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Abstract. XML keyword search has attracted a lot of interests with
typical search based on lowest common ancestor (LCA). However, in
this paper, we show several problems of the LCA-based approaches,
including meaningless answers, incomplete answers, duplicated answers,
missing answers, and schema-dependent answers. To handle these
problems, we exploit the semantics of object, object identifier,
relationship, and attribute (referred to as the ORA-semantics). Based
on the ORA-semantics, we introduce new ways of labeling and
matching. More importantly, we propose a new semantics, called CR
(Common Relative) for XML keyword search, which can return answers
independent from schema designs. To find answers based on the CR
semantics, we discover properties of common relative and propose an
efficient algorithms. Experimental results show the seriousness of the
problems of the LCA-based approaches. They also show that the CR
semantics possesses the properties of completeness, soundness and
independence while the response time of our approach is faster than the
LCA-based approaches thanks to our techniques.

1 Introduction

Since XML has become a standard for information exchange over the Internet,
more and more data are represented as XML. Therefore, XML has wide
applications such as electronic business1, science2, text databases3, digital
libraries4, healthcare5, finance6, and even in the cloud [3]. As a result, XML
has attracted a huge of interests in both research and industry with a wide
range of topics such as XML storage, twig pattern query processing, query
optimization, XML view, and XML keyword search. There have been several
XML database systems such as Timber [10], Oracle XML DB7, MarkLogic

1 http://www.ebxml.org
2 http://www.biodas.org/documents/spec-1.53.html
3 http://www-connex.lip6.fr/∼denoyer/wikipediaXML/
4 http://www.loc.gov/standards/mods/presentations/mets-mods-morgan-ala07/
5 http://www.ncbi.nlm.nih.gov/pubmed/11066651
6 http://schemas.liquid-technologies.com/Category/Financial
7 http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html



Server8, and the Toronto XML Engine9. XML keyword search has also been
studied extensively based on lowest common ancestors such as SLCA [24],
VLCA [16], MLCA [19] and ELCA [26].

Keyword search is a user-friendly way so that users can issue keyword
queries without or with little knowledge about the schema of the underlying
data. However, they often know what the data is about. Therefore, when they
issue a query, they often have some expectations about the answers in mind.
Since they may not know which schema is being used, their expectations are
independent from schema designs. If they already got some answers for this
schema, it could be surprised if different answers are returned when they try
another schema which represents the same data content. Thus, different
schemas of the same data content should provide them the same answers.
However, this is not the case for the existing LCA-based approaches as shown
in Example 1.

Running database: Consider the database with the ER diagram in Figure 1.
There are many ways to represent this database in XML. Figure 2 shows five
possible XML schema designs for this database. For simplicity, we do not show
attributes and values in these schemas. Each edge in the schemas corresponds
to a many-to-many relationship types between the two object classes.
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Figure 1: ER diagram of a database
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Figure 2: Equivalent XML schemas of the database in Figure 1

8 http://www.marklogic.com/
9 http://www.cs.toronto.edu/tox/



Example 1 (Schema dependence) Users may know a university database
about courses, lecturers, teaching assistants (TAs), students, and research
groups (R group)10, but they do not know what the schema looks like, i.e.,
which of the five schema designs in Figure 2 is used. When they ask for two
students (e.g., Q = {StudentA, StudentB}), beside information about the two
students, they may want to know some of the below:

– Ans1: the common courses that they both take,
– Ans2: the common research groups (R groups) that they both belong to,
– Ans3: the common lecturers who teach both of them,
– Ans4: the common teaching assistants (TAs) who teach and mark both of

them.

They are common ancestors in some schema(s): Ans1 in Schema 1, Schema
2 and Schema 3; Ans2 in Schema 5; Ans3 in Schema 2; and Ans4 in Schema
3. Therefore, they are all meaningful answers (probably with different ranking
scores). Different users may have different expectations. However, expectations
of a user should be independent from schema designs because he does not know
which schema is used. However, all five different schema designs provide five
different sets of answers by the LCA semantics. Particularly:

– for Schema 1: only Ans1 could be returned;
– for Schema 2: Ans1 and Ans3 could be returned;
– for Schema 3: Ans1 and Ans4 could be returned;
– for Schema 4: no answer;
– for Schema 5: only Ans2 could be returned.

The above example provides a strong evidence for our two following
arguments:

Firstly, meaningful answers can be found beyond common ancestors
because all kinds of answers Ans1, Ans2, Ans3 and Ans4 are meaningful.
However, if relying only on the common ancestor techniques, none of the five
schemas can provide all the above meaningful answers. For some schema,
answers from common ancestors may be better than the others, but returning
more meaningful answers would be better than missing meaningful ones.

A final answer obtained by LCA-based approaches includes two parts: a
returned node (LCA node) and a presentation of the answer, e.g., a subtree or
paths. Arguably, the presentation of an answer as a subtree may contain other
answers. For instance, for Schema 1, the subtree rooted at the common courses
(Ans1) that both students take may contain other kinds of answers (Ans2, Ans3,
Ans4). However, the LCA-based approaches do not explicitly identify them and
it may be hard for users to identify them because this presentation contains a
great deal of irrelevant information. Thus, it is necessary to identify and separate
them clearly.

Secondly, answers of XML keyword search should be independent from the
schema designs, e.g., Ans1, Ans2, Ans3 and Ans4 should be returned regardless

10
R group can be an object class with attributes: name, topics, leader, etc.



which schema is used to capture data. However, as can be seen, the LCA-based
approaches return different answer sets for different schema designs in Figure 2.

In practice, many real XML datasets have different schema designs such as
IMDb11 and NBA12. In IMDb, there are many ways to capture relationships
among actors, actresses, movies, and companies. In NBA, relationships among
coaches, teams, and players can also be captured in different ways. Moreover, due
to the flexibility and exchangeability of XML, many relational datasets can be
transformed to XML [12], and each relational database can correspond to several
XML schemas by picking up different entities as the root for the resulting XML
document.

Therefore, it necessitates to consider the above two arguments when
processing XML keyword search. However, to the best of our knowledge, no
current system satisfies the above two arguments, including keyword search
over XML graph.

Challenges. To determine what should be returned beside common ancestors is
a great challenge. First, the new answers must be reasonably meaningful. That
they must also cover possible answers returned by other alternative schemas
is even harder. After such kinds of answers are defined, another challenge is
how to construct an efficient index and how to find answers efficiently. Finding
common ancestors is efficient because the computation can be based on node
labels. However, this technique cannot be easily applied for finding other types
of answers.

Other problems of the LCA-based approaches. Let us call the discussed
problem where answers depend on the schema used to represent data content as
the problem of schema-dependent answers. This problem occurs when multiple
XML documents share the same data content. We find that even when we only
consider one XML document but not other equivalent XML documents, the
LCA-based approaches also have other problems. Particularly, they may also
suffer from the following problems.
– (P1) Meaningless answers: they may return answers without any other

information beside the input query keywords.
– (P2) Incomplete answers: they may return answers which do not contain

enough information about all objects related to a relationship attribute.
– (P3) Duplicated answers: they may return answers which provide the same

information due to duplicated objects.
– (P4) Missing answers: due to only search up from matching nodes, they may

miss meaningful answers appearing as descendant of those nodes.

We will discuss these problems in details in Section 3. In summary, the
problems of the LCA-based approaches we would like to solve in this paper can
be summarized in Figure 3. We study from the case where data content is
captured in only one XML document to the case where multiple XML

11
http://www.imdb.com/interfaces

12
http://www.nba.com



documents can share the same content by representing the content in different
ways. For the former, we handle family of problems of the existing XML
keyword search, including meaningless answers, missing answers, duplicated
answers, and incomplete answers. For the latter, we deal with the problem of
schema-dependent answers, which is the most challenging problem.

