
 1

XTree: A Declarative Query Language for XML

Documents
ZHUO CHEN, TOK WANG LING

School of Computing, National University of Singapore, Singapore
MENGCHI LIU

School of Computer Science, Carleton University, Ottawa, Canada
GILLIAN DOBBIE

Department of Computer Science, University of Auckland, New Zealand
__

XML is becoming prevalent in data presentation and data exchange on the internet. One
important issue in the XML research community is how to query XML documents to extract
and restructure information. Currently, XQuery based on XPath is the most promising
standard. In this paper, we discuss limitations of XPath and XQuery, and propose a
generalization of XPath called XTree that overcomes these limitations. Using XTree, multiple
variable bindings can be instantiated in one expression; and XTree expressions, which
represent a tree rather than a path, can be used in both the querying part and the result
construction part of a query. Based on XTree, we develop an XTree query language, which is
more compact and convenient to use than XQuery, and supports common query operations
such as join, negation, grouping, and recursion in a direct way. We describe an algorithm that
converts XTree query scripts to XQuery scripts. This algorithm provides not only a means of
executing queries written in XTree query language but also highlights differences between the
two query languages.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages-Query Languages; E.5
[Data]: Files-Sorting/Searching; D.3.3 [Programming Languages]: Language Constructs and Features
General Terms: Languages, Algorithms
Additional Key Words and Phrases: XML, XPath, XQuery
__

1. INTRODUCTION

XML is fast emerging as the dominant standard for data representation and exchange on

the web. How XML documents are queried is an important issue in XML research and

development. Various query languages have been proposed, such as XPath [Bergund et

al. 2003], XQuery [Boag et al. 2003], Lorel [Abiteboul et al. 1997], XML-GL [Ceri et al.

1999;2000; Comai et al. 1998;2001], Equix [Cohen et al. 1998], XQL [Robie et al. 1998],

XML-QL [Deutsch et al. 1998], XSLT[Kay 2003], YATL [Cluet and Simeon, 1999],

XDuce [Hosoya and Pierce 2000], BBQ [Munroe and Papakonstantinou 2000], a rule-

based semantic query language [Chippimolchai et al. 2000], and a declarative XML

query language [Liu and Ling 2002]. A comparative analysis of some of the query

languages is presented in [Bonifati and Ceri 2000]. While some of the query languages

Authors' addresses: Zhuo Chen, Tok Wang Ling, National University of Singapore, Lower Kent Ridge Road,
Singapore 119260,{chenzhuo,lingtw}@comp.nus.edu.sg, Mengchi Liu, Carleton University, Ottawa, Ontario,
Canada K1S 5B6, mengchi@scs.carleton.ca and Gillian Dobbie, University of Auckland, Private Bag 92019,
Auckland, New Zealand, gill@cs.auckland.ac.nz

 2

are in the tradition of database query languages; others are more closely inspired by

XML. The XML Query Working Group has published XML Query Requirements for

XML query languages [Chamberlin et al. 2003], and XQuery has been selected as the

basis for an official W3C query language for XML.

 Many of the existing XML query languages are based on SQL and OQL [Cattell and

Barry 1997]. However, unlike queries on relational databases where the result is a flat

relation, the result of queries on XML documents can be complex, and needs to be

formatted explicitly. Thus, XML queries have two parts: a querying part and a result

construction part. The existing XML query languages intermix these two parts in a nested

way, making the queries cumbersome to express and difficult to comprehend. For

example, XML-QL has two constructs: where and construct, for querying and result

construction respectively. However, the construct clause can contain nested where-

construct clauses so that querying and the result construction are intermixed.

 In XQuery, there are five constructs: for, let, where, order by and return, i.e., FLWOR

expressions, and XPath expressions are embedded within for clauses and let clauses. As

in XML-QL, FLWOR expressions can be nested in the return clause to form a nested

querying structure. As a result XQuery scripts are often lengthy with unnecessary nesting

which is in part due to the fact that XQuery uses XPath expressions. Unlike the tree

structure of XML documents, XPath expressions describes a linear path, and cannot

express more complex substructures of the XML document tree. Thus we propose a

generalization of XPath, called XTree; and a query language, XTree query language,

which uses embedded XTree expressions. This paper contains a description of XTree’s

data model and the XTree query language, with its properties, and a translation from the

XTree query language to XQuery.

 Specifically, the paper makes the following contributions:

1. It discusses the limitations of XPath and XQuery.
2. It describes a generalization of XPath called XTree, which leads to queries that are

compact, and easy to read and comprehend, because:

− XTree has a tree structure, which is similar to the structure of an XML

document, thus a user can bind multiple variables in one XTree

expression.

− XTree expressions explicitly identify list-valued variables, uniquely

determine their values, and define some natural built-in functions to

manipulate them.

 3

− XTree expressions can be used not only for the querying part, but also for

the result construction part of a query.

3. It describes the XTree query language, which has embedded XTree expressions.

− In the querying part, multiple variables can be defined in one XTree

expression, and the list-valued variables are explicitly identified.

− In the result construction part, a user can write one XTree expression to

define the result format to avoid unnecessary nesting.

− The XTree query language can express join, negation, grouping, recursion

and quantification directly and efficiently. It also supports some special

queries (such as URL-related querying, structure level querying, sample

querying, top-k querying) and update operations.

4. It provides algorithms to transform XTree query scripts to standard XQuery

scripts.

− The XTree query scripts can be run in any existing XQuery parsers.

− The algorithm highlights some of the differences between the XTree query

language and XQuery.

 The paper is organized as follows. Section 2 introduces and discusses the limitations

of XPath and XQuery. It also describes a complex object data model for XML data,

which is adopted by XTree and the XTree query language. Section 3 introduces the

XTree syntax with some examples, and demonstrates its advantages over XPath. Section

4 introduces the XTree query language, which has embedded XTree expressions, and

shows that it can express many kinds of queries elegantly. This section culminates in a

comparison of the XTree query language and other declarative XML query languages.

Section 5 presents the algorithms to transform XTree query scripts to standard XQuery

scripts. Finally, Section 6 summarizes this paper and highlights future research directions.

2. PRELIMINARIES

Researchers have proposed many declarative query languages to extract data from XML

documents, such as Lorel [Abiteboul et al. 1997], XQL [Robie et al. 1998], XML-QL

[Deutsch et al. 1998], XQuery [Boag et al. 2003], Quilt [Chamberlin et al. 2000], YATL

[Cluet and Simeon, 1999], a rule-based semantic query language [Chippimolchai et al.

2002], a declarative XML query language [Liu and Ling 2002]. The W3C has selected

XQuery based on XPath as the basis for an official standard for XML query languages. In

 4

this section, we give an introduction of XPath and XQuery, and discuss their limitations.

A complex object data model for modeling XML documents is also described.

2.1 XPath

XPath is a set of syntax rules for defining parts of XML documents. It uses paths to

locate nodes (elements and attributes) in XML documents, and the path expressions look

very much like computer file system paths. For example, consider the bibliography XML

document in Appendix I and the examples of XPath expressions in Table 1.

XPath expression Description
/bib/book select all “book” elements of the root element “bib”
/bib/book/@year select attribute “year” of each book
/bib/book/author select element “author” of each book
//author select all elements named “author”. The symbol “//”

means no matter how many levels down.
/bib/book/* select all sub-elements of each book
/bib/book/@* select all attributes of each book
/bib/book[1] select the first “book” element
/bib/book[last()] select the last “book” element

Table 1. Sample XPath expressions.

XPath uses a pattern expression to identify nodes in an XML document. An XPath

pattern is a slash-separated list of child element names (perhaps with an attribute at the

last position) that describe a path through an XML document. The pattern “selects”

elements that match the path. If the path starts with a slash (/), it represents an absolute

path to an element, otherwise it represents a relative path, e.g. //author is a relative path.

If the path starts with two slashes (//), then all elements in the document that fulfill the

criteria will be selected (even if they are at different levels in the XML tree). Wildcards

(such as *) can select all elements selected by the preceding path. An index number

enclosed in a pair of square brackets in an XPath expression can further specify an

element: the index number specifies the position of the element in the selected

collection; the function last() selects the last element in the selected collection. Attributes

are specified by prefix @.

 In an XPath expression, a pair of square brackets can not only contain index numbers

but can also be used to specify selection conditions on the child nodes. (This feature is

sometimes viewed as an abbreviated format of XQuery.) Table 2 gives examples of

XPath expressions with conditions enclosed in square brackets, with reference to the

XML document in Appendix I.

 5

XPath expression Description
/bib/book[@year] select all “book” elements that have a “year”

attribute
/bib/book[@year=“1994”] select all “book” elements that have a “year”

attribute with a value of “1994”
/bib/book[@*] select all “book” elements that have any attribute.
/bib/book[price] select all “book” elements that have a “price” sub-

element
/bib/book[price>50] select all “book” elements that have a “price” sub-

element with a value greater than 50
/bib/book[position()<4] select the first 3 “book” elements
/bib/book[count(author)>1] select all “book” elements that have more than one

“author” sub-element
/bib/book[starts-with(title,
“Data”)]

select all “book” elements that have a “title” sub-
element with a value starting with “Data”

Table 2. Sample XPath expressions with conditions.

The conditions are used to select a collection of nodes based on some condition that tests

its children nodes. The condition may test for the existence of a particular child node, it

may test the value of a child node, or it may use a function to test such conditions as the

cardinality of a child node.

2.2 XQuery

XQuery, is a powerful way to search XML documents for specific information. It is

derived from several previous proposals, such as XML-QL [Deutsch et al. 1998], YATL

[Cluet and Simeon 1999], and Lorel [Abiteboul et al. 1997].

