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Abstract 

 Recently, several researchers have proposed incorporating rules into database systems. These 

rules typically embody several diverse concepts, eg. deductive rules, production rules, and 

authorisation rules. However, most systems treat these diverse concepts homogeneously. Their roles 

are often misunderstood because of this lack of distinction.  

 This paper clarifies the concepts of deductive rules, production rules, authorisation rules and 

integrity constraints and point out the essential differences among them. A framework for comparison 

is established. Several problems with current implementations of the rule mechanisms are 

highlighted. We also highlight the advantages and disadvantages of each of these concepts and the 

domains for which they are suitable.  

 
0 Introduction 

 Recently, several researchers have proposed incorporating rules in object-oriented database systems 

(OODBMSs)[6,25,9]. These rules capture additional semantics (knowledge) for the database. The rule 

mechanisms employed in these systems often embody several diverse concepts eg. deductive rules, 

production rules and authorisation rules. The different forms of rules have different functions. However, 

most systems treat these diverse concepts homogeneously. Their roles are often misunderstood because of 

this lack of distinction. 

 Deductive rules[21] provide a mechanism to derive data which are not explicitly stored in the 

database. This is the concept of virtual or derived data. Deductive rules are more powerful and expressive 

than relational views. However, support for deductive rules can be problematic with negative information 

and recursion. 
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 One of the areas where production rules have been successfully used is in the representation of 

domain knowledge in rule-based expert systems such as MYCIN[23], XCON[3] etc. Triggers and alerters 

(both are types of production rules) have been used to monitor and react to events occurring in 

databases[29, 6, 1]. In some OODBMSs eg. POSTGRES [25], triggers are also used to enforce integrity 

constraints. However, there exists integrity constraints which are very difficult to enforce using triggers.  

 In a deductive or relational database, integrity constraints are data dependencies which database states 

are compelled to obey [17]. These constraints represent knowledge which captures the business rules of 

the application domain. Different ways of representing integrity constraints within a logic formalism have 

been proposed[2, 5, 17], eg. tuple calculus, closed first order formula, clause etc. A database operation 

whose completion violates any integrity constraint should be denied. This has given rise to several 

proposals for integrity constraint checking[13, 16, 19]. An efficient form of incremental integrity 

constraint checking was proposed in [17]. 

 Authorisation rules [27] are used to control access to sensitive information (eg. salary). Access is 

denied if it leads to a violation of an authorisation rule defined in the database. 

 This paper has several contributions. Firstly, the differences among deductive rules, production rules, 

authorisation rules and integrity constraints are highlighted. We establish a framework against which this 

comparison can be made. Secondly, several problems with current implementations of these notions in 

OODBMSs are highlighted. Thirdly, the advantages and disadvantages of each of these concepts and the 

domains for which they are suitable are discussed. 

 Section 1 describes the framework used for our comparison. Section 2 compares each of these 

concepts in terms of the framework. Section 3 discusses the use of these concepts in some of the object-

oriented database systems eg. IRIS[12], POSTGRES etc. Section 4 points out the advantages and 

disadvantages of each of these concepts and diswusses the domains for which they are suitable. In section 

5, we summarise our comparison. Section 6 concludes the paper. 
 
 

1. Framework for comparison 

 We establish a framework against which to compare deductive rules, production rules, authorisation 

rules and integrity constraints. The basis for comparison in this paper is given in table 1. We discuss each 

of these factors in the subsequent sections and present a summary of our comparison in Section 5.  
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Criteria Description 

Underlying Theory Whether there is some underlying theory, eg logic 
upon which the concept is based  

Possible representations 
(Syntax)  

How the concept is represented syntactically 

Semantics The interpretation or meaning of the concept. 
Declarative or procedural aspects of the concept are 
discussed. 

Support for negation and 
recursion 

The support of these notions can enhance the 
expressiveness of these concepts. 

Optimisation Whether optimisation is possible. 

Control strategies Whether the evaluation strategy is forward chaining 
(bottom-up) or backward chaining (top-down). 

Rule activation how and when the rules are activated. 

Impact on the extensional 
database 

whether each activation adds to the extensional 
database 

Possible conflicts whether conflicts are possible within a set of each 
type of rules. 

Order of activation/ evaluation 
of rules 

whether there is an ordering of each rule within a rule 
set. The possibility of having a non-deterministic 
activation of rules is explored. 

  
    Table 1. 
  
  

2 Comparison of Concepts 

2.1 Syntax and Underlying Theory 

  In a deductive database, deductive rules comprises the intensional database and are usually 

represented by Horn clauses[18]. Horn deductive rules are based on first-order logic. Logic can be used as 

a uniform language for representing database schema, integrity constraints, views, data manipulation and 

as a programming language. For instance, the programming language Prolog[8] is based on a Horn clause 

subset of logic. Datalog[4] is another deductive rule-based language (in fact a subset of Prolog) designed 

specifically to interact with databases. 

