birthyear e 1970; 
ex t rasuppor t ( )  3 integer { 

ex t rasuppor t0  t 1000 : - m a r r i e d ( < Y ) ,  

ex t rasuppor t ( )  -i 500 :- m a r r i e d ( X ) ,  

ex t rasuppor t ( )  -+ 100 : - s i n g l e ( ) }  

suppor t ( )  + S : -e z t rasuppor t ( )  -+ SI, 

student X; 

l s t u d e n t  X ;  

suppor t ( )  =+ integer { 

s = 1000 + SI} 
1 
birthyear a s tuden t ;  
support() + none;  
ex trasuppor t0  j person { 

class ws tudent  isa employee,  student [ 

ex trasuppor t0  t X :- spouse -+ X} 
1 

( a )  Schema 

employee t o m  [name  -+ “ T o m ” ;  birthyear -i 1963; 

student s u m  [name -i “Sam”]  
ws tudent  p a m  [name 

spouse -+ p a m ]  

“ P a m ” ;  spouse + t o m ]  

( b )  Ins tance  

Figure 1. Sample Database 

the method suppor t ( )  is blocked in wstudent (i.e. its return 
type is none) ,  and the method ex t rasuppor t0  in wstudent 
overrides the method extrasupport () in student. A method 
declaration in a subclass overrides a method declaration in a 
superclass if the methods have the same signature, indepen- 
dent of their return values. A method has the same signa- 
ture as another method if the method has the same method 
label and the same arguments, e.g. ex t rasuppor t ( )  in stu- 
dent has the same signature as ex t rasuppor t ( )  in wstu- 
dent. While classes employee and s tudent  are direct su- 
perclasses of wstudenf, person is an indirect superclass of 
wstudent. 

The instance in Figure l(b) contains three objects with 
oids tom, sum, and pam. In the database instance, each ob- 
ject is associated with a class and attributes are assigned 
values. For example, object tom is a direct instance of em- 
ployee, and the value of its attribute name is “Tom”. The 
value of attribute birlhyear is 1963, i.e. the default 1960 
in employee is not used. The value of its attribute spouse 
is object identifier pum. We say that employee is the pri- 
mary class of object tom, and object tom is an non-direct 
instance of person. The birthyear of sum is 1970, i.e. the 
default in class student is used because a value for attribute 
birthyear is not provided in object sum. The value of at- 
tribute birthyear is not given in object pam, nor in class 
wstudent. The default value 1970 is inherited from student 
because there is a conflict resolution declaration in wstu- 
dent. 

We can ask the following queries on the sample database 
in Figure 1 .  The queries demonstrate how methods are en- 
capsulated in classes, i.e. a method is declared in a class 
and invoked through instances of the class. 

1. Find the birthyear of Sam. 
?-s tudent  O [ n a m e  -+ “Sam”; birthyear + S] 

The default value of birthyear for instances in class 
student is returned, S = 1970. 

2 .  Find what support Sam gets. 
?- student O [ n a m e  -+ “Sam”; support()  + SI 

The suppor t ( )  method in class student invokes the 
ex t rasuppor t ( )  method. The ex t rasuppor t ( )  rules in 
turn invoke the marr ied (person)  and s ing le ( )  meth- 
ods defined in class person. As Sam has no spouse, 
Sam is not married, so Sam is single, and the third rule 
for ex t rasuppor t ( )  is used. The extrasupport0 that 
Sam receives is 100, so X = 1100 is returned. 

3. Find what support Pam gets. 
?- wstudent  O [ n a m e  = “ P a m ” ;  suppor t ( )  t ,U] 

This method suppor t ( )  is blocked on wstudent, an er- 
ror message indicating that this method is undefined is 
returned. 
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4. Find all students whose extra support is not 500. 
?-student 0 [eztrasupport()  -+ XI, X <> 500 

This query returns the oids of all the objects that be- 
long to class student or subclasses of student whose 
value for method extrasupport is not 500. The answer 
is (0 = Sam}.  

Two kinds of 
classes are distinguished: value classes and oid classes. 
There are two special value classes, none and void. Class 
none is used to indicate that the inheritance of an attribute 
or method from a superclass is blocked in a subclass. Class 
void has only one value, namely nil, which is returned 
by a method if no other value is returned. Like in C++ and 
Java, we have a special variable, This, that is used to refer 
to the current object. Variables are represented throughout 
the paper using uppercase alphabetic characters. 