 XQuery is based on XPath expressions; each query is built from expressions that can

be nested to arbitrary depth. XQuery has the FLWOR (For-Let-Where-Order by-Return)

statements: the for clause and let clause bind values to variables, the for clause (syntax:

“for $var in xpath-expression”) iterates the variable over the result of the XPath

expression, whereas the let clause (syntax: “let $var := xpath-expression”) binds the

variables to the whole result of the XPath expression as a list; the where clause filters

these bindings by some conditions; the order-by clause orders the surviving bindings

based on some items; and the return clause defines the result format, and constructs the

result based on the evaluation of the variable bindings.

Example 1. Consider the bibliography document in Appendix I, and the following

XQuery script that gets the year, title, and number of authors of all books published

before 2000, sorted by year of publication.

 6

 <bib>
 {

 for $book in /bib/book
 let $authors := $book/author
 where $book/@year < 2000
 order by $book/@year
 return <book>
 { $book/@year, $book/title }
 <authors> { count($authors) } </authors>
 </book>
}
</bib>

Note that the outer braces { } (after <bib> and before </bib>) defines a query block; and

the inner braces { } indicates an enclosed expression. Without the inner braces, the inner

code “$book/@year, $book/title” and “count($authors)” would be treated as literal text,

and be placed in the result directly, without being executed.

 In where clauses, we can use quantified expressions, such as “some…in…satisfies…”

or “every…in…satisfies…” to define existential and universal quantifications,

respectively.

Example 2. The following XQuery script gets the books that have an author with last

name “Stevens”.

for $book in /bib/book
where some $author in $book/author satisfies ($author/last = “Stevens”)
return $book

Example 3. The following XQuery script gets the books which have no author with last

name “Stevens”.

for $book in /bib/book
where every $author in $book/author satisfies ($author/last != “Stevens”)
return $book

 Because XQuery supports complex queries and complex result constructions with

nested clauses, very complicated queries can be expressed in XQuery (which may have a

deep nesting level).

Example 4. The following XQuery script returns the title and first two authors for each

book that has at least one author, and an empty “et-al” element if the book has additional

authors.

<bib>
{
 for $book in /bib/book
 where count($book/author) > 0

 7

 return <book>
 { $book/title }
 {
 for $author in $book/author[position() <= 2]
 return $author
 }
 {
 if (count($book/author) > 2)
 then <et-al/>
 else ()
 }
 </book>
}
</bib>

2.3 Limitations of XPath and XQuery

From the above examples, we can see that XPath can clearly define a unique path in an

XML tree; and XQuery can effectively express queries on XML documents, based on

XPath expressions. However, both XPath and XQuery have limitations.

2.3.1 Limitations of XPath.

The limitations of XPath make it cumbersome to express even some simple conditions.

They include the ability to express only a linear path through an XML document, and the

inability to bind more than one variable in each XPath expression.

(1) One path, one variable

In an XPath expression, although a condition can be a branch, there is still only one linear

path to the target. Thus, we can only assign one variable to each XPath expression, which

leads to queries that are difficult to read. If a query uses several paths, a user must use

separate XPath expressions to specify each path and assign a variable to each path.

Example 5. If a user is interested in the title, authors and publisher of each book in the

bibliography document in Appendix I, we write the following in the querying part of an

XQuery script:

for $b in /bib/book, $t := $b/title, $p := $b/publisher
let $a := $b/author

(2) Only used in querying part

XPath expressions are only used in the querying part of XQuery scripts, and not in the

result construction part. For the result construction part of XQuery, the return clause

mixes literal text, enclosed expressions and even nested sub-queries, making the query

difficult to understand.

 8

(3) Unclear relationship among XPaths

It is difficult to reveal the relationship among correlated XPaths, because the expression

of the correlations is not explicit in XPath. This may result in some mistakes if the user

does not pay attention when writing a query.

Example 6. Consider an XQuery script that creates a flat list of all the title-author pairs

for the books, with each pair enclosed in a “result” element.

 The query in Fig. 1a, although it appears quite plausible, produces the wrong result

because it does not pay attention to the correlation of XPath expressions. This query

produces a Cartesian product of all authors and titles, regardless of whether they belong

to the same book. The query in Fig. 1b gives the expected result.

for $t in /bib/book/title,
 $a in /bib/book/author
return
 <result>
 { $t }
 { $a }
 </result>

 for $b in /bib/book,
 $t in $b/title,
 $a in $b/author
return
 <result>
 { $t }
 { $a }
 </result>

Fig.1a. Wrong query Fig.1b. Expected query

(4) Confusing for distant conditions

Using XPath, it can be confusing to express a query which returns elements at path A

while the condition is in a distant path B, especially when there are multiple conditions

and/or nested conditions.

Example 7. Suppose we want to select the publisher id of a book which has an author

with last name “Stevens” and first name “W.”. The XPath expression is as follows:

/bib/book[author[last=“Stevens” and first=“W.”]]/publisher/@pubid

There are a couple of important features to note in this XPath expression. The first is to

note that both author and publisher are subelements of book. The second is that the

selection of publisher is dependent on a condition involving author. Although this is

obvious when the expression is inspected carefully, it is not immediately obvious.

(5) Difficult to split name-value pair structure

In XPath, a variable can only be bound to the whole node (element or attribute) structure,

which is a name-value pair. If we want to get some substructure (name or value) of the

 9

node, we have to call some built-in functions to split the name-value pair. Thus it is

difficult to query XML documents with unknown structure, or to rename the elements or

attributes in the query result construction.

Example 8. Suppose that for each book, we want to get all the sub-elements, except the

sub-element “publisher”. In XQuery we write the following query:

<bib>
{
 for $book in /bib/book
 return <book> {
 for $elem in $book/*
 where local-name($elem) != “publisher”
 return $elem
 }
 </book>
}
</bib>

Note that the function local-name() is used to get the node name. In addition, if we want

to get the node value, then for an element node bound to variable $var, we use $var/*,

$var/@* and $var/text() to get all its possible content (namely, elements, attributes and

text content respectively); for an attribute node bound to variable $var, we call the

function string($var) to get its value.

2.3.2 Limitations of XQuery.

The limitations of XQuery make the language unintuitive, and therefore queries in the

language are complex and hard to understand, which can mean queries are difficult to

optimize. The limitations include the lack of support for the join operation and an

inability to express updates.

(1) Join operation as sub-query

The Join operation is widely used to combine data from multiple sources into one single

result. However, XQuery supports join in the following way: it binds a variable on the

join field of one source; then, for each of the other sources, it uses sub-queries with the

join field in the conditions to get the instances that have the same join field value. In

XQuery, the join is indirect and unnatural, unlike in SQL or QBE (Query By Example

[Date 1981]), making the query difficult to read and comprehend.

Example 9. Consider three XML files which are valid with respect to the DTDs in

Appendix II. The XML files are sailors.xml, boats.xml and reservations.xml, where

 10

sailors.xml and boats.xml record information of sailors and boats respectively, and

reservations.xml records the reservations of certain boats by certain sailors, describing a

relationship between sailors and boats. Suppose we want to get the sailor name and boat

name, and the start time and end time for each reservation.

for $r in doc(“reservations.xml”)/reservations/reservation
let $s := doc(“sailors.xml”)/sailors/sailor[@sid=$r/@sid],
 $b := doc(“boats.xml”)/boats/boat[@bid=$r/@bid]
return
 <reservation>
 <sailor> { $s/sname/text() } </sailor>
 <boat> { $b/bname/text() } </boat>
 { $r/start-time, $r/end-time }
</reservation>

(2) Grouping as sub-query

Many queries involve forming data into groups and applying aggregate functions to each

group. However, unlike the group by operator in SQL, XQuery does not support grouping

operations explicitly. In XQuery, grouping is done using a sub-querying structure, which

is difficult to read and understand; and can be very inefficient. It may scan the entire

document once for each value of the grouping field. Moreover, such kinds of sub-

querying may even get error results when there are two or more grouping fields, due to

some invalid empty groups being generated.

Example 10. Consider the bibliography document in Appendix I, and the XQuery script

that gets the book titles published in each year.

for $year in distinct-values(/bib/book/@year)
return
 <year value = { $year }>
 { /bib/book[@year=$year]/title }
</year>

Note that the above query may scan the bibliography document many times, each time

for a specific year value.

Example 11. Figure 2 shows the DTD for a document employees.xml.

Fig. 2. DTD for employees.xml

<!ELEMENT employees (employee*)>
<!ELEMENT employee (name, department, jobtitle, salary)>
<!ATTLIST employee id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT department (#PCDATA)>
<!ELEMENT jobtitle (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

 11

Consider the XQuery script that returns the average salary of employees, grouped by

department and job title.

for $dept in distinct-values(/employees/employee/department),
 $jobtitle in distinct-values(/employees/employee/jobtitle)

let $salary := /employees/employee[department=$dept and
jobtitle=$jobtitle]/salary

return
 <type dept={ $dept } job={ $jobtitle }>
 <avgsalary> { avg($salary) } </avgsalary>
 </type>

 In this example, the nested for clauses will produce a Cartesian product of departments

and job titles, but some pairs of department and job title may not have employees, thus

the above query will generate some empty groups, which are not expected.

 The reason invalid empty groups are generated is because the function distinct-value()

can only accept one XPath expression (or a list-valued variable that holds an XPath

expression) and remove the duplicates. It cannot process two or more XPath expressions

together.

(3) Recursion by user-defined recursive function

Sometimes it is necessary to scan a hierarchy of elements recursively, applying some

transformation at each level of the hierarchy. XQuery does not support recursive

querying explicitly; instead, it handles recursion with user-defined recursive functions.

This indirect way of expressing recursion means the query is difficult to read. Also the

purpose of functions should be for general and common computation that is needed many

times rather than as a backdoor for other purposes. In our view, this is a drawback of the

language design.

Example 12. Consider the following list of employees where each employee element has

an optional attribute manager indicating the ID number of his/her manager.