 Examples 1 to 3 show the use of Horn clauses in schema representation, views and data manipulation 

respectively. Example 4 provides some integrity constraints using a logic formalism called IC-
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formula[17]. In [17], it was shown that an integrity constraint which involves universal quantifiers, 

existential quantifiers, negative conditions and/or disjunctive conditions can be expressed by an IC-

formula easily. IC-formula is more powerful and expressive than some of the other methods of 

representing integrity constraints, eg. tuple calculus, closed first order formula, clause [2, 5] etc. We refer 

the reader to [17] for a formal definition of IC-formula. 
 

Example 1: Schema representation. A schema using clauses is given below. This schema will be used in 

the rest of the paper. 
  PERSON (Ic#, Name, BirthDate, Address). 
  EMPLOYEE (Emp#, SalesAmt, Salary, Deptno). 
  MANAGES (Mgrno, Deptno) 
  SUPPLIER (S#, Sname, CompanyName). 
  PART (P#, Pname, Color). 
  SUPPLIES (S#, P#, Qty). 
  PARENT (Parent_Name, Child_Name). 
 

Example 2: Views. We can use clauses to define views. For example,  
 HIGH_SAL_EMP(Emp#, Salary):- 
   EMPLOYEE(Emp#, SalesAmt, Salary), 
    Salary >= 30000. 
 

defines a view of highly paid employees. In Prolog, it is legal to define another EMPLOYEE predicate 

(view) as: 
 
EMPLOYEE(Emp#,IC#,Name,BirthDate,Address,SalesAmt,Salary,Commission):-  
 EMPLOYEE(Emp#,SalesAmt,Salary), 
  PERSON(IC#, Name, BirthDate, Address),  
   Commission = SalesAmt * 0.25. 
 

Notice that Commission is a virtual attribute that is derived from the SalesAmt field. Derived data is 

automatically updated as required by updates to other parts of the schema. For instance, whenever the 

value of the SalesAmt attribute is changed, the Commission field is automatically changed. The idea of 

virtual columns has been suggested elsewhere[25]. 

 The EMPLOYEE view models the ISA relationship between the EMPLOYEE predicate and the 

PERSON predicate. An instance of the EMPLOYEE predicate is an instance of the PERSON predicate. 

The attributes of the PERSON predicate can be inherited by the EMPLOYEE predicate. 

 Another view LAZY-SALESMAN, based on the EMPLOYEE view, can be defined as follows: 
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 LAZY-SALESMAN(Emp#,Name,Commission):-             
     EMPLOYEE(Emp#,IC#,Name,BirthDate,Address,SalesAmt,Salary,Commission), 
   Salary+Commission < 5000. 

Example 3: Data Manipulation. In queries, subject to proper authorisation, users may access views and 

virtual attributes as they would access data from other parts of the schema, eg:    

 Select Name, Commission  
 From   LAZY-SALESMAN.  

The answering of a query on a deductive database becomes more of a computation rather than simply a 

retrieval of information[18]. 
 

Example 4: Integrity Constraints.  

IC1: All parts are either red or blue. 

 PART(_,_,Color) -> Color= 'red' V Color = 'blue' 

where '_' represents the anonymous variable[CLOC81]. 

IC2: No supplier supplies all the parts 

 SUPPLIER(S#,_,_,_) -> PART(P#,_,_,_), not(SUPPLIES(S#,P#,_)) 
 

 Unfortunately, unlike deductive rules and integrity constraints, production rules are not based on any 

particular underlying theory. Production rules generally reside in the rule base of a production system [11] 

and usually take the form: 
 
  IF   condition is satisfied 

  THEN perform some action(s) or draw some conclusion(s). 

Note that production rules can make inference in their consequent portion. We call this kind of rules 

MYCIN-type rules, after the MYCIN expert system that uses this kind of rules. There appears then to be 

some similarity with deductive rules. However, they differ from deductive rules in at least two areas. 

Firstly, their execution semantics is different, as we shall see in Section 2.7. Secondly, many rule-based 

expert systems eg. MYCIN attach certainty factors to their production rules. These factors measure how 

strongly the conclusions are believed to be true, and allow for probabilistic reasoning. Although certainty 

factors can also be attached to deductive rules, if we really want to, it is not normally done. 