XML 
Keyword 

query

(P1) Meaningless answers

(P2) Incomplete answers

(P3) Duplicated answers

(P4) Missing answers

(P5) Schema-dependent answers

Single XML document
for the data content

Multiple XML documents 
sharing  the same data content

Figure 3: Problems of the LCA-based approaches to be solved

Our approach and contributions. We make the following contributions.

– Problems of the LCA-based approaches. We show that answers of the LCA-
based approaches depend on the schema design. In addition, we find that
the LCA-based approaches may miss meaningful answers, return meaningless
answers, incomplete answers and duplicated answers (Section 3).

– New semantics. We propose a new semantics for XML keyword search,
called CR (Common Relative), which provides common relatives as
answers. A common relative corresponds to a common ancestor in some
equivalent schema(s). The CR semantics not only improves the
effectiveness by providing more meaningful answers beyond common
ancestors, but also returns the same answer set regardless of different
schemas backing the same data content. So it is more reliable and stable to
users. The CR semantics can be applied for both XML documents with
and with no IDREFs. It helps solve the problems of dependent answers and
missing answers of the LCA-based approaches (Section 4).

– Labeling and matching. To solve the problems of meaningless answers and
incomplete answers, we introduce a new scheme of labeling an XML
document and a new scheme of matching a keyword to nodes in XML data
(Section 5).

– Indexing techniques. Unlike conventional inverted index where each keyword
has a set of matching nodes, to find common relatives efficiently, we need
to maintain a set of relatives for each keyword, which is much more difficult



to construct. To accomplish this index, we propose some properties and an
algorithm to identify relatives of a node effectively and efficiently (Section 5).

– Processing techniques. Unlike a common ancestor which appears at only
one node, a common relative may be referred by multiple nodes. Therefore,
we model data as a so-called XML IDREF graph by using virtual IDREF
mechanism, in which we assign a virtual object node to connect all instances
of the same object. We also discover the hierarchical structure of the XML
IDREF graph and exploit it to find common relatives efficiently. In addition,
our post-process helps filter out duplicated answers (Section 5).

– Experiment. The experimental results show the completeness, the
soundness, and the independence from schema designs of our CR
semantics. They also show the seriousness of problems of the LCA-based
approaches. In addition, they show our approach can find answers based on
the CR semantics efficiently (Section 6).

2 Background and Preliminary

2.1 LCA-based approaches

When XML documents do not contain IDREF, they can be modeled as trees.
Approaches to handle such documents are called tree-based approaches because
they are based on tree model. Inspired by the hierarchical structure of the tree
model, most of existing tree-based approaches are based on the LCA (Lowest
Common Ancestor) semantics, which was first proposed in XRANK [7]. By the
LCA semantics, for a set of matching nodes, each of which contains at least one
query keyword and each query keyword matches at least one node in this set,
the lowest common ancestor (LCA) of this set is a returned node. An answer is
a subtree rooted as a returned node (i.e., an LCA) or a path from the returned
node to matching nodes.

Course1

Student1

Course2

Student3

Root

(a part of  data w.r.t. Schema 1)

R_groupA R_groupA

LecturerA TA1 Student2

R_group2

LecturerA Student4

R_group3

Query1 = {student1, student2}
LCA returned node: Course 1

Query2 = {student1, student3}
LCA returned node: root

Figure 4: Illustration for the LCA semantics

For example, with the data in Figure 4, for query {Student1, Student2},
the returned node is Course1; and for for query {Student1, Student3}, the
returned node is the root of the data.



2.2 Object-Relationship-Attribute (ORA)-semantics

The term semantics has different interpretations. We defined the
ORA-semantics as the identifications of nodes in XML data and schema. The
following are some concepts of the ORA-semantics used in this paper. Readers
can find more information about the ORA-semantics in our previous works [18,
14, 13].

At schema level. An object class is an internal node representing a real world
entity. An object class has a set of object attributes to describe its properties.
Each object class has an object identifier (OID) to uniquely identify its instances.
Several object classes may be connected through a relationship type, which may
have a set of relationship attributes. For example, the ORA-semantics of the
schemas in Figure 2 includes:
– Lecturer, Course, TA, Student and R group are object classes.
– There are four many-to-many relationship types between object classes: each

corresponds to each edge connecting object classes.

At data level. Object, relationship, OID value and attribute value at data level
belong to object class, relationship type, OID and attribute at schema level
respectively. In an XML document, an object can have multiple instances, each
of which is represented by a group of nodes, starting at a tag w.r.t. object class,
followed by a set of attributes and their associated values. Among the nodes
describing an object instance, the one that belongs to an object class is called
an object node and all remaining nodes are called non-object nodes. An object
node is considered as the representative of an object and non-object nodes are
associated with the corresponding object node. Thus, in unambiguous contexts,
for simplicity, we use the object node to refer to the whole object instance. For
example, in the data in Figure 4, all nodes are object nodes because we already
associate all attributes to object nodes.

ORA-semantic vs. XML schemas. The ORA-semantics cannot be fully
captured in XML schemas such as XML Schema or DTD. In XML schemas,
relationships among objects cannot be captured, thus relationship attributes
and object attributes cannot be distinguished. In addition, OID of objects
cannot be fully captured either. XML schemas can only capture OID if it is
defined as ID. However, for the child objects of many-to-many relationships
without using ID/IDREF, OID cannot be expressed as ID because the child
objects are duplicated. Furthermore, these schemas cannot distinguish between
object classes and multi-valued attributes because they are both represented as
star (*) nodes.

ORA-semantic discovery. Discovering the ORA-semantics involves
determining the identification of nodes in XML data and schema. If different
matching nodes of a keyword have different identifications, then that keyword
corresponds to different concepts of the ORA-semantics. The recall and



precision of discovery of the ORA-semantics in XML data and schema is high
(greater than 94.5% for both recall and precision) in our previous work [18].
Thus, for this paper, we assume the task of discovering the ORA-semantics has
been done. In this paper, we focus on exploiting the ORA-semantics to handle
problems of the LCA-based approaches, especially the problem of
schema-dependence.

2.3 Other concepts

A reasonable schema is a schema in which an implicit relationship type must
be represented by adjacent object classes, i.e., there is nothing between object
classes of a relationship type. The same data content can have different
reasonable schema designs (or schemas in short). For example, to transform
from a relational database to XML, there are different schema designs, each of
which corresponds to a way that XML organizes the data. These schemas are
equivalent in the sense that they capture the same information in different
ways. We call databases corresponding to these equivalent schemas and
represent the same data content as equivalent databases.

In an XML document with IDREFs, an object node which is referred by
some other object node(s) by IDREFs is called a referred object node. In other
words, a referred object node is an object node having IDREFs as its incoming
edges.

In an XML data tree, the path of a node u, denoted as path(u), is the path
from the root to u. All nodes having the same path belong to the same object
class.

3 Other problems of the LCA-based approaches

Beside the serious schema-dependence problem of the LCA-based approaches
discussed in Section 1, those approaches suffers from the following problems:
– (P1) meaningless answers
– (P2) incomplete answers
– (P3) duplicated answers
– (P4) missing answers

In this section, we systematically point out these problems of the LCA
semantics by comparing answers returned by the LCA semantics and answers
that are probably expected by users. We will also discuss the reason behind
each problem.

We will illustrate these problems by example at data level. We take the
data w.r.t. Schema 2 for illustration, though the data of other schemas also
provides the same problems. For simplicity, we only use part of the data
containing information about lecturers, courses and students as in Figure 5. A
more detailed schema which contains OID and attributes of object classes is
also provided. In this schema, grade is an attribute of the relationship between
Course and Student rather than an attribute of Student.



