INFORMATION
AND
SO0FTWARE
TECHANOLOGY

SLSEVIER

Information and Software Technology 38 (1996} 60i-608

Extending classical functional dependencies for physical
database design

Tok Wang Ling?, Cheng Hian Goh®, Mong Li Lee?

*Department of Information Systems & Computer Science, National University of Singapore, 119260 Singapore
YSloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 3 November 1994; revised 24 November 1995; accepted 11 December 1995

Abstract

Traditionally, database design activities are partitioned into distinct phases in which a logical design phase precedes physical
database design. The objective of the logical design step is to eliminate redundancies and updating anomalies using the notion of data
dependencies, while leaving the physical design step to consider how the database schema may be restructured to provide more
efficient access. We argue in this paper that the separation of these two steps often results in physical database design not being able to
benefit from knowledge of the semantics of data captured in the earlier phases of the database design life cycle. As a step towards
overcoming this problem, we demonstrate how classical functional dependencies can be extended to capture data semantics relevant
to the design of database schemas which are more desirable from the efficiency point of view. This is accomplished via the introduc-
tion of strong and weak functional dependencies. Strong functional dependencies indicate that the relationship between two attributes
almost never change. This concept allows us to have controlled redundancies which is beneficial as it can reduce dramatically the
effort needed to access frequently needed information. Weak functional dependencies capture the commeon situations in real life where
classical functional dependencies between two attributes hold in general but may be violated in rare cases. Three new normal forms —
the relaxed 3NF, replicated 3NF and relax-replicated 3NF, induced by the strong and weak functional dependencies, provide a
theoretical framework for designing database schemas which are more efficient and practical, while not compromising the integrity of
the underlying database. That is, relations in these new normal forms will not suffer from undesirable updating anomalies.

Keywords: Database design; Functional dependencies; Normal forms.

1. Introduction

The design of an integrated database is a complex
process. Traditionally, this is accomplished using a
multi-step framework consisting of requirements
analysis, conceptual design, logical design, followed by
physical database design [1]. More specifically, the task
of logical design is to arrive at a database schema which
is devoid of updating anomalies or redundancies. The
theory underlying logical database design, frequently
referred to as normalization, has been well-researched
{2]. Depending on the types of constraints (called data
dependencies) which are accounted for, one can arrive at
a number of rormal forms which guarantees that certain
types of anomalies will not occur. The objective of the
physical database design step, on the other hand, is to
identify how the database can be optimized for
application-specific database accesses. Recognizing that

0950-5849/96/315.00 ©) 1996 Elsevier Science B.V. All rights reserved

P17 S0950-5849(96)01097-X

normalization frequently leads to expensive joins in
query processing, many practitioners have advocated
denormalization as an integral activity in physical data-
base design [3,4]. The methods proposed however do not
take into account the semantics of data involved and
often leaves the enforcement of data integrity to the
application programmer in an ad hoc fashion.

We advocate that the logical and physical design steps
should not be undertaken as disjoint activities. This
paper takes a first step towards the integration of the
two by proposing how classical functional dependencies
can be extended to provide for more intelligent choices
during physical design, providing guidelines for the
design of more ‘efficient’ schemas while not compromis-
ing the integrity of the database. The introduction of
strong and weak functional dependencies, as well as
three new normal forms — the relaxed 3NF, replicated
3NF and relax-replicated 3NF - induced by the strong

602 T.W. Ling et al jInformation and Software Technology 38 {1996) 601608

and weak functional dependencies provide a theoretical
framework which help identify a particular subset of
denormalized relations for which integrity is easier to
enforce compared to others.

The rest of this paper is organized as follows. In
Section 2, we give a brief review of classical normaliza-
tion theory and motivate the need for integrating the
logical and physical design steps with a number of
examples. Section 3 formalizes the extensions to classical
functional dependencies and their associated normal
forms. Section 4 proposes various approaches to preserv-
ing the integrity of the database in a schema complying
with the extended normal forms. Finally, Section 5 sum-
marizes our contribution and provides some suggestions
for further work.

2. Normalization: theory and practice .

The concepts of data dependencies and normalization
lie at the heart of relational database theory. It has been
shown that redundancies and various updating anoma-
lies (threatening the integrity of a database) can be
avoided by designing relation schemes which conform
to certain rormal forms [2]. The example which follows
examines these anomalies. The subsequent discussions
assume that the reader is familiar with the fundamental
concepts of relational databases at the level of [3].