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<employeelist>
 <employee id=“0” name=“John”/>
 <employee id=“1” manager=“0” name=“Tom”/>
 <employee id=“2” manager =“0” name=“Jack”/>
 <employee id=“3” manager =“1” name=“Ken”/>
 <employee id=“4” manager =“2” name=“Bush”/>
 <employee id=“5” manager =“2” name=“Jeremy”/>
 <employee id=“10” name=“Ivan”/>
 <employee id=“11” manager =“10” name=“Gerald”/>
 <employee id=“12” manager =“10” name=“Albert”/>

 12

 <employee id=“20” name =“Michael”/>
</employeelist>

Suppose we want to convert the employee list to a tree structure, where the parent node is

the manager and the children nodes are the direct subordinates. An XQuery solution

follows:

declare function one_level_down($e as element()) as element()
{
 <employee id={ $e/@id } name={ $e/@name }>
 {
 for $a in doc(“employeeList.xml")//employee
 where $a/@manager = $e/@id
 return one_level_down($a)
 }
 </employee>
}

<employeeTree>
 {
 for $e in doc(“employeelist.xml")//employee[empty(@manager)]
 return one_level_down($e)
 }
</employeeTree>

 The result of the above query is shown below.

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<employeetree>
 <employee id="0" name=“John">
 <employee id="1" name=“Tom">
 <employee id="3" name=“Ken"/>
 </employee>
 <employee id="2" name=“Jack">
 <employee id="4" name=“Bush"/>
 <employee id="5" name=“Jeremy"/>
 </employee>
 </employee>
 <employee id="10" name=“Ivan">
 <employee id="11" name=“Gerald"/>
 <employee id="12" name=“Albert"/>
 </employee>
 <employee id="20" name=“Michael"/>
</employeetree>

(4) Nested querying structure

In practice, XQuery usually has a nested querying structure. However, the nesting is

mainly in the return clause of the query (unlike SQL queries on relational databases

where the result is always a flat structure). Thus the nested return clause is often quite

 13

long, mixing up the plain XML segments, enclosed expressions and even sub-queries,

making it difficult to read and understand.

(5) Built-in functions

In XQuery most built-in functions are used in a functional manner, rather than in an

object-oriented manner (except functions position() and last() that are used in an object-

oriented manner). Thus we often need to refer to the context node again in the argument

of the function, which is not intuitive. It is more natural to use the functions in an object-

oriented fashion, where the meaning is obvious and easy to understand.

Example 13. Consider the bibliography in Appendix I, and a query that finds the books in

which the name of an element starts with the string “au” and the same element contains

the string “Suciu” somewhere in its content. For each such book, return its title and the

qualifying element. We can write the query in XQuery as follows:

for $book in /bib/book
let $elem : = $book/*[contains(string(.), “Suciu”) and starts-with(local-name(.), “au”)]
where exists($elem)
return
 <book>
 { $book/title, $elem }
 </book>

Note that in the let clause of the above XQuery, the two “.” in the condition refer to

$book/*, but this is difficult to understand, since they are textually far away from their

substituting context node.

(6) Special queries

XQuery does not support some special queries, or does not support them directly. These

special queries include URL-related querying, structure level querying, sample querying

and top-k querying.

 XQuery does not support variable bindings on the URL or URL components of

documents, thus a user cannot write a query in XQuery to find some unknown URL or

URL component.

 Since variables are bound to the name-value pairs of XML elements, special built-in

functions are needed to split the name and value. As a result the mechanism in XQuery to

handle queries over XML documents with unknown structures, or to rename

elements/attributes in the result construction part of a query without knowing their inner

structure is very clumsy.

 14

 Since XQuery does not have functions to get a certain subset of a list, it is very

inefficient at handling queries that just pick up several items randomly, or just pick up the

first several items according to a certain order, instead of getting the entire result set. For

example, we cannot easily write a query to browse details of three random books (not all

the books), or list the two most expensive books (not all the books sorted by price).

(7) Negation on paths only

XQuery can only express negation in the condition clause (where clause), but not the

query clause (for clause and let clause). In addition, due to the fact that XQuery is based

on XPath, a user can only set negative condition on some paths, and not on a sub-tree

structure in an XML document. Thus, it is difficult to express complex negation (such as

a negative sub-tree) or nested negation.

(8) No update operations

Unlike SQL for relational databases, which is both a data query language and a data

management language, currently XQuery can only query XML documents, and cannot do

updates on XML documents. We believe the problem of expressing updates over XML

data will become prominent in the near future, and it will be necessary to extend XQuery

to support update operations.

2.4 Modeling XML documents for databases

The data model of a query language serves two purposes. First, it defines precisely the

information contained in the input to a query processor. Second, it defines all permissible

values of expressions in the query language.

 XPath and XQuery model XML data using the XML Query Data Model, which is a

low level data model, representing the XML document structure as a tree graph, instead

of a database structure. The result of this is that it is not very suitable for database

operations such as querying and data management.

 For XTree and the XTree query language, we adopt the complex object data model

proposed in [Liu and Ling 2002], which provides a natural way to model an XML

document as a complex object with a nested structure. As a result, an XML document can

be comprehended from a database perspective, and the representation of queries is at a

higher level.

 15

 In the complex object data model, there are five types of objects: element objects,

attribute objects, tuple objects, lexical objects and list objects.

Example 14. Consider the following part of a simple XML document:

<person id=“p123”>
 <name>
 <first>John</first>
 <last>Smith</last>
 </name>
 <gender>Male</gender>
 <age>25</age>
 </person>

We can view it as a nested complex object as follows:

 person → [
 @id → p123,
 name → [
 first → John,
 last → Smith],
 gender → male,
 age → 25]

We call the above complex object an element object, which is a pair of element name and

element value, connected by the symbol “→”. The element value “@id → p123, name →

[first → John, last → Smith], gender → male, age → 25]” is a tuple object, which

contains an attribute object “@id → p123”, nested element object “name → [first →

John, last → Smith]” and element objects “gender → male” and “age → 25”. The textual

values of attributes and simple element objects such as “p123”, “John”, “Smith”, “male”,

“25” are called lexical objects. The symbol “@” is used to denote an attribute, “→” is

used to separate element/attribute name from element/attribute value, and square brackets

[] are used to enclose a list of elements and attributes of the same level to form a tuple

object.

3. XTREE
We now introduce XTree, which is a generalization of XPath without the limitations of

XPath. The input to an XTree expression is a complex object and the result of an XTree

selection is a complex object.

3.1 Basic syntax of XTree

XTree has a tree structure which is similar to the structure of an XML document. Like in

XPath, a parent and a child node are separated by a slash (i.e. /), and an ancestor and a

 16

descendent node are separated by a double-slash (i.e. //) in XTree. However, in XTree

sibling tree nodes are enclosed by a pair of square brackets (i.e. []) and are separated by

commas, and these expressions can be nested. Only the sub-trees that are relevant to the

query are written in an XTree expression, not the entire XML tree structure.

 XTree uses parentheses (i.e. ()) to enclose the source URL at the beginning of the

XTree expression. An URL is composed of protocol name, domain name, directories and

file name, and any part of the URL can be unknown and bound to a variable. The URL is

optional, if it is absent, then the document queried is the default input. In XPath, the URL

is specified by the function doc, and its parameter must be a known specific URL.

 In XTree expressions, the position of logical variables is important since logical

variables bind to the name-value pairs of XML nodes based on their position. Because

various parts of XML documents can bind to logical variables, in order to be flexible and

easy to use in practice, the variables in XTree are not typed. A variable can be used in any

location, however where the same variable occurs in different places in the same query, it

has the same value. There are two kinds of variables in XTree: single-valued variables

and list-valued variables. Single-valued variables start with $, such as $X. List-valued

variables are of the form {$X} which is constructed from a single-valued variable $X that

ranges over all instances in a list.

 XTree expressions are used in the querying part of a query, to indicate the subtrees of

interest and to bind variables to parts of them; and also used in the result construction part

of a query, to define the format of the returned result. Symbol → is used when assigning

values to variables in the querying part of a query; and is also used when getting values

from variables in the result construction part of a query.

 Because we can write the result construction part of a query as an XTree expression,

we do not need to use curly braces { } to indicate the enclosed expressions or nested

query blocks as is done in XQuery, thus we can effectively reduce the nesting level in the

query.

3.2 XTree for querying
In the querying part of a query, we can write XTree expressions to bind variables to

nodes, a list of nodes, a URL or part of a URL to get the URL information from the XML

documents.

 17

3.2.1 Binding variables on XML data.
To bind variables to a specific set of nodes, we use the symbol → to assign the value of

nodes on the left side to a variable on the right side. If the right side is a single-valued

variable, the node values are assigned to the variable one by one, as in the for clause of

XQuery expressions; if the right side is a list-valued variable, a list of node values is

assigned to the variable, as in the let clause of XQuery expressions. If the left side of the

symbol → is a variable then the variable binds to the name of the node rather than the

value. In one XTree expression a user can bind multiple variables, producing more

compact queries than in XPath.

Example 15. Consider the bibliography document in Appendix I that is located at the

URL www.abc.com/bib.xml. If we want to select the year and title of each book, and its

authors’ first names and last names, then we can use variables $y, $t, $first, $last

respectively in the following XTree expression:

(http://www.abc.com/bib.xml)
/bib/book/[@year→$y, title→$t, author/[last→$last, first→$first]]

The above XTree expression contains four variable bindings. In fact, it corresponds to the

following six XPath expressions:

for $book in doc(“http://www.abc.com/bib.xml”)/bib/book,
 $y in $book/@year, $t in $book/title, $author in $book/author,
 $last in $author/last, $first in $author/first

 XTree supports path abbreviations as in XPath. Consider the following example.

Example 16. Suppose we want to get the values of elements first name and last name at

whatever depth in the document, we can write an XTree expression as follows:

(http://www.abc.com/bib.xml)/bib//[last→$last, first→$first]

 Here the pair of square brackets [] enclosing nodes last and first specifies that these two

sub-elements last and first are sibling nodes, sharing a common parent, which in this case

is an instance of /bib/book/author or /bib/journal/editor.