Since we use an object node as the representative for a whole object including
attributes and values, we denote an object node using Object class (Dewey

label) (e.g., Lecturer(1.1)). Since an object can be identified by its object
class and OID, we denote it <object class: OID> (e.g., <Lecturer:L1>).
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Figure 5: Part of data w.r.t. Schema 2 in Figure 2

3.1 (P1) Meaningless answer

Consider query {Albert}. The LCA-based approaches return value node Albert
(under Lecturer(1.1)), or some approaches return attribute Sname and value
node Albert. However, such answers are not useful since they do not provide
any supplementary information about Albert. This happens when a returned
node is a non-object node, e.g., an attribute or a value.

The LCA-based approach cannot differentiate object and non-object nodes.
Returning non-object node is not meaningful whereas returning object node is
meaningful because it contains other associated attributes and values.
Therefore, the expected answer should be forced up to Lecturer(1.1), the
object containing Albert since it contains supplementary information related
to Albert such as StaffID, Age and Gender.

Several works such as XSeek [20], XReal[1], and [23] have attempted to solve
the problem of meaningless answers by identifying entity (object), and they can
obtain more meaningful answers in several cases. However, these works do not
use OIDs as ours, and thus they do not always distinguish an object from an
aggregation node, a composite attribute, and a multi-valued attribute. As a
result, they cannot avoid meaningless answers for many scenarios.

3.2 (P2) Incomplete answer

Suppose that in Figure 5, the relationship between Course and Student has an
attribute grade to describe grade of a student for a particular course. Consider



query {Bill, B} where Bill matches student(1.1.2.1) and
student(1.2.2.1); and B matches value of relationship attribute grade under
those two students. Note that two matching nodes of Bill are duplicated
because they both refer to <Student:S2>.

The LCA-based approaches return Student(1.1.2.1) and
student(1.2.2.1) (and attributes under them) as answers. There are two
problems with these answers. First, these answers are not correct because ‘B’

grade is not an attribute of student, but it is grade of a student taking the
course instead, i.e., Grade is an attribute of the relationship between Student

and Course. With these answers, users do not know which course the students
got grade ‘B’.

Second, these answers seem the same but in fact ‘B’ grade under
Student(1.1.2.1) is the grade of student named Bill (<Student:S2>) taking
course XML, while ‘B’ grade under Student(1.2.2.1) is for the same student
(<Student:S2>) taking course DB. Thus, despite of looking exactly the same,
these answers are not duplicated.

The LCA-based approaches face these problems because they do not consider
the ORA-semantics. Thus, they cannot distinguish between an object attribute
and a relationship attribute. Once we know that grade is an attribute of the
relationship between Student and Course, the proper answers should be moved
up to include courses taken by the queried students.

3.3 (P3) Duplicated answer

A common problem with XML is that objects can be duplicated in multiple
places to achieve a tree structure when there exist many-to-many or many-to-
one relationships. Queries which match each of these duplicate instances, as
will be discussed in this section, often return overwhelmingly large result sets.
Suppose a course is taken by 300 students in an XML document where student
is parent of course (as Schema 4 and Schema 5 in Figure 2), then when a query
about this course is issued, users get 300 duplicated answers about the same
course. Therefore, it is necessary to filter out duplicated answers, which are
answers provide the same information due to duplicated objects.

The duplication of objects is due to many-to-many (m : n) or many-to-one
(m : 1) relationships because in such relationship, the child object is duplicated
each time it occurs in the relationship. For example, in the XML data in Figure
5, since the relationship between lecturer and course is m : n, a course can be
taught many lecturers such as <Course:CS1> about Cloud is taught by both
<Lecturer:L1> and <Lecturer:L2>. Thus, the child object (<Course: CS1>) is
duplicated as two object nodes Course(1.1.1) and Course(1.2.1).

Now we consider examples of duplicated answers due to duplicated objects.
Formal definition of duplicated answers will be introduced in Section 5.6.
Consider query {Course, Cloud}. The LCA-based approaches will return
Course(1.1.1) and Course(1.2.1) as two answers. However, we can see that
these answers refer to the same object because they belong to the same object
class Course and have the same object ID value CS1. As such, it is enough to



return this object just once. The LCA-based approaches do not discover such
duplicated answers because they cannot detect the duplication of objects
having multiple occurrences.

Importance of detecting duplicated answers. Detecting duplicated
answers eliminates users’ irritation due to overwhelming answers. More
importantly, detecting duplicated answers (or detecting duplicated objects in
particular), is very necessary in other applications. For instance, the
computation for group-by and aggregate functions, which is discussed in [13],
cannot be correct without considering duplication.

For example, to count the number of students taught by lecturer Albert, a
user can issue a query {Andy, count student} to the data in Figure 5.
Without considering duplicated objects, the number of students is three.
However, object node Student (1.2.1.1) and object node Student

(1.2.2.2) refer to the same object <Student:S1>. Hence, only two students
are taught by lecturer Andy.

3.4 (P4) Missing answer

Consider query {XML, DB} where the query keywords match two courses,
Course(1.1.2) and Course(1.2.2) respectively. The LCA-based approaches
return the document root for this query, which is definitely not meaningful for
users. The LCA-based approaches only search up to find common ancestors,
but never search down to find common information appearing as their
descendants. In the considered data, Student(1.1.2.1) and
Student(1.2.2.1) refer to the same student <Student:S2> though they
appear in different places. Therefore, they should be returned as answers.
Intuitively, this is the student taken both courses. Due to unawareness of
semantics of object, the LCA-based approaches can never recognize such
duplicated information and thus they miss this meaningful answer.

Once the problem of schema dependence is solved, the problem of missing
answers is also solved. This is because an answer set which is independent schema
designs provides answers beyond common ancestors, including missing common
descendants.

4 The CR semantics

This section introduces our proposed semantics, called CR (Common Relative),
which can return more meaningful answers beyond LCAs of matching nodes
and the returned answer set is independent from schema designs. For ease of
comprehension, we first present intuitive analysis about the CR semantics by
example.



4.1 Intuitive analysis

We analyze the problem in Example 1 and discuss how to find all types of
answers with only one particular schema. For simplicity, figures used for
illustration in this section provide intuitive information and only contain object
nodes, without attributes and values. For example, for the left most figure in
Figure 6, StudentA means that this node together with the corresponding
attributes and values represent information about studentA; or common

R group represents the research group that both StudentA and
StudentB belong to.

Example 2 (Using one schema to find all types of answers) Recall that
in Example 1, there are four types of meaningful answers for a query about two
students (e.g., StudentA and StudentB). Each type of answers can be returned
by the LCA semantics for some schema(s) in Figure 2. They are: Ans1 (common
courses) from Schema 1, Schema 2 and Schema 3, Ans2 (common R groups)
from schema 5, Ans3 (common lecturers) from Schema 2, and Ans4 (common
TAs) from Schema 3. Now we discuss how a database w.r.t. a given schema can
return all the above answers. We take the data of Schema 1 for illustration.

For Ans1 (common courses): this is a common ancestor of the two students
and Schema 1 can provide it.

For Ans2 (common R groups): Schema 1 cannot provide it, but Schema 5
can provide it. Figure 6 shows that in Schema 1, common R groups appear as
descendants of the two students. If these descendants are connected by a referred
object node via IDREFs, Ans2 can be found at that referred object node. We call
that referred object node as a common descendant.

Student A

common 
R_group

Student B
common 
R_group

Student A

common 
R_group

Student B

common 
R_group

Student A

common 
R_group

Student B Referred
common 
R_group

IDREF

(a) (a part of  data w.r.t. Schema 5) (b) (a part of  data w.r.t. Schema 1) (c) (a part of  data with IDREFs w.r.t. Schema 1)

Figure 6: Illustration for Ans2 (common R groups)

For Ans3 (common lecturers): Schema 1 cannot provide it, but Schema 2
can provide it. Figure 7 shows that in Schema 1, common lecturers appear as
relatives of the two students (formal definition of relative is given in Section 4.2).
If these relatives are connected by a referred object node via IDREFs, Ans3 can be
found at that referred object node. We call that referred object node as a common
relative.