A schema I< is a set of class declarations, which can be 
represented abstractly as a tuple I< = (C, isa, a ,  6,  p ,  x )  
where C is a finite set of oid classes, isa is a finite set of 
superclass declarations, a is a finite set of attribute decla- 
rations, 6 is a finite set of default value declarations, p is 
a finite set of method declarations, and x is a finite set of 
conflict resolution declarations. For simplicity, we assume 
that there is no abbreviation in a,  6, and p. We write a (c) ,  
6(c), ,u(c) ,  xa(c)  and ~ ~ ( c )  forthe sets of attribute, default 
value, method, attribute conflict resolution declarations, and 
method conflict resolution declarations in a,  6, ,U, and x 
for the class c respectively. We impose constraints on the 
schema to capture the intended semantics of multiple inher- 
itance with overriding, blocking and conflict handling. An 
instance I is a set of object declarations, that can be repre- 
sented as a tuple I = (K, A) where K is a set of ground oid 
membership expressions called oid assignments and A is a 
set of ground positive attribute expressions called attribute 
value assignments. A database Dl? consists of two parts: 
the schema A' and the instance I ,  which can be represented 
abstractly as a tuple Dl? = (C, isa, a, 6, ,U, x,  T ,  A) where 
I< = ( C , i s a , a , S , p , ~ ) a n d I  = (.,A). SeeFigure l .  A 
query is a sequence of expressions prefixed with ?-. 

We make the following observations. 

3.1 Semantics of Schema and Instance 

3 Semantics 

In this section, we define the semantics of a database 
and queries. First we give the meaning of the schema 
and instance of the database, then we identify a class of 
databases, called well-defined databases, and finally, we de- 
fine the meaning of the rule based methods of well-defined 
databases, based on the meaning of the schema and in- 
stance. The semantics of a database is based on the well- 
founded semantics except in this case the semantics of the 
rule-based methods must take into account the meaning of 
the schema and the instance of the database. 

Encapsulation is dealt with in this subsection; each at- 
tribute, default value and method that are applicable to a 
class are identified. In order to determine which attributes, 
default values, and methods are applicable to a class, it is 
necessary to consider inheritance with overriding, blocking 
and conflict handling. Recall that Q(c), S(c) and p(c)  are 
the sets of attribute declarations, default value and method 
declarations respectively that are dejined on c. In this sec- 
tion, we define a*(c) ,  6*(c), and p*(c) ,  the attribute decla- 
rations, default value and method declarations that are ap- 
plicable to class c, taking inheritance, overriding, conflict 
resolution and blocking into account. 

In [14], we define difference operators that 
find the attribute declarations (default value declarations, 
method declarations respectively) that are defined on one 
class and not redefined on another class. Consider the 
database in Figure 1 .  The difference between the sets of 
attribute declarations for person and student is: 

a(person)  - a(studen2) = { 
person [name + str ing],  
person [birthyear 3 integer],  
person [spouse + person], 

1 
The result is the attribute declarations in person that are not 
redefined in student. In Figure 1 the difference between the 
default attribute declarations for person and student is: 

This is not surprising because the default value for 
birthyear is redefined in student. 

The following definition outlines an algorithm to find 
the applicable declarations a * ( c ) ,  6*(c), p*(c), 
which are the sets of declarations that are implicitly or 
explicitly declared on c with the blocked declarations re- 
moved, and the name of the class to which they apply 
changed. For example, consider the class wstudent in Fig- 
ure 1. The algorithm produces: 

S(person) - G(student) = 0 

cr*(wstudent) = { 
wstudent [name 3 str ing],  
wstudent[birthyear 3 integer],  
wstudent[spouse j person],  

1 

1 

S*(wstudent) = { 
wstudent[birthyear e) 19701, 

Overriding with Conflict Handling and Blocking The 
semantics of multiple inheritance with overriding, conflict 
handling and blocking are defined using the difference op- 
erators as follows: 

1. If a class does not have any superclasses, then there is 
no inheritance, overriding, conflict resolution or block- 
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ing. The declarations in the class are the only ones that 
apply to the class. 

