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Abstract 
 
 The object oriented (OO) paradigm suffers from several inadequacies which are 
widely recognised, eg. lack of a formal foundation, general disagreement in interpreting OO 
concepts, lack of a declarative query language, use of a navigational interface, inheritance 
conflicts in class hierarchies etc. In this paper, a representative list of these inadequacies is 
presented. Some proposals that have been made to resolve some of these inadequacies are 
reviewed. Then, we outline and justify an Entity Relationship based three level schema 
architecture which addresses several OO data modelling inadequacies, viz. the lack of 
support for the notion of relationship in the OO approach, the lack of support for external 
schemas, the inability to judge the quality of an OO schema and the lack of a reasonable 
approach to resolve inheritance conflicts in class hierarchies. 
 
 
1 Introduction 
 Relational database management systems (RDBMSs) are suitable for handling 
applications utilising fixed format records. These applications include traditional business 
systems such as payroll, accounting, inventory control packages etc. Recent experience[25] 
has shown that applications requiring complex data structures and complex relationships 
among structures are not suitable for RDBMSs. Examples of such applications are CAD, 
knowledge based and multi-media systems. The base types of RDBMSs are not extensible 
and expressive enough to capture the application semantics. Moreover, the relational joins 
required to build complex structures from many base relations impose an unacceptable 
performance overhead.  

 
 Object-oriented (OO) DBMSs attempt to exploit the object-oriented paradigm to 
handle these complex applications. The advantages of the OO approach are well recognised 
[6,16,17,28,46] and include code reuse, enhanced modularity, extensibility, ease of 
maintenance among others. The tremendous interest in the OO approach has exposed several 
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inadequacies which have been widely discussed [9,14,28,38,46] eg. lack of a formal 
foundation, general disagreement in interpreting OO concepts, lack of a declarative query 
language, use of a navigational, as opposed to a declarative, interface, inheritance conflicts in 
class hierarchies etc. 

 
 This paper reviews, from a database perspective, a list of inadequacies in the OO 
paradigm and several solutions that have been proposed so far to resolve them. The list is not 
complete but it is representative of the major issues facing users of the OO paradigm. Some 
of these inadequacies cannot be solved by formulating a new model. For instance, the lack of 
consensus on OO concepts requires the concerted efforts of various standards group before it 
can be resolved. Other inadequacies such as lack of a standard declarative query language, 
multi-lingual support etc are still the subject of much research and generally accepted 
solutions to address these inadequacies may not appear within the next few years. We outline 
and justify an Entity Relationship (ER) [11] based three level schema architecure which 
addresses a set of OO data modelling issues, viz. (1) the lack of explicit support for the 
notion of relationship in the OO approach, (2) the lack of a general and flexible support for 
external schemas or views, (3) the inability to judge the quality of OO database schema 
design and (4) the lack of a reasonable approach to resolve inheritance conflicts in class 
hierarchies. 

 
 The list of inadequacies is classified into two parts. Section 2 discusses several  
widely recognised problems in the OO approach and some of the solutions that have been 
proposed so far to resolve them. Section 3 provides a list of OO data modelling problems 
which can be addressed by leveraging research efforts[11,31,32,33] in ER data modelling. 
Several examples from various OODBMSs, eg. ORION[6], IRIS[17], POSTGRES[39] and 
O2[16] are used to illustrate some of these problems. Comparisons with the relational model 
are made. Section 4 describes an ER-based architecture which addresses the data modelling 
problems mentioned in Section 3. Section 5 concludes the paper. The reader is assumed to be 
familiar with object-oriented concepts. See [18,28,40,46] for some useful references. 

 
2 Widely Recognised Problems and Some Proposed Solutions 
 In this section, some of the widely recognised issues about the OO paradigm and 
several proposals that have been made to resolve them are discussed.  

 
2.1 General Disagreement On OO Concepts 
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 Several OO data models have been proposed [3,6,16,17,37,39] that offer somewhat 
different interpretations of OO concepts. Although some attempts have been made to forge a 
common agreement on OO concepts [5,14,46], they have so far been unsuccessful. There is 
also wide diversity in the implementation of these data models[20]. For example, 
Gemstone[37] adopts the object/message paradigm in which objects respond to messages 
sent to them, while Vbase[3] uses an abstract data type paradigm to encapsulate data and 
operations. IRIS uses a functional approach in which methods and attributes are modelled by 
mathematical functions while POSTGRES extends the relational model to support OO 
concepts. None of the proposed data models/implementations has emerged as the pre-
eminent model/implementation.  

 
 Despite this diversity, a core set of OO concepts is beginning to emerge[28] that is 
common across these data models. The core concepts cover the notions of objects, attributes, 
methods, classes, class hierarchy, encapsulation and message passing. In time, the drive for 
standardisation and the efforts of various standards groups, eg. ANSI standards committee on 
OODB, Object Management Group etc, may forge a common Reference Model that includes 
the set of core concepts. 