Ans4 (common TAs) is similar to Ans3 (common lecturers).
As can be seen, all types of answers can be found at common ancestors,

common descendants, or common relatives. Although we only take the data of
Schema 1 for illustration, the data of other schemas have similar results when
analyzed.
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Figure 7: Illustration for Ans3 (common lecturers)

4.2 The CR semantics

Before introducing the new semantics, let us present some properties which
makes the semantics meaningful. Consider a chain C: < u1, u2, . . . , un > of
object nodes, where ui and ui+1 have parent-child or child-parent relationship
in an XML data D. We have the following properties related to C.

Property 1 If C is a parent-child chain of object nodes, i.e., ui is the parent
of ui+1 ∀i, then all nodes on the chain C have different node paths.

The above property is obvious. Recall that node path (or the path of a node)
presented in Section 2 is the path from the root to that node. If an object
class has multiple occurrences in XML schema, its instances may corresponds to
different node paths.

Property 2 The chain C has a corresponding chain C ′: < u′1, u
′
2, . . . , u

′
n > of

object nodes in a database D′ equivalent to D, where u′i refers to the same object
with ui.

Property 2 can be illustrated in Figure 8, in which the data chain
< u1, u2, u3, u4 > (in the most left) has three corresponding chains
< u′1, u

′
2, u
′
3, u
′
4 > in its equivalent databases. Combining Property 1 and

Property 2, we have Property 3.
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u4’
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u2’

u3’
u2’

u3’ u3’
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Figure 8: The “same” chain w.r.t. different equivalent databases

Property 3 If C is a parent-child chain, then there always exists a
corresponding chain C ′: < u′1, u

′
2, . . . , u

′
n > of object nodes in another database

D′ equivalent to D, where u′i refers to the same object with ui ∀i , such that all
object nodes u′i’s in the chain C ′ have different node paths.



We call nodes u′i’s in the chain C ′ in Property 3 are relatives of each other.
It has different meanings from relatives in family relationship and it is defined
as follows.

Definition 1 (Relative) In an XML data tree, an object node u is a relative
of an object node v if there is a chain of object nodes from u to v where all object
nodes on that chain (including u and v) have different node paths.

By Definition 1, ancestors and descendants of a node u are also relatives of
u. However, siblings of u may or may not be relatives of u, depending on the
node path of u and that of its siblings. The following properties are inferred from
Definition 1 and Property 3.

Property 4 If u is a relative of v in an XML database D, then there exists
some XML database D′ equivalent to D such that u′ is an ancestor of v′, where
u′ and v′ refer to the same object with u and v respectively.

Property 5 If w is a common relative of u and v in an XML database D,
then there exists some XML database D′ equivalent to D such that w′ is a
common ancestor of u′ and v′, where w′, u′ and v′ refer to the same object
with w, u and v respectively.

The proof of Property 5 is given in Appendix. By Property 4, a relative
corresponds to an ancestor in some equivalent database(s). More generally, a
common relative corresponds to a common ancestor in some equivalent
database(s) as stated in Property 5. Since a common ancestor can provide a
meaningful answer, a common relative should correspond to an answer. Based
on all discussions above, we propose the novel semantics for XML keyword
search as follows.

Definition 2 (The CR (Common Relative) semantics) Given a keyword
query Q = {k1, . . . , kn} to an XML database, an answer to Q is a pair 〈c,K〉
where:
– K =

⋃n
1 ui where object node ui matches ki.

– c is a common relative of K.

Although the number of relatives of an object node may be large, the number
of relatives which is potential to be common relatives is much fewer as will be
discussed in Property 7 in Section 5.3. We only index such potential relatives,
not all relatives. This saves index space dramatically.

We consider all common ancestors (common ancestors are a part of common
relatives) of matching nodes instead of filtering out common ancestors which are
less relevant as the LCA semantics and its extensions such as SLCA, ELCA do.
This is because in many cases, this filter loses many meaningful answers. For
example, consider a query about two students. For Schema 2 in Figure 2, if two
students take the same course, then the lecturer teaches that course cannot be
returned as an answer. However, common lecturer of two students is meaningful
to users.



4.3 The CR semantics for XML document with IDREFs

XML allows the notion of reference links from a node to other nodes not its
children, using an IDREF (ID Reference) mechanism. In this section, we will
investigate the case where an XML document contains IDREFs. Particularly,
we will extend the CR semantics discussed in Section 4.2 for XML documents
with IDREFs.

Definition 3 (Relative-extend) In an XML data tree, a node u (an object
node or a referred object node) is a relative of a node v (an object node or a
referred object node) if there is a chain of nodes (object nodes or referred object
nodes) from u to v such that for every two nodes on that chain, either (1) they
have different node paths, or (2) they are referrer and referee of each other.

Recall that a referred object node is an object node which is referred via
IDREFs by some other object node(s). The latter is called its referrer(s).
Intuitively, the condition in Definition 1 is extended: the referred object node is
not considered if its referrer(s) are already considered. We also have the
following property.

Property 6 If an object node u is a relative of an object node v, then u is also
a relative of the referred object node of v.

With Definition 3 and Property 6, Property 4 and Property 5 keep valid.
Therefore, Definition 2 is also valid for XML documents with IDREFs. Let us
illustrate by the following example.

Course1

Student1

Course2

Student3

Root

(a part of  data with IDREFs w.r.t. Schema 1)

R_groupA
_(Ref1)

R_groupA
_(Ref2)

LecturerA 
_(Ref1)

TA1 Student2

R_group2

relative of Student1

LecturerA
_(Ref2)

relative of Student3

Student4

R_group3

Referred_
R_groupA

Referred_
LecturerA

Query: {student1, student3}

Ans1: Referred_R_groupA
Ans2: Referred_LecturerA

Figure 9: Illustration for query {Student1, Student3}

Example 3 Consider the data in Figure 9. For simplicity, we only show object
nodes in the data and all attributes and values are associated to the
corresponding object nodes. In this data, we use ID/IDREFs to connect all
instances of the same object. Particularly, Referred LecturerA is referred by
LecturerA (Ref1) and LecturerA (Ref2) by IDREFs; and
Referred R groupA is referred by R groupA (Ref1) and R groupA (Ref2) by



IDREFs. Noted that an XML document can contain both objects with
duplication and objects with IDREFs. For query {Student1, Student3}, by
Definition 3, we have:
– Relatives of Student1: Student1, Course1, TA1, LecturerA (Ref1),

Referred LecturerA, R groupA (Ref1), and Referred R groupA.
– Relatives of Student3: Student3, Course2, LecturerA (Ref2),

Referred LecturerA, R groupA (Ref2), and Referred R groupA.
Therefore, the common relatives of the two students are Referred LecturerA,
and Referred R groupA which provide two answers for the query.

We can also see that Referred LecturerA is a relative of Student1 and
Student3; and its referrers, LecturerA (Ref1) and LecturerA (Ref2), are also
relatives of Student1 and Student3 respectively (Property 6). It is similar to
Referred R groupA.

Later, in Example 4, we will show that by applying Property 7 (discussed in
Section 5.3), the lists of relatives of keywords are much shorter. This helps save
index space and improve efficiency of the search.

