

Toward Resolving Inadequacies in
Object-Oriented Data Models

Tok Wang LING and Pit Koon TEO

Department of Information Systems and Computer Science
National University of Singapore

Abstract

 The object oriented (OO) paradigm suffers from several inadequacies which are
widely recognised, eg. lack of a formal foundation, general disagreement in interpreting OO
concepts, lack of a declarative query language, use of a navigational interface, inheritance
conflicts in class hierarchies etc. In this paper, a representative list of these inadequacies is
presented. Some proposals that have been made to resolve some of these inadequacies are
reviewed. Then, we outline and justify an Entity Relationship based three level schema
architecture which addresses several OO data modelling inadequacies, viz. the lack of
support for the notion of relationship in the OO approach, the lack of support for external
schemas, the inability to judge the quality of an OO schema and the lack of a reasonable
approach to resolve inheritance conflicts in class hierarchies.

1 Introduction
 Relational database management systems (RDBMSs) are suitable for handling
applications utilising fixed format records. These applications include traditional business
systems such as payroll, accounting, inventory control packages etc. Recent experience[25]
has shown that applications requiring complex data structures and complex relationships
among structures are not suitable for RDBMSs. Examples of such applications are CAD,
knowledge based and multi-media systems. The base types of RDBMSs are not extensible
and expressive enough to capture the application semantics. Moreover, the relational joins
required to build complex structures from many base relations impose an unacceptable
performance overhead.

 Object-oriented (OO) DBMSs attempt to exploit the object-oriented paradigm to
handle these complex applications. The advantages of the OO approach are well recognised
[6,16,17,28,46] and include code reuse, enhanced modularity, extensibility, ease of
maintenance among others. The tremendous interest in the OO approach has exposed several

2

 2

inadequacies which have been widely discussed [9,14,28,38,46] eg. lack of a formal
foundation, general disagreement in interpreting OO concepts, lack of a declarative query
language, use of a navigational, as opposed to a declarative, interface, inheritance conflicts in
class hierarchies etc.

 This paper reviews, from a database perspective, a list of inadequacies in the OO
paradigm and several solutions that have been proposed so far to resolve them. The list is not
complete but it is representative of the major issues facing users of the OO paradigm. Some
of these inadequacies cannot be solved by formulating a new model. For instance, the lack of
consensus on OO concepts requires the concerted efforts of various standards group before it
can be resolved. Other inadequacies such as lack of a standard declarative query language,
multi-lingual support etc are still the subject of much research and generally accepted
solutions to address these inadequacies may not appear within the next few years. We outline
and justify an Entity Relationship (ER) [11] based three level schema architecure which
addresses a set of OO data modelling issues, viz. (1) the lack of explicit support for the
notion of relationship in the OO approach, (2) the lack of a general and flexible support for
external schemas or views, (3) the inability to judge the quality of OO database schema
design and (4) the lack of a reasonable approach to resolve inheritance conflicts in class
hierarchies.

 The list of inadequacies is classified into two parts. Section 2 discusses several
widely recognised problems in the OO approach and some of the solutions that have been
proposed so far to resolve them. Section 3 provides a list of OO data modelling problems
which can be addressed by leveraging research efforts[11,31,32,33] in ER data modelling.
Several examples from various OODBMSs, eg. ORION[6], IRIS[17], POSTGRES[39] and
O2[16] are used to illustrate some of these problems. Comparisons with the relational model
are made. Section 4 describes an ER-based architecture which addresses the data modelling
problems mentioned in Section 3. Section 5 concludes the paper. The reader is assumed to be
familiar with object-oriented concepts. See [18,28,40,46] for some useful references.

2 Widely Recognised Problems and Some Proposed Solutions
 In this section, some of the widely recognised issues about the OO paradigm and
several proposals that have been made to resolve them are discussed.

2.1 General Disagreement On OO Concepts

3

 3

 Several OO data models have been proposed [3,6,16,17,37,39] that offer somewhat
different interpretations of OO concepts. Although some attempts have been made to forge a
common agreement on OO concepts [5,14,46], they have so far been unsuccessful. There is
also wide diversity in the implementation of these data models[20]. For example,
Gemstone[37] adopts the object/message paradigm in which objects respond to messages
sent to them, while Vbase[3] uses an abstract data type paradigm to encapsulate data and
operations. IRIS uses a functional approach in which methods and attributes are modelled by
mathematical functions while POSTGRES extends the relational model to support OO
concepts. None of the proposed data models/implementations has emerged as the pre-
eminent model/implementation.

 Despite this diversity, a core set of OO concepts is beginning to emerge[28] that is
common across these data models. The core concepts cover the notions of objects, attributes,
methods, classes, class hierarchy, encapsulation and message passing. In time, the drive for
standardisation and the efforts of various standards groups, eg. ANSI standards committee on
OODB, Object Management Group etc, may forge a common Reference Model that includes
the set of core concepts.

2.2 Navigational Model of Computation
 Each object in an OODBMS is associated with a logical, non-reusable and unique
object identifier (OID) [21]. The value of an attribute of an object may be an OID of another
object, which in turn may reference other objects and so on, leading to a complex, nested
structure. The use of explicit reference is reminiscent of the CODAYSL approach. This
introduces a navigational component which causes several problems. First, for a navigational
interface, access to data is hard-coded and therefore does not enjoy the benefits of a query
optimiser[14]. Because of this, new information in the database (eg. new indexes) cannot be
utilised automatically to improve retrieval efficiency. Second, the navigational approach does
not preserve data independence any better than the hierarchical or network model.
Application programs or methods that use navigational links are susceptible to changes that
may arise from any schema change.