 
2.2 Navigational Model of Computation 
 Each object in an OODBMS is associated with a logical, non-reusable and unique 
object identifier (OID) [21]. The value of an attribute of an object may be an OID of another 
object, which in turn may reference other objects and so on, leading to a complex, nested 
structure. The use of explicit reference is reminiscent of the CODAYSL approach. This 
introduces a navigational component which causes several problems. First, for a navigational 
interface, access to data is hard-coded and therefore does not enjoy the benefits of a query 
optimiser[14]. Because of this, new information in the database (eg. new indexes) cannot be 
utilised automatically to improve retrieval efficiency. Second, the navigational approach does 
not preserve data independence any better than the hierarchical or network model. 
Application programs or methods that use navigational links are susceptible to changes that 
may arise from any schema change. 

 
 It has been suggested [28] that a navigational component may be unavoidable in an 
object-oriented system because of the complex, nested structure of objects. There are also 
claims[28] that there are some applications in AI and CAD that require navigation eg. 
traversal of graph structures in hypertext systems. In these applications, therefore, 
performance from navigational access is of primary importance while the need for 
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associative access through a query language is secondary [38]. We believe, as do others[27], 
that an OODBMS can be augmented with a declarative query language to complement the 
navigational access. For instance, through a declarative query facility, a set of object 
instances satisfying some search predicates can be retrieved. This can make use of the query 
optimiser. Query optimisation in the presence of methods is discussed later. Each object in 
the answer set can then be navigated for further processing.  

 
2.3 Lack of a Standard Declarative Query Language 
 Unlike relational DBMSs which have adopted SQL as the de facto standard, no 
generally agreed upon standard declarative query language is available for OODBMSs yet. 
In OODBMSs that lack a declarative query language, methods need to be defined to handle 
queries. These systems face at least two problems. First, it is impossible to pre-empt all 
possible queries and provide methods for them. Second, consider the following query on the 
classic SUPPLIER (S), PART (P), PROJECT (J) database[15] : 
 
 Find all suppliers who supply at least one red part to more than one project.  
 
This is not a trivial method to write. Further, this method must be defined at an appropriate 
level in the schema. For instance, it cannot be defined as a method for a supplier object. A 
more appropriate level is to either declare it as a class method [28] or as a method at a 
metaclass level. More complex queries can be found which are not easily translated into 
methods. To overcome these problems and provide ad hoc associative access to data, a query 
language is needed. 

 
 An OO query language is likely to be more complex than a relational query language 
because it must consider, among others, the semantics of methods and class hierarchies. We 
defer a discussion on the presence of methods in queries to the next section. A class 
hierarchy affects query processing in the sense that queries issued against a class C need to 
consider the subclasses of C. Depending on the desired semantics, the result of a query on the 
class C may be a set of instances of C or a set of instances of C and its subclasses. In the 
latter case, the result is a heterogeneous set of instances. This is different from the result of a 
relational query which always returns a homogeneous set of tuples [28]. The application 
which issues the query must be prepared to deal with this heterogeneous mix of 
instances[28]. An additional processing step, with associated performance implications, is 
needed to check the type of each instance.  
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 Although recent proposals for query models [1,12,26] should provide a good basis for 
future developments in query languages, most developments on query languages for 
OODBMSs are still preliminary. Queries in ORION are restricted to only a class and its 
subclasses. In [28], the ORION query model was extended to support operations similar to 
relational join, projection, selection and set operations. O2 has an interpretive query language 
but the language lacks the declarative approach of SQL. POSTGRES supports POSTQUEL, 
which is a set oriented, declarative query language with its roots in QUEL. A preliminary 
proposal for an object SQL is reported in [7] for IRIS. 

 
2.4 Issues in Use of Methods 
 There are two broad categories of methods: those that update databases (ie those with 
side effects) and those without side effects (ie only perform database retrievals, computations 
etc). Optimising queries in the presence of arbitrary methods is an open issue. It may be 
difficult, if at all possible, to optimise queries that use methods, because of the imperative 
nature of methods. Further, it may be undesirable to use methods with side-effects in queries. 
Some systems (eg. IRIS) only allow methods without side-effects to participate in queries. 
Systems like POSTGRES restrict methods to contain only data manipulation commands that 
can be optimised. Many other systems do not permit methods in queries. 

 
 Note that unlike attributes, it may not be possible to index methods to provide an 
alternative path for method retrieval and subsequent invocation. It has been suggested[46] 
that an index can be maintained on the (single) value returned by a method provided that the 
method does not go beyond the boundary of the object for which it is defined. Whenever 
there is any database state change that affects the result of the method, a trigger automatically 
maintains the consistency of the index. This proposal is likely to be inefficient and 
impractical. For instance, consider an index defined for method that computes a value that is 
dependent on the exchange rate between the US$ and some other currency. Whenever the 
rate moves, the index on that method must be maintained. In a volatile market, the index 
maintenance will be very significant. 