Example 1. Consider the Supplier- Part database which
captures information of suppliers, parts, and the quan-
tity of parts ordered from suppliers. This information
can be kept using one umnormalized relation, called
SUP_INFO

SUP_INFD(sno, pro, sname, addr, pname, color,
qty)

We can immediately identify several problems
associated with such a scheme [3]:

(1) Redundancy. The information of each supplier and
part are repeated many times over.

(2) Potential inconsistency (update anomalies). As a
result of redundant representation of supplier and
part information, update to supplier or part informa-
tion is costly and there is a possibility of having
inconsistent updates.

(3} Insertion anomalies. We cannot record information
concerning a ‘particular supplier until he beings to
supply us with a part. (Note that we are not able to
put null values in pno and sno together make up the
key of the relation.)

(4) Deletion anomalies. Should we delete all the items
supplied by a supplier, the supplier information is
lost. The converse applies to part information.

Functional dependencies (FDs) are introduced as one
of the ways in which redundancies can be identified.

According to the extent in which these redundancies
are removed, we obtained relations which are in an
assortment of normal forms. The FD-related normal
forms which are commonly used as tools for logical
design of databases include the Codd third normal form
{3NF) [6], Boyce-Codd normal form (BCNF) [7], and the
improved third normal form (improved 3NF) [8].

Example 2. The relation SUP_INFO in Example 1 can be
transformed to the following relation schemes which is in
BCNF (hence, 3NF):

SUPPLIER(sno, sname, addr)
PART(pno, pname, color)

SUPPLY (sno, pno, qty)

No redundancies exist and none of the anomalies
identified in Example 1 can occur in this schema.

While no one would dispute the elegance of relational
normalization theory, having a database which is nor-
malized to the highest possible degree may not be at all
desirable from a practical point of view. There are at
least two scenarios why this may be so. First, normal-
ization theory advocates that data should be organized
into clusters of ‘singleton’ relationships from which more
complex associations can be composed. This often
translates to a high degree of fragmentation which is
undesirable for efficient query processing. Second,
classical normalization theory is built on the foundation
of data dependencies, which defines in very precise terms
the set of integrity constraints real world data must obey.
This is fine if rules are strictly adhered to: unfortunately,
exceptions to the rule are often the norm in the real
world. Since one must always design the database to
accommodate the real world and not vice versa, it is
often the case that we are not able to exploit the
‘norm’ with existing normalization theory. These two
situations are best illustrated with the following
examples.

Example 3. Consider once again the Supplier-Part
database which is represented by the database schemes
in Example 2. Assume that the enterprise requires fre-
quent reporting of the information held in the relation
SUPPLY. Since numbers mean little to human beings,
both the supplier name (sname) and part name (pname)
must be reported along with the quantity (qty). This
effectively means computing a join on all the three
relations each time a_ piece of information is needed
from the relation SUPPLY.. This is an expensive and time-
consuming operation which is highly undesirable. In an
attempt to cut down the cost of this transaction, the
database designer may wish to include sname and
pname in the relation SUPPLY. As a result, the relation
SUPPLY will not be in third normal form and this is cer-
tain to cause some disputes concerning its ‘goodness’.
Furthermore, one cannot help but wonder if the integrity
of the database would be violated because of the redun-
dant representation.

T.W. Ling et al.{Information and Software Technology 38 (1996) 601-608 603

Example 4. Consider a database whose intention is to
capture information of employees in an enterprise. These
information may be captured in the relation EMP:

EMP (emp#, empname, phone#, designation, ...)

The underlying assumption here is that an employee
has only one telephone number. This assumption may be
valid except for a handful of individuals in the highest
management echelon, in which case he may have two or
more telephones in his office. To accommmodate these
exceptions, the database designer has two alternatives.
The first option is to credie a new attribute:

EMP (emp#, empname, phone#, alt_phone#,
designation ...)

This new attribute {alt_phone#) results in higher
storage cost since disk space will be allocated for it
even though a large proportion of tuples in this relation
will not have a value. Furthermore, this scheme will not
be able to capture the information of an employee who
has, say, three telephones in his office.