 It has been suggested [28] that a navigational component may be unavoidable in an
object-oriented system because of the complex, nested structure of objects. There are also
claims[28] that there are some applications in AI and CAD that require navigation eg.
traversal of graph structures in hypertext systems. In these applications, therefore,
performance from navigational access is of primary importance while the need for

4

 4

associative access through a query language is secondary [38]. We believe, as do others[27],
that an OODBMS can be augmented with a declarative query language to complement the
navigational access. For instance, through a declarative query facility, a set of object
instances satisfying some search predicates can be retrieved. This can make use of the query
optimiser. Query optimisation in the presence of methods is discussed later. Each object in
the answer set can then be navigated for further processing.

2.3 Lack of a Standard Declarative Query Language
 Unlike relational DBMSs which have adopted SQL as the de facto standard, no
generally agreed upon standard declarative query language is available for OODBMSs yet.
In OODBMSs that lack a declarative query language, methods need to be defined to handle
queries. These systems face at least two problems. First, it is impossible to pre-empt all
possible queries and provide methods for them. Second, consider the following query on the
classic SUPPLIER (S), PART (P), PROJECT (J) database[15] :

 Find all suppliers who supply at least one red part to more than one project.

This is not a trivial method to write. Further, this method must be defined at an appropriate
level in the schema. For instance, it cannot be defined as a method for a supplier object. A
more appropriate level is to either declare it as a class method [28] or as a method at a
metaclass level. More complex queries can be found which are not easily translated into
methods. To overcome these problems and provide ad hoc associative access to data, a query
language is needed.

 An OO query language is likely to be more complex than a relational query language
because it must consider, among others, the semantics of methods and class hierarchies. We
defer a discussion on the presence of methods in queries to the next section. A class
hierarchy affects query processing in the sense that queries issued against a class C need to
consider the subclasses of C. Depending on the desired semantics, the result of a query on the
class C may be a set of instances of C or a set of instances of C and its subclasses. In the
latter case, the result is a heterogeneous set of instances. This is different from the result of a
relational query which always returns a homogeneous set of tuples [28]. The application
which issues the query must be prepared to deal with this heterogeneous mix of
instances[28]. An additional processing step, with associated performance implications, is
needed to check the type of each instance.

5

 5

 Although recent proposals for query models [1,12,26] should provide a good basis for
future developments in query languages, most developments on query languages for
OODBMSs are still preliminary. Queries in ORION are restricted to only a class and its
subclasses. In [28], the ORION query model was extended to support operations similar to
relational join, projection, selection and set operations. O2 has an interpretive query language
but the language lacks the declarative approach of SQL. POSTGRES supports POSTQUEL,
which is a set oriented, declarative query language with its roots in QUEL. A preliminary
proposal for an object SQL is reported in [7] for IRIS.

2.4 Issues in Use of Methods
 There are two broad categories of methods: those that update databases (ie those with
side effects) and those without side effects (ie only perform database retrievals, computations
etc). Optimising queries in the presence of arbitrary methods is an open issue. It may be
difficult, if at all possible, to optimise queries that use methods, because of the imperative
nature of methods. Further, it may be undesirable to use methods with side-effects in queries.
Some systems (eg. IRIS) only allow methods without side-effects to participate in queries.
Systems like POSTGRES restrict methods to contain only data manipulation commands that
can be optimised. Many other systems do not permit methods in queries.

 Note that unlike attributes, it may not be possible to index methods to provide an
alternative path for method retrieval and subsequent invocation. It has been suggested[46]
that an index can be maintained on the (single) value returned by a method provided that the
method does not go beyond the boundary of the object for which it is defined. Whenever
there is any database state change that affects the result of the method, a trigger automatically
maintains the consistency of the index. This proposal is likely to be inefficient and
impractical. For instance, consider an index defined for method that computes a value that is
dependent on the exchange rate between the US$ and some other currency. Whenever the
rate moves, the index on that method must be maintained. In a volatile market, the index
maintenance will be very significant.

 The message passing mechanism that is used to trigger methods in OO systems
presents some problems. First, message passing is binary. To use the message passing
mechanism, it may be required to re-define an n-ary relationship among objects, eg. an SPJ
relationship[15], in terms of binary relationships. This will result in loss of information.
Second, the OID of the receiving object must be known before a message can be sent. The
OID may sometimes not be readily available. For instance, consider the query:

6

 6

 Find the course-name for course-id = 'CS101'

The OID of the object holding the answer is unknown and must be found before a message
can be sent to it. If an index is maintained on course-id, the OID can be retrieved from the
index. Otherwise, all course objects in the database must be scanned before the answer is
found. Note that unlike the relational approach where data retrieval using indexes is
transparent, methods in OODBMSs that lack a query language/optimiser must explicitly use
the indexes.

 Of course, the use of methods still provides positive, tangible benefits. Methods are
useful for defining object semantics. For example, when an employee is fired, a series of
actions need to be taken, eg. deleting the employee information from all project files,
inserting employee information into a history file and deleting the employee information
from the employee file. A method 'fire-employee', incorporating the above sequence of
events, conveys more meaning compared to the sequence of events itself. Further, some
methods shield applications from implementation or policy changes. For instance, consider a
tax computation method for an EMPLOYEE class. Whenever the tax computation policy
changes, the method needs to be changed. However, applications that use this method need
not be changed, provided the signature of the method remains unchanged.

2.5 Access Methods and Data Type Extensibility
 A notable objective of providing type extensibility in OODBMSs is that new,
specialised, types can be defined at schema definition time by using the data
definition/manipulation languages of the DBMS, rather than only at database generation
time[38]. One major problem in supporting type extensibility is the need to provide efficient
access to instances of newly created types. Access methods provided by conventional
DBMSs (eg. B-trees, hash tables etc) may not be suitable for these new, specialised types.
Therefore, OODBMSs must provide access methods beyond those provided by conventional
DBMSs. It has been proposed [42] that users define their own access methods to support new
types. However, supporting these user-definable access methods is difficult[42]. To
overcome this problem, we envisage that off-the-shelf reusable libraries of access methods
may become readily available in future. These libraries can then be linked into the standard
DBMS code to support user-defined types when needed.