That is, if there does not exist a class c’ such that 
c i sa c’, then 

a * ( c )  = @bci(c) = a ( C )  

b*(C) = SbC, (C)  = b ( c )  

p * ( c )  = pbci(c) = p ( c ) ;  otherwise 

2 .  if c isa c1, ..., c,, then 

(a) we extend the sets of declarations to include new 
declarations due to explicit conflict resolution 
declarations 
cybc(C) = Q’(c)U{c’’[~ * cr] 13 c[lac’]  E x a ( c )  

and c”[I 3 c,.] E (Ybc i (C’ ) }  

and 3 c”[I t) 01 E & i ( C ’ )  

and 1 3  c[l c) o’] E 6 ( c ) }  

x p ( c )  and 
s ignature(M)  = m ( q ,  ..., c,)} 

b b c ( C )  = 6 ( c )  U {.”[I e) o] 13 c[l a c’] E x a ( c )  

Pbc(C) = p(c )  U { M  I 3 c [ m ( c l ,  . . . , c n )  a c’] E 
E pbci(C’) such that 

(b) we extend the sets of declarations to include dec- 
larations that are inherited from both direct and 
indirect superclasses using the difference opera- 
tor 
Qbci(c) abc(c)  U (abci(c1) - obc(c ) )  U ’ .  . U 

((. . . ( ( a b c i  (en ) - a b c i  ( C n -  1 ) )  - abci  ( cn -2 ) )  
- . . . - abci(c1)) - abc(c ) )  

bbbci ( c )  and 

class names in the sets of declarations 

( c )  are defined analogously. 

(c) we remove blocked declarations and change the 

C’* ( C )  = { C [l 3 C’]  I 3 c” [ I  * c’] E (Ybc-(C) 
and e’ # rime} 

and -3 c”[I + none] E Q b c i ( C ) }  

p * ( c )  = {M’  13 M E pbci(c) ,  the type of M is 
c’ [ m , ( c l , .  . . ,c,) 3 c,.]c,..# none, and M’ 
is obtained from M by substituting c for c’} 

b * ( c )  = { c  [ I  t) 03 13 c’ [I  c) 03 E 6bCi(C) 

The symbols a b c ( C ) , a b c i ( C ) ,  etc. are used only in 
the definition of applicable declarations, and are not re- 
ferred to anywhere else in this paper. Let ’DB = 
( C , i s a , a , d , p , x ,  n,A) be a database. Then a* = 
{a*(c )  I c E C } ,  6* = { S * ( c )  I c E C } ,  and p* = 
{ p* ( c )  I c E C } .  If c y * ,  6* ,  and p* are defined, then the 
senzantics of the schema A’ = (C, i sa,  a ,  6, p ,  x) is given 
b y a * , S * , a n d p * .  

We have dealt with non-monotonic inheritance within a 
database schema. We now describe the semantics of inher- 
itance within an instance of a database, by introducing the 
notions of isa’ ,  n*, and A*.  We overload the isa notion so 

that if c isa c1, ..., c,, then c i sa  ci for 1 5 i 5 n. We de- 
fine isa* as the reflexive transitive closure of isa, that cap- 
tures the general inheritance hierarchy. Note that c isa* c.  

We say that o is a non-direct instance of class c,  (denoted 
by c o E n*) in database Vf? = (C, i sa,  cy, 15, p ,  x, T ,  A), iff 
c is a value class, o is a value, and o is an element in the 
collection which c denotes, or c is an oid class, o is an oid, 
and there exists a c’ such that c’ isa* c and c’ o E K .  The 
notion of n* captures the semantics of instance inheritance; 
that is, if an oid is a direct instance of a subclass c,  then it is 
a non-direct instance of c and the superclasses of c. 

In the case, where there is a default value declaration for 
an attribute in a class, the instances of the class inherits the 
default value for the attribute. We extend the notion A to A* 
to capture such intended semantics: 

A*  = A U (0.1 -+ o’ I c o E n and c [I  t) 0’1 E 6’ and 

Let Vf? = (C, isa, a ,  S, p ,  x, K ,  A) be a database. If 7r* 
and A* are defined, then the semantics of the instance I = 
(n, A) is given by T* , A*. 

It is possible to define a database that has no intuitive 
meaning. For example it is possible to define a database 
schema with a cycle in its class hierarchy or an attributein 
a class that has two distinct default values, or a database 
instance where an object is an instance of more than one 
class, or an attribute has more than one value for an ob- 
ject. In [14], we discuss a number of constraints that can 
be used to guarantee an intended semantics of the database 
and queries on the database, we give properties that demon- 
strate that the set of expressions defined have the intended 
semantics, and define a well-defined database. In the fol- 
lowing subsection, we are concerned only with well-defined 
databases, that is databases with an intuitive meaning. 

A database instance does not have an intuitive meaning 
if an object is a direct instance of more than one class; or if 
an attribute has more than one value for an object. 

730.1 + 0’’ E A}. 