A second alternative (which classical relational
database theory would advocate) is to model the rela-
tionship between emp# and phone# (in Example 5)
would be modelled using a multivariate dependency
(MVD) [9] emp#-+ phone#. This will lead to the
removal of phone# from relation EMP to form a new
relation (EMP_PHONE) through decomposition:

EMP (emp#, empname, designatioen, ...)
EMP_PHONE (emp#, phone#)

There are two problems with this second approach.
This first is similar to that raised in Example 3: retrieval
of employee phone numbers based on employee name or
designation is slow since a join is always required. This is
particularly uncomfortable since we know that almost
all the employees (with few exceptions) have only one
phone each. The second is more philosophical in
nature: i.e., a functional dependency which is violated
only in special cases is semantically not the same as an
MVD.

Example 3 above demonstrates that contrary to the
motivations behind classical normalization theory, con-
trolled redundancies can be beneficial as they can reduce
dramatically the effort needed to access information
which is needed frequently. This is all the more reason-
able if the redundant attribute is not updatable or whose
update need not be reflected in real-time. In the first case,
update anomalies cannot occur if the right-hand-side
attribute is never updated. In the second case, an update
which need not be reflected in real-time can be performed
off-line, which makes it possible for us to ensure that the
update is consistent. Therefore the benefits outweigh the
extra disk space required. :

Example 4 suggests that the concept of functional
dependency is inadequate because it does not consider

cases in which the functional relationship between two
attributes holds in general but may be violated in rare
cases. This is significant because such relationships occur
frequently in real life and have given rise to poor design
and subsequently, poor performance.

3. Extending classical functional dependencies and their
associated normal forms

In this section, we demonstate how classical functional
dependencies (FDs) can be extended to circumvent the
problems highlighted in the earlier section. Specifically,
we introduce the notion of strong FDs and weak FDs in
addition to classical FDs.

Definition 1. [Strong Functional Dependency (SFD)].
Let ¥ —» Y beaFD such that foreach Z € Y, X — Zis
a full FD. Then X — Y is a SFD (denoted by X = ¥)if
all the attributes in ¥ will not be updated, or if the
update need not be performed at real-time or on-line.

For instance, in Example 1, the functional dependencies
sno — sname and pno — pname are also SFDs.

Definition 2. [Weak Functional Dependency (WFD)].
Let R be a relation schema. A WFD, denoted by X A Y,
between two sets of attributes X and ¥ that are subsets of
R states that X —— ¥ holds the most of the X-values are
associated with a unique ¥-value in R, except for a hand-
ful of X-values which may be associated with more than
one Y-value. If we remove this handful of exceptional
tuples from R, then foreach Z € ¥, X — Z is a full FD
in R.

For instance, in Example 4, we have emp# Lphone#.
The functional dependency emp# — phone# does not
hold as we have a handful of employees who may have
more than one phone.

Corollary 1. ¥ 2 Y= XY =¥ =X 2 7.

Proof. The proof follows trivially from the definitions
of strong and weak FDs. Note however that the converse
is not true (ie, X~ Y¥Y#»X>¥ and X -5 Y&
X -7

The purpose of the strong and weak FDs is to allow
the database designer to capture those aspects of data
semantics which would otherwise be unavailable during
physical database design. Our motivation stems from the
observation that classical FDs are not able to capture
these semantics adequately. The strong and weak FDs
therefore serve to provide the link between the logical
design and physical design steps by allowing the database
designer to make more intelligent decisions about how
the database can be structured without compromising
the integrity the logical design step so painstakingly
seek to preserve,

Definition 3. [Replicated 3NF]. Let R=
{R1,Ry,..., Ry} be a database schema and 4; be the
set of attributes in R;, for j=1,2,...,n. A relation

S T

A N AR

e

e e e 8 S 2

604 T.W. Ling et al./Information and Software Technology 38 (1996) 601-608

schema R; € R is said to be in replicated 3NF if:

(1) ForeachX S ¥, xuvyc A;, X is not a key of Ri.
Case 1: If X is not a role name of the key of R, t%len
there exists a unique R; € R, j # i, such that X 15 a
key of R; and Y C 4; (R; is said to be the primary
instance of R; wrt the attributes in X U ¥). .
Case 2: I X is a role name of the key of R;and Y 152
role name of some attribute in R, and

(2 Let § = {B|X % B, {X, B} C 4;, X isnot a key of R,
and B is non-prime}; the relation schema obtained
from R; after removing all attributes in 3 is in 3NF.