 Recently, several database researchers [20, 29, 26] have extended the general form of a production 
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rule to a triple (E, C, A) where E is an event or events being monitored, C is the condition(s) which must 

be satisfied before the production rule can be activated and A is the action(s) to be performed when the 

rule is activated. An event can be a database operation (eg. insert, delete etc), a temporal event (eg. an 

elapsed time), or an application generated event. When A is a sequence of database updates, the 

production rule functions as a trigger. When A is a signal which is despatched to a user or an external 

program, the production rule functions as an alerter. 
 

Example 5: The department in our example may want to automatically reward all employees whose sales 

amount exceeds $1000 with a $50 increment. This can be done automatically through a trigger defined as 

follows (using a form similar to that of [WIDO89]): 
 
 ON UPDATE TO EMPLOYEE.salesamt /* event */ 
 IF EMPLOYEE.salesamt >= 1000   /* condition */ 
 THEN update EMPLOYEE           /* action */ 
  set Salary = Salary + 100 
  where Emp# = (select Emp#  
       from new-updated EMPLOYEE);  .......(T1) 
 

Example 6: The department manager will be interested to identify immediately those employees whose 

SalesAmt falls below a certain threshold. An alerter can be defined as follows: 
 
 ON UPDATE TO EMPLOYEE.SalesAmt /* event */ 
 IF EMPLOYEE.SalesAmt < 1000    /* condition */ 
 THEN /* alert  manager */      /* action */ 
 

  Note that multiple messages will be sent to the manager if many employees have their SalesAmt 

updated to below 1000. The 'alert manager' action is implementation-specific and will not be considered.  

 Some production rules can be considered as instance-oriented rules[29]. These rules are applied once 

for each data item satisfying the condition part of the rule. For example, the rules in MYCIN are in this 

class. Such rules are in fact based on propositional calculus. 

 Authorisation information in relational database systems is typically kept in an access rights table or 

an access control list. For instance, in SQL/DS, the user's access rights are maintained in the 

SYSTEM.SYSTABAUTH catalog table. Owners of database resources can grant or revoke access rights 

to other users which will update the access rights table. Authorisation rules can augment the existing 

access rights table by handling access conditions that cannot be handled by the usual access rights table.  
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Example 7:  An access rule can state that only a department manager can access his subordinates' data 
during a specified time period. 

Syntactically, such a rule can be coded using a declarative data manipulation language such as SQL. For 

instance, one way to retrieve the tuples that a manager in the above example can access is as follows: 

 SELECT * FROM EMPLOYEE 
  WHERE deptno = (SELECT deptno FROM MANAGES 
    WHERE mgrno = USER) 
  and SYSTIME BETWEEN 0800 AND 1730; 

 The keyword USER denotes the person currently logged on. The keyword SYSTIME (which is not 

part of current SQL, but which we will use for exposition) defines the current time. Therefore, whenever a 

manager selects from the EMPLOYEE table, the authorisation subsystem can invoke the above query to 

retrieve the correct, authorised data. 

This can be done by, for example, using a query rewriting technique [24,28] that transform a user's query 

accordingly: 
 
 SELECT name, address  =>  SELECT name, salary 
 FROM EMPLOYEE             FROM EMPLOYEE  
                                  WHERE deptno = (SELECT deptno 
                                                  FROM MANAGES 
                    WHERE mgrno = USER) 
                                  and SYSTIME BETWEEN 0800 AND 1730; 
 

Note that when a new employee's data is inserted into EMPLOYEE, the data is automatically accessible 

by the manager without any explicit update. 
 

2.2 Semantics 

 Integrity constraints and authorisation rules have a purely declarative semantics. However, both 

deductive rules and production rules can be used viewed from a declarative or procedural perspective. 

 A purely declarative set of deductive rules is best exemplified by a Datalog program. In contrast, a 

Prolog program has an operational semantics. The rules themselves are declarative, but Prolog has several 

system predicates such as the cut that makes the program procedural. 

 Rule-based expert systems are production systems which have been shown to have the power of a 

Turing machine, ie can be used to model any computable procedure[22]. Viewed from this perspective, 

production rules have a procedural semantics. However, production rules have a declarative semantics in 
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that their consequents can comprise a series of declarative SQL statements that performs some actions.  

 

2.3 Role in database operations 

 Each of these rule concepts has a different role in database operations. Deductive rules can be 

invoked directly from queries using a query language such as SQL. Authorisation rules ensure that users 

have the authority to access the resource specified in the database operation before the operation can 

proceed. Integrity constraints are data dependencies that must be true on completion of all database 

operations. Any operation that violates any constraints is denied. Production rules automatically react to 

events arising from database operations(eg. select, update, insert etc). In turn, these production rules 

change the database state which may trigger other production rules, or even the same production rules, 

causing a cascading activation of rules, which may not terminate. 
 

2.4 Negation  

 It is possible to have negative information in integrity constraints specified using IC-formula. 