5 Our semantics-based approach

5.1 Overview of our approach

To handle five discussed problems of the LCA-based approaches, we propose a
semantics-based approach, in which we exploit the ORA-semantics (introduced
in Section 2.2) and apply the CR semantics. In particular:

(P1) meaningless answers and (P2) incomplete answers. To solve (P1)
and (P2), we use all concepts of the ORA-semantics such as object class,
object, non-object, object attribute and relationship attribute. We introduce
the new way of labeling in which we assign all attributes and values the same
label with the corresponding object, and the new way of matching for query
keywords, especially for relationship attributes and their values. More details
will be discussed in Section 5.4.

(P3) duplicated answers. To solve (P3), we also need the ORA-semantics
to discover duplicated objects, which is defined based on object class and OID.
This problem will be post-processed in Section 5.6.

(P4) missing answers. The CR semantics returns common ancestors,
common descendants (special cases of common relatives) and common relatives
as answers. Therefore, it already includes missing answers. Hence, the CR
semantics also solves (P4).

(P5) schema-dependent answers. Among problems of the LCA-based
approaches, (P5) is the most challenging problem. To solve (P5), we follow our



proposed CR semantics, which returns common relatives for a set of matching
object nodes. Finding common relatives is much more challenging than finding
common ancestors.
– First challenge: while the set of ancestors of a node can be easily identified

based on the hierarchical structure of XML, the set of relatives of a node are
difficult to identify.

– Second challenge: Given a set of matching nodes, unlike a common ancestor
which appears as only one node, a common relative may be referred by many
different nodes. Therefore, it requires more complex techniques for indexing
and searching to find common relatives.
To address the first challenge, we discover some properties about the

relationships of relatives. These properties enable us to introduce an effective
algorithm to pre-compute all relatives of a node (Section 5.3).

To address the second challenges, we model an XML document as a
so-called XML IDREF graph, in which all instances of the same object are
connected via IDREFs by a referred object node. Thereby, all instances of a
common relative are also connected by a referred object node (Section 5.2).
Another difficulty appears when searching over an XML IDREF graph.
Searching over graph-structured data has been known to be equivalent to the
group Steiner tree problem, which is NP-Hard [6]. To solve this difficulty, we
discover that XML IDREF graph is a special graph. Particularly, it is an XML
tree (with parent-child (PC) edges) plus a portion of reference edges. A
reference edge is an IDREF from a referring node to a referred node. Although
these nodes refer to the same object, we can treat them as having a
parent-child relationship, in which the parent is the referring node and the
child is the referred node. This shows that XML IDREF graph still has
hierarchy, which enables us to generalize efficient techniques of LCA-based
approaches (based on the hierarchy) for searching over an XML IDREF graph.
Particularly, we use ancestor-descendant relationships among nodes for
indexing (Section 5.3 and Section 5.4). Thereby, we do not have to traverse the
XML IDREF graph when processing a query (Section 5.5).

5.2 Data modeling

We propose virtual ID/IDREF mechanism, in which we assign a virtual referred
object node as a hub to connect all instances of the same object by using virtual
IDREF edges. The resulting model is called an XML IDREF graph. Intuitively, it
is ID/IDREF mechanism, but we do not modify XML documents and IDREFs
are virtually created just for finding common relatives. In the XML IDREF
graph, there may co-exist both real and virtual IDREFs. For example, in the
XML IDREF graph in Figure 9, LecturerA (Ref1) and LecturerA (Ref2) are
instances of the same object and there are two virtual IDREFs to connect them
with the virtual object node Referred Lecturer A.

To generate an XML IDREF graph from an XML document, we need to
detect object instances of the same object. Since an object is identified by object
class and OID, two object instances (object nodes as their representatives) are



considered as the same object if they belong to the same object class and have the
same OID value. In many cases, object classes (e.g., Lecturer, Course, Student,
TA and R group in Figure 2) and OIDs are directly available, because XML was
initially designed based on them. When this is not the case, these values can be
discovered from XML by our previous work [18], which achieve high accuracy
(greater than 98% for object classes and greater than 93% for OIDs). Thus, we
assume object classes and OIDs are available.

5.3 Identifying relatives of a node

To facilitate the search, we identify the set of relatives of a node in advance
and maintain an index for the set of relatives for each object node. To solve
challenges of identifying such sets, we propose the following properties about
the relationships of relatives. Note that, as discussed in Section 5.2, the data is
modeled as an XML IDREF graph which still has hierarchy. Thus, it contains
ancestor-descendant relationships among nodes.

Property 7 Among relatives of an object node u, potential common relatives of
u and other object node(s) can only be ancestors of u or relatives of u which are
also referred object nodes, i.e., object nodes with IDREFs as incoming edges.

We discover that not all relatives can become common relatives. A common
relative of more than one node must be able to connect multiple nodes. Thus, it
can only fall into cases in Figure 10. We can ignore Case 3 because u is already
the common ancestor of u and v in this case. Therefore, to be a potential common
relative, a relative of a matching object node u must be u, or an ancestor of u,
or a relative of u which is also a referred object node. Thereby, this saves index
space significantly and therefore improves the efficiency of the search as well.

w

vu

(2) (w is common 
ancestor of u and v)

u

w

v
(3) (w is an descendant 
of u and ancestor of v)

w

vu_ref

w u

v_ref

vu

u_ref

(4) (w is a common relative 
which is a referred object node)

(5) (w is an ancestor of v 
and a relative of u which is 

a referred object node)

. w
vu

(1) (w, u, v are 
the same)

Figure 10: Cases which w is a common relative of u and v

Example 4 Recall Example 3 with Figure 9 to find answers for query
{Student1, Student3}. By Property 7, the set of relatives of the keywords which
can be potential common relatives are:
– For Student1: Student1, Course1, Referred LecturerA and

Referred R groupA
– For Student3: Student3, Course2, Referred LecturerA and

Referred R groupA



where Student1 and Student3 are matching object nodes; Course1 and Course2
are ancestors of matching nodes; and Referred LecturerA and
Referred R groupA are referred object nodes. The common relatives are
Referred LecturerA and Referred R groupA. As can be seen, we can get the
same answers as in Example 3 while the sets of relatives of keywords is much
fewer. TA1, LecturerA (Ref1) and R groupA (Ref1) (relatives of Student1);
and LecturerA (Ref2) and R groupA (Ref2) (relatives of Student3) are not
considered because they cannot be a common relative.

Property 8 Consider two sets S1 and S2 where (1) each set contains all object
nodes of the same node path, (2) the node paths w.r.t. these two sets are different,
and (3) these sets do not contain referred object nodes and are sorted by document
order. If ui ∈ S1 is a relative of vj−1 ∈ S2, but not a relative of vj ∈ S2, then ui

will not be a relative of vk ∈ S2 ∀k > j.

This is because node ui ∈ S1 can have many relatives in S2, but these relatives
are continuous in S2 because the sets are sorted by document order as illustrated
in Figure 11. Thus, instead of checking all nodes in S2, we can proactively stop
the checking soon thanks to Property 8.

ui ui+1

vj... vj+1…. ...vj-1 vn

ui-1

v2v1 ….

S1

S2

(if ui is a relative of vj-1 but not a relative of vj, 
then it will not be a relative of vj+1  afterwards)

Figure 11: Illustration for Property 8

Property 9 In XML data, two nodes u and v are relative if and only if the path
of their LCA corresponds to the path of the LCA of their schema nodes in XML
schema. In other words, we have:
path(LCA(u, v)) = path(LCA(schema(u), schema(v)))↔ relative(u, v) = true
where schema(u) is the corresponding node in XML schema of node u.

For example, in Figure 9, we have: path(Course1) = path(Course2) =
root/Course; and path(Student1) = root/Course/Student. Therefore, we have:
– path(LCA(Student1, Course 1)) = root/Course =

path(LCA(schema(Student1), schema(Course 1))). Thus, Student1 and
Course 1 are relatives.