3.2 Semantics of Databases and Queries 

In this paper, we focus on static databases rather than 
dynamic databases i.e. databases where classes of oids 
and their attribute values remain the same. The semantics 
for dynamic databases can be found in [13]. The classes 
of oids and their attributes form our extensional database 
(EDB) in the traditional deductive database sense. The 
methods, however, are represented intensionally by method 
rules. They define our intensional database (IDB). In this 
section, we define the semantics of methods based on the 
well-founded semantics proposed in [ 161. Our definition 
differs from [ 161 in the following ways. We are concerned 
with a typed language with methods rather than an untyped 
language with predicates. We introduce a well-typed con- 
cept and take typing into account when deducing new facts 
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from methods. The definition of satisfaction of expressions 
is simple in [ 161 and more complex in this paper because of 
the many kinds of expressions. Our definition reflects the 
fact that our model effectively has two parts, an extensional 
database (EDB) that models oid membership and attribute 
expressions, and an intensional database (IDB) that models 
method expressions. The EDB is a 2-valued model while 
the IDB is a 3-valued model. In the EDB, expressions are 
true if they're in the model otherwise they are false. In the 
IDB, method expressions are true if they are in the model, 
false if their complement belongs to the model, otherwise 
they are undefined. When a method expression is undefined, 
either the method isn't defined on the invoking object, or it 
isn't possible to assign a truth value to that expression. Ev- 
ery well-defined program has a total model, unlike in the 
well-founded semantics, where a program may have a par- 
tial model. In fact we prove that every well-defined pro- 
gram has a minimal model. We first define terminology that 
is needed later in this section. 
Herbrand Base Let Vf? = (C, isa,  a ,  6, p ,  x, A ,  A) be a 
well-defined database. The Herbrand base f ? , ~  based on 
V B  is the set of all ground simple positive method expres- 
sions formed using the method names in VB (without ab- 
breviations). 

The definition for compatible sets of expressions can be 
found in [ 161. Consider the set 

E3 = { l t o m [ m a r r i e d ( ) ] ,  tom[marr ied( )] ,  
T p a m [ m a r r i e d ( ) ] ,  ~ m m [ m a r r i e d ( ) ] ,  p a m [ s i n g l e ( ) ] ,  
-.sam[single()]} 

Because { l t o m [ m a r r i e d ( ) ] ,  t o m [ m a r r i e d ( ) ] }  E E3, and 
E3 n l E 3  # 0, the set is incompatible. 

Ground method expressions are required to be well- 
typed with respect to the appropriate class declarations. Let 
DB = (C, i sa ,  a, 6, p ,  x, K ,  A) be a well-defined database, 
and 11, = o.m(o1,  ..., on) -+ 0, or $ = i o . m ( o l ,  ..., 0,) 
+ or a ground method expression. Then 11, is well-typed in 
V B  iff the following hold: 

1. there exists a class c such that c o E K ;  and 

2. there exists a method in p * ( c )  with the method type 
c [ ~ ( c I ,  ..., c,) 3 c,] such that c, o, E K* for 1 5 
i 5 n andc, o, E T * .  

- 

A set of ground method expressions is well-typed in V B  
iff each ground method expression is well-typed in Vf?. 
Methods can return values. However, for the same argu- 
ments, a method should return only one value. We formal- 
ize this using the notion of consistency. A set of ground 
method expressions are consistent iff there do not exist 
o.m(ol, ... , o n )  + or E S and o.m(ol,  ..., 0,) + o: E S 
such that 0, # 0:. 
Interpretation Let 'DO = (C, i sa ,  a ,  6 ,p , ,y ,  A ,  A) be a 
well-defined database. A partial interpretation of V B  is a 

tuple1 = ( A ,  A, S) where S is a compatible, consistent, and 
well-typed set of method expressions in VB, and each atom 
in S is an element of the Herbrand base. A total interpreta- 
tion is a partial interpretation that contains every well-typed 
method atom of the Herbrand base or its negation. For an 
interpretation 1 = ( A ,  A, S), A and A form an extensional 
database whereas S forms an intensional database. 

Note that S contains both positive and negative expres- 
sions, and different interpretations of V B  have the same ex- 
tensional database but different intensional databases. A 
ground substitution 6' is a mapping from variables to oids 
and values. It is extended to terms and expressions in the 
usual way. 
Satisfaction Let V B  = (C,  i sa ,  a ,  6, p ,  x, K, A) be a well- 
defined database and Z = ( A ,  A, S) an interpretation of VB. 
The notion of satisfaction of expressions, denoted by b, and 
its negation, denoted by k, are defined as follows. 