 XTree also allows a user to bind variables on the structure of XML document, that is,

a user can write variable $var on the left side of → symbol, and $var will be bound to the

names of the corresponding elements or attributes.

 18

Example 17. Consider a query that selects the names of the sub-elements of book, except

the sub-element publisher. This can be done using the variables $elem_name and

$elem_value in the following XTree expression:

(www.abc.com/bib.xml)/bib/book/$elem_name→$elem_value
$elem_name != “publisher”

Example 18. Consider a query that selects some attribute name with value “1992” in

some book element, and binds variable $b to this book. This can be done with the

following XTree expression:

(www.abc.com/bib.xml)/bib/book→$b/@$attr=“1992”

With the sample bibliography document in Appendix I, $b will bind to the second book

element, and $attr will bind to string “year”, which is the attribute name. The XQuery

version of this query is as follows, which is more complex:

for $b in doc(“http://www.abc.com/bib.xml”)/bib/book,
 $attr in $b/@*
where string($attr) = “1992”
return local-name($attr)

3.2.2 List-valued variables and OO functions.

A list-valued variable can bind its value to a list of XML nodes; it is somewhat like the

variable in the let clauses of XQuery. However, in XQuery list-valued variables look

exactly like single-valued variables. In XTree expressions, a list-valued variable is

explicitly indicated by a pair of curly braces { }. In addition, unlike XPath and XQuery

that use many unintuitive functions (in functional style), XTree defines some natural

functions that are obvious and easy to understand, and they are consistently used in an

object-oriented fashion. This is possible since XTree models XML documents as

complex objects.

 We now illustrate some of the functions that can be applied to a list of numbers

followed by functions that can be applied to a list of elements. Suppose a list-valued

variable {$number} binds to a list of numbers, then we can obtain their aggregate values

as follows:

{$number}.count() returns the number of items in the list
{$number}.avg() returns the average value of items in the list
{$number}.min() returns the minimum value in the list
{$number}.max() returns the maximum value in the list
{$number}.sum() returns the sum of values in the list

For example the expression {1, 3, 4}.sum() returns the value 8.

 19

 Suppose a list-valued variable {$authors} bind to a list of authors elements, then we

have the following built-in operators:

{$authors}.count() returns the number of items in the list of authors
{$authors}[2-4, 6] returns a sub-list containing second to fourth items,

and sixth item
{$authors}.last() returns the last author
{$authors}.sort() sorts the items in the list in ascending order
{$authors}.sort_desc() sorts the items in the list in descending order
{$authors}.distinct() returns a list of authors with no duplicates
{$authors}.random(3) picks out 3 authors randomly to form a sub-list
$author ∈ {$authors} checks whether $author is in the list
{$authors’}⊆ {$authors} checks if the first list is a sub-list of the second list
{$authors}.iterate() returns an item in the list each time, one by one
{$authors}.none() check whether none of the items in list satisfies a

certain condition

 In fact, since XTree uses an object model, other functions are also redefined in the

object-oriented manner. For example, to check whether variable $title contains the string

“XML”, instead of using the expression contains($title, “XML”) as in XQuery, we write

the object-oriented version as $title.contains(“XML”).

 Next we will define the semantics of list-valued variables.

Definition 1. The associated path of variable $a (or {$a}) is the absolute path expression

from the root of the document to the nodes represented by $a (or {$a}).

 For example, in the XTree expression /bib/book→$b/title→$t, the associated path of

$b is /bib/book, and the associated path of $t is /bib/book/title.

Definition 2. Variable $a is an ancestor variable of $b if $a and $b are defined in the

same XTree expression, and the associated path of $a is a prefix of the associated path of

$b.

 For example, in the XTree expression /bib/book→$b/[title→$t, author→$a], $b is an

ancestor variable of $t and $a, but $t is not an ancestor variable of $a (they are siblings).

Definition 3. In an XTree expression, when a variable is bound to a value in the query

evaluation, the variable is instantiated.

 For example, in the XTree expression /bib/book/[author→$a/first→$f, title→$t], in

the evaluation, when we reach /bib/book/author, $a is instantiated; and when we reach

/bib/book/author/first, $a and $f are instantiated.

Definition 4. The value of list-valued variable {$a} is a list of all instances of $a with all

its ancestor variables instantiated.

Example 19. Compare the following two XTree expressions:

 20

XTree expression Value of {$a}
/bib/book/author→{$a} all the author elements of all the books.
/bib/book→$b/author→{$a} all the authors of a certain book $b. When $b is

bound to next book, {$a} will also bind to the
authors of the next book.

Note that for the first expression, the value of {$a} is the concatenation of all the authors

of all the books; whereas for the second expression, {$a} has an ancestor variable $b, thus

the value of each {$a} instance is related to the corresponding $b instance.

3.2.3 Conditions.

Unlike in XPath where condition expressions are enclosed by a pair of square brackets, a

user can write conditions directly in XTree expressions.

 In XPath, the square brackets [] are used to express conditions in the path. This is

necessary because an XPath expression is only one linear path to the target node set, thus

we have to use square brackets as an indication that the enclosed expression is not a part

of the target path, but the conditions that define instances of the path. However, in XTree,

each XTree expression can have multiple target paths, and the variable bindings are

explicitly defined, thus a user can write conditions directly in the XTree expression,

without the use of any special symbol for indication.

Example 20. To find the books which have an author named “Stevens W.”, we can write

the following XTree expression:

 /bib/book→$b/author/[last=“Stevens”, first=“W.”]

 Condition expressions can also cooperate with list-valued variables.

Example 21. Find the authors of each book published in 1992, we can write an XTree

expression as follows:

/bib/book→$b/[@year=“1992”, author→{$a}]

Each {$a} will store the list of authors of a certain book $b that was published in 1992,

since $b is an ancestor variable of {$a}. However, to find all the authors who have a book

published in 1992, we can write an XTree expression as follows:

/bib/book/[@year=“1992”, author→{$a}]

3.2.4 Variable Bindings on URLs.

In XTree expressions, we can use variables for URL and URL components. Such variable

bindings will not involve the symbol →.

 21

Example 22. Consider a query that selects XML documents in the website

http://www.abc.com directory /dir that contain a book element with value 1994 for

attribute year and “TCP/IP Illustrated” for sub-element title. This query will require the

following XTree expression:

(http://www.abc.com/dir/$file.xml)
/bib/book/[@year=“1994”, title=“TCP/IP Illustrated”]

Here the variable $file will bind to the XML document names, where the .xml extension

restricts the file type to XML documents. Currently XPath and XQuery do not support

this kind of query.

3.3 XTree for Result Construction

XTree expressions can not only be used to bind variables in the querying part of queries,

but can also be used to define the result format. We can use symbol → to show the name

of the element on the left side and the value of the variable on the right side. If the right

side is a single-valued variable, we assign the value of the current iteration to the

element; if the right side is a list-valued variable, we assign all the values in the list to the

element. Unlike the result construction part in XQuery, which often mixes XML plain

text, variable values and even sub-queries in the nested return clause; only one XTree

expression is needed to define the result format, making it very simple to write and read.

 Note that unlike the XTree expressions in the querying part, which allows conditions

and abbreviations (such as // for any levels down), the XTree expression in the result

construction must be concrete, not allowing any condition checking or uncertainty in the

structure.

Example 23. Suppose we have instantiated the variables $y and $t in the following XTree

expression:

 (www.abc.com/bib.xml)/bib/book/[@year→$y, title→$t]

 If we want to get the title and year information of each book, and store the result in the

file at URL www.xyz.com/books.xml, we can write the following XTree expression:

 (www.xyz.com/books.xml)/result/book/[@year→$y, title→$t]

The above XTree expression defines the URL address (this is not supported by XQuery)

and the structure of the result document. Under the root result, each book element will

store the title and year of that book.

 22

Example 24. Suppose we have instantiated the variables $t and {$a} in the following

XTree expression:

 (www.abc.com/bib.xml)/bib/book/[title→$t, author→{$a}]

 For each book, if we want to store its title, the number of authors, and the first author

only, we can write the following XTree expression:

/result/book/[title→$t, numAuthors→{$a}.count(), firstAuthor→{$a}[1]]

 The right side of symbol → does not have to be some predefined variables or a

function invocation on variables. Instead, it can be some literal text, or even be omitted,

giving an empty element. In the case of the literal text, the value of the element is the

literal text, forming some XML segment.

Example 25. Suppose we want to return a book whose title is “Computer Architecture”,

with an empty “no-author” element. We can write the following XTree expression:

/book/[title → “Computer Architecture”, no-author]

 The above XTree expression will output the following XML segment:

 <book>
 <title>Computer Architecture</title>
 <no-author/>
 </book>

4. XTREE QUERY LANGUAGE
In this section we propose a new query language, which makes use of XTree expressions.

The XTree query language can express queries compactly; can express join, negation,

grouping, recursion and quantification directly; can write some special queries such as

URL-related querying, structure level querying, sample querying, top-k querying; and

support updates on XML documents. The input to an XTree query script is a complex

object and the result of an XTree query script is a complex object.

4.1 Basic syntax of the XTree query language

The syntax of an XTree query is similar to that of XQuery. Unlike XQuery’s FLWOR

(From-Let-Where-Order by-Return) statements, an XTree query has the QWCO (Query-

Where -Construct-Order by or Query-Where -Cache-Order by) statements for querying.

 The query clause contains one or more XTree querying expressions for selection and

variable binding, which is similar to for clauses (for the binding of single-valued

variables) and let clauses (for the bindings of list-valued variables) in XQuery.

 23

 The where clause is optional, and is used for specifying constraints in the same way

the where clause is used in XQuery.

 The construct clause contains exactly one XTree result construction expression to

define the output format; it does not need a nested structure as often happens in the return

clause in XQuery, thus making the result construction part more concise and easier to

understand.