2.6 Impedance Mismatch across Multi-Language Platforms

7

 7

 To access a database, a programming language can be embedded with database calls.
An impedance mismatch arises because (1) the type systems of a programming language and
a DBMS differ, and (2) database calls are declarative and operate on a set-at-a-time basis,
while a programming language is imperative and are suited for handling record-at-a-time
processing.

 To overcome this problem, the notion of a database programming language (DBPL)
has been proposed. From a database perspective, a DBPL can be obtained by adding
functionalities to a database manipulation language (DML) of the database. Moving
functions into databases has been shown to improve performance[14]. From a programming
language perspective, a DBPL can be obtained by adding persistence and sharability to
variables of the DBPL. For instance, GEMSTONE[37] extends SMALLTALK with support
for persistent variables. It is believed[9] that these two approaches will eventually converge,
although several difficulties need to be resolved[9], eg. query optimisation, semantics of
class, constraints, and triggers etc.

 Unfortunately, in an OODBMS supporting multiple languages, impedance mismatch
will continue to exist for some of these languages[14]. It is impossible to construct an
efficient OODBMS that is seamless across multiple languages.

2.7 Efficient Retrieval of Complex Objects
 Many applications need to define and manipulate a set of objects as a single logical
complex entity. Arbitrarily complex objects are built using rich data structures such as list,
set, records and nested combinations of these. Most OODBMSs eg. O2, ORION etc. support
complex objects. In some OODBMSs, eg. ORION, semantic relationships such as IS-PART-
OF are assigned to inter-object references within complex objects. A composite object [24]
in ORION is a complex object that models the IS-PART-OF (PART-SUBPART) relationship
among objects. Orion also supports the concept of an existentially-dependent object, in
which the existence of the object depends on the existence of its parent object. The deletion
of an object triggers a cascading delete of all objects that are existentially dependent on the
deleted object. This adds to the integrity features of the ORION data model. While the use of
complex objects has important semantic value, the efficient retrieval of a complex object
(and its components) is still an open issue.

 Several techniques eg. clustering[27] and indexing[8] have been proposed to improve
the performance of complex object retrieval. The suitability of each of these techniques

8

 8

depends on whether the navigational or query-based approach is used. Clustering is suitable
when an object is navigated using inter-object references. In clustering, components of a
complex object are stored together on a physical transfer unit (eg. page) and hence can be
retrieved efficiently. However, any clustering of objects is optimal for one type of access to
the objects, but sub-optimal for most other types of access [27]. In general, it is left to users
to specify a preferred clustering strategy[27].

 Indexing is used extensively in RDBMSs to support efficient query processing. The
idea of using indexes has been extended to OODBMSs. In [8], the notions of a class
hierarchy index and nested attribute index were discussed. A class hierarchy index is defined
on an attribute of a class, and instances that are indexed belong to the class and its
subclasses, if any. Class hierarchy indexes have been implemented in ORION[27,28]. A
nested attribute is an attribute of a nested component object of a complex object. Queries on
a complex object can be predicated on a nested attribute. Therefore, by defining an index on
the nested attribute, the queries can be more efficiently supported. See [28] for an example of
nested attribute indexing.

2.8 Object Identity
 There has been considerable debate [14,38] on the relative merits of supporting OIDs
and using user-defined keys (as in RDBMSs). A somewhat ambivalent position was adopted
in [14], which proposed that OIDs should be assigned only if keys are not available. We
believe that OIDs are unnecessary and undesirable for the following reasons. First, all keys,
eg. social security number, employee number etc, are actually user-created. Indeed, all
attributes (key or otherwise) are artificially created by users. Therefore, a key can always be
artificially created by the user for a relation that does not possess one. This is not dissimilar
to the assignment of OIDs, except that OIDs are automatically system generated and
assigned. Second, keys are more natural and human readable compared to OIDs, which are
implementation specific (eg. pointer-based OIDs). Key-based data models are also more
declarative [45]. Third, while values of keys can change because of changing conditions[38],
such changes represent a conscious effort on the part of the user and can be done in a
controlled environment. Finally, consider a weak entity[31], whose existence depends on the
existence of another entity. The semantics of a weak entity requires that it should be accessed
in conjunction with the entity that determines its existence. However, the use of OIDs allows
the weak entity to be directly accessed. This weakens the semantics of weak entities.

2.9 Should attributes be directly accessible?

9

 9

 There is some debate [14,38] on whether attributes of an object should be directly
accessible. It was advocated in [38] that access to an object's attribute values should be
through the object's (public) methods. These methods constitute the external interface of the
object class. This approach shields applications from changes in the implementation of
attributes and provides data independence. A different position was adopted in [14], which
advocated that, subject to a separate authorisation scheme, attributes of objects should be
directly accessible. This is because a query language/optimiser needs to access the object's
values directly. In [2], the distinction between attributes and methods are blurred, ie
attributes can be modelled using methods. In our view, representations of most key attributes
eg. part number, employee number, etc do not change once they are implemented. It appears
trivial and redundant to generate public access methods (eg. get/set) to these key attributes.
These attributes should be made public and directly accessible. In run-time, accesses to these
attributes would not generate additional function call overheads.

3 OO Data Modelling Issues
 This section discusses some OO data modelling issues which can be resolved by
applying concepts and techniques from ER data modelling[11,31,32,33].