 
 The message passing mechanism that is used to trigger methods in OO systems 
presents some problems. First, message passing is binary. To use the message passing 
mechanism, it may be required to re-define an n-ary relationship among objects, eg. an SPJ 
relationship[15], in terms of binary relationships. This will result in loss of information. 
Second, the OID of the receiving object must be known before a message can be sent. The 
OID may sometimes not be readily available. For instance, consider the query:  
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 Find the course-name for course-id = 'CS101'  
 
The OID of the object holding the answer is unknown and must be found before a message 
can be sent to it. If an index is maintained on course-id, the OID can be retrieved from the 
index. Otherwise, all course objects in the database must be scanned before the answer is 
found. Note that unlike the relational approach where data retrieval using indexes is 
transparent, methods in OODBMSs that lack a query language/optimiser must explicitly use 
the indexes. 

 
 Of course, the use of methods still provides positive, tangible benefits. Methods are 
useful for defining object semantics. For example, when an employee is fired, a series of 
actions need to be taken, eg. deleting the employee information from all project files, 
inserting employee information into a history file and deleting the employee information 
from the employee file. A method 'fire-employee', incorporating the above sequence of 
events, conveys more meaning compared to the sequence of events itself. Further, some 
methods shield applications from implementation or policy changes. For instance, consider a 
tax computation method for an EMPLOYEE class. Whenever the tax computation policy 
changes, the method needs to be changed. However, applications that use this method need 
not be changed, provided the signature of the method remains unchanged. 

 
2.5 Access Methods and Data Type Extensibility 
 A notable objective of providing type extensibility in OODBMSs is that new, 
specialised, types can be defined at schema definition time by using the data 
definition/manipulation languages of the DBMS, rather than only at database generation 
time[38]. One major problem in supporting type extensibility is the need to provide efficient 
access to instances of newly created types. Access methods provided by conventional 
DBMSs (eg. B-trees, hash tables etc) may not be suitable for these new, specialised types. 
Therefore, OODBMSs must provide access methods beyond those provided by conventional 
DBMSs. It has been proposed [42] that users define their own access methods to support new 
types. However, supporting these user-definable access methods is difficult[42]. To 
overcome this problem, we envisage that off-the-shelf reusable libraries of access methods 
may become readily available in future. These libraries can then be linked into the standard 
DBMS code to support user-defined types when needed.  

 
2.6 Impedance Mismatch across Multi-Language Platforms 
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 To access a database, a programming language can be embedded with database calls. 
An impedance mismatch arises because (1) the type systems of a programming language and 
a DBMS differ, and (2) database calls are declarative and operate on a set-at-a-time basis, 
while a programming language is imperative and are suited for handling record-at-a-time 
processing. 

 
 To overcome this problem, the notion of a database programming language (DBPL) 
has been proposed. From a database perspective, a DBPL can be obtained by adding 
functionalities to a database manipulation language (DML) of the database. Moving 
functions into databases has been shown to improve performance[14]. From a programming 
language perspective, a DBPL can be obtained by adding persistence and sharability to 
variables of the DBPL. For instance, GEMSTONE[37] extends SMALLTALK with support 
for persistent variables. It is believed[9] that these two approaches will eventually converge, 
although several difficulties need to be resolved[9], eg. query optimisation, semantics of 
class, constraints, and triggers etc. 

 
 Unfortunately, in an OODBMS supporting multiple languages, impedance mismatch 
will continue to exist for some of these languages[14]. It is impossible to construct an 
efficient OODBMS that is seamless across multiple languages. 

 
2.7 Efficient Retrieval of Complex Objects 
 Many applications need to define and manipulate a set of objects as a single logical 
complex entity. Arbitrarily complex objects are built using rich data structures such as list, 
set, records and nested combinations of these. Most OODBMSs eg. O2, ORION etc. support 
complex objects. In some OODBMSs, eg. ORION, semantic relationships such as IS-PART-
OF are assigned to inter-object references within complex objects. A composite object [24] 
in ORION is a complex object that models the IS-PART-OF (PART-SUBPART) relationship 
among objects. Orion also supports the concept of an existentially-dependent object, in 
which the existence of the object depends on the existence of its parent object. The deletion 
of an object triggers a cascading delete of all objects that are existentially dependent on the 
deleted object. This adds to the integrity features of the ORION data model. While the use of 
complex objects has important semantic value, the efficient retrieval of a complex object 
(and its components) is still an open issue.  

 
 Several techniques eg. clustering[27] and indexing[8] have been proposed to improve 
the performance of complex object retrieval. The suitability of each of these techniques 
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depends on whether the navigational or query-based approach is used. Clustering is suitable 
when an object is navigated using inter-object references. In clustering, components of a 
complex object are stored together on a physical transfer unit (eg. page) and hence can be 
retrieved efficiently. However, any clustering of objects is optimal for one type of access to 
the objects, but sub-optimal for most other types of access [27]. In general, it is left to users 
to specify a preferred clustering strategy[27].  