 The cache clause is similar to the construct clause; it contains one XTree result

construction expression. However, the cache clause does not output the result; instead, it

holds the result temporarily for further use. The cache clause is often used to split a

complex query into several simpler queries, to make it clear and easy to comprehend; or

to extract a common step of several queries, to reduce redundant work.

The order-by clause is optional, and is used for specifying ordering on the constructed or

cached result in the same way the order-by clause in used in XQuery. Note it is placed

after the result construction part of the query to emphasize that it is part of the result

construction rather than the querying.

Example 26. For each book that has three or more authors, list the title and the first two

authors, and an empty tag <et-al/> to indicate the rest of authors. Also the result should

be ordered by the book title.

query /bib/book/[title→$t, author→{$a}]
where {$a}.count() ≥ 3
construct /result/book/[title→$t, authors/[author→{$a}[1-2], et-al]]
order by $t

 Note that it is more natural to put the order by clause after the result construction,

since it is the result that is ordered. Due to the absence of symbol →, by default the right

side of → is empty, and thus “et-al” will be interpreted as an empty tag “<et-al/>” under

element “authors”. If instead we change the construct clause to

construct /result/book/[title→$t, authors/[author→{$a}[1-2], author→“et-al”]]

then after the first two author elements, there will be an element “<author>et-

al</author>” under element “authors”.

Example 27. Find the books that have at least one author, who has written at least one

book containing the word “programming” in the title.

query /bib/book/[title→$t, author→$a]
where $t.contains(“programming”)
cache /temp/author→$a

 24

query /temp/author→{$a}, /bib/book→$b/author→$au
where $au ∈ {$a}
construct /result/book→$b

 Note that the query is split into two simpler queries: the first one finds those authors who

have written a book with “programming” in the title, and the second finds those books

that have at least one such author.

4.2 Join

 Unlike XQuery which implements join operations by nested sub-queries, the XTree

query language supports join in a direct and natural way, which is similar to SQL and

QBE [Date 1981]. In the XTree expressions of the query clauses, variables of the same

name indicate a join operation, because both instances of the variable must have the same

value.

Example 28. Consider three XML files which are valid with respect to the DTDs in

Appendix II, and a query to get the sailor name and boat name for each reservation. We

can write the following XTree query:

 query (sailors.xml)/sailors/sailor/[@sid→$sid, sname→$sname],
 (boats.xml)/boats/boat/[@bid→$bid, bname→$bname],

 (reservations.xml)/reservations/reservation/
 [@sid→$sid, @bid→$bid, start-time→$st, end-time→$et]

 construct /reservations/reservation/
 [sailor→$sname, boat→$bname, start-time→$st, end-time→$et]

Note that in the querying part of the above query, the two occurrences of variable $sid

indicates a join operation over sailors and reservations, and the two occurrences of

variable $bid indicates a join operation over boats and reservations. This natural way of

expressing join makes it easier for a user to write queries over multiple data sources.

4.3 Negation

XTree query defines a unary negation operator not() that can be used in the query clause

for negative conditions. The enclosed expression of not() is a sub-tree structure, which

also conforms to the XTree syntax. The negation operator not() requires the conditions on

the enclosed XTree expression to be evaluated to false, or requires the enclosed XTree

structure to not exist in the document.

 25

 Like the negation operator in other languages, in the XTree query language, the

expression enclosed by not() is by default existentially quantified, and not() can be

nested.

Example 29. Consider the bibliography document in Appendix I, find books that do not

have an author named “Stevens W.”. We can write the XTree query as follows:

 query /bib/book→$b/not(author/[last=“Stevens”, first=“W.”])
 construct /results/book→$b

Note that the negative condition enclosed by not() is actually a sub-tree structure (in

XTree format), and it has the existential quantification, i.e., for a book $b, there is no

such author named “Stevens W.”.

Example 30. Find the books that do not have a sub-element named “reference”. We can

write the XTree query as follows:

 query /bib/book→$b/not(reference)
 construct /results/book→$b

Note that there is no condition defined in the XTree expression enclosed by not(), thus

the not() operator requires that the inner XTree structure does not exist.

Example 31. Suppose each author of a book has one or more “address” elements, which

consists of three sub-elements “street”, “city” and “country”. To find the books that do

not have any author who do not have an address in New York, i.e., find the books where

all the authors have an address in New York, we can write the following XQuery:

 query /bib/book→$b/not(author/not(address/city=“New York”))
 construct /results/book→$b

Note that the nested negations both have existential quantification for their enclosed

expressions.

4.4 Group by

The XTree query language supports grouping in an explicit way. It has the keyword

groupby for grouping operations. Groupby classifies the XML nodes into groups, based

on the grouping fields, and assigns the result to a two-dimensional list-valued variable.

Unlike in SQL, where all data are in a flat format making the grouping result clear and

easy to use, XML data has more complicated structures. The variable that holds the

grouping result has a two-dimensional structure: it is a list of lists; each inner list is the

items of a particular group. The syntax of groupby is as follows:

 {{$result}} → {$a} groupby $b

 26

The above statement will group items in {$a} based on the element or attribute $b, and

assign the result to the two-dimensional list {{$result}}. Here {{$result}} has a two

dimensional structure, each inner list {$result} is the $a instances with a certain $b value.

A special function key() will return the value of the grouping field for the current group.

If the grouping is based on a tuple of multiple grouping fields, then the function key() will

return the tuple value of the grouping fields of the current group, with the first item

key()[1] being the value of the first grouping field, the second item key()[2] being the

value of the second grouping field, and so on. By default, duplicate values will be

eliminated in the grouping field.

 In this way, the grouping operation is explicit and easy to read, and the entire

document will only be scanned once for the grouping. What is more, our grouping will

not generate invalid empty groups when there is more than one grouping field, because

we regard multiple grouping fields as tuples, thus if some tuple does not occur in the

document, it will also not appear in the grouping result.

Example 32. Consider the bibliography document in Appendix I, list the book titles

published in each year.

 query /bib/book→{$b},
 {{$booksByYear}} → {$b} groupby @year

construct /year/[@value→{$booksByYear}.key(),
title→{$booksByYear}.iterate()/title]

The key or year of each grouping is assigned to the attribute value, and the title of each

book in the grouping is assigned to the element title. Notice the function iterate() is used

to iterate through the items in the groupings. If iterate() was not included then the list of

titles in each grouping would be assigned to the element title.

Example 33. For the document employees.xml with DTD shown in Fig. 2, find the

average salary of employees, grouping by department and jobtitle.

 query /employees/employee→$e,
 {{$empgrp}} := {$e} groupby [department, jobtitle]
 construct /type/[@dept→{$empgrp}.key()[1], @job→{$empgrp}.key()[2],
 avgsalary→({$empgrp}/salary).avg()]

4.5 Recursion

The XTree query language supports recursion directly in an easy and natural way. The

construct clause of an XTree query is an XTree expression itself, which can also serve as

a query data source (i.e., the querying part of a query can directly refer to an XTree

expression defined in the construct clause of some query). Thus we can write a query on

 27

the XTree expression of the construct clause in another query; or even write a query on

the XTree expression of its own construct clause, to make the whole query recursively

defined.

Example 34. Consider the list of employees, the XQuery script and result in Example 12.

The query converts the list to a tree structure of employees, in which a parent node is the

manager, and the children nodes are the direct subordinates. We show how this query is

written using the XTree query language.

query /employeelist/employee→$e/not(@manager)
construct /employeetree/employee/[@id→$e/@id, @name→$e/@name]

query /employeetree//employee→$e/[@id→$x, not(employee)],
 /employeelist/employee→$e’/@manager→$x
construct $e/employee/{@id→$e’/@id, @name→$e’/@name}

The first query states that for each employee that does not have a manager, we put it as a

first level employee in the tree. By evaluating this query, we will get an employee tree

with only first level employees. Then the second query states that for each leaf employee

in the tree, we search the employee list to find those employees whose manager is this

employee, and put them one level below this employee in the tree. By evaluating this

query, we will expand each leaf node in the employee tree, to add its subordinate

employees, and continue this expansion with the newly added employee nodes.

 Note that the second query is recursively defined, because its query clause queries the

XTree expression defined in its own construct clause.

4.6 Quantification

Unlike XQuery that uses statements “every…in…satisfies…” and “some…in…satisfies…”

in where clauses for universal quantification and existential quantification respectively,

The XTree query language expresses universal quantification and existential

quantification with the expressions foreach $ele in {$var} and thereexists $ele in {$var}

respectively. In both cases, the variable $ele binds to elements in the list bound to

{$var}.

Example 35. Consider the bibliography document in Appendix I, select those books

whose authors all have a first name “Peter”. We can write the following XTree query:

 query /bib/book→$b/author→{$a}
 where foreach $e in {$a} $e/first=“Peter”
 construct /results/book→$b

 28

This query binds the variable {$a} to the list of authors of a book, and then $e to

individual authors in that list.

Example 36. Consider instances of the three DTDs in Appendix II, find the sailors, if any,

who have reserved every boat. We can write an XTree query as follows:

 query (sailor.xml)/sailors/sailor→$s/@sid→$sid
 (boat.xml)/boats/boat→{$b}

 (reservations.xml)/reservations/reservation→{$r}/@sid→$sid
where foreach $b in {$b}

thereexists $r in {$r}
$b/@bid = $r/@bid

construct /results/sailor→$s

4.7 Special Queries

The XTree query language can express some special queries that are not supported by

XQuery, or not supported directly.

4.7.1 URL-related querying.

In an XTree query, variables can be bound to a URL or part of a URL, thus a user can

write a query to get the URL information of the XML document. Such queries are not

supported by XQuery.