3.1 No Formal Foundation for OO Paradigm
 Relational databases have the relational model[13], which has a mathematical basis in
first order logic (FOL). Normalisation and data dependency theories can be applied to a
relational database schema to improve the quality of a relational schema design. No
equivalent theories (eg. functional and multi-valued dependency theories, normalisation etc)
are available for OO database design, and therefore it is difficult to judge whether an OO
schema is 'good'. To address this problem, we proposed in [36] that an OO database schema
can be treated as a view of a normalised conceptual schema[31] based on the ER model. An
ER-based normalised conceptual schema satisfies the 'goodness' criteria for database schema
as laid down in [31], and is therefore a good candidate from which to generate OO external
schemas (or views). The theoretical foundation of the conceptual schema is provided by ER,
normalisation and dependency theories. An outline of our approach is given in Section 4.

 Several related efforts have been made to provide a logic-based formalism for the
core OO concepts by extending first order logic with the semantics of object identity,
inheritance, nested objects and declarative functions [1,22,23]. It has also been suggested that
the core OO model is really one type of an extended relational model[28], and therefore the
foundation of the relational model carries over naturally to the core OO model. Some models

10

 10

(eg. O2) have also been given a formal treatment [12,30]. The proposed formalisms are more
complex than the relational model and do not appear to enjoy the kind of general acceptance
that the relational model has.

3.2 Lack of Support for Explicit Relationships
 Most OO data models (eg. O2, ORION) use inter-object references (using OIDs) and
the class hierarchy to support relationships among objects. Inter-object references provide
only implicit binary relationships between objects. Using this approach, the modelling of m-
n, n-ary and recursive relationships is problematic and introduces problems similar to those
faced by hierarchical and network models. The class hierarchy allows object classes that are
related by the ISA relationship to be organised into a hierarchy. However, special
relationship types[31] such as UNION, INTERSECTION, DECOMPOSE etc are not
supported. In the following subsections, several problems that may arise from the lack of
explicit representation of relationships among object classes are explored. We discuss in
Section 4 how the ER approach can be used to resolve the problems mentioned in this
section.

3.2.1 Everything as Objects?
 Smalltalk[18] has successfully demonstrated the usefulness of a consistent treatment
of everything as objects in a programming environment. In our view, it may be less useful to
treat everything as objects in a database environment. In database design, it is important,
although it may not be easy in certain cases, to distinguish among attributes, entities and
relationships. To treat everything as objects will only blur the differences among these
notions. In contrast, the ER model represents attributes, entities and different types of
relationships (m-n, n-ary, recursive, weak etc) among entities explicitly and therefore
captures the semantics of a database application more precisely than the OO approach, as
will be discussed in Section 4.

3.2.2 Nested relations
 A nested relational model relaxes the constraint that relations should be in first
normal form. A relation can then contain another relation as the value of a field of a tuple.
Consider the nested relation DEPARTMENT(D#, Dname, EMPLOYEE), in which the
EMPLOYEE attribute is itself a relation. Such a nested relation imposes a strictly
hierarchical structure which does not facilitate symmetric queries. For example, given a D#
value, it is easy to find the employee information associated with it. The converse is difficult
without an auxiliary access path (index) to support it. In OODBMSs, there are at least two

11

 11

approaches to support the DEPARTMENT nested relation. Each of these approaches has its
advantages and limitations.

 The first approach treats the EMPLOYEE attribute in DEPARTMENT as a
multivalued attribute that has, as its value, a list of object identifiers that identifies the
employees working in the department. This approach is adopted in O2 and allows object
sharing. For example, if an employee works in multiple departments, the employee's OID
will appear in the list of employees of each of these departments. Using this approach,
however, it is difficult to handle symmetric queries. Note that some object-oriented
languages such as C++ [44] do not have direct language support for multi-valued attributes.

 The second approach is adopted in POSTGRES. It allows the value of an attribute in
a relation to be a relational query. It assumes that there exists two physical tables, viz an
EMPLOYEE table with a structure given by EMPLOYEE(E#,Ename, Salary, Deptno) and a
DEPARTMENT table with a structure given by DEPARTMENT(D#, Dname, EMPLOYEE).
The EMPLOYEE attribute in DEPARTMENT can be defined to hold a query such as:

 Select * from EMPLOYEE
 Where EMPLOYEE.Deptno = D#

This approach is analogous to defining a view of the EMPLOYEE table for each record in
the DEPARTMENT table. This view ensures that when a new employee is inserted into the
physical EMPLOYEE table, the new employee's information will automatically appear in the
view defined by the EMPLOYEE attribute of the DEPARTMENT table. One problem with
this approach is that updates on the EMPLOYEE attribute (view) of DEPARTMENT must
be translated to updates on the base EMPLOYEE table. This may not always be possible in
general and is similar to, if not more difficult than, the classic view update problem. Another
problem is the storage of the above query. It would be redundant to store this query against
each tuple in the DEPARTMENT table.

3.2.3 M-N, N-ary and Recursive Relationships
 Consider the following schema adapted from [30]:

 (ob1, <name: "john", spouse: ob2>)
 (ob2, <name: "mary", spouse: ob1>)

Each obi is an OID. This example uses an inverse relationship reference (a redundant
relationship) in the spouse field that can introduce maintenance problems when there are

12

 12

changes in the 'spouse' field, eg. if "john" and "mary" are divorced, then references in the
'spouse' field of both "john" and "mary" must be updated. This is a contradiction to the easy
maintainability objective of the OO paradigm. To resolve this problem, the relationship
between "john" and "mary" should be made explicit. As another example, consider the
SUPPLIER (S), PART (P), SUPPLIES (SP) database [15], in which S and P are related by an
m-n relationship type SP. Using the OO approach, each supplier object is associated, through
inter-object references, with a set of part objects and their respective quantities. Such a
structure does not facilitate symmetric queries. To circumvent this deficiency, each part
object is then associated with a set of supplier objects and their respective quantities. This
introduces redundancy which may lead to updating anomalies. The problems are similar to
those of the hierarchical model. These problems are amplified when n-ary (n>2) relationships
are considered. There is no feasible solution for modelling an n-ary relationship using inter-
object binary references in the OO paradigm.