– path(LCA(Student1, Course 2)) = root 6= path(LCA(schema( Student1),
schema(Course 2))) = root/Course. Thus, Student1 and Course 2 are not
relatives.
Property 9 is used to construct the set of relatives of a node efficiently. We

provide the proof of this property in Appendix.



Based on all the discussions above, we design an algorithm for constructing of
the set of relatives of object nodes in Algorithm 1. For an object node u, we only
consider nodes having different node path with path(u) thank to Definition 1.

Algorithm 1: Find relatives of object nodes

Input: All object nodes in an XML data
Output: The set of relatives Rel(u) of each object node u

1 for each object node u in the data do
2 for each node path p 6= path(u) ( //Def.1) do
3 vfirst ← find the first relative of u
4 for each node v after vfirst having node path p do
5 if path(LCA(u, v)) is path(LCA(schema(u), schema(v))) ( //Prop

9) then
6 flag = 1;
7 if v is an ancestor of u ( //Prop 7) then
8 Add v to Rel(u)

9 else
10 (//Prop 7)
11 ref(v) ← object node referred by v
12 if ref(v) is not in Rel(u) then
13 Add ref(v) to Rel(u)

14 else
15 if flag = 1 then
16 flag = 0;

17 break (for non-referred nodes) //Prop8

Space complexity. The space complexity for index is N×(H+R) where N
is the number of real object nodes in the XML IDREF graph; H is the maximum
number of ancestors of a real object nodes, which is equal to the height of
the XML IDREF graph (XML IDREF graph still has hierarchy); and R is the
maximum number of referred object nodes which are referred by the relatives
of a real object node. N is much smaller than the number of nodes (including
attributes and values) in an XML data. H is usually a very small number. Thus,
the space for indexing is reasonable.

5.4 Labeling, matching and indexing

Labeling. We only label object nodes. All non-object nodes are assigned the
same label with their corresponding object nodes. Thereby, the number of
labels is largely reduced. We use number instead of Dewey for labeling because
computation on number is faster than on Dewey since a Dewey label has



multiple components to be accessed and computed. Each virtual node is also
assigned a label which succeeds labels of real nodes.

By assigning the same label for all nodes of an object, we associate all
attributes and values to the corresponding object nodes. Thereby, only object
nodes can be returned as CRs. Therefore, we can avoid meaningless answers.

Matching. To solve the problem of incomplete answers (when queries related
to relationship attributes), we exploit the ORA-semantics to distinguish a
relationship attribute and an object attribute. An object attribute belongs to
an object while a relationship attribute or its value belongs to a relationship
between/among objects, not just belong to the lowest object (of the
relationship) where it appears as the child. Once relationship attributes are
identified, we re-define the matching of query keywords as follows.

If a keyword k matches a relationship attribute value u, then k is treated
as matching all objects participating in the relationship which u belongs to.
Similarly, if a keyword k matches a relationship attribute name u, then k matches
all object classes participating in the relationship type which u belongs to.

By this matching, when a query contains a relationship attribute (or its
value), it is considered as related all objects involved in the relationship which the
attribute belongs to. Therefore, we can avoid incomplete answers when handling
relationship attributes because those objects are included in final answers.

For example, in query {Bill, B}, ‘B’ has two matches under
student(1.1.2.1) and student(1.2.2.1). Since ‘B’ is the value of a
relationship attribute, we consider grade ‘B’ under student(1.1.2.1)

matches course(1.1.2) as well. It is similar to the other grade ‘B’ under
student(1.2.2.1). As a result, the two answers contains two courses as shown
in Figure 12.
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Student
1.1.2.1

SNo

S2

Name

Bill

Code

CS2

grade

B

Title

XML

Course
1.2.2

Student
1.2.2.1

Name

Bill

SNo

S2

Code

CS3

Title

DB

grade

B

(a) Answer 1 (b) Answer 2

Figure 12: Answers for query {Bill, B}

Indexing. Each keyword k has a set Rel(k) of relatives of real object nodes
matching k. We have Rel(k) =

⋃
Rel(ui) where ui is an object node matching



k and Rel(ui) is the set of relatives of ui. ui must be an object node because
of our labeling scheme, which helps reduce the index size dramatically. ui is a
real node because virtual nodes, which are created only for connecting instances
of the same object, do not contain contents. To identify Rel(ui), we follow the
properties and algorithm introduced in Section 5.3.

5.5 Processing

Thanks to the index where we already have the set of relatives of each keyword,
the processing of our approach is very efficient as follows. Consider a query
Q = {k1, . . . , kn}. Let CR(Q) denote the set of common relatives of Q. We
have CR(Q) =

⋂n
1 Rel(ki), where Rel(ki) denotes the set of relatives of nodes

matching keyword ki. Therefore, to find CR(Q), we compute the intersection of
sets Rel(ki)’s;

The computation for set intersection can leverage any existing fast set
intersection algorithms. The computation of set intersection has been used to
find SLCA and ELCA in [25] and has been shown to be more efficient than the
traditional computation based on common prefix of labels when dealing with
XML tree.

5.6 Post-processing: removing duplicated answers

Duplicated answers are filtered out at the post-processing step. By Definition 2,
an answer for a query is defined as 〈c,K〉 where K is a combination of matching
object nodes and c is common relative of K. Based on this definition, we define
duplicated answers as follows.

Definition 4 (Duplicated answers) Two answers 〈c1,K1〉 and 〈c2,K2〉 are
duplicated if (1) c1 and c2 refer to the same object (i.e., they have the same
OID); and (2) K1 and K2 refer to the same set of objects (i.e., for each object
node u in K1, there exists an object node v in K2 such that u and v refer to the
same object).

Detecting duplication. If there exists a m : n or m : 1 relationship type
between object classes A and B, then for all object classes appearing as B
or the descendants of B, the objects of those classes may have duplication.
Otherwise, with no m : n or m : 1 relationship type, duplication does not happen.
Therefore, to detect duplication, we first identify the possibility of duplication
by checking m : n and m : 1 relationship types. If there is no m : n and no m : 1
relationship type, we can determine quickly the objects which are not duplicated.
Once we determine that an object is possibly duplicated, we determine whether
two objects (of the same object class) are really duplicated by checking whether
they have the same OID.



5.7 Output presentation

To avoid irrelevant information, we present an answer as a path from a returned
CR node to matching object nodes. Since we use XML IDREF graph without
users’ awareness, we do not show IDREFs in answers. Thus, a return CR is
converted to the set of its referrers if it is a virtual referred object node.

For example, for query {Cloud, DB} issued to the data in Figure 5, there
are two answers. Answer1 corresponds to the common relative lecturer Andy

(<Lecture:L2). Answer2 corresponds to student Anna <Student:S1>. Note that
In Answer2, both Student(1.2.1.1) and Student(1.2.2.2) represent student
Anna <Student:S1>. The outputs contain the paths from the returned nodes to
the matching object nodes of the issued query as shown in Figure 13.
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(a) Answer 1 (b) Answer 2

Figure 13: Output presentation of query {Cloud, DB}

If an answer is not related to all objects of a relationship, then the output
will not contain any relationship attributes of that relationship. For example, for
query {Student Bill}, the answer will not contain grade because this query
does not related to course. Intuitively, grade is not attribute of student, it is
attribute of the relationship between student and course. Therefore, if course is
not related to the query, that relationship should not be shown in the answer as
illustrated in Figure 14.
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Figure 14: grade is not included in the output of query {Student Bill}



6 Experiment

In this section, we evaluate the completeness, the soundness, the independence
from schemas of our proposed CR semantics. Before checking these properties of
the CR semantics, duplicated answers are filtered out. We consider both schemas
with no IDREF and with IDREFs. We also make a comparison between our
semantics and common ancestors, SLCAs and ELCAs [25]. In addition, we study
the percentage of queries suffering from each kind of problems of the LCA-based
approaches. Finally, we compare the efficiency of our approach with an LCA-
based approach. The experiments were performed on an Intel(R) Core(TM) i7
CPU 3.4GHz with 8GB of RAM.