 
 Indexing is used extensively in RDBMSs to support efficient query processing. The 
idea of using indexes has been extended to OODBMSs. In [8], the notions of a class 
hierarchy index and nested attribute index were discussed. A class hierarchy index is defined 
on an attribute of a class, and instances that are indexed belong to the class and its 
subclasses, if any. Class hierarchy indexes have been implemented in ORION[27,28]. A 
nested attribute is an attribute of a nested component object of a complex object. Queries on 
a complex object can be predicated on a nested attribute. Therefore, by defining an index on 
the nested attribute, the queries can be more efficiently supported. See [28] for an example of 
nested attribute indexing. 

 
2.8 Object Identity 
 There has been considerable debate [14,38] on the relative merits of supporting OIDs 
and using user-defined keys (as in RDBMSs). A somewhat ambivalent position was adopted 
in [14], which proposed that OIDs should be assigned only if keys are not available. We 
believe that OIDs are unnecessary and undesirable for the following reasons. First, all keys, 
eg. social security number, employee number etc, are actually user-created. Indeed, all 
attributes (key or otherwise) are artificially created by users. Therefore, a key can always be 
artificially created by the user for a relation that does not possess one. This is not dissimilar 
to the assignment of OIDs, except that OIDs are automatically system generated and 
assigned. Second, keys are more natural and human readable compared to OIDs, which are 
implementation specific (eg. pointer-based OIDs). Key-based data models are also more 
declarative [45]. Third, while values of keys can change because of changing conditions[38], 
such changes represent a conscious effort on the part of the user and can be done in a 
controlled environment. Finally, consider a weak entity[31], whose existence depends on the 
existence of another entity. The semantics of a weak entity requires that it should be accessed 
in conjunction with the entity that determines its existence. However, the use of OIDs allows 
the weak entity to be directly accessed. This weakens the semantics of weak entities. 

 
2.9 Should attributes be directly accessible? 



9 

 9

 There is some debate [14,38] on whether attributes of an object should be directly 
accessible. It was advocated in [38] that access to an object's attribute values should be 
through the object's (public) methods. These methods constitute the external interface of the 
object class. This approach shields applications from changes in the implementation of 
attributes and provides data independence. A different position was adopted in [14], which 
advocated that, subject to a separate authorisation scheme, attributes of objects should be 
directly accessible. This is because a query language/optimiser needs to access the object's 
values directly. In [2], the distinction between attributes and methods are blurred, ie 
attributes can be modelled using methods. In our view, representations of most key attributes 
eg. part number, employee number, etc do not change once they are implemented. It appears 
trivial and redundant to generate public access methods (eg. get/set) to these key attributes. 
These attributes should be made public and directly accessible. In run-time, accesses to these 
attributes would not generate additional function call overheads.  

 
3 OO Data Modelling Issues 
 This section discusses some OO data modelling issues which can be resolved by 
applying concepts and techniques from ER data modelling[11,31,32,33].  

 
3.1 No Formal Foundation for OO Paradigm 
 Relational databases have the relational model[13], which has a mathematical basis in 
first order logic (FOL). Normalisation and data dependency theories can be applied to a 
relational database schema to improve the quality of a relational schema design. No 
equivalent theories (eg. functional and multi-valued dependency theories, normalisation etc) 
are available for OO database design, and therefore it is difficult to judge whether an OO 
schema is 'good'. To address this problem, we proposed in [36] that an OO database schema 
can be treated as a view of a normalised conceptual schema[31] based on the ER model. An 
ER-based normalised conceptual schema satisfies the 'goodness' criteria for database schema 
as laid down in [31], and is therefore a good candidate from which to generate OO external 
schemas (or views). The theoretical foundation of the conceptual schema is provided by ER, 
normalisation and dependency theories. An outline of our approach is given in Section 4.  

 
 Several related efforts have been made to provide a logic-based formalism for the 
core OO concepts by extending first order logic with the semantics of object identity, 
inheritance, nested objects and declarative functions [1,22,23]. It has also been suggested that 
the core OO model is really one type of an extended relational model[28], and therefore the 
foundation of the relational model carries over naturally to the core OO model. Some models 
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(eg. O2) have also been given a formal treatment [12,30]. The proposed formalisms are more 
complex than the relational model and do not appear to enjoy the kind of general acceptance 
that the relational model has. 

 
3.2 Lack of Support for Explicit Relationships 
 Most OO data models (eg. O2, ORION) use inter-object references (using OIDs) and 
the class hierarchy to support relationships among objects. Inter-object references provide 
only implicit binary relationships between objects. Using this approach, the modelling of m-
n, n-ary and recursive relationships is problematic and introduces problems similar to those 
faced by hierarchical and network models. The class hierarchy allows object classes that are 
related by the ISA relationship to be organised into a hierarchy. However, special 
relationship types[31] such as UNION, INTERSECTION, DECOMPOSE etc are not 
supported. In the following subsections, several problems that may arise from the lack of 
explicit representation of relationships among object classes are explored. We discuss in 
Section 4 how the ER approach can be used to resolve the problems mentioned in this 
section. 