 It has been suggested [10] that new 'relationship' object types (classes) must be
created to represent ternary (and higher degree) relationships. Objects participating in these
relationships are then linked through the 'relationship' object types. Such structures are
similar to the modelling of relationships in the relational model, which uses key values
instead of pointers. This approach also shows that the notion of relationship is needed.

 Consider a recursive relationship [31] such as a course and its pre-requisites. One
way to represent this relationship in ORION and O2 is to define a set valued attribute called
pre-requisites in a course class; members of the set are pre-requisite courses. Again, this
representation does not facilitate symmetric queries. Further, to compute the transitive
closure of the course relation, a programmer has to either write a method or rely on query
language support, if any. Programmer written methods need to be certified for correctness
and is therefore less reliable compared to the use of a query facility. Some OODBMSs
provide syntactic enhancements to their query languages to support the computation of the
transitive closure of a relation. For instance, in POSTGRES, an '*' can be appended to a
query that retrieves instances of a relation. The query then executes repetitively until the
closure of the relation is obtained.

 The examples of Section 3.2 strongly show that the lack of a semantic support for
relationships among objects can cause many problems. The ER-based framework proposed
in Section 4 supports the notion of relationship directly and hence does not face the same
problems.

13

 13

3.3 Lack of General View Support
 Except for those OODBMSs that are based on the extended relational model (eg.
POSTGRES), most OODBMSs do not fit into the 3-level schema architecture framework as
spelled out in the ANSI/X3/ SPARC proposal[4] for DBMSs. Users of most OODBMSs are
often presented with a large-grained conceptual schema, with little or no facility for defining
views or external schemas.

 Several proposals have recently been made to incorporate views in OODBMSs, but
none of the proposals provides the same generality and flexibility of a declarative relational
view mechanism. The focus of [19,41] was on defining multiple interfaces (views) to an
object class. Each interface or view defines a set of methods and different views of an object
class may share methods. These proposals do not consider views that are based on joins of
multiple object classes. Neither do they consider how views can be defined that select a
subset of objects from a specific class, based on some search predicate. In [2,29], a query
based view mechanism was used to derive subclasses from superclasses. [2] treats views as
queries and uses the view mechanism to define virtual classes, which are structured into
inheritance lattice. The behavioural aspects of the views defined are generated automatically
by the system. Such views are not updatable. In [29], updates apply only to non-recursive
views that are based on a join of the primary keys of the base tables. Both [2,29] cannot
handle other kinds of relationships eg. m-n, n-ary relationships etc. In [36], we propose an
ER-based 3-level schema architecture that treats schemas based on any OO data model as
external schemas (or views). While other approaches [2,29] use a query language to derive
views, the approach of [36] uses mapping rules to generate external schemas. An outline of
the approach in [36] is given in Section 4.

 One of the problems with views is the need to support updatable views. It was
proposed [38] that OODBMSs can be built to support updatable views by using OIDs. The
OIDs of the objects that are used to generate elements of a view are tracked and used to
generate OIDs for elements of the view. This generated OIDs can then be used to support
view updates. An open issue is whether these OIDs should be transient or persistent. It seems
redundant to generate OIDs for something as transient as elements of a view and may slow
down view processing considerably. In [43], it was proposed that production rules can be
used to propagate updates on views to base predicates. However, using production rules has
several problems which is described in [34], eg. possibility of indefinite triggering, lack of
theory for triggers, side effects of triggers etc.

14

 14

3.4 Conflicts in Class Hierarchies with Multiple Inheritance
 There can be property name conflicts between a class and its superclasses. In most
systems, the property names in the class take precedence over similar property names in
superclasses. Property name conflicts can also happen if two or more superclasses of a class
have properties with the same name. In this case several proposals have been made for
OODBMSs to resolve this conflict. First, the user can explicitly choose which property name
to inherit. Second, the system can take a default, which usually is the first in the list of
superclasses defined for the class. Third, the system can reject this kind of situation at class
definition time. O2 and ORION take the first and second approach respectively while
POSTGRES takes the third approach. These techniques are not satisfactory because they
operate at a syntactic, rather than a semantic, level. The reasons why the conflicts occur are
never explored.

 In [35], we provide an algorithm which resolves inheritance conflicts in class
hierarchies. The approach of [35] goes beyond most conflict resolution techniques of
OODBMSs by examining the reasons why conflicts occur.

4 A Normal Form OOER Model
 In this section, a three-level schema architecture is outlined which preserves the
advantages of the OO approach at the external schema level and simultaneously resolves, at
the conceptual schema level, the OO data modelling problems that have been identified in
Section 3, viz: (1) the lack of explicit support for the notion of relationship in the OO
approach, (2) the lack of general and flexible support for external schemas or views, (3) the
inability to differentiate good OO schema design from bad, and (4) the lack of a reasonable
approach to resolve inheritance conflicts in class hierarchies.

 The architectural framework comprises an external schema level, a conceptual
schema level and an internal storage level (similar to the ANSI/SPARC/X3 proposal[4] for
database systems). Any OO database schema (based on any of the proposed OO data models)
is treated as an external schema which can be generated from a conceptual schema by
applying a set of mapping rules. Distinct sets of mapping rules are needed to handle different
OO data models. In other words, this approach treats an OO database schema as one view of
a conceptual schema. Any OO schema is then an abstraction layer on top of the conceptual
schema. User applications, OO or otherwise, are written based on the external schema. The
advantages of the OO approach are therefore preserved at the external schema level.