Authorisation rules can incorporate simple NOT conditions in the authorisation queries, eg. using SQL-

NOT conditions[10]. 

 In deductive databases, there is a problem of expressing negative information, and of interpreting 

rules with negation. For instance, the intuitive definition of a negated literal is to take its complement. 

Unfortunately, the complement is not well defined and may yield an infinite set [28]. 

 We can make assumptions that will allow negative information to be derived. The open world 

assumption[21] requires that all facts, both positive and negative, be represented in the extensional 

database. Unfortunately, the number of negative facts can be overwhelming. Another possibility is to 

assume a closed world assumption (CWA)[21], under which information which is not declared as an 

explicit fact and which cannot be inferred from the deductive rules is taken to be false. Unfortunately, the 

CWA is undecidable. Another less powerful inference rule, the negation as failure rule[7], can be used to 

infer negative information. This rule states that the proof that P is not provable from a particular logic 

program is always the exhaustive but unsuccessful search for a proof of P. Implementing negation as 

failure is easy, but it may not terminate[18]. 

 It is possible to include the NOT primitive into the condition and action portions of production rules, 
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just as it is possible to include conjunction and disjunction operators. However, it may not make much 

sense to specify a NOT in the event specification of a production rule. The semantics of NOT(event) is not 

clearly defined. 
 

2.5 Recursion 

 Consider the following recursive deductive rules: 
 
 ANCESTOR (X,Y) :- PARENT (X,Y).                  .......(R1) 
 ANCESTOR (X,Y) :- ANCESTOR (X,Z), PARENT(Z,Y).   .......(R2) 
 

Here, the ANCESTOR relation is inferred from the extensional facts given by the PARENT relation and 

computes the transitive closure of the PARENT predicate. This derived predicate can participate in 

database queries. For instance, the extended SQL query : 
 
            select Name, Address  
            from PERSON 
            where exists (ANCESTOR ('JIM', PERSON.name)); 

retrieves all persons whose ancestor is JIM. 

 It is not clear whether the SQL-based view mechanism can be enhanced with the expressive power of 

deductive rules. Consider the following example from [25]. It gives a view definition for the ANCESTOR 

relation based on the PARENT(Parent-Name,Child-Name) relation: 
 
 range of P is PARENT 
 range of A is ANCESTOR 
 define view  ANCESTOR (P.all) 
 define view* ANCESTOR (A.Parent-Name, P.Child-Name) 
   where  A.Child-Name = P.Parent-Name  
 

The * is a closure operator that iteratively retrieves from the PARENT relation until the answer set fails to 

grow. This is equivalent to a least fixpoint computation. Extension to the query optimizer must be made to 

support this mechanism. Note that the two views are defined with the same name called ANCESTOR. 

Current DBMSs do not support multiple views with the same name, but this can be implemented. 

 Current SQL-based view implementations support a simple form of negation using the SQL NOT 

keyword and allows a view to be defined in terms of other views (a nested view definition). However, we 

are not aware of any view implementation that supports both negation and recursion. The application of 
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negation and recursion to deductive rules is equally difficult and is the subject of much research. 

 Recursion is possible in triggers. Consider the trigger T1 given in Example 5. It is entirely possible 

for a careless programmer to code the following meaningless production rule: 
 
  On update to EMPLOYEE.salary 
  if salary > 100 
  THEN update EMPLOYEE 
   set salesamt = salesamt + 1000 
   where EMPLOYEE.Emp# = (select Emp#  
           from new-updated EMPLOYEE) 
 

It is clear that these two rules recursively trigger each other indefinitely. Therefore, there is always the 

danger that triggers may not terminate. Unfortunately, because of the lack of a strong theoretical 

formalism, there is no generally accepted way to handle this situation. Instead, several proposals have 

been made, eg. use of a time-out mechanism, use of a static rule analysis program[29] etc. 

 

2.6 Impact on Extensional Database. 

 The activation of deductive rules, integrity constraints checking and authorisation rules do not change 

the extensional database. Deductive rules infer new facts on the fly. Authorisation rules build up the user 

access profile, also on the fly. The inferred facts and the user access profile are not physically stored in the 

database, and do not extend the extensional database. Integrity constraints do not generate any facts at all 

and hence do not change the database. 

 Triggers change the extensional database with delete, update, and insert actions. Mycin-type 

production rules do not change the extensional database, but affect the working memory, which is one part 

of a production system. Alerters do not change the extensional database and the working memory. 
 