 
3.2.1   Everything as Objects? 
 Smalltalk[18] has successfully demonstrated the usefulness of a consistent treatment 
of everything as objects in a programming environment. In our view, it may be less useful to 
treat everything as objects in a database environment. In database design, it is important, 
although it may not be easy in certain cases, to distinguish among attributes, entities and 
relationships. To treat everything as objects will only blur the differences among these 
notions. In contrast, the ER model represents attributes, entities and different types of 
relationships (m-n, n-ary, recursive, weak etc) among entities explicitly and therefore 
captures the semantics of a database application more precisely than the OO approach, as 
will be discussed in Section 4. 

 
3.2.2   Nested relations 
 A nested relational model relaxes the constraint that relations should be in first 
normal form. A relation can then contain another relation as the value of a field of a tuple. 
Consider the nested relation DEPARTMENT(D#, Dname, EMPLOYEE), in which the 
EMPLOYEE attribute is itself a relation. Such a nested relation imposes a strictly 
hierarchical structure which does not facilitate symmetric queries. For example, given a D# 
value, it is easy to find the employee information associated with it. The converse is difficult 
without an auxiliary access path (index) to support it. In OODBMSs, there are at least two 
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approaches to support the DEPARTMENT nested relation. Each of these approaches has its 
advantages and limitations. 

 
 The first approach treats the EMPLOYEE attribute in DEPARTMENT as a 
multivalued attribute that has, as its value, a list of object identifiers that identifies the 
employees working in the department. This approach is adopted in O2 and allows object 
sharing. For example, if an employee works in multiple departments, the employee's OID 
will appear in the list of employees of each of these departments. Using this approach, 
however, it is difficult to handle symmetric queries. Note that some object-oriented 
languages such as C++ [44] do not have direct language support for multi-valued attributes.  

 
 The second approach is adopted in POSTGRES. It allows the value of an attribute in 
a relation to be a relational query. It assumes that there exists two physical tables, viz an 
EMPLOYEE table with a structure given by EMPLOYEE(E#,Ename, Salary, Deptno) and a 
DEPARTMENT table with a structure given by DEPARTMENT(D#, Dname, EMPLOYEE). 
The EMPLOYEE attribute in DEPARTMENT can be defined to hold a query such as:  
 
          Select * from EMPLOYEE  
          Where EMPLOYEE.Deptno = D# 
 
This approach is analogous to defining a view of the EMPLOYEE table for each record in 
the DEPARTMENT table. This view ensures that when a new employee is inserted into the 
physical EMPLOYEE table, the new employee's information will automatically appear in the 
view defined by the EMPLOYEE attribute of the DEPARTMENT table. One problem with 
this approach is that updates on the EMPLOYEE attribute (view) of DEPARTMENT must 
be translated to updates on the base EMPLOYEE table. This may not always be possible in 
general and is similar to, if not more difficult than, the classic view update problem. Another 
problem is the storage of the above query. It would be redundant to store this query against 
each tuple in the DEPARTMENT table. 

 
3.2.3   M-N, N-ary and Recursive Relationships 
 Consider the following schema adapted from [30]: 
 
 (ob1, <name: "john", spouse: ob2>) 
 (ob2, <name: "mary", spouse: ob1>) 
 
Each obi is an OID. This example uses an inverse relationship reference (a redundant 
relationship) in the spouse field that can introduce maintenance problems when there are 
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changes in the 'spouse' field, eg. if "john" and "mary" are divorced, then references in the 
'spouse' field of both "john" and "mary" must be updated. This is a contradiction to the easy 
maintainability objective of the OO paradigm. To resolve this problem, the relationship 
between "john" and "mary" should be made explicit. As another example, consider the 
SUPPLIER (S), PART (P), SUPPLIES (SP) database [15], in which S and P are related by an 
m-n relationship type SP. Using the OO approach, each supplier object is associated, through 
inter-object references, with a set of part objects and their respective quantities. Such a 
structure does not facilitate symmetric queries. To circumvent this deficiency, each part 
object is then associated with a set of supplier objects and their respective quantities. This 
introduces redundancy which may lead to updating anomalies. The problems are similar to 
those of the hierarchical model. These problems are amplified when n-ary (n>2) relationships 
are considered. There is no feasible solution for modelling an n-ary relationship using inter-
object binary references in the OO paradigm.  

 
 It has been suggested [10] that new 'relationship' object types (classes) must be 
created to represent ternary (and higher degree) relationships. Objects participating in these 
relationships are then linked through the 'relationship' object types. Such structures are 
similar to the modelling of relationships in the relational model, which uses key values 
instead of pointers. This approach also shows that the notion of relationship is needed. 

 
 Consider a recursive relationship [31] such as a course and its pre-requisites. One 
way to represent this relationship in ORION and O2 is to define a set valued attribute called 
pre-requisites in a course class; members of the set are pre-requisite courses. Again, this 
representation does not facilitate symmetric queries. Further, to compute the transitive 
closure of the course relation, a programmer has to either write a method or rely on query 
language support, if any. Programmer written methods need to be certified for correctness 
and is therefore less reliable compared to the use of a query facility. Some OODBMSs 
provide syntactic enhancements to their query languages to support the computation of the 
transitive closure of a relation. For instance, in POSTGRES, an '*' can be appended to a 
query that retrieves instances of a relation. The query then executes repetitively until the 
closure of the relation is obtained. 
 