Example 5. Consider the database schema presented it
Example 3, which is reproduced below:

SUPPLIER(sno, sname, addr)
PART (pno, pname, color)
SUPPLY(sno, pno, sname, pname, qty)

Clearly, SUPPLY is not in Codd 3NF since sno — spaine
but sname is non-prime and sno is not a candidat.e ke.y.
However, it is in replicated 3NF by Definition 1 since:

(1) sno = sname and pro 2, pnare, and moreover, by
Case 1 of Definition 3, SUPPLIER and PART are the
primary instances of SUPPLIER wrt the attribute Sets
{sno, sname } and {pno, pname} respectively; and

(2} the relation scheme obtained by removing attribules
sname and pname from SUPPLY is in Codd 3NF.

Example 6. Consider next the following database
schema:

EMP_NMGR (erp#, empname, mgr#, mgrnane, address)

The attributes mgr# and mgrname are role names of
emp# and empname respectively. We have the following
strong functional dependencies in the relation
EMP_MGR:

-3

emp# — empname
s

mgr# — mgrname

The relation EMP_MGR is in replicated 3NF because
it satisfies the Case 2 of Definition 3 and the relation
scheme obtained by removing the attribute mgrname 15
in Codd 3NF.

The replicated normal forms defined above makes pro-
vision for inclusion of redundancies in a relation scheme
so that the operational efficiency of the database can be
enhanced while ensuring that the integrity of the data-
base is not compromised due to various updating
anomalies. This is achieved by making sure that:

(1) Only attributes which will not be updated or those
which can be updated off-line is duplicated. This 18
enforced through the definition of a strong FD and
the second condition in Definition 1; and

(2) Insertion, deletion, and updating anomalies Cii‘-l“_lot
occur by adhering to a strict updating discipline

which will validate the updates against the Primary
instance of the attribute. How this can be enforced in
practice is the subject of the next section.

Hence, the replicated normal forms provide a criteria
against which results of denormalization can be verified.
It helps to identify a particular subset of denormalized
relations for which integrity is easier to enforce. For
instance, a denormalized relation schema which is not
in replicated 3NF is likely to suffer the updating
anomalies presented in Example 1. On the other hand,
a relation schema which is not in 3NF but nevertheless, ig
in replicated 3NF will not succumb to the said
anomalies,

We now proceed to define yet another normal form
arising from weak FDs.

Definition 4. [Relaxed 3NF]. Let R = {RL,Ry,...,R,}
be a database schema and A4 ; be the set of attributes in R;,
forj=1,2,...,n. A relation schema R; € Rissaid to be
in relaxed 3NF if whenever every weak FD ¥ X y
which holds in R, is replaced by its regular counterpart
(e, X = ¥), R, would have been in 3NF.

Example 7. Consider the scenario given in Exampie 4

emp (emp#, empname, phone#, designationm, ...)

Since most of the employees have only one telephone
number except for a handful of individuals in the top
management who may have more than one telephone,
therefore emp# — phone# holds in the relation EMP.
Relation EMP is in relaxed 3NF because if we replace
the WFD emp# — phone# by its regular counterpart, that
is, emp# — phone#, EMP is in Codd 3NF.

The formulation of the relaxed normal forms follow
the same rationale as that of the replicated normal form.
Since there is only ome ¥-value associated with each
X-value in most cases, we can implement this weak FD
by treating Y as if the FD X — ¥ holds and accom-
modate exceptional cases in a separate relation. That
is, given a database schema R = {Ri,Ry,...R,} and A;
is the set of attributes in R;, forj=1,2,...,n. Foreach
weak FD x - ¥ which holds in R;, we create an all-key
relation ORy with attributes XY U Y. We call ORy the
overflow relation (schema) with respect to attributes Y.
Note that if ORy is not in fourth normal form {(4NF),
then we decompose it into a set of 4NF relations.
Retrieving the Y-value corresponding to a given
X-value can then be accomplished efficiently. Additional
measures, however, will be needed to provide for the
retrieval of more than one ¥-value. This again will be
the subject of the next section. It suffices to point out that
this notion of relaxed normal forms provide oppot-
tunities for database designers to exploit the functional
relationship which holds in general and devise a separate
scheme for dealing with exceptions within the overail
normalization framework.

Example 8. Consider again the scenario in Example 4.

7
%

T.W. Ling et al.]Information and Software Technology 38 (1996) 601-608 605

We can implement the WFD emp# — phone# by treating
phone# as if emp# — phone# holds and accommodate
exceptional cases in an overflow relation as follows:

EMP(emp#, phone#, empname, designation, ...)
EMP_PHONE_OVERFLOW (emp#, overflow_phone#)

The relation represented by EMP_PHONE_OVERFLOV is
the overflow relation with respect to the attribute
phone#.