15

 15

 The OO data modelling issues mentioned in Section 3 are resolved at the conceptual
schema level. The following steps define our approach:

 (Step 1) Represent a database schema diagrammatically using an ER diagram.
 There are several advantages in using the ER approach. First, an ER diagram
preserves application semantics by explicitly capturing entity types, relationship types (m-n,
n-ary, recursive, ISA, etc) and their attributes. Therefore, as opposed to the approach adopted
by some OO systems, not everything is treated homogeneously as objects (see Section 3.2.1).
Second, nested relations are modelled naturally by using the ER concepts of multi-valued
attributes, composite attributes and weak entities. The problems of modelling nested relations
in the OO approach (eg. supporting symmetric queries through redundancy, updatability of
nested relations, as discussed in Section 3.2.2) do not exist in the ER approach. Third, the
cardinalities of entity types participating in a relationship type are displayable on the ER
diagram. This is a cardinality constraint which is absent from most OO data models. Fourth,
by providing strong support for association among entity types, the ER approach eliminates
the need to use a navigational approach to link related entity types. Therefore, the problems
that the OO approach faces in representing the relationship between two 'spouses', or in
representing the relationship between suppliers and parts of Section 3.2.3 (eg. using
redundant inverse pointers, supporting symmetric queries through redundancy etc) are
resolved.

 However, note that it is difficult to determine whether an ER diagram is the best
representation for a given database. To overcome this deficiency, a normal form for ER
diagram has been proposed in [31].

 (Step 2) Derive a normal form ER diagram from the ER diagram obtained in step (1).
 This can be done by applying the techniques of [31]. A normal form ER diagram is
based on a strong, theoretical foundation provided by ER, normalisation and dependency
theories. It is therefore possible to judge the quality of a schema based on a normal form ER
diagram. In contrast, an OO schema has no formal foundation and lacks 'goodness' criteria
(as discussed in Section 3.1).

 Note that all the structural properties of the OO approach can be generated from a
normal form ER diagram. For example the ER concepts of ISA, entity type, IS-PART-OF,
weak entity type, and attribute aggregation correspond to the OO concepts of inheritance,

16

 16

class, composite object, existentially dependent object, aggregation of object properties
respectively. Therefore, a normal form ER diagram is a good base from which to generate
OO external schemas.

 (Step 3) Imbue the normal form ER diagram of Step (2) with methods, derived
attributes, deductive rules and triggers, and then eliminate all inheritance conflicts in ISA
hierarchies.
 This step produces a normal form OOER diagram. The inclusion of methods, derived
attributes, deductive rules and triggers (a form of production rules) provides useful features
from the domains of OO programming, deductive and active databases. Methods are
categorised into system generated methods, database administrator (DBA) definable methods
and programmer-definable methods. System generated methods exist in both the conceptual
schema and the external schema level and include code to browse instances of a class, or to
retrieve or update an object's attribute values. These methods are, in general, trivial and can
be more efficiently optimised by the system. DBA-definable methods are accessible by all
authorised users of the database and can be defined at both the conceptual and external
schema levels. For instance, the DBA can define generic methods to provide computations
such as calculation of interest, commission based on generic formulas, tax expenses etc.
Unlike DBA-definable methods, which are accessible by all users, programmer-definable
methods, eg. hire an employee, print an entity etc are application specific. The proper place
for programmer-definable methods is at the external, rather than conceptual, schema level.
This is no different from conventional practice, in which a database programmer writes
application programs based on an external schema available to him. Note that at the external
schema level, programmer-definable methods are given meaningful names which reflect a
higher level of abstraction, eg. hire_employee, fire_employee etc.

 Deductive rules and derived attributes can be treated as being comparable to methods
in the OO sense. They are used to derive information that are not physically stored. They are
therefore intensional. In contrast, methods may have side effects, which cause changes to the
extensional database. Most systems allow derived attributes to participate in queries but in
some systems (eg. IRIS[17]), methods with side effects cannot be used in queries.

 Triggers are typically used in active databases to enforce simple integrity constraints.
In our approach, triggers can either be system generated based on the integrity constraints
known to the system or explicitly coded by DBA and programmers at both the conceptual
and external schema levels. For example, consider a schema in which projects sponsored by

17

 17

departments are related by a relationship SPONSOR. Using the notation for triggers used in
VAX Rdb/VMS, a simple trigger to enforce the referential constraint that exists between
PROJECT and SPONSOR is:

 AFTER DELETE ON PROJECT
 REFERENCING OLD AS OLD_PROJECT
 DELETE FROM SPONSOR S WHERE S.P# = OLD_PROJECT.P#

 To avoid a possible misinterpretation of the roles of derived attributes, deductive
rules and triggers, we have established a framework [34] which differentiates between
deductive rules, triggers (production rules), integrity constraints and authorisation rules.

 Note that the addition of methods, derived attributes, deductive rules and triggers to a
normal form ER diagram is not sufficient to produce a normal form OOER diagram. All
inheritance conflicts in ISA hierarchies must also be eliminated in order to produce a normal
form OOER diagram. In [35], we provide a complete algorithm that resolves inheritance
conflicts in ISA hierarchies. Most conflict resolution techniques[6,16,17,28,39] operate at a
syntactic level and are either inflexible, arbitrary or not reasonable. Our approach considers
the semantics of conflicting properties, and the reasons why the conflicts occur, and
systematically resolves them. Briefly, inheritance conflicts can arise because of (1) redundant
ISA relationships, (2) poor design, (3) superclass properties with the same name but with
different semantics, and (4) superclass properties with the same name and with same
semantics. Conflicts are resolved by redesigning the schema, renaming properties, explicitly
selecting the inheritance path, removing redundant ISA links, redefining an overloaded
property, and factoring properties to a more general class. Note that when a property is
renamed, as a consequence of the conflict resolution algorithm, all methods, deductive
attributes/rules and triggers that refer to the renamed property must also be updated to
reference the new name.