2.7  Order of evaluation/activation of Rules 

 Integrity constraints clauses and authorisation rules can be evaluated/activated without considering 

the order of the clauses or rules. However, certain implementations for deductive rules are sensitive to the 

order of deductive rules, while other implementations are not. This is best exemplified by the Datalog and 

Prolog. The order of Datalog rules has no impact on query evaluation. In contrast, Prolog uses a depth first 

search strategy that is dependent on the order of the rules and the literals in each rule. For instance, if the 

order of the two rules R1 and R2 in section 2.5 is changed in a Prolog program, then the processing of the 
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query ancestor(X,Y) will not terminate. The same query will terminate in a datalog program. 

 Production rules are also very sensitive to the order in which they are activated. However, the 

execution semantics of production rules differs from that of deductive rules. When an event happens, a set 

of production rules may fire in a particular order. When the same event happens again, the same set of 

production rules may fire in another order and now acts on a different database state. Different actions and 

results are obtained because of different order of firing of the same set of production rules. In contrast, 

deductive rules are activated by user queries and always return the same consistent results at different 

invocations of the same queries. 
 

2.8 Possibility of Conflicts. 

 It is possible to encounter conflicts with production rules, integrity constraints and authorisation rules. 

For instance, the following two integrity constraints are in conflict: 
 
 All employees must earn a salary of at least $500. 
 All employees must earn a salary of at least $400. 
 

It is left to an integrity constraint subsystem to ensure that such conflicts do not occur by rejecting the 

specification of conflicting integrity constraints. Similarly, authorisation rules can possibly be specified 

that returns two contrasting access profiles, eg. one giving access to a resource, and the other denying 

access. 

 Conflicts in production rules can occur in two ways. Firstly, when an event happens, several rules 

may be candidates to fire. These candidate rules form a conflict set. Unless all these rules are fired 

simultaneously, a strategy must be available to select the rule to fire from the conflict set. This is called 

conflict resolution. Secondly, it is possible for the actions of one production rule to interfere with that of 

another production rule. For instance, the following two simple rules have conflicting actions: 
 
 On update to EMPLOYEE 
 IF EMPLOYEE.name = 'John' 
 THEN update EMPLOYEE 
      Set salary = salary + 200 
  Where EMPLOYEE.name = 'John'; 
 
 On update to EMPLOYEE 
 IF EMPLOYEE.name = 'John' 
 THEN update EMPLOYEE 
      Set salary = salary - 200 
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      Where EMPLOYEE.name = 'John'; 
 

In the above case, John will not get any salary increment, because of the compensating actions of the 

conflicting rules. 

 Several proposals have been made to handle the first kind of conflict in production rules, eg. selecting 

rules arbitrarily, assigning priorities to rules, firing the most recently executed rule, or using the matching 

rule that has the greatest number of conditions, breaking ties arbitrarily. None of these proposals is based 

on any specific theory that allows the behaviour of these rules to be analysed. Under these schemes, it is 

possible to have rules that never fire (eg. schemes using arbitrary selection or priorities), or rules that can 

fire indefinitely. An example of the latter kind of rules was described in section 2.5. 

 The firing of the selected rule may produce a database state that can either invalidate the conditions 

for some of the remaining rules in the conflict set or satisfy the conditions for other rules. The new rules 

can be added to the conflict set but it is debatable whether the invalidated rules should be allowed to 

execute or should be removed from the conflict set. Again, there is no underlying theory to handle this 

situation.  

 There can be no conflicting answers in retrievals from a deductive database. Since no negative 

information is explicitly stored in a deductive database, only positive information can be a logical 

consequence of the database. For instance, consider the following trivial rules : 
 
 good(X) :- person(X), helpful(X).                 
 bad(X) :- person(X), commit_crime(X).             

Given the following extensional database: 
 
     person(a).  
     person(b). 
     commit_crime(a). 
     helpful(a). 

the queries ?good(a) and ?bad(a) both return the answer true. It would seem that there is a conflict in the 

two answers given. This, however, is not the case because the system has no notion of the semantics of the 

terms 'good' and 'bad'. Both  answers are logical consequences of the above program. Unless an explicit 

integrity constraint which states that good(X) --> not(bad(X)) is given, no conflict can arise. 

 

2.9 Optimisation and Control Strategy 



 13

 There is no standard evaluation strategy for query processing. Two common approaches are the top-

down and the bottom-up evaluation strategies. The bottom-up approach is basically a forward-chaining (or 

data driven) process that starts from the extensional database and proceeds to generate further facts from 

the rules and the facts until the answer set fails to grow. This approach is simpler but generates a lot of 

useless results because it does not consider the query. The top-down approach is a backward chaining 

(goal-driven) process that starts from the query and generates further sub-queries which can be recursively 

processed to enable answers to be obtained from the database. This approach is more efficient because it 

does not generate unnecessary results, but it is more complex. 

 Several algorithms have been proposed based on these two approaches, eg. Naive, semi-naive 

evaluations (bottom-up), and query-subquery evaluation (top-down). See [BANC86] for an overview. 