Definition 5. [Relax-Replicated 3NF]. Let R=
{R{,R3,...,R,} be a database schema and 4; be the
set of attributes in R;,j =1,2,...,n. A relation schema
R; is said to be in relax-replicated 3NF if whenever every
weak FD X — Y which holds in R; is replaced by its
regular counterpart (i.e., X — Y), R; would have been
in replicated 3NF.

The relax-replicated normal forms defined above
allows for both strong and weak functional dependencies
to occur in the same relation schema.

Exampie 9. Consider the following database schema:

EMP_MGR{emp#, empname, mgr#, mgrname, phone#,
address)
EMP_PHONE_OVERFLOW(emp#, overflow_phone#)

The atiributes mgr# and mgrname are role names of emp#
and empname respectively. We have the following
functional dependencies in the relation EMP_MGR:

emp# RN empriame

mgr# = mgroname

emp# nA phone#

The relation EMP_MGR is in relax-replicated 3NF

because if we replace the WEFD emp# i>p}:Loneafa& by its
regular counterpart, that is, emp#— phone#,

EMP_MGR is in replicated 3NF.

We can similarly define relax-replicated improved 3NF

'[8], relax-replicated BCNF, and relax-replicated 4NF.

Having presented the theoretical framework for
designing database schemas which are more efficient,
while not compromising the integrity of the underlying
database, we conclude this section by discussing how we
can design a database schema which is in relax-replicated
3NF. There are two main techniques for relational data-
base schema design. In the first technique, often called
relational synthesis, we view relational database schema
design strictly in terms of functional dependencies speci-
fied on the database attributes. To obtain relax-repli-
cated 3NF schemas using this first technique, we first
obtain all the regular FDs, SFDs and WFDs. Then we
treat all these different types of FDs as the classical FDs
and use any algorithm [8,10] to synthesize relations. Note
that all the relations obtained are in relaxed 3NF. More-
over, some of the relations may not be in 3NF due to the
existence of some WFDs. Finally, we can modify the
relation schemas using the SFDs obtained initially to
produce relax-replicated 3NF relations which are more

efficient from the processing point of view. That is, if
A 5 B holds, A and B are sets of attributes, then when-
ever A appears in some relation R, we can add B into R.

In the second technique, also known as top down
design, a conceptual schema can be designed using a
high-level data model, such as the Entity-Relationship
(ER) model [11]. The ER model uses the concepts of
entity types and relationship sets. An entity type or
relationship set has attributes which represents its
structural properties. Attributes can be single-valued or
muliivalued. We can incorporate the notions of SFD and
WFD when we use the ER model to design the con-
ceptual schema of a database. Assuming that K is the
identifier of an entity type E (or relationship set R), we
can identify single-valued attributes A of E such that
K > A or multivalued attributes B of E (or R} such
that K ~ B. If K ~ B holds, then we treat B as a single-
valued attribute of E (or R). We can translate the ER
diagram into a set of relations by using some existing
translation algorithm. Note that all the relations
obtained are in relaxed 3NF, and some relations may
not be in 3NF due to the existence of some WFDs.
Finally, we can modify relations translated from
relationship sets when necessary using SFDs for more
efficient processing. That is, if X 2+ A holds, where K
is the identifier of some entity type E and A is the attri-
bute of E, then we can add A to relations involving K. In
which case, the relations will be in relax-replicate 3NF.

4. Preserving database integrity with replicated, relaxed
and relax-replicated normal forms

One of the most important functions of a database
system 18 to ensure that data contained therein is
consistent at any one time: i.e., it must satisfy all integrity
constraints. Any database operation modifying the data-
base must therefore preserve consistency, that is, it must
see to it that the database is tramsformed from omne
consistent state to another. In the context of classical
normalization theory, consistency is preserved by struc-
turing the database to eliminate as much redundancy as
possible, and the enforcement of a small subset of con-
straints (the most common ones being key constraints
and referential integrity [12]). In the previous section,
we suggested that the stringent constraints imposed by
classical normal forms can be relaxed under a number of
special but commonly occurring situations. These com-
promises were made to provide more efficient processing
or disk space utilization. The integrity of the database,
however, should not be compromised in spite of these
relaxations. The purpose of this section is to exaine
how we might be able to preserve the integrity of a data-
base organized under the replicated or relaxed normal
forms.