6.1 Experimental setup

Dataset. We pre-processed two real datasets including IMDb13, and
Basketball14. We used the subsets with the sizes of 150MB and 86MB for
IMDb and Basketball respectively. In IMDb, there are many ways to capture
relationships between actors, actresses, movies, and companies. In Basketball,
relationships between coaches, teams, and players also can be captured in
different ways.

The ORA-semantics of dataset. We discovered the ORA-semantics for each
dataset by using the algorithms in [18]. To make sure the ORA-semantics we
have got is correct, we then manually checked and corrected the obtained ORA-
semantics. For example, the ORA-semantics of Basketball dataset is given in
Table 1. We have a similar table for IMDb dataset.

Table 1: The ORA-semantics of Basketball dataset

Object class OID Object attribute

Coach CoachID firstName, lastName

Team team name

Player ilkID firstName, lastName

Relationship type Relationship attribute

between Coach and Team Coach Team info (composite attribute) yearbetween Coach and Team Coach_Team_info (composite attribute), year, ….

between Player and Team Player_Team_info (composite attribute), year, gp

Creating equivalent databases. For each dataset, we manually designed all
possible schemas, both with no IDREF and with IDREFs. For example, there

13
http://www.imdb.com/interfaces

14
http://www.databasebasketball.com/stats download.htm
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(Schema 4: Schema 3 with IDREFs)
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Figure 15: Six equivalent schema designs of Basketball dataset

are three equivalent schemas with no IDREF for Basketball, corresponding to
picking up three different object classes (Coach, Team, Player) as the root of
the schema. There are three more equivalent schemas containing IDREFs,
corresponding to transforming from the three equivalent schemas with no
IDREF. As a result, we have six equivalent schemas for Basketball dataset as
shown in Figure 15. From the original databases, we automatically created the
corresponding database for each schema of each dataset.

Query set. We randomly generated 50 queries from document keywords. To
avoid meaningless queries, we filtered out generated queries which do not contain
any value keyword, such as queries contains only tags, or prepositions, or articles,
e.g., query {and, the, to}. 35 remaining queries include 20 and 15 queries for
Basketball and IMDb datasets respectively.



Compared Algorithms. We compared our approach with an LCA-based
approach to show the advantages of our approach over the LCA-based
approaches. We chose Set-intersection [25] because it processes two popular
semantics: SLCA and ELCA, because it is one of the most recent works, and
because it outperforms other LCA-based approaches in term of efficiency.

6.2 Completeness

The completeness describes whether our semantics can return all common
ancestors from all equivalent databases by using only one equivalent database.
To study the completeness, for each query, we calculated the ratio of the
number of CAs from all equivalent databases found in CRs from the original
database over the total number of CAs from all equivalent databases, i.e., A∩B

B ,
where A is the number of answers by our proposed CR semantics from only the
original database, and B is the number of all common ancestors (CAs) for all
equivalent databases. The checking has been done both automatically and with
user study.

Automatically. We based on Definition 5 to check whether the two answers
from equivalent databases are the same or not. We achieved the result of 100%
for Basketball and 100% for IMDb. This is because based on the properties and
definitions in Section 4.2, given a query Q to a database D, for any common
ancestor of Q in some database equivalent to D, there always exists a common
relative of Q in D.

Definition 5 (Answer-equivalent) Given an n-keyword query Q, two
answers of Q a1 = 〈c1,K1〉 in schema S1 where K1 = {u1, . . . , un}, and a2 =
〈c2,K2〉 in schema S2 where K2 = {v1, . . . , vn} are equivalent w.r.t. Q, denoted
as a1 ≡Q

a2 if
– c1 and c2 refer to the same object and
– ui and vi refer to the same object for all i.

User study. We asked 15 students in major of computer science to compare
answers from different equivalent databases. Although the information for these
answers are exactly the same by our Definition 5, they are represented in different
ways due to different schemas such as two answers in Figure 6(a) and 6(c) or two
answers in Figure 7(a) and 7(c). Thus, some users might think they are different.
Therefore, we would like to study how users think about them. Surprisingly, we
got the results of 100% for Basketball and 100% for IMDb from users. This
implies that users share the same opinions with us on the similarity of answers.

6.3 Soundness

The soundness describes whether all answers (CRs) returned from our
semantics can be common ancestors in other equivalent database(s). To study



the soundness, for each query, we calculated the ratio of the number of CRs
from the original database found in all CAs from all equivalent databases over
the total number of CRs from the original database, i.e., A∩B

A , where A and B
have the same meanings in Section 6.2. The checking was also done both
automatically and with user study. We compared the two answers in the same
manner with the discussion in Section 6.2.

We got the result of 100% for both Basketball and IMDb for automatical
checking. This is because based on the discussions in Section 4.2, for any common
relative of a query Q to a database D, there exists a common ancestor of Q in
some database equivalent to D. For user study, we also got the surprising results
of 100% for both Basketball and IMDb. This implies the agreements of users on
our theories.

6.4 Schema-independence

To study the independence of our CR semantics from schemas, we checked
whether the answer sets returned by the CR semantics from all equivalent
databases are the same or not. The result is the ratio of the number of answers
returned from all equivalent databases over the total number of distinct
answers from all equivalent databases. We also performed this checking both
automatically and with user study.

We achieved the result of 100% for Basketball and 100% for IMDb. This can
be explained because the completeness and the soundness of our semantics are
both 100%. This implies that for a query Q and two equivalent databases D and
D′. If Ans is an answer of Q in D, then there exists an answer Ans′ for Q in D′

such that Ans′ ≡
Q
Ans′ and vice versa. For user study, once again we got the

result of 100% for Basketball and 100% for IMDb.

6.5 Comparing with SLCA and ELCA
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Figure 16: Percentages of CAs, ELCAs, SLCAs in CRs

For a given query Q, We have CR(Q) ⊇ CA(Q) ⊇ ELCA(Q) ⊇ SLCA(Q).
We ran our approach to find CAs and CRs while we ran Set-intersection [25] to



find SLCAs and ELCAs. Figure 16 shows the percentages of CA(Q), ELCA(Q)
and SLCA(Q) in CR(Q) for the original databases. The results are similar for
the two datasets. As can be seen, CAs is just around one third of CRs, and
SLCAs and ELCAs are around 15% to 20% of CRs. This implies that our CR
semantics improves the recall significantly by providing much more meaningful
answers.

6.6 Statistics on problems of the LCA-based approaches

We investigated on the percentage of queries having each kind of problem of
the LCA-based approaches. We classify 35 generated queries into five categories,
including queries having (P1) meaningless answer, (P2) incomplete answers, (P3)
duplicate answer, (P4) missing answer, and (P5) schema-dependent answers.
Note that a query may suffer from more than one problem. For the problems (P1)
- (P4), we only consider on the original schema (e.g., Schema 1 of Basketball).

The statistics on the number of queries having each kind of problem and the
corresponding percentage are shown in Table 2 and Figure 17. Although Figure
17 can be inferred from Table 2, we show it for a more visual display.