Example 37. Suppose we want to find the bibliography documents located in the website

http://www.abc.com in directory /docs/bib, which have a structure similar to that shown

in Appendix I and contain a book with value 1994 for the attribute year and “TCP/IP

Illustrated” for the sub-element title. We can write an XTree query as follows:

 query (http://www.abc.com/docs/bib/$file)
 /bib/book/[@year=“1994”, title=“TCP/IP Illustrated”]

 construct /results/filename→$file

4.7.1 Structure level querying.

Structure level queries may be used to discover the structure of XML documents, or to

rename elements/attributes in the result without knowing their inner structure. In XQuery,

variables are bound to name-value pairs of some XML nodes, and special built-in

functions are needed to split the name and the value. However, in the XTree query

language, names and values of XML nodes are explicitly split in the variable bindings:

variables on the left side of symbol → will bind to the node names, and variables on the

right side of symbol → will bind to the node values. These variables can be used directly

in the appropriate places, and no special functions are needed.

 29

Example 38. Consider the bibliography in Appendix I, suppose we do not know the

substructure of book elements, and we want to restructure books in this way: keep text

nodes and sub-elements unchanged, but convert attributes to sub-elements in the format

of <attribute name=“attribName”, value=“attribValue”/>.

 query /bib/book→$b/@$attribName→$attribValue
 construct /result/book[$b/*, $b/text(),
 attribute/[@name→$attribName, @value→$attribValue]]

Example 39. Get all the sub-elements of each book, except the sub-element price.

 query /bib/book/$elemName→$elemValue
 where $elemName !=“price”
 construct /result/book/$elemName→$elemValue

4.7.2 Sample querying and top-k querying.
Sample queries are the queries that return several items randomly after selecting and

filtering, instead of getting the whole result set. Top-k queries are queries that return the

first k items according to some order, instead of getting the whole ordered result set.

Because XQuery does not have functions to get a certain subset of a list, it is difficult to

express sample queries and top-k queries. However, the XTree query language can easily

handle these queries since it supports list-valued variables explicitly, and defines various

functions to manage a list.

Example 40. Consider the bibliography document in Appendix I, and a query to list any

two books.

 query /bib/book→{$b}
 construct /result/book→{$b}.random(2)

Example 41. Get all the content of the two most expensive books.

 query /bib/book→{$b}
 construct /result/expensive_book→{$b}[1-2]

order by $b/price descending

Note that the statement order by … descending will list items in descending order by the

ordering fields.

4.8 Updates

The XTree query language is not only a data querying language, but also a data

management language. Currently, the XQuery language can only query XML documents,

but cannot update them. Researchers have proposed some methods to specify updates and

 30

have developed techniques to process them efficiently [Liu et al. 2003; Tatarinov et al.

2001].

 An update operation often follows some querying, in order to target the specific set of

nodes that we want to update. After querying, instead of returning results, we can write

update expressions to modify the XML document. In the XTree query language, there are

five kinds of update statements:

• insert content before var
This statement is used to insert the information in content before the position of var,
where content is a segment of XML data expressed in XTree format, and var is
either a variable or an invocation of some functions.

• insert content after var
This statement is used to insert the information in content after the position of var.

• insert content into var
This statement is used to insert the information in content into the structure of var.

• delete var
This statement is used to delete information of var.

• replace var with content
This statement is used to replace the information of var by the information in
content, with the position unchanged.

Example 42. Consider the bibliography document in Appendix I, and an expression to

add a new book as the first book in the document.

query /bib/book[1]→$b
 insert book/[@id→“010”, year→“2000”,

 title→“Introduction to Algorithms”,
 author/[first→“Thomas H.”, last→“Cormen”],
 author/[first→“Charles E.”, last→“Leiserson”],
 publisher→“The MIT Press”, price→“69.99”]
 before $b

Example 43. Add a sub-element named “comments” with value “best seller in year 2001”

to the book whose id is 010.

 query /bib/book→$b/@id=“010”
 insert comments→“among best sellers in year 2001”
 into $b

Example 44. Delete all the books whose title contains the word “violence”.

 query /bib/book→$b/title→$t
 where $t.contains(“violence”)
 delete $b

Example 45. Increase the price by 10% for all books published after 1995.

 query /bib/book[@year>1995, price→$p]
replace $p with 1.1 * $p

 31

4.9 Comparison of related works

Here we make some comparisons between the XTree query language and some other

existing XML querying languages, such as Lorel [Abiteboul et al. 1997], XQL [Robie et

al. 1998], XML-QL[Deutsch et al. 1998], Quilt [Chamberlin et al 2000], XDuce [Hosoya

and Pierce 2000], a rule-based semantic query language [Chippimolchai et al. 2002], a

declarative XML query language[Liu and Ling 2002] and XQuery[Boag et al. 2003].

 The comparison of these query languages emphasizes their expressive power, and

whether types of queries can be written easily in the language. We will use the following

criteria:

1. Data model: how to model XML data. This specifies what information in the

XML document is accessible for querying.

2. Expressions: how to specify interesting paths in the query.

3. Join: whether the query language supports joins over different data sources.

4. Negation: whether the query language can express negative conditions in the

query.

5. Grouping: whether the query language can divide the data into groups according

to some grouping fields, and apply aggregate functions over each group.

6. Recursion: whether the query language can recursively query hierarchical data,

and apply some transformation at each level of the hierarchy.

7. Quantification: whether the query language supports existential quantification

and universal quantification.

8. URL-related querying: whether the query language supports queries on the URL

information.

9. Structure level querying: whether the query language supports queries on XML

documents with unknown structure.

10. Sample/Top-k querying: whether the query language supports queries that only

pick up several items randomly, or only pick up the first several items according

to some order, instead of the whole result set.

11. Ordering: whether the query language can list the items in ascending/descending

order by the ordering fields.

12. Nesting: whether the query language supports nested querying structure (queries

containing nested sub-queries), in order to express complex queries.

13. Updates: whether the query language can specify update operations on XML

documents.

 32

XTree
query

language
Lorel XQL XML-QL

A rule-based
semantic
querying

A declarative
XML

querying
XQuery

Data model
complex

object data
model

Lore data
model

XML
implied

data model

Unordered
/Ordered

data model

XDD (XML
Declarative
Description)

complex
object data

model

XQuery
/XPath

data model

Expression XTree OQL-like XPath regular tag
expression

XML-like
patterns

XTree-like
expression XPath

Join YES YES Partial YES Unsure YES YES
Negation YES YES YES NO NO Unsure YES
Grouping YES YES NO NO NO YES YES
Recursion YES Unsure NO NO NO YES YES

Quantification YES YES YES existential existential YES YES
URL-related

querying YES NO NO NO NO YES NO

Structure level
querying YES NO NO YES NO YES YES

Sample/Top-k
querying YES NO NO NO NO NO NO

Ordering YES YES NO YES NO NO YES
Nesting No need YES NO YES NO No need YES
Updates YES YES NO NO NO NO NO

Table 3. Comparison between XML query languages

Table 3 shows the comparison between these XML query languages. Note that for the

join, negation, grouping, recursion and quantification operations, XTree query can

express them in a more direct way: for the join operations, XTree query uses a QBE-like

solution; for negation, XTree query can express a negative sub-tree in the query part; for

grouping operations, XTree query uses a two dimensional list to hold the values of all

groups, to avoid multiple scans over the document; for recursion, XTree query can

directly query the output XTree expression in the construct clause; and for quantification,

XTree query can invoke built-in functions on list-valued variables directly. In addition,

because XTree query is based on XTree expressions, which can bind multiple variables in

one expression, the queries are more compact.

 As a conclusion, XTree query can support most database operations efficiently,

outperforming other query languages for XML documents.

5. TRANSFORMING AN XTREE QUERY TO XQUERY

5.1 Transformation algorithm for query clause

For each XTree expression in the querying clause of an XTree query, we will transform it

to a set of XPath expressions. This is not as trivial as just extracting each path associated

 33

with a variable to be an XPath expression, because variables may correlate to each other

by some common ancestors, thus we need to use such common ancestors to constrain the

descendent variables. In fact, the common ancestors are those branching nodes, which are

the nodes just before every pair of square brackets, because the pair of square brackets

implies that all the enclosed sibling branches are interesting to the user, whether or not

the sibling branches will head to some variable bindings or some constraints.

 We first define some terms before introducing the algorithm.

Definition 5. Definition 1 has defined that the associated path of variable $a (or {$a}) is

the absolute path expression from the root of the document to the nodes represented by

$a (or {$a}). Function path($var) returns the associated path of variable $var in an XTree

expression, path({$var}) returns the associated path of variable {$var} in an XTree

expression.

 For example, for the XTree expression /bib/book/[title→$t, author→{$a}], path($t) =

/bib/book/title, path({$a}) = /bib/book/author.

Definition 6. The relative path of path1 with regard to path2 is the path starting from the

endpoint of path2 and ending at the endpoint of path1. Function relaPath(path1, path2)

returns the relative path of path1 with regard to path2. It can be evaluated by a prefix

elimination of path2 in path1.

 For example, relaPath(/a/b/c/d, /a/b) = c/d, relaPath(/a/b, /a/b) = null and

relaPath(/a/b, /a/b/c/d) = null

Definition 7. Variable $a is the nearest ancestor variable of variable $b if $a is an

ancestor variable of $b, and no other ancestor variables of $b is defined between

path($a) and path($b).

 For example, in the XTree expression /bib/book→$b/[title→$t, author/last→$last],

$b is the nearest ancestor variable of $t and $last. In the XTree expression /bib/book→$b/

author→$a/[first→$first,last→$last], $b is not the nearest ancestor variable of $last.

The following algorithm describes how to translate the XTree expressions in the query

part of an XTree query script into a set of XPath expressions.

Algorithm TRANS_QUERY
Input: a query clause of an XTree query.
Output: a set of XPath expressions in let/for clauses of XQuery.