There are two generic strategies for accomplishing the

606 T.W. Ling et al [Information and Software Technology 38 {1996) 601-608

above goal. One strategy is to incorporate a constraint
enforcement precompiler that accepts a user’s program
and produces a new program guaranteeing that any
update to database will be integrity preserving. A second
strategy is to propagate updates to the database through
the use of triggers.

4.1. Preserving integrity of replicated 3NF

Integrity preservation of a database in replicated nor-
mal forms can be cast as a more general problem: j.e.,
that of enforcing inclusion dependencies [13). Recall that
an inclusion dependency (IND) R[x] € S[¥] is said to
hold in a database 4 is for any two relations r,s & d
which are extensions of R and S, respectively, it is the
case that r[X] C s|¥]. Suppose R, is in replicated 3NF
(but not 3NF), and R;,i# j, is the primary instance of
R; with respect to attributes W(=XUY), where W ¢
A W C 4;, X is a key of R; butitisnota key of R;, and
X > ¥ holds. Preserving the integrity of the above rela-
tions is therefore equivalent to making sure that the
inclusion dependency R;[W] C R;[W] holds at all times.

Given this simplification, one must now consider how
updates to the database can be modified or propagated.
Casanova et al. [14] noted that there are a number of
options available for enforcing the constraint
Ri[W) € R;[W] as described above. However, we can
simplify these options as the W in our case is a superkey
of R; as follows:

(1) Block deletion: do not delete (or update) the value of
W of a tuple in R; if there is a tuple in R; with the
same W-value {or the same new W-value).

(2) Block insertion: do not insert (or update) the W-value
of a tuple in R; if there does not exist any tuple in R;
with the same W-value (or the same old W-value).

(3) Propagate deletion: propagate the deletion (or
update)} of a W-value of a tuple in R; by deleting
those tuples in R; with the same W-value (or update
those tuples in R; with the same old W-value by the
new W-value).

(4) Propagate insertion: propagate the insertion (or the
update) of a tuple u; in R; by creating a tuple u; in R;
such that ,[W] = #[W], if there is no tuple L in R;
such that u,[W] = u[I¥]. The other attribute values
of p; in this case may be simply set to null, or the user
might be prompted to provide them.

As mentioned earlier, there are two strategies for
implementing these options. The first is to modify the
operations submitted to the database so that all updates
and deletions can be made compliant to one or more of
these options. The second is to encode these options in
the form of triggers, so that certain operations may be
automatically executed to implement a propagation. The
next example expands on Example 5 by demonstrating
how the options detailed earlier can be implemented.

Example 10. Consider the database schema presented
in Example 5:

SUPPLIER(in_q » Sname, addy)
PART(pno, pname, color)
SUPPLY (sno, pno, sname, pname, gqty)

We have sno — sname and pno > pname. The relation
SUPPLY is in replicated 3NF. In order to preserve the
integrity of this database, we will need to enforce the
following inclusion dependencies:

SUPPLY [sno, sname] C SUPPLIER [sno, sname]
SUPPLY [pno, pname] C PART [pno, phame]

One example of how an insertion statement might be
rewritten to implement the block insertion strategy is as
follows. Given this insertion:

insert into SUPPLY values ("si", "pl1", "acme",
"screw, 1in",10):

- This insertion operation might be rewritten to the
folowing:

8 := select * from SUPPLIER

where SUPPLIER.sno = "s1"

and SUPPLIER. sname = "acme";
P :=select * from PART

where PART.pno = "p1"

and PART.pname = "screw, lin";
if S=NULL or P=NULL then

reject transaction
else

insert into SUPPLY values ("si", "pi",

"acme", "screw, 1in",10});

Alternatively, we can implement the above insertion
statement using the propagate insertion strategy by
attaching a trigger to the relation SUPPLY which
triggers insertions into both SUPPLIER and PART:

On insert{(Sno,Pno,Sname,Pname Qty)
Call PG1(Sno,Sname), PG2(Pno , Priame)

where PG1 and PG?2 are programs which insert into
SUPPLIER and PART (respectively) tuples with those
key values which are not currently in those relations. For
instance, PG1 might be:

if not exists
(select from SUPPLIER
where SUPPLIER. sno=Sno
and SUPPLIER. sname=Sname;)
then insert into SUPPLIER values
(Sno, Sname ,NULL) ;

Note that the system wilt automatically enforce the
key constraint. For example, for the insert statement in
PG, the system wiil ensure that no two tuples in the
relation SUPPLIER have the same sno value.