 (Step 4) Apply a set of mapping rules to generate appropriate OO external schemas
from the conceptual schema that is represented by a normal form OOER diagram.
 In [36], a set of mapping rules is provided to generate OO external schemas based
specifically on the O2 data model. Similar mapping rules can be defined for other OO data
models. This approach is very powerful, expressive and flexible. For instance, if a user
wishes to adopt an OO perspective and construct the 'spouse' or supplier classes of Section
3.2.3, he can do so by generating the OO schema from the conceptual schema using the rules
given in [36]. As another example, given a recursive relationship such as course and its pre-

18

 18

requisites, a user can define a view of the transitive closure of the course relation. This
closure can be computed using, say, the semi-naive method or magic sets, but the exact
implementation is transparent at the external schema level.

 To generalise this approach, sets of mapping rules can be defined to generate external
schemas based on other data models (eg. hierarchical, network, nested relations, relational,
not necessarily normalised ER diagrams, etc) from the conceptual schema. In [32,33], for
example, mapping rules have been defined to generate external schemas based on
hierarchical, network, relational, nested relations and ER data models. These rules are still
valid for a normal form OOER diagram. The additions of methods, derived attributes,
deductive rules, and triggers to the normal form OOER diagram do not invalidate any of the
guidelines in [32,33]. This is because the guidelines pertain to the structural properties of a
normal form ER diagram, whereas methods, derived attributes, deductive rules and triggers
provide an orthogonal behavioural perspective. Therefore, depending on the needs of users,
the appropriate external schemas can be defined. External schemas may not necessarily be
normalised, and therefore users may perceive some form of 'redundancy'. However, this
redundancy is virtual in the sense that no redundancy exists at the conceptual schema level
and data is not stored redundantly.

5 Conclusion
 The tremendous interest in the OO approach has exposed a number of inadequacies,
which are now widely recognised. In this paper, we have presented a representative list of
these inadequacies and reviewed some of the solutions that have been proposed to resolve
them. After reviewing the list of inadequacies, we then focused on a set of OO data
modelling issues which, we feel, can be resolved by leveraging techniques developed in ER
data modelling. The OO data modelling issues that are addressed include (1) the lack of
explicit support for the notion of relationship, (2) the lack of support for views, (3) the
inability to judge the quality of an OO schema and (4) the lack of a reasonable approach to
resolve inheritance conflicts in class hierarchies.

 We outline an ER-based three level schema architecture which resolves the OO data
modelling inadequacies at the conceptual schema level and preserves the advantages of the
OO approach at the external schema level. Our approach allows an OO database schema,
based on any OO data model, to be generated from an ER-based conceptual schema, by using
a set of mapping rules. Distinct sets of mapping rules are needed for different OO data
models. This approach treats an OO schema as a view of the conceptual schema. To

19

 19

represent the conceptual schema, the notion of a normal form OOER diagram is introduced.
We justify this choice as follows: (1) A normal form OOER diagram captures semantic
information in the form of entities, relationships (m-n, n-ary, recursive, ISA etc), attributes
and constraints specified by functional and multi-valued dependencies. Inheritance conflicts
in the ISA hierarchies of a normal form OOER diagram are systematically removed by
applying the algorithm proposed in [35]. (2) All the structural properties of the OO approach
(eg. class, class hierarchy, set/tuple valued attributes, composite objects etc) can be
generated from a normal form OOER diagram. The definition of mapping rules to generate
OO schemas is therefore facilitated. (3) The quality of a database organised according to a
normal form OOER diagram can be judged by applying classical normalisation and
dependency theories.

 As future work, we are investigating the updatability of the constructed entities and
relationships in object-oriented external schemas. It is interesting to investigate how the
presence of methods, deductive rules and derived attributes at both the conceptual and
external schema level will affect the updatability problem.

References

 [1] Abiteboul S., Kanellakis P., Object Identity as a Query Language Primitive, Proc Intl
Conf on Management of Data, Portland Oregon, May 1989.

 [2] Abiteboul S., Bonner, A., Objects and Views, Proc Intl. Conf on Management of Data,
1991.

 [3] Andrews T. and Harris C., Combining Language and Database Advances in an Object-
Oriented Development Environment, Proc OOPSLA '87, Orlando, Florida, Oct 87.

 [4] ANSI/X3/SPARC Study Group on Data Base Management Systems, Interim Report,
FDT (ACM Sigmod bulletin) Vol 7 No 2,1975.

 [5] Atkinson M., et al, The Object Oriented Database System Manifesto, Proc 1st Intl.
Conf. on DOOD, Kyoto, Japan, Dec 1989.

 [6] Banerjee J. et al, Data Model Issues for Object-oriented Applications, ACM
Transactions on Office Information Systems, Vol 5 No 1, Jan 87.

 [7] Beech D., OSQL: A Language for Migrating from SQL to Object Databases, Proc. Intl.
Conf. on Extending Data Base Technology, Venice, Italy, Mar 1988.

 [8] Bertino E. and Kim W., Indexing Techniques for Queries on Nested Objects, IEEE
Trans. on Knowledge and Data Engineering, Oct 1989.

20

 20

 [9] Bloom T. and Zdonik S., Issues in the Design of Object-Oriented Database
Programming Languages, OOPSLA 87, Orlando, Florida, Oct 1989.

 [10] Cattell R., Object Data Management: Object-Oriented and Extended Relational
Database Systems, Addison Wesley 1991.