Table 2: Statistics on the problems of the LCA-based approaches

Problems of 

the LCA‐based approaches

Number of 

queries
Percentage

Number of 

queries
Percentage

P1. Meaningless answers 4 20% 3 20%

P2. Duplicated answers 12 60% 10 66.7%

Basketball (20 queries) IMDb (15 queries)

p

P3. Incomplete answers 4 20% 2 13.3%

P4. Missing answers 10 50% 8 53.3%

P5. Schema‐dependent answers 16 80% 12 80%

As we can see that each kind of problems has a numerous queries involved
in, especially 80% queries suffer from the problem of schema-independent
answers. All queries containing only one keyword provide meaningless answers.
Queries containing relationship attribute (e.g., year in Basketball) return
incomplete answers. Queries related to lower objects (e.g., team, player in
Basketball) most likely will return duplicated answers, while queries related to
higher objects (e.g., coach, team in Basketball) usually miss answers. Since
both datasets have multiple designs, most of queries return different answers
for different schema designs, except the queries matching only one value.
However, such queries (matching only one value) return meaningless answers.
Therefore, we find that almost all queries issued to the considered datasets
suffer from at least one problem of the LCA-based approaches.
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6.7 Efficiency evaluation

The response time of our approach and Set-intersection [25] is shown in
Figure 18, in which we varied the number of query keywords and the number
of matching nodes. Although our approach has to process more matching
nodes because of the relatives, its response time is faster than the
Set-intersection because of two reasons. Firstly, by only labeling object nodes
and assign all non-objects nodes the same labels with the corresponding object
nodes, the number of matching nodes for a keyword query is reduced. Secondly,
Set-intersection has two phases for finding CAs and filtering some CAs to find
SLCAs and ELCAs. In contrast, the processing of our approach is only similar
to the first phase of Set-intersection.

7 Related work

LCA-based approaches. XRANK [7] proposes a stack based algorithm to
efficiently compute LCAs. XKSearch [24] defines Smallest LCAs (SLCAs) to be
the LCAs that do not contain other LCAs. Meaningful LCA (MLCA) [19]
incorporates SLCA into XQuery. VLCA [16] and ELCA [26] introduces the
concept of valuable/ exclusive LCA to improve the effectiveness of SLCA.
XReal [1] proposes an approach based on Information Retrieval techniques.
MaxMatch [21] investigates an axiomatic framework that includes the
properties of monotonicity and consistency. MESSIAH [22] handles cases of
missing values in optional attributes. Recently, XRich [14] takes common
descendants into account of answers.
Graph-based approaches. Graph-based approaches can be classified based on the
semantics such as the Steiner tree [5], distinct root [8] and subgraph [17, 11].
Later, [15] propose an approach to model XML data as a so-called OR graph.
For an XML document with ID/IDREF, graph-based approaches such as [17,
11] can provide more answers by following IDREFs. However, those graph-based
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Figure 18: Efficiency evaluation

approaches can do that only if XML documents contain ID/IDREF. Otherwise,
those graph-based approaches do not recognize instances of the same object and
may still miss meaningful answers.

Although extensive works have been done on improving the effectiveness, no
work can provides answers which are independent from schema designs, and their
returned answers cannot cover answers which can be found from other schema
designs.

Semantics-based XML keyword search. XSEarch [4] focuses on adding
semantics into query but the added semantics is for distinguishing a tag name
and a value keyword only. XSeek [20] and MaxMatch [21] infer semantics from
keyword query. They can only infer semantics of object since it is impossible to
infer any semantics of object ID, relationship and relationship attribute from a
keyword query. XKeyword [9] exploits semantics from the XML schema. XReal
[1], Bao et. al. [2] and Wu et. al. [23] proposed an object-level for XML
keyword search. However, all of these works only consider objects, but they do
not have the concepts of object ID, relationship and attribute. Therefore, they
can avoid at most the problem of meaningless answers but still suffer from all
other problems. Moreover, these works do not use OIDs as ours, and therefore
do not always distinguish an object from an aggregation node, a composite
attribute, and a multi-valued attribute. So they can only avoid meaningless
answers in certain scenarios.



Recently, ORGraph [15] discussed other problems of LCA-based approaches.
Nevertheless, this work transfers an XML document to a graph which is similar to
relational database, and follows Steiner tree semantics. Thus, it suffers from the
inefficiency and may return other kind of meaningless answers because matching
nodes may not be (or weakly) related.

8 Conclusion

Since XML has become more and more popular, keyword search in XML data
has attracted a lot of research interest. Besides structure, XML data does
contain semantics of objects, relationships between/among objects, and their
attributes (referred to as the ORA-semantics). However, existing works only
rely on the structure of XML but ignore such semantics. We have pointed out
that this causes some problems in XML keyword search, including the
problems of meaningless answers, incomplete answers, duplicated answers,
missing answers and especially schema-dependent answers.

To solve these problems, we exploited the ORA-semantics for the new way
of labeling and matching to avoid meaningless answers and incomplete
answers. Most importantly, we proposed a novel semantics called CR (Common
Relative), which returns all common relatives of matching nodes as answers.
Our proposed CR semantics not only provides more meaningful answers than
common ancestors, but these answers are independent from schema designs of
the same data content as well. Moreover, the CR semantics can be applied for
both XML document with and with no IDREF. To efficiently find answers
based on the CR semantics, we discovered some properties of relatives and
designed an algorithm to find relatives of a node effectively and efficiently.

Experimental results showed the seriousness of the problems of the
LCA-based approaches. They also showed that our CR semantics possesses the
properties of completeness, soundness and independence from schema designs
while the response time is faster than an LCA-based approach because we only
work with object nodes.
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APPENDIX

A Proof of Property 5
Proof. We can always choose object class of w as the root of an equivalent XML
schema, therefore, there always exists an XML document D′ in which w1 and
w2 are ancestors of u′ and v′ respectively, where w1, w2 refer to the same object
with w; and u′ and v′ refer to the same object with u and v respectively.

Since object class of w is the root of the equivalent XML schema, its objects
are not duplicated. Therefore, w1 and w2 must appear at the same object w′ in
D′ because they refer to the same object. Therefore, w′ is the common ancestor
of u′ and v′ in D′. �

B Proof of Property 9
Proof. If part: To prove If path, we prove that if
path(LCA(u, v)) = path(LCA(schema(u), schema(v))) then all nodes in the
chain between u and v have different node paths because then u and v are
relatives of each other. We use contradiction.

If there exists two nodes X and Y on the chain from u to v (u - . . . - X -
. . . - Y - . . . - v) such that X and Y have the same node path (X and Y can be
u and v), then X and Y cannot have ancestor-descendant relationship and the
nodes in the chain are as in Figure 19. Hence, X and Y are ancestors of u and
v respectively. Thus, path(X) and path(Y ) are ancestors of path(u) and
path(v) respectively. Therefore, LCA(u, v) = LCA(X,Y ) and
LCA(schema(u), schema(v)) = LCA(schema(X), schema(Y )) (1).

We also have path(LCA(X,Y )) 6= LCA(schema(X), schema(Y )) because X
and Y have the same node path (2).

From (1) and (2), we infer that path(LCA(u, v)) 6=
path(LCA(schema(u), schema(v))).

Therefore, if path(LCA(u, v)) = path(LCA(schema(u), schema(v))), then
there does not exist any two nodes two nodes X and Y on the chain from u to
v such that X and Y have the same node path. In other words, all nodes on the
chain u to v have different node paths. Therefore, by Definition 1, u and v are
relatives of each other.
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Figure 19: A chain u - . . . - X - . . . - Y - . . . - v (X and Y can be u and v)



Only if part: If u and v are relatives of each other, then all nodes on the chain
from u to v have different node paths as illustrated in Figure 19. Argue similarly
to the proof of the if path, for all pairs of nodes X and Y on the chain from u
to v such that X and Y are ancestors of u and v respectively, we have

LCA(u, v) = LCA(X,Y ) and
LCA(schema(u), schema(v)) = LCA(schema(X), schema(Y )) (3).

Moreover, for the highest node(s) X and Y in the chain from u to v (X and Y
can be the same), we have

path(LCA(X,Y )) = path(LCA(schema(X), schema(Y ))) (4).
From (1) and (2), we infer that

path(LCA(u, v)) = path(LCA(schema(u), schema(v))). �
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