 Triggers and alerters can be processed in a forward chaining manner; backward chaining does not 

make much sense for triggers and alerters. For MYCIN-type production rules, both forward and backward 

chaining are entirely possible. 

 Optimisation of a set of production rules is difficult because of the procedural nature of this set. 

Production rules communicate with each other by placing data in the database. The entire system 

behaviour changes when new input is placed in the database. Computation in production rules is data-

driven and works mainly by side-effects. This makes optimisation difficult. 

 The checking of whether a database state obeys an integrity constraint or not is called full integrity 

constraint checking. This is time consuming, but can be improved by using incremental integrity 

constraint checking[17,2,5]. Authorisation rules are based on queries and therefore employ standard query 

optimisation techniques[28].  

 

2.10 Further examples 

 This subsection presents three further examples. 

Example 8: Deductive Rules vs Production Rules: Consider the following production rules: 

               On insert to Mother(X,Y) 
    insert Parent(X,Y). 
 
   On insert to Father(X,Y) 
    insert Parent(X,Y). 
 
Given the two insertions to the extensional database,  
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      Mother(a,b) 
      Father(d,c) 
 
the following facts will be generated and physically stored in the  
 
database: 
      Parent(a,b) 
      Parent(d,c). 
 
However, when the fact Father(d,c) is deleted, the extensional database  
will still contain the following facts: 
     Mother(a,b) 
     Parent(a,b) 
     Parent(d,c). 
 
This is an updating anomaly. Consider instead, the deductive rules: 
 
  Parent(X,Y) <- Mother(X,Y). 
  Parent(X,Y) <- Father(X,Y).    ........(D1) 
 

The extensional database comprising Mother(a,b) and Father(d,c) will allow facts Parent(a,b) and 

Parent(d,c) to be inferred. These inferred facts are not stored explicitly. When the fact Father(d,c) is 

deleted, the only facts derivable from the database are :  
 
  Parent(a,b) 
  Mother(a,b). 
 
The inferred fact Parent(d,c) is removed automatically when the extensional fact Father(d,c) is removed.  
 
There is no updating anomaly. 
 
 

Example 9: Deductive Rules vs Integrity Constraints: Given the two deductive rules in D1, the 

addition of an extensional fact Mother(b,d) will generate an inferred fact Parent(b,d). However, consider 

the case when the two deductive rules are replaced by the integrity constraints: 
 
  Mother(X,Y) -> Parent(X,Y) ...... IC3 
  Father(X,Y) -> Parent(X,Y) ...... IC4 

Since no deductive rules are available to generate tuples for the Parent predicate, we consider the 

following extensional database: 
 
  Mother(a,b) 
  Parent(a,b). 
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This extensional database satisfies the integrity constraints. However, the addition of the new fact 

Mother(b,d) will violate the integrity constraint IC3. The operation to insert the new fact Mother(b,d) 

should be denied. 
 
 

Example 10: Integrity Constraints vs Production Rules: Production rules have often been cited as a 

useful mechanism to enforce integrity constraints[25,29,20]. However, there exist integrity constraints that 

are difficult to enforce using the current implementation of production rules. For instance, consider this 

constraint: 
 
 Suppliers who do not supply all red parts must supply a blue part  or a green part with quantity 
greater than 100. 

 To enforce this constraint, more than one trigger have to be implemented, as shown in table 2. For 

example, when a supplier is inserted, the following trigger could be activated (in pseudocode): 
 
 On insert to SUPPLIER 
 IF SUPPLIER does not supply all the red parts 
 and (supplier does not supply any blue part with qty >100 
 or supplier does not supply any green part with qty >100) 
 THEN ROLLBACK 
 

This is not a trivial trigger to code. For the above constraint, several of such complicated triggers need to 

be coded. Even if such triggers can be coded, it cannot be verified that these triggers are coded correctly 

and does what they are supposed to do. Coding triggers is essentially a programmer responsibility as 

opposed to, say, a transaction which is a DBMS responsibility. As such, a trigger can be improperly 

coded, or not coded at all. The assumption that a trigger has been coded, when it has not, can lead to 

undesirable consequences. For example, a trigger to delete all dependents of an employee who just got 

fired may not have been coded, but a programmer who assumes that such a trigger exists will be left with 

an unexpected database state.  

 On the other hand, properly coded production rules can simplify programming. For instance, when an 

employee is deleted, his dependents can be automatically deleted without explicit programming. 