 [11] Chen P.P., The Entity-Relationship Model: Toward a unified View of Data, ACM
TODS, Vol 1, No 1, 1976.

 [12] Cluet S., Delobel C., Lecluse C., and Richard P., Reloop: An Algebra Based Query
Language for an Object-Oriented Database System, Proc 1st Intl Conf on DOOD, Kyoto,
Japan, Dec 1989.

 [13] Codd E.F., A relational model of data for large shared data banks, CACM 13, 6, 1970.

 [14] -, Third Generation Database System Manifesto, the Committee for Advanced DBMS
Function, Memo No. UCB/ERL M90/28, University of California, Berkeley, Apr 1990.

 [15] Date C.J., An Introduction to Database Systems Vol I, Addison Wesley, 4th edition,
1986.

 [16] Deux et al, The Story of O2, IEEE Transactions on Knowledge and Data Engineering,
Vol 2 No 1, Mar 1990.

 [17] Fishman et al, IRIS: An object oriented database management system, ACM Trans
Office Information Syst., Vol 5 No 1, Jan 87.

 [18] Goldberg A. and Robson D., Smalltalk-80, the Language and Implementation,
Addison Wesley 1983.

 [19] Hailpern B., Ossher H., Extending Objects to Support Multiple Interfaces and Access
Controls, IEEE Transactions on Software Engineering, Vol 16, No 11, Nov 1990.

 [20] Hong S., Maryanski F., Using a Meta Model to Represent Object-Oriented Data
Models, Proc Intl Conf. on Data Engineering, 1990, pp 11-19.

 [21] Khoshafian S.N., Copeland G.P., Object Identity, Proc OOPSLA 86, Portland,
Oregon, Sept 86.

 [22] Kifer M., Wu J., A Logic for Object-Oriented Logic Programming, Proc PODS, Mar
1989.

 [23] Kifer M., Lausen G., F-Logic: A Higher-Order Language for Reasoning about
Objects, Inheritance and Scheme, Proc Intl. Conf. on Management of Data, Portland, Oregon,
May 1989.

21

 21

 [24] Kim W. et al, Composite Object Support in an Object-Oriented Database System, Proc
OOPSLA '87, Orlando, Florida, Oct 87.

 [25] Kim W. et al, Object-oriented Database Support for CAD, MCC Technical Report
ACA-ST-293-87, Sept, 1987.

 [26] Kim W., A Model of Queries for Object-Oriented Databases, Proc. Intl. Conf. on
VLDB, Amsterdam, Netherlands, Aug 1989.

 [27] Kim W., Architectural Issues in Object-Oriented Databases, JOOP, Mar/Apr 1990.

 [28] Kim W., An Introduction to Object-oriented Databases, MIT Press, 1990.

 [29] Kung ChenHo, Object Subclass Hierarchy in SQL: A Simple Approach, CACM 33, 7,
1990.

 [30] Lecluse C., Richard P. and Velez F., O2, an Object-Oriented Data Model, Proc. Intl.
Conf. on Management of Data, Chicago, Ill, Jun 1988.

 [31] Ling T.W., A Normal Form for Entity-Relationship Diagrams, Proc. 4th International
Conference on Entity-Relationship Approach, 1985, pg 24-35.

 [32] Ling T.W., A Three Level Schema Architecture ER-Based Data Base Management
System, Proc. 6th International Conference on Entity Relationship Approach, 1987, pp 181-
196.

 [33] Ling T.W., External Schemas of Entity-Relationship Based Data Base Management
Systems, in Entity-Relationship Approach, C. Batini (Eds.), Elsevier Science Publishers,
1989.

 [34] Ling T.W., Teo P.K., On Rules and Integrity Constraints in Database Systems,
Information and Software Technology, Vol 34 No 3, Mar 1992.

 [35] Ling T.W., Teo P.K., Resolving Inheritance Conflicts in Object-Oriented Systems,
Submitted for Publication, 1993.

 [36] Ling T.W., Teo P.K., Yan Y.Y., Generating Object-Oriented Views from an ER-Based
Conceptual Schema, Proc. 3rd Intl Symposium on Database Systems for Advanced
Applications, Apr 6-8, Taejon, Korea, 1993.

 [37] Maier D., Stein J., Otis A., Purdy A., Development of an Object-oriented DBMS, Proc
OOPSLA 86, Portland, Oregon, Sept 86.

 [38] Maier D., Comments on the "3rd Generation DataBase System Manifesto", Oregon
Graduate Institute, 1991.

 [39] Rowe L. and Stonebraker M., The Postgres Data Model, in The Postgres Papers,
Memo No UCB/ERL M86/85 Jun 87 (Revised), University of California, Berkeley.

22

 22

 [40] Stefik M. and Bobrow D., Object-oriented Programming: Themes and Variations, The
AI Magazine, 40-62, Jan 1986.

 [41] Shilling J., Sweeney P., Three Steps to Views: Extending the Object-Oriented
Paradigm, Proc. OOPSLA 89.

 [42] Stonebraker M. et al, The Implementation of POSTGRES, IEEE Transactions on
Knowledge and Data Engineering, Vol 2, No 1, Mar 1990.

 [43] Stonebraker M. et al, On Rules, Procedures, Caching and Views in Database Systems,
Sigmod 1990.

 [44] Stroustrup B., The C++ Programming Language, Addison Wesley, 1986.

 [45] Ullman J.D., Database Theory - Past and Future, Proc. 6th PODS (San Diego, CA,
1987).

 [46] Zdonik S. and Maier D., Fundamentals of Object-Oriented Databases, in Readings in
Object-oriented Database Systems, Morgan Kaufman, San Mateo, Ca., 1990.