If there is a negation in the XTree expression, process the negative subtree with
TRANS_NOT;
If there are two or more variables with the same name, process the join with
TRANS_JOIN;
If there is a grouping operator groupby, process the grouping with TRANS_GROUP;

 34

Otherwise, for each XTree expression, process it from left to right,
for each node traversed,

Case 1: If it is an anonymous branching node, and is not the root, i.e., in the
expression some_xpath_from_root//[child1…, child2…, …]

Use some_xpath_from_root//*/.. to express this node, and assign a new single-
valued variable $var to it. Translate this expression to an XPath expression in a
for clause:
 for $var in some_xpath_from_root //*/..

Case 2: If it is a named branching node, and is not the root, and is not originally
bound to a variable

Assign a new single-valued variable $var to this node, and translate it to an
XPath expression in a for clause:
 for $var in xpath_of_$var

Case 3: If the node value is bound to a single-valued variable, i.e., in the
expression elem→$value (or @attrib→$value)

Translate it to an XPath expression in a for clause:
 for $value in xpath_of_$value

Case 4: If the node value is bound to a list-valued variable, i.e., in the expression
elem→{$value} (or @attrib→{$value})

Translate it to an XPath expression in a let clause:
 let $value := xpath_of_{$value}

Case 5: If the node name is bound to a single-valued variable, i.e., in the
expression $name→$value (or @$name→$value)

Process it as *→$value (or @*→$value), and translate it to an XPath
expression in a for clause, as in case 4:
 for $value := xpath_of_$value (note that this XPath will end with * or @*)
In the where /construct/order by clause of the query, replace every occurrence
of $name to be local-name($value)

Case 6: If it is a leaf node without any variable binding
Then it is used to assure existence of such structure.
Assign a new single-valued variable $var to it, and translate it to an XPath
expression in a for clause:
 for $var in xpath_of_$var
Add a condition exists($var) in the where clause.

For each of the above 6 cases, when writing XPath expression of a variable
xpath_of_$var (or xpath_of_{$var}), always check whether this variable has some
ancestor variable

If it does not have any ancestor variable, then write path($var) (or
path({$var})) as its XPath expression.
Otherwise, if its nearest ancestor variable is $anc, then write its XPath
expression as $anc/relaPath(path($var), path($anc)) (or
$anc/relaPath(path({$var}), path($anc))) ■

 The main idea of the algorithm is that for an XTree expression, we find all the common

ancestors, except the root (since an XML document only has one root node), and assign

single-valued variables to them if they are not bound to variables originally. Then from

left to right, translate each single-valued variable binding to an XPath expression in a for

clause, and translate each list-valued variable binding to an XPath expression in a let

clause.

 35

 Note that in the above algorithm, whenever we encounter a list-valued variable {$var},

we will just use its inner name $var (without curly braces { }) in the output, because in

XQuery a variable defined in a let clause does not have curly braces in its name. Also,

since we process the XTree expression in a left-to-right manner, the output XPaths of an

XTree expression will be in depth-first order of the XTree.

Example 46. Translate the following XTree expression to a set of XPath expressions:

 query /bib/[book/[@$attrib→$value, title→$t, author→{$a}],
 journal//[last,first]]

Using the algorithm, we process the XTree expression from left to right, when we reach

node book, based on case 2 we output the XPath expression: for $b in /bib/book. Later

when we reach node @$attrib→$value, based on case 5 we get the XPath expression: for

$value in $b/@* (since $value has an ancestor variable $b), and replace $attrib by local-

name($value) in other clauses of the query. Next we reach node title→$t, based on case

3, we output: for $t in $b/title. For the next node author→{$a}, based on case 4, we get:

let $a := $b/author. Then we reach node journal, using case 1, we get: for $var in

/bib/journal//*/.. For the last two nodes last and first, using case 6, we output: for $last in

$var/last, for $first in $var/first, and add two conditions exists($last) and exists($first) in

the where clause of XQuery.

 Thus the final output is the following XPath expressions:

for $b in /bib/book (case 2)
for $value in $b/@* (case 5)
for $t in $b/title (case 3)
let $a := $b/author (case 4)
for $var in /bib/journal//*/.. (case 1)
for $last in $var/last, $first in $var/first (case 6)

Wherever $attrib occurs later in the query, replace it by local-name($value);
Add exists($last) and exists($first) in the where clause of XQuery.

 For negation, join and grouping operations, we handle them in other algorithms.

Algorithm TRANS_NOT
Input: a negative subtree in an XTree expression in the query clause of an XTree query.
Output: a set of XPath expressions in let/for clauses and associated conditions in a where
clause of an XQuery script.

Step 1: For the negative subtree enclosed by the not() operator, assign a single-valued
variable $var for the root and each branching node, and generate its XPath expression
path($var) (or $anc/relaPath(path($var), path($anc)) if it has the nearest ancestor
variable $anc), we denote this XPath to be %xpath_nodex% for the node nodex.
Step 2: Generate sub-condition expressions for the leaf nodes.

 36

For each leaf node nodei, generate its XPath expression %xpath_nodei% relative to its
nearest ancestor variable.

Case 1: If nodei does not set any condition, which means the existence of such
structure
 %cond_nodei% = exists(%xpath_nodei%)
Case 2: If nodei carries some condition
 %cond_nodei% = condition of nodei using %xpath_nodei%

Step 3: Output those common variables of the negative subtree with the (possibly
nested) format “some (descendent $var) in (ancestor $var) satisfies (leaf condition)”,
retaining their levels. Use the and operator to connect these conditions, and output a
negative condition in the where clause of XQuery, such as:
 not (some $var1 in %xpath_var1% satisfies

 (some $var2 in %xpath_var2% satisfies %cond_node1%) and
(some $var3 in %xpath_var3% satisfies %cond_node2% and
%cond_node3%)) ■

Example 47. Translate the following 3 negative subtrees in the query clauses of XTree

queries:

(1) query /bib/book→$b/not(author/[last=“Stevens”, first=“W.”])
 (2) query /bib/book→$b/not(reference)
 (3) /bib/book→$b/not(author/not(address/city=“New York”))

Using the algorithm to translate (1), in step 1 we assign $a to the root of the negative

subtree, whose XPath expression is $b/author. In step 2, for leaf node last, its XPath

expression is $a/last, and it carries an equality condition: $a/last = “Stevens”; similarly,

for leaf node first, the condition is $a/first = “W.”. In step 3, we output:

not (some $a in $b/author satisfies $a/last = “Stevens” and $a/first = “W.”)

 For (2), in step 1 we assign a single-valued variable $r for the root of the negative

subtree, whose XPath expression is $b/reference. In step 2, there is only one leaf node

(also the root node), which does not carry any condition, meaning the existence of such a

structure. Thus its condition expression is: exists($b/reference). And in step 3, we output:

not(exists($b/reference)). In fact, in XQuery, this is equivalent to not($b/reference).

 Example (3) demonstrates nested negation. For the outer negation, in step 1 we assign

$a to the root, whose XPath expression is $b/author. Then we meet the inner sub-

negation immediately, thus step 2 of the outer negation is omitted. Turning to the inner

negation, in step 1, we assign $addr to its root, whose XPath expression is $a/address. In

step 2, for the leaf nodes city, generate its condition: $addr/city = “New York”. In step 3,

we get the translated statement for the inner sub-negation:

 not (some $addr in $a/address satisfies $addr/city = “New York”)

 37

Back to the outer negation, in step 3, we output a condition in a where clause:
 not (some $a in $b/author satisfies
 not (some $addr in $a/address satisfies $addr/city=“New York”))

Algorithm TRANS_JOIN
Input: two or more nodes bound to the same variable name in XTree expressions in the
query clause of an XTree query.
Output: a set of XPath expressions for these nodes in let/for clauses of XQuery.
There are two alternatives for the translation of a join operation:

Alternative 1: Rename and Set equal condition
Suppose there are n variables with the same name $var that occur in the query clause.

Step 1: Rename these variables to different names $var1, $var2, … $varn , and
generate their XPath expressions in for/let clauses as before.
Step 2: Add equality constraint in the where clause of XQuery:

$var1 = $var2 = … = $varn

Alternative 2: Nested sub-query on parent variables
This is used when those parents of the join variables are also bound to variables.
Suppose there are n variables with the same name $var, and their parents are bound to
variables $p1, $p2, … $pn, i.e., the query is like:
 query …/parent1→$p1/child1→$var

 …/parent2→$p2/child2→$var
 ……
 …/parentn→$pn/childn→$var

Step 1: Choose any one of $var (say, the first one) and generate its XPath
expression in a for clause: for $var in $p1/child1.
Step 2: For other join nodes, use $var as condition of sub-query on their parent
nodes:
 for $p2 in …/parent2[child2 = $var]
 ……
 for $pn in …/parentn[childn = $var] ■

 Alternative 1 is universally applicable, it can be used in all the cases of join. However,

it introduces many new variable names in order to resolve the naming conflict, and tests

all of them in a condition, which could cause an overhead during query evaluation. On

the other hand, alternative 2 can only be used when the parents of the join variable are

also bound to variables. However, it may reduce the number of variables in the query,

and reduce their associated equality conditions in the where clause. Thus, if an equality

join is performed on many sources, and most of the parents of the join node are also

bound to some variables, we will use alternative 2 for translation.

Example 48. Translate the join nodes in the query clause of the following XTree query:

 query (sailors.xml)/sailors/sailor/[@sid→$sid, sname→$sname],
 (boats.xml)/boats/boat/[@bid→$bid, bname→$bname],
 (reservations.xml)/reservations/reservation/
 [@sid→$sid, @bid→$bid, start-time→$st, end-time→$et]

 38

 Using alternative 1, step 1 performs a renaming to resolve the naming conflict:

for $s in doc(“sailors.xml”)/sailors/sailor, $sid1 in $s/@sid, …
 for $b in doc(“boats.xml”)/boats/boat, $bid1 in $b/@bid, …

for $r in doc(“reservations.xml”)/reservations/reservation, $sid2 in $r/@sid,
$bid2 in $r/@bid

 Step 2 adds equality conditions in the where clause:

 $sid1 = $sid2 and $bid1 = $bid2

 We can also use alternative 2, since the parents of join nodes are branching nodes,

they are also bound to variables. In step 1, we choose one $sid and one $bid for their

normal XPath expressions:

 for $s in doc(“sailors.xml”)/sailors/sailor, $sid in $s/@sid, …
for $b in doc(“boats.xml”)/boats/boat, $bid in $b/@bid, …

 Then in step 2, we use $sid and $bid for sub-query on the parent node “reservation”:

for $r in doc(“reservations.xml”)/reservations/reservation[@sid=$sid,@bid=$bid]

Algorithm TRANS_GROUP
Input: A grouping statement {{$group}} → {$a} groupby [exp1, exp2, … expn] in the
query clause of an XTree query.
Output: a set of XPath expressions for the grouping fields and grouped field in the let/for
clauses of XQuery, and some modifications of other clauses of XQuery.