 This example also presents several interesting issues regarding the use of incremental integrity 

constraint checking, as opposed to full integrity constraint checking. Table  2 shows that not all database 

operations require a check on the integrity constraint. 
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Database 
Operation 

Relation 
on 

Constraint Checking 
Needed 

Insert Part Yes, if part is red 

 Supplier Yes 

 Supplies No 

Delete Part Yes, if part is blue or green 

 Supplier No 

 Supplies Yes 

Update Part Yes, if color is updated 

 Supplier No 

 Supplies Yes, if quantity is updated 
and only if the new 
quantity is less than 100. 

   
   Table 2 
 
3. Rules in Object-oriented Database systems.  

 Several proposals have been made to incorporate deductive rules in OODBMSs, for example, IRIS, 

POSTGRES, RDL1[15]. IRIS rules are conjunctive and non-recursive, which is very restrictive. The rule 

mechanism in POSTGRES has some problems which have been highlighted elsewhere[26], eg. no support 

for view processing, and problems in controlling rule activation etc. Both the RDL1 and the new 

POSTGRES rules mechanism are production rules rather than pure deductive rules.  

 In POSTGRES, alerters and triggers are modelled using the "always" keyword. For example, the 

following command triggers a delete of all DEPT records for departments with no employees: 
 
 delete always DEPT where count(EMP.name by DEPT.dname 
     where EMP.dept = DEPT.dname)=0 
 

Syntactically, the above rule does not clearly specify the events that can cause it to fire. It is not clear 

whether a database update will activate the above trigger. For example, inserting an employee should not 

activate the trigger. It is also not clear how the POSTGRES trigger will interact with transactions. For 

example, consider a hypothetical transaction that swaps two employees, one of whom is the only 

employee in the department. If the latter employee gets deleted first in the transaction, the 

abovementioned trigger will delete the employee's department as well. This is clearly not the transaction's 
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intention.  

 [6, 20] propose an execution model that specifies how production rules are processed in the context of 

database transactions. In their model, each rule is an object that can have coupling modes as attributes. 

These modes decide whether the execution of the rule (if triggered) is immediate, or can be deferred till 

the end of the triggering transaction, or even spawned as a separate transaction. However, the 

determination of the best coupling mode for each rule is manual and can be difficult. 

 Triggers can also be defined to maintain indexes in OODBMSs. For instance, if an attribute of an 

object class is indexed, then any update to the attribute value can set off a trigger which will update the 

index[30]. 

 

4. Strengths, Weaknesses and Suitable Domains 

 This section discusses the advantages and disadvantages of each of the rule concepts and suggests 

suitable domains in which to apply these concepts. 

 The following are advantages of deductive rules:  
 
a. Facts are generated on the fly and are not stored in the extensional database. Therefore storage is saved. 
 
b. Derived data is automatically updated by changes to other parts of the schema. Derived data is self-
maintaining. Therefore there will not be any updating anomalies. 
 
c. Deductive rules are more powerful and expressive compared to relational views. They can be 
recursively defined and can compute the transitive closure of a relation. Relational query languages are 
not expressive enough and relational algebra is not computationally complete. For instance, the transitive 
closure of a relation cannot be evaluated using SQL. SQL Relational views cannot be recursive.  
 
 The following are disadvantages of deductive rules: 
 
a. In a query using deductive rules, time must be spent computing these rules. 
 
b. Support for negation and recursion can be problematic. 
 
c. A set of deductive rules may not terminate. Unsound implementation, eg. Prolog, may return the wrong 
results to queries. 

 Deductive rules have been applied in domains such as theorem proving. It can be used to capture the 

relationships among predicates in a deductive database. Inference on these relationships can be made to 

generate facts on the fly. 

 The following are advantages of production rules: 
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a.  Triggers simplify programming. For example, to fire an employee, the application just needs to delete 
the employee. Other employee-related details, eg. dependents, can be deleted by triggers, if necessary. 
 
b.  Mycin-type production rules are an easy and relatively natural way to express knowledge. The rules 
are both accessible and easy to modify. 
 
c.  Production rules are powerful enough to model any computable procedure. 
 

 The following are disadvantages of production rules: 
 
a.  Production rules can fire indefinitely and may go into a loop. They are difficult to program and 
control. 
 
b.  Conflicts are possible in production rules, both during the evaluation of the rules and when they fire. 
This means that a conflict resolution strategy must be employed. 
 
c.  The correctness criteria for production rules are not clearly defined, especially when used with 
transactions. 
 
d.  Triggers change the database states and may produce updating anomalies. 
 
e.  The enforcement of a complex integrity constraint using triggers may require the coding of many of 
such rules. There is no guarantee that the coded triggers are correct. 
 
f.  The order of execution of triggers are important and may produce different results on different 
invocations and different order of invocation of the triggers. 

 [11] proposed that production rules are suitable for domains in which there are many independent 

states, and where knowledge can be declaratively expressed. This allows multiple, non-trivial production 

rules to be written. Production rules are also suitable in domains where the computational process consists 

of a set of independent actions. Such a process requires only limited communications between actions, 

similar to the execution semantics for production rules.  