 The examples of Section 3.2 strongly show that the lack of a semantic support for 
relationships among objects can cause many problems. The ER-based framework proposed 
in Section 4 supports the notion of relationship directly and hence does not face the same 
problems. 
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3.3 Lack of General View Support 
 Except for those OODBMSs that are based on the extended relational model (eg. 
POSTGRES), most OODBMSs do not fit into the 3-level schema architecture framework as 
spelled out in the ANSI/X3/ SPARC proposal[4] for DBMSs. Users of most OODBMSs are 
often presented with a large-grained conceptual schema, with little or no facility for defining 
views or external schemas.  

 
 Several proposals have recently been made to incorporate views in OODBMSs, but 
none of the proposals provides the same generality and flexibility of a declarative relational 
view mechanism. The focus of [19,41] was on defining multiple interfaces (views) to an 
object class. Each interface or view defines a set of methods and different views of an object 
class may share methods. These proposals do not consider views that are based on joins of 
multiple object classes. Neither do they consider how views can be defined that select a 
subset of objects from a specific class, based on some search predicate. In [2,29], a query 
based view mechanism was used to derive subclasses from superclasses. [2] treats views as 
queries and uses the view mechanism to define virtual classes, which are structured into 
inheritance lattice. The behavioural aspects of the views defined are generated automatically 
by the system. Such views are not updatable. In [29], updates apply only to non-recursive 
views that are based on a join of the primary keys of the base tables. Both [2,29] cannot 
handle other kinds of relationships eg. m-n, n-ary relationships etc. In [36], we propose an 
ER-based 3-level schema architecture that treats schemas based on any OO data model as 
external schemas (or views). While other approaches [2,29] use a query language to derive 
views, the approach of [36] uses mapping rules to generate external schemas. An outline of 
the approach in [36] is given in Section 4. 

 
 One of the problems with views is the need to support updatable views. It was 
proposed [38] that OODBMSs can be built to support updatable views by using OIDs. The 
OIDs of the objects that are used to generate elements of a view are tracked and used to 
generate OIDs for elements of the view. This generated OIDs can then be used to support 
view updates. An open issue is whether these OIDs should be transient or persistent. It seems 
redundant to generate OIDs for something as transient as elements of a view and may slow 
down view processing considerably. In [43], it was proposed that production rules can be 
used to propagate updates on views to base predicates. However, using production rules has 
several problems which is described in [34], eg. possibility of indefinite triggering, lack of 
theory for triggers, side effects of triggers etc. 
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3.4 Conflicts in Class Hierarchies with Multiple Inheritance 
 There can be property name conflicts between a class and its superclasses. In most 
systems, the property names in the class take precedence over similar property names in 
superclasses. Property name conflicts can also happen if two or more superclasses of a class 
have properties with the same name. In this case several proposals have been made for 
OODBMSs to resolve this conflict. First, the user can explicitly choose which property name 
to inherit. Second, the system can take a default, which usually is the first in the list of 
superclasses defined for the class. Third, the system can reject this kind of situation at class 
definition time. O2 and ORION take the first and second approach respectively while 
POSTGRES takes the third approach. These techniques are not satisfactory because they 
operate at a syntactic, rather than a semantic, level. The reasons why the conflicts occur are 
never explored.  

 
 In [35], we provide an algorithm which resolves inheritance conflicts in class 
hierarchies. The approach of [35] goes beyond most conflict resolution techniques of 
OODBMSs by examining the reasons why conflicts occur. 

 
4 A Normal Form OOER Model 
 In this section, a three-level schema architecture is outlined which preserves the 
advantages of the OO approach at the external schema level and simultaneously resolves, at 
the conceptual schema level, the OO data modelling problems that have been identified in 
Section 3, viz: (1) the lack of explicit support for the notion of relationship in the OO 
approach, (2) the lack of general and flexible support for external schemas or views, (3) the 
inability to differentiate good OO schema design from bad, and (4) the lack of a reasonable 
approach to resolve inheritance conflicts in class hierarchies. 

 
 The architectural framework comprises an external schema level, a conceptual 
schema level and an internal storage level (similar to the ANSI/SPARC/X3 proposal[4] for 
database systems). Any OO database schema (based on any of the proposed OO data models) 
is treated as an external schema which can be generated from a conceptual schema by 
applying a set of mapping rules. Distinct sets of mapping rules are needed to handle different 
OO data models. In other words, this approach treats an OO database schema as one view of 
a conceptual schema. Any OO schema is then an abstraction layer on top of the conceptual 
schema. User applications, OO or otherwise, are written based on the external schema. The 
advantages of the OO approach are therefore preserved at the external schema level. 
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 The OO data modelling issues mentioned in Section 3 are resolved at the conceptual 
schema level. The following steps define our approach:  
 