1. 

2. 

3. 

4. 

5 .  

The satisfaction of ground positive and negative oid 
membership expressions, ground positive and negative 
attribute expressions, and ground arithmetic compari- 
son expressions are defined in the usual way. 

For a ground positive method expression 11,, Z b 11, iff 
$ E S ;  Z 

For a ground negative method expression -$, Z b -11, 
iff 111, E S ;  Z 

For a ground composite expression $ = 

$ iff -11, E S.  

-11, iff $ E S. 

c .[VI; ...; V,], 

0 Z k 11, i f f 2  + c o , Z  k o.V, for 15 i 5 n; 
0 Z &t 11, i f fZ  k c o o r Z  &t 0.K forsome i with 

l < i < n .  

For a ground composite expression 11, = .[VI ; ...; V,], 

0 Z b 11, i f f 1  + 0.K for every 1 5 i < n; 
0 Z 11, iff Z k 0.K for some i with 1 5 i 5 n. 

F o r a m e t h o d r u l e r =  c [ A : - L 1 ,  ..., L,] , I  b r i f f f o r  
each ground substitution B, 

0 Z BA; or 
Z k BA and for each ground method rule with 
head BA there exists an Li with 1 5 i 5 n such 
that Z b -BLi; or 

0 there exists an Li with 1 5 i 5 n such that nei- 
ther Z b BLi , nor Z k BLi. 

In other words, Z /= 11, means that 11, is true in 2; Z k 11, 
means that 11, is false in 2; if neither Z + 4, nor Z &t 11,, 
then 11, is unknown in Z. 

Model Let V B  = (C, isa,  a ,  6, ,U, x, A, A) be a well-defined 
database and Z = ( A ,  A, S )  an interpretation of VB. Then 
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Z is a model of DO if Z satisfies every ground method rule 
in p ' .  

Consider the following database: 
class person  [ 

spouse 3 person; 
m a r r i e d ( )  { 

m a r r i e d ( )  :- spouse + S ;  
m a r r i e d ( )  :- X . m a r r i e d ( ) ,  

X.spouse + Thi s }  
s ingle( ){s ingle( )  :- -wnarr ied( )}  
1 

person  sam[spouse + p a m ]  
person  p a m  

The following set is a model of this database: 
I = ( {person  s u m ,  person  p a m } ,  

{sum.spouse  -+ p u m } ,  
{ s a m . m a r r i e d ( ) ,  p a m . m a r r i e d ( ) ,  
-mm.s ing le ( ) ,  i p a m . s i n g l e ( ) } ) .  

Due to the typing and compatibility constraints as in 
ROL [ 121, it is possible that a database has no models. Also, 
a well-defined database may have several models. Our in- 
tention is to select a proper minimal model as the intended 
semantics of the database. 

An unfounded set for a database with respect to an inter- 
pretation provides a basis for false method expressions in 
our semantics. The greatest unfounded set (GUS) is the set 
of all the expressions that are false in a database with re- 
spect to an interpretation and is used to provide the negative 
expressions when finding the model of a database. The def- 
inition for unfounded sets and greatest unfounded sets can 
be found in [ 161. The greatest unfounded set is used i n  the 
definition of a model, i.e. a limit of the following transfor- 
mation. 

Transformation Let DB = (C, i s a ,  c y ,  6, p ,  x, T T ,  A )  be a 
well-defined database. The transformation Tvu of DB is 
a mapping from interpretation to interpretation defined as 
follows. 

(x, A ,  W ( Z ) )  

undefined otherwise 

if W ( Z )  is well-typed and 
compatible Tva(2) = 

where 
T(2) = {BA 1 A :-L1, ..., L, is a method rule in Vf?  

and there exists a ground substitution 6' such that 
z b BL1, ..., z t= BL,} 

U ( Z )  = -G where G is the GUS of V B  with respect to Z. 

Model For all countable ordinals h the tuple Z h  for database 
DB = (C, i s a ,  a ,  6, p ,  x, x, A), the limit of the transforma- 
tion TDB is defined recursively by: 

W ( Z )  = 7 ( Z )  U U ( Z )  

1. For limit ordinal h,  Zh = ( T ,  A,  u j < h w ( Z j ) )  

2. For successor ordinal b + 1, Zk+1 = T ! u ( Z k ) .  

Note that 0 is a limit ordinal, and 20 = (x, A ,  0). This 
sequence reaches a limit Z'. 