Similarly, by implementing these strategies, we can

T.W. Ling et al./Information and Software Technology 38 (1996) 601 —-608 607

also preserve the integrity of a database containing
relations in replicated 3NF for a deletion or modification
request.

4.2. Preserving integrity of relaxed INF

In the case of relations organized in relaxed 3NF, we
need to consider not only insertions, deletions and
updates, but also queries. We will first identify the issues
related to queries with the following example.

Example 11. Consider again the scenario in Example 8:

EMP {emp#, phone#, empnane, designation, ...)
EMP_PHONE_OVERFLOV (emp#, overflow_phone#)

Suppose a user wishes to query the phone number of
an employee by name. This query can be supported by
two different strategies as detailed below.

In the first strategy, both schemas are made visible to
the user. The implication of this is that the user can
choose to query relation EMP directly if he is not con-
cerned about getting afl the phone numbers of an
employee. The advantage of this approach is that queries
of this kind can be most efficiently supported. Moreover,
the phone number thus obtained will, in most instances,
be the only one anyway. If a user wishes, for some
reason, to know all the phone numbers of an employee
named “Smith”, he can then issue a second query which
will be more expensive to process:

select phone# from EMP

wvhere empname = "Smith"

UNION

select overflow_phone# from
EMP_PHONE_OVERFLOW, EMP

where EMP. empname = "Smith"

and EMP. emp# = EMP_PHONE_QOVERFLOW. emp#;

In the above approach, the user is not insulated from
the idiosyncrasies of the database structure. Some
authors might argue that exposing the user to the know-
ledge of the overflow relation might be undesirable. In
fact, we could also present only the relation EMP: in this
case, the user could query the relation directly, say, with

select phone# from EMP where empname = "Smith";

but we would need to rewrite this query to range over
both relations (i.e., EMP and EMP_PHONE_OVERFLOW). This
simplicity however is achieved at the expense of efficiency
in query processing, since the query after transformation
will require a join of the two relations. However, the
relation EMP_PHONE_OVERFLOW is very small. Therefore
a join of the two relations will not be too expensive.
Note that if there is another weak FD in the relation
EMP, say E# 2 designation, then we will have another
overflow relation called EMP_DESIGNATION._OVERFLOW.
Similar transformations can be applied to insertion

and deletion operations as demonstrated in the following
example:

Example 12. Consider once again the earlier example
involving employees and phone numbers. The insertion
operation:

insert into EMP values (Eno, Ephone, ...}
can be transformed to

E := select * from EMP where emp# = Eno;
if E = NULL then
insert into EMP values (Eno,Ephone,...);
else
if E.phone# = NULL then /* employee has no
phone yet */
update EMP set phone# = Ephone;
else /+* employee has more than one phone */
insert intc EMP_PHONE_OVERFLOW values
(Eno,Ephone);

Note that the above transformation caters for either
the insertion of a tuple into EMP or the insertion of a
new telephone number for a particular employee.

Deleting a tuple from EMP (for example, delete {rom
EMP where emp# = Eno) requires that any other tuples
which has the same Eno in EMP_PHONE_OVERFLOW be
deleted as well. On the other hand, if only the telephone
number is made obsolete, that is, delete the telephone
number of an employee, additional work might be
required to update EMP with a phone number in
EMP_PHONE_OVERFLOW. For example, the deletion
operation:

update EMP set phone# = NULL where emp#=Eno
and phone#=Ephone;

will need to be transformed to the following:

Select phone# from EMP where empit = Eno;
if phone# = Ephone then

S := select overflow_phone#
from EMP_PHONE_OVERFLOVW where
emp# = Eno;

If S =HNULL then
update EMP set phone# = NULL where
emp# = Eno;
else /#* Move a phone# in the overflow
relation to EMP */
p := any arbitrary element in S;
delete from EMP_PHONE_UVERFLOW
where emp# = Eno and phone# = p;
update EMP set phone# = p where
emp# = Eno;
else
delete from EMP_PHONE OVERFLOW
where emp# = Enc and phone# = Ephone;

To preserve the integrity of a database with
relax-replicated 3NF relations, we basically combine

608 T.W. Ling et al./Informazion and Software Technology 38 (1996} 601-608

the strategies used to preserve the integrity of relations in
replicated and relaxed 3NFs.