 (Step 1) Represent a database schema diagrammatically using an ER diagram.  
 There are several advantages in using the ER approach. First, an ER diagram 
preserves application semantics by explicitly capturing entity types, relationship types (m-n, 
n-ary, recursive, ISA, etc) and their attributes. Therefore, as opposed to the approach adopted 
by some OO systems, not everything is treated homogeneously as objects (see Section 3.2.1). 
Second, nested relations are modelled naturally by using the ER concepts of multi-valued 
attributes, composite attributes and weak entities. The problems of modelling nested relations 
in the OO approach (eg. supporting symmetric queries through redundancy, updatability of 
nested relations, as discussed in Section 3.2.2) do not exist in the ER approach. Third, the 
cardinalities of entity types participating in a relationship type are displayable on the ER 
diagram. This is a cardinality constraint which is absent from most OO data models. Fourth, 
by providing strong support for association among entity types, the ER approach eliminates 
the need to use a navigational approach to link related entity types. Therefore, the problems 
that the OO approach faces in representing the relationship between two 'spouses', or in 
representing the relationship between suppliers and parts of Section 3.2.3 (eg. using 
redundant inverse pointers, supporting symmetric queries through redundancy etc) are 
resolved. 

 
 However, note that it is difficult to determine whether an ER diagram is the best 
representation for a given database. To overcome this deficiency, a normal form for ER 
diagram has been proposed in [31]. 

 
 (Step 2) Derive a normal form ER diagram from the ER diagram obtained in step (1).  
 This can be done by applying the techniques of [31]. A normal form ER diagram is 
based on a strong, theoretical foundation provided by ER, normalisation and dependency 
theories. It is therefore possible to judge the quality of a schema based on a normal form ER 
diagram. In contrast, an OO schema has no formal foundation and lacks 'goodness' criteria 
(as discussed in Section 3.1). 

 
 Note that all the structural properties of the OO approach can be generated from a 
normal form ER diagram. For example the ER concepts of ISA, entity type, IS-PART-OF, 
weak entity type, and attribute aggregation correspond to the OO concepts of inheritance, 
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class, composite object, existentially dependent object, aggregation of object properties 
respectively. Therefore, a normal form ER diagram is a good base from which to generate 
OO external schemas.  

 
 (Step 3) Imbue the normal form ER diagram of Step (2) with methods, derived 
attributes, deductive rules and triggers, and then eliminate all inheritance conflicts in ISA 
hierarchies.  
 This step produces a normal form OOER diagram. The inclusion of methods, derived 
attributes, deductive rules and triggers (a form of production rules) provides useful features 
from the domains of OO programming, deductive and active databases. Methods are 
categorised into system generated methods, database administrator (DBA) definable methods 
and programmer-definable methods. System generated methods exist in both the conceptual 
schema and the external schema level and include code to browse instances of a class, or to 
retrieve or update an object's attribute values. These methods are, in general, trivial and can 
be more efficiently optimised by the system. DBA-definable methods are accessible by all 
authorised users of the database and can be defined at both the conceptual and external 
schema levels. For instance, the DBA can define generic methods to provide computations 
such as calculation of interest, commission based on generic formulas, tax expenses etc. 
Unlike DBA-definable methods, which are accessible by all users, programmer-definable 
methods, eg. hire an employee, print an entity etc are application specific. The proper place 
for programmer-definable methods is at the external, rather than conceptual, schema level. 
This is no different from conventional practice, in which a database programmer writes 
application programs based on an external schema available to him. Note that at the external 
schema level, programmer-definable methods are given meaningful names which reflect a 
higher level of abstraction, eg. hire_employee, fire_employee etc. 

 
 Deductive rules and derived attributes can be treated as being comparable to methods 
in the OO sense. They are used to derive information that are not physically stored. They are 
therefore intensional. In contrast, methods may have side effects, which cause changes to the 
extensional database. Most systems allow derived attributes to participate in queries but in 
some systems (eg. IRIS[17]), methods with side effects cannot be used in queries.  

 
 Triggers are typically used in active databases to enforce simple integrity constraints. 
In our approach, triggers can either be system generated based on the integrity constraints 
known to the system or explicitly coded by DBA and programmers at both the conceptual 
and external schema levels. For example, consider a schema in which projects sponsored by 
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departments are related by a relationship SPONSOR. Using the notation for triggers used in 
VAX Rdb/VMS, a simple trigger to enforce the referential constraint that exists between 
PROJECT and SPONSOR is:  
 
        AFTER DELETE ON PROJECT 
        REFERENCING OLD AS OLD_PROJECT 
        DELETE FROM SPONSOR S WHERE S.P# = OLD_PROJECT.P# 
 
 To avoid a possible misinterpretation of the roles of derived attributes, deductive 
rules and triggers, we have established a framework [34] which differentiates between 
deductive rules, triggers (production rules), integrity constraints and authorisation rules. 