 The main advantage of integrity constraints is that they define explicitly the business rules and their 

enforcement ensures the consistency of data in the database. Their major disadvantage is the 

computational overhead involved in their enforcement. Integrity constraints are used in database schema 

design, and database operations involving updates. 

 The main advantage of authorisation rules is that it can handle special access rules that cannot be 

handled by the existing authorisation schemes in DBMSs (eg. access rights table of SQL/DS, access 

control lists in VAX/VMS etc). Its main disadvantage is the time involved in building up the access 

profile of the user. Authorisation rules can augment the existing authorisation schemes in DBMSs. 
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5. Summary of Comparison of the different rule concepts 

 The table gives a summary of the comparison of deductive rules, production rules, authorisation rules 

and integrity constraints.  
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           TYPE 
FEATURE 

Deductive Rule Production 
Rule 

Integrity 
Constraint 

Authorisat-
ion Rule 

Adds to 
extensional 
database 

No MYCIN-type rule 
and alerters - No 
Triggers - Yes 

No No 

Possible conflicts No Yes Yes Yes 

Is order important 
in activating/ 
evaluating rules 

Depends on the 
implementation. 
For example, in 
Prolog, order is 
important; in 
Datalog, order is 
not important. 
Deductive rules 
always return the 
same results 
through different 
invocations 

Yes; it is possible 
to get different 
results with 
different 
invocations or 
different order of 
invocation of 
production rules 

No No 

Possible loop Depending on 
algorithm used to 
process the rules, a 
loop is possible 

Yes, depending on 
how the production 
rules are coded 

No No 

Possible 
representations 
(Syntax) 
 

Horn clause IF X THEN Y 
format (MYCIN-
type rule); 
Event-Condition-
Action triple or its 
variant 

Tuple 
Calculus, 
Horn 
clause, IC-
Formula, 
etc. 

access- 
rights 
tables; 
Declarativ
e SQL 
statements 

Role in Database 
operations 

Can be invoked 
directly from 
within a query; 
used to generate 
facts to answer 
queries. 

triggered as a 
result of database 
state changes that 
satisfy certain 
conditions. 

semantic 
condition 
that must 
be true on 
completion 
of all data-
base 
operations. 
The 
database 
operation 
that leads 
to the 
violation 
of the 
integrity 
constraint 

ensures 
that users 
have the 
authority 
to access 
the 
database 
resource 
before the 
operation 
is allowed 
to proceed. 
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           TYPE 
FEATURE 

Deductive Rule Production 
Rule 

Integrity 
Constraint 

Authorisat-
ion Rule 

is denied. 

Underlying 
Theory 

Logic No fundamental 
theory 

Logic Relational 
Theory 

Semantics Contrast Prolog's 
operational 
semantics with 
Datalog's 
declarative 
semantics 

MYCIN-type rules 
have a declarative 
semantics. The 
execution of 
triggers have a 
procedural 
semantics; 
however, action 
statements in 
triggers can be 
declarative   

Declarativ
e 

Declarativ
e 

Control Strategy Backward and/or 
Forward Chaining 

triggers and 
alerters primarily 
forward chaining; 
MYCIN-type rules 
can be both 
forward and 
backward chained. 

Not 
Applicable 

Execution 
of queries 
to build 
user 
profile. 

Optimisation Several algorithms 
eg. naive, semi-
naive evaluations 
have been 
proposed to 
optimise logic 
programs 

Hard to optimise 
because of its 
imperative nature; 

Incrementa
l Integrity 
Constraint 
Checking 

Query 
Optimisat-
ion 
techniques  

Support for 
negation 

Yes Possible in the 
condition and 
action portion of 
an E-C-A rule, but 
a not (E) does not 
make sense. 

Yes SQL-not 

 Recursion Yes Yes No No 
 
 

6. Conclusion 

 A framework was established that pointed out the difference among deductive rules, production 

rules, authorisation rules and integrity constraints. We also pointed out the advantages and 

disadvantages of each of these concepts and suggest suitable domains where each of these rules can be 
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used. 

 These rule concepts can be integrated usefully in any database systems. For instance, a user query 

can be checked first by an authorisation subsystem for possible access violation. If the query is an 

authorised access, the deductive rules within the query, if any, are parsed and incorporated into the 

query by the deductive rule subsystem. Then the integrity constraint subsystem checks the final query 

for any possible integrity constraint violation. If no violation is detected, the query is passed to the 

query manager for execution. This execution may activate some triggers. When triggers finish, the 

query commits. This integration needs to be further developed especially in the context of object-

oriented database systems. 
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