5. Conclusion

In this paper, we have shown how the constraints
imposed by Codd 3NF can be relaxed to facilitate the
design of database schemas which are more efficient from
the processing and storage point of view. This is accom-
plished by identifying those circumstances under which
certain relaxations can be made without sacrificing the
integrity or performance of the database. This ied to the
proposal of three new normal forms, which we refer to as
relaxed 3NF, replicated 3NF and relax-replicated 3NF.
These normal forms are defined with Tespect to strong
and weak FDs which are themselves extensions to clas-
sical FDs. Two approaches for designing relax-replicated
3NF relations were presented. We also proposed some
methods for preserving the integrity of a database in
relax-replicated 3NF. We can similarly define relax-
replicated improved 3NF, relax-replicated BCNF and
relax-replicated 4NF. These new normal forms provide
a theoretical framework for designing schemas which are
more efficient and practical, while not compromising the
integrity of the underlying database.

The design of a good database schema is both an art
and a science. In the past two decades, we have seen
much scientific progress in logical database design,
whereas the same is not true of the other phases, such
as the physical database design phase. From this perspec-
tive, the challenge for database researchers is to identify a
unifying theoretical framework which will integrate the
different phases of database design in a more coherent
manner. There has been some effort directed at inte-
grating the theories of conceptual design and logical
design (see for example, [15,16]) but to date, we are not
aware of any effort aiming to achieve the same for logical
and physical design. The theory we have presented in this
paper represents a preliminary step towards allowing
physical database design to take advantage of semantics
captured in the earlier phases. Furthermore, we can also
apply our theory to the process of schema evolution
where certain functional dependencies may be violated
over time because of some policy changes by the data-
base owner. In addition, our theory can alsc be used in
materialized databases to design views which will not
suffer from undesirable updating anomalies.

For future work, it would be goad to have a cost
model to determine when it is most beneficial to generate
relations in replicated, relaxed, or relax-replicated
normal forms based on the classical functiona] depen-
dencies, strong and weak functional dependencies, appli-
cation program specification and execution frequency,
available storage and response time required, Note that
the query optimizer will need to be modified in order to
handle relations in our proposed normal forms.

References

[1} T. Teorey and J. Fry, Design of Database Structures, Prentice-
Hall, Englewood Cliffs, NJ, 1982.

[2] C. Beeri, P. Bernstzin and N. Goodman, A sophisticate’s
introduction to database normalization theory, in Proc. of the
4th VLDB, 1978, pp. 113-124,

[3] C. Fleming and B. von Halle, Handbook of Relational Database
Design, Addison-Wesley, 1989,

[4] W. Inmon, Optimizing Performances in DB?2 Software, Prentice-
Hall, Englewood Cliffs, NI, 1988,

[5} J. Ullman, Principles of Database and Knowledge-base Systems,
Vol. I, Computer Science Press, 1991.

[6] E. Codd, A relational model for large shard data banks, Comm.
ACM, 13 (1970) 377-387,

[7] E. Codd, Further normalization of the data base relational model,
in Data Base Systems, 1974, pp. 33-64.

(8] T. Ling, F. Tompa and T. Kameda, An improved third normal
form for relational databases, ACM Trans. Database Syst., 6
(1981) 329-34¢.

[91 R. Fagin, Multivalued dependencies and a new rormal form for
relational databases, ACM Trans. Database Syst., 2 (1977) 262-278.

[10] P. Bernstein, Synthesizing third normal form relations from
functional dependencies, ACM Trans, Database Syst., 1 (1976}
277-298.

{11] P. Chen, The entity—relationship model: towards a unified view of
data, ACM Trans. Database Syst., 1 (1978} 9-36.

[12] R. Fagin, A normal form for relational databases that is based on
domains and keys, ACM Trans. Database Syst., 6 (1981) 387-415,

[t3] M. Casznova, R. Fagin and C Papadimitriou, Inclusion
dependencies and their interaction with functional dependencies
{extended abstract), in Proc. ACM PODS, 1982, pp. 171~176.

[14] M.A. Casanova, L. Tucherman and A.L. Furtado, Enforcing
inclusion dependencies and referential integrity, in Proc. of the
l4th VLDB Conf. 1988, pp. 38-49.

{15] C. Goh and T. Ling, Extending the entity relationship formalism
for conceptual data modeling to capture more semantics, in Proc.
of the 1st Int. Conf. on Inf. and Knowl, Management, Baltimore,
Maryland, November 1952,

[[6] T. Ling and C. Goh, Towards a synergistic integration of the ER,
end relational formalisms for logical relational database design,
Technical report, Department of Information Systems and
Computer Science, National University of Singapore, 1992, Also
submitted for publication,