Theorem 3.1 Let DB be a well-defined database. If Z* = 
0 

Minimal model Let A4 = (n ,  A ,  S) be a model of a 
database DB. We say that model M is minimal if there 
does not exist an expression $ in S such that ( x, A, S - $) 
is still a model. 

We now prove that for a well-defined database DB, Z* is 
a minimal model of V B  if it is defined. 
Theorem 3.2 Let DB be a well-defined database. If Z' = 
(n, A, S) is defined, then i t  is a minimal model of DB. 0 

Semantics of Databases The semantics of a well-defined 
database DB = (C, i sa ,  a ,  6, p ,  x, r, A) is represented by 
the limit 2' if it is defined. 
Semantics of Queries Let DB = (C, isa,  a ,  6,  p ,  k ,  x, A )  
be a well-defined database, Q a query of the form 
?-L1, ..., L,, and O a ground substitution for variables of 
Q. Assume 2' is defined. Then the answer to Q based on 
DB is one of the following: 

We now prove that Z' is a model. 

(n ,  A,  S) is defined, then it is a model of VB. 

I .  t rue i fz '  1 BL1, ..., Z' 1 U,, 

2. false if there exists an L,  with 1 5 i 5 77 such that 
2' OL,, and 

3. unknown otherwise. 

In other words, for a method expression J,, if 2' $ 
then expression (1, is true, if 2' -4 then expression $ 
is false, and if Z' p + and 2' -$ then expression $ 
is undefined. Let us consider an example with unknown 
answers. Consider the following database: 

spouse 3 person;  
m a r r i e d ( )  { m a r r i e d ( )  :- - s i n g l e ( ) }  
s ing le( ){s ingle( )  :- -marr i ed ( ) }  

c lass  person [ 

1 
person sum[spouse -i pain]  
person  p a m  

Then Z* = ( {person  sum,  person  p a m } ,  {sam[spotrse -+ 
p a m ] } ,  0) is a three-valued model, in which the answers to 
the following queries are unknown. 

?-sam[marr ied( )]  
?-sam[single()] 

There are two reasons why 2' may be undefined. One is 
that the inferred set of method expressions is not well-typed. 
The other is that it is not consistent. For the first problem, 
we could define another constraint on method rules using 
type substitution as in [ 131 to constrain the database. For 
the second problem, run-time checking is necessary. 
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4 Conclusion 

Logical semantics have played an important role in 
database research. However, the object-oriented approach 
to databases was dominated by “grass-roots’’ activity where 
several systems were built without the accompanying theo- 
retical progress. As a result, many researchers feel the area 
of object-oriented databases is misguided [9 ] .  The deduc- 
tive object-oriented database research, however, has taken 
quite a different approach. It has logical semantics as its 
main objective and started with a small set of simple fea- 
tures taken from the object-oriented paradigm such as F- 
logic [9 ] ,  and gradually incorporates more and more diffi- 
cult features that can be given a logical semantics such as 
ROL [12] and Datalog++ [8].  

The main contribution of the paper is the addition of two 
outstanding object-oriented features to deductive object- 
oriented databases together with a direct logical semantics. 
The two outstanding features were rule-based methods and 
the encapsulation of these methods in classes, and multiple 
behavioral inheritance, with overriding, blocking, and con- 
flict handling. We have shown that these object-oriented 
features which are believed to be difficult to address, can 
indeed be captured logically. We believe that the seman- 
tics given in this paper have a far reaching influence on 
the design of deductive object-oriented languages and even 
object-oriented languages in general. The language and se- 
mantics defined on the language form the theoretical basis 
for a practical query language. Indeed, the practical deduc- 
tive object-oriented database language ROL2 [ 151 supports 
the theory discussed here. 

Our work differs from the work of others in many ways. 
Most existing deductive object-oriented database languages 
do not allow rule-based methods to be encapsulated in the 
class definitions. Those that do, do not address the is- 
sue directly. Also, most existing deductive object-oriented 
database languages do not allow non-monotonic multiple 
behavioral inheritance. ROL does, but deals with conflict 
handling only in a limited context and doesn’t have block- 
ing. Datalog++ provides blocking and disallows the inheri- 
tance of conflicting properties. F-logic supports monotonic 
structural inheritance and indeterminate non-monotonic de- 
fault value inheritance by allowing a database to have mul- 
tiple possible models. For a class, not only its subclasses 
but also its elements can inherit its properties. 
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