 
 Note that the addition of methods, derived attributes, deductive rules and triggers to a 
normal form ER diagram is not sufficient to produce a normal form OOER diagram. All 
inheritance conflicts in ISA hierarchies must also be eliminated in order to produce a normal 
form OOER diagram. In [35], we provide a complete algorithm that resolves inheritance 
conflicts in ISA hierarchies. Most conflict resolution techniques[6,16,17,28,39] operate at a 
syntactic level and are either inflexible, arbitrary or not reasonable. Our approach considers 
the semantics of conflicting properties, and the reasons why the conflicts occur, and 
systematically resolves them. Briefly, inheritance conflicts can arise because of (1) redundant 
ISA relationships, (2) poor design, (3) superclass properties with the same name but with 
different semantics, and (4) superclass properties with the same name and with same 
semantics. Conflicts are resolved by redesigning the schema, renaming properties, explicitly 
selecting the inheritance path, removing redundant ISA links, redefining an overloaded 
property, and factoring properties to a more general class. Note that when a property is 
renamed, as a consequence of the conflict resolution algorithm, all methods, deductive 
attributes/rules and triggers that refer to the renamed property must also be updated to 
reference the new name. 

 
 (Step 4) Apply a set of mapping rules to generate appropriate OO external schemas 
from the conceptual schema that is represented by a normal form OOER diagram. 
 In [36], a set of mapping rules is provided to generate OO external schemas based 
specifically on the O2 data model. Similar mapping rules can be defined for other OO data 
models. This approach is very powerful, expressive and flexible. For instance, if a user 
wishes to adopt an OO perspective and construct the 'spouse' or supplier classes of Section 
3.2.3, he can do so by generating the OO schema from the conceptual schema using the rules 
given in [36]. As another example, given a recursive relationship such as course and its pre-
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requisites, a user can define a view of the transitive closure of the course relation. This 
closure can be computed using, say, the semi-naive method or magic sets, but the exact 
implementation is transparent at the external schema level. 

 
 To generalise this approach, sets of mapping rules can be defined to generate external 
schemas based on other data models (eg. hierarchical, network, nested relations, relational, 
not necessarily normalised ER diagrams, etc) from the conceptual schema. In [32,33], for 
example, mapping rules have been defined to generate external schemas based on 
hierarchical, network, relational, nested relations and ER data models. These rules are still 
valid for a normal form OOER diagram. The additions of methods, derived attributes, 
deductive rules, and triggers to the normal form OOER diagram do not invalidate any of the 
guidelines in [32,33]. This is because the guidelines pertain to the structural properties of a 
normal form ER diagram, whereas methods, derived attributes, deductive rules and triggers 
provide an orthogonal behavioural perspective. Therefore, depending on the needs of users, 
the appropriate external schemas can be defined. External schemas may not necessarily be 
normalised, and therefore users may perceive some form of 'redundancy'. However, this 
redundancy is virtual in the sense that no redundancy exists at the conceptual schema level 
and data is not stored redundantly.  

 
5 Conclusion 
 The tremendous interest in the OO approach has exposed a number of inadequacies, 
which are now widely recognised. In this paper, we have presented a representative list of 
these inadequacies and reviewed some of the solutions that have been proposed to resolve 
them. After reviewing the list of inadequacies, we then focused on a set of OO data 
modelling issues which, we feel, can be resolved by leveraging techniques developed in ER 
data modelling. The OO data modelling issues that are addressed include (1) the lack of 
explicit support for the notion of relationship, (2) the lack of support for views, (3) the 
inability to judge the quality of an OO schema and (4) the lack of a reasonable approach to 
resolve inheritance conflicts in class hierarchies. 

 
 We outline an ER-based three level schema architecture which resolves the OO data 
modelling inadequacies at the conceptual schema level and preserves the advantages of the 
OO approach at the external schema level. Our approach allows an OO database schema, 
based on any OO data model, to be generated from an ER-based conceptual schema, by using 
a set of mapping rules. Distinct sets of mapping rules are needed for different OO data 
models. This approach treats an OO schema as a view of the conceptual schema. To 
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represent the conceptual schema, the notion of a normal form OOER diagram is introduced. 
We justify this choice as follows: (1) A normal form OOER diagram captures semantic 
information in the form of entities, relationships (m-n, n-ary, recursive, ISA etc), attributes 
and constraints specified by functional and multi-valued dependencies. Inheritance conflicts 
in the ISA hierarchies of a normal form OOER diagram are systematically removed by 
applying the algorithm proposed in [35]. (2) All the structural properties of the OO approach 
(eg. class, class hierarchy, set/tuple valued attributes, composite objects etc ) can be 
generated from a normal form OOER diagram. The definition of mapping rules to generate 
OO schemas is therefore facilitated. (3) The quality of a database organised according to a 
normal form OOER diagram can be judged by applying classical normalisation and 
dependency theories.  

 
 As future work, we are investigating the updatability of the constructed entities and 
relationships in object-oriented external schemas. It is interesting to investigate how the 
presence of methods, deductive rules and derived attributes at both the conceptual and 
external schema level will affect the updatability problem. 
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