Step 1: Assign a single-valued variable $vari to each grouping field expi, and output its
XPath expression in a for clause. The XPath expressions are enclosed in distinct-
values() function, and the for clauses will be nested for multiple grouping fields.
Step 2: Assign a variable $group for each group (with the same value in the grouping
fields), and output its XPath expression in a let clause:
 let $group := $a[relaPath(exp1, exp_$a)=$var1 and … and
 relaPath(expn, exp_$a)=$varn]

 Note that function relaPath(expi, exp_$a) returns the XPath expression of expi
relative to the XPath expression of $a.
Step 3: In the where /construct/order by clauses of the XTree query,

For each occurrence of {$group}.key()[i], replace it by $vari;
For each occurrence of {$group}, replace it by $group;
Change aggregate functions from object oriented style to functional style;
If there are multiple grouping fields, add a conditional check to prune empty groups
in the where clause (some combination of grouping fields may not produce any
result):
 if (count($group) > 0)
 then { translated code for construct clause }
 else () ■

Example 49. Translate the grouping operation in the following XTree query:

 query /bib/book→{$b},

 39

 {{$booksByYear}} → {$b} groupby $b/@year
 construct /year/[@value→{$booksByYear}.key(), title→{$booksByYear}.iterate()/title]

 In step 1, we assign a single-valued variable $y for the grouping field:

 for $y in distinct-values($b/@year)

 In step 2, we assign list-valued variable $booksByYear for each group:

 let $booksByYear := $b[@year=$y]

 In step 3, in the construct clause, we replace {$booksByYear}.key() to be $y, and

replace {$booksByYear}.iterate()/title by $booksByYear/title.

Example 50. Translate the grouping operation in the following XTree query:

 query /employees/employee→$e,
 {{$empgrp}} := {$e} groupby $e/[department, jobtitle]
 construct /type/[@dept→{$empgrp}.key()[1], @job→{$empgrp}.key()[2],
 avgsalary→({$empgrp}/salary).avg()]

 In step 1, we assign single-valued variables $dpt and $jt for the two grouping fields,

and output the XPath expressions in nested for clauses:

 for $dpt in distinct-values($e/department)
 for $jt in distinct-values($e/jobtitle)

 In step 2, we assign list-valued variable $empgrp for each group:

 let $empgrp := $e[department=$dpt and jobtitle=$jt]

 In step 3, in the construct clause, we replace {$empgrp}.key()[1] by $dpt, replace

{$empgrp}.key()[2] by $jt, replace {$empgrp}/salary by $empgrp/salary, change the

function ({$empgrp}/salary).avg() to be avg($empgrp/salary), and add a conditional

check to prune empty groups (some combination of department and jobtitle may not

produce any employee result) :

 if (count($empgrp) > 0)
then { translated code for construct clause }
else ()

5.2 Transformation algorithm for where clause

The Where clauses in XTree query and in XQuery are very similar, but some translations

are required, for the object oriented functions and list operations.

Algorithm TRANS_WHERE
Input: a where clause of an XTree query.
Output: some condition expressions in the where clause of an XQuery script.

For each condition expression in where clause,
Step 1: Change quantification to the style used in XQuery.

 40

Case 1: {$var})/…/node op expr translate to:
 some $node in $var/…/node satisfies $node op expr
Case 2: foreach $var in {$var} {$var}/…/node op expr translate to:
 every $node in $var/…/node satisfies $node op expr

Step 2: Change object-oriented function invocations of variables to the functional
style in XQuery syntax.
 E.g., change {$value}.avg() to avg($value),

change $title.contains(“xml”) to contains($title, “xml”)
Step 3: Translate the list functions and operations to some quantification statements
in the where clause of XQuery.

Case 1: {$var}.none()/…/node op expr translate to:
 not(some $node in $var/…/node satisfies $node op expr)
Case 2: $x ∈ {$y} translate to:
 some $y’ in $y satisfies $x=$y’
Case 3: $x ∉ {$y} translate to:
 not (some $y’ in $y satisfies $x=$y’)
Case 4: {$x} ⊆ {$y} translate to:
 every $x’ in $x satisfies some $y’ in $y satisfies $x’=$y’
Case 5: {$x} ⊂ {$y} translate to:
 every $x’ in $x satisfies some $y’ in $y satisfies $x’=$y’
 and not(every $y’’ in $y satisfies some $x’’ in $x satisfies $x’’=$y’’)
Etc. ■

Step 4: Change any other use of {$var} to $var, since during translation of query
clause, we have translated list-valued variable {$var} in XTree query to be $var in a
let clause in XQuery.

5.3 Transformation algorithm for construct clause

Transforming an XTree expression in the construct clause of an XTree query to some

XQuery expressions is complicated, since we will often encounter nested sub-queries in

XQuery. Also, if the node name to get the variable value in the result construction part is

different from the node name where the variable was bound in the querying part (i.e., the

user wants to rename the node), it will be difficult to handle, since we have to explicitly

split the name-value pair of variables in XQuery.

 Thus, in order to construct the result format correctly, we have to determine the

correspondence between the structure of XTree expressions in the query clause and the

structure of XTree expression in the construct clause.

Definition 8. Node B (in the construct clause of an XTree query) is derivable from node

A (in the query clause of an XTree query) if the content of B can be derived from the

content of A. Intuitively, “node B is derivable from node A” means the nodes are

correlated as follows: node A is binding values to variables in the querying part; and node

B is getting values from those variables in the result construction part.

 41

Property 1. Suppose node A is in the query clause, node B is in the construct clause, then

node B is derivable from node A if and only if one of the following cases holds:

(1) If node B is a leaf node and its expression does not contain any variable (e.g., node,

node→“abc”, etc), then node B is not correlated to any node A. In this case we say

node B is trivially derivable.

(2) If the expression of node A is: A→$x; the expression of node B is: B→$x, or an

invocation of a function on $x (e.g., $x.substring(1,5), $x.string-length(), $x.normalize-

space(), etc), then node B is derivable from node A.

(3) If the expression of node A is: A→{$x}; the expression of node B is: B→{$x}, or an

invocation of a list-valued function on {$x} (e.g., {x}[1-3], {x}.distinct(), {$x}.sort(),

etc), or an invocation of an aggregate function on {$x} (e.g., {x}.count(), {x}.avg(), etc),

then node B is derivable from node A.

(4) If node A has variable bindings on its children A1, A2, … Am; node B has variable

substitutions on its children B1, B2, … Bn. If every node Bi is derivable from some

node Aj, then node B is derivable from node A.

(5) Node B is NOT derivable from node A for any other cases.

 The transformation algorithm for the construct clause is divided into three procedures.

The first procedure traverses the XTree expression for result construction, and selects an

XPath expression for each derivable node in the output of the algorithm

TRANS_QUERY; the second procedure translates node expressions to the XQuery

version; and the third procedure adjusts query blocks to ensure correct structure of the

final XQuery.

Algorithm TRANS_CONSTRUCT
Input: a construct clause of an XTree query
Output: a query in XQuery format.
PROC_A (Get XPath expressions from result of TRANS_QUERY)

Process the XTree expression from left to right, for each node traversed:
Case A1: If it is a branching node without → symbol, and is not derivable from any
common ancestor variable node

It is the first of several levels in the result construction
Write this node directly as a pair of XML tags

Case A2: If it has no → symbol, and is derivable from some common ancestor node
that is bound to $anc (or {$anc})

Form a new query block
Write the XPath expression of $anc (or {$anc}) in the result of TRANS_QUERY
Write this node in the return clause directly as an XML tag

Case A3: If it has the expression nodei→$vari (or nodei→{$vari}), and it is
derivable from a node that is bound to $vari (or {$vari})

 42

Form a new query block
Write the XPath expression of $vari (or {$vari}) in the result of TRANS_QUERY
Call PROC_B to translate this node expression in a return clause

Case A4: If it is a trivially derivable leaf node
Write this node directly as an XML segment

Call PROC_C to check the next node to adjust query blocks

PROC_B (Translate node expressions)

The translation will be different depending on whether the node name is changed (in
result construction versus in querying). If the node name remains the same, we just get
the variable value at the place; if the node name is changed, we need to consider all the
possible inner structure (sub-elements, attributes, text fields) of the node, and put them
under the new node name.

Case B1: If the expression is: element → $var
Case B1.a: If the node name is unchanged:

Return “{ $var }” (here { } means evaluation of the enclosed expression)
Case B1.b: If the node name is changed:

Return “<element> {$var/*} {$var/@*} {$var/text()} </element>”
Case B2: If the expression is: element → {$var}

Case B2.a: If the node name is unchanged:
Return “{ $var }”

Case B2.b: If the node name is changed:
Return “{ for $x in $var
 return <element> {$x/*} {$x/@*} {$x/text()} </element>}”

Case B3: If the expression is: @attr → $var

Case B3.a: If the node name is unchanged:
Return “{ $var }”

Case B3.b: If the node name is changed:
Suppose its parent element name is elem
Return “<elem attr={ string($var) }”

In the above cases, if the right side of → symbol is a function invocation of the
variable, we will adjust the output accordingly: add the function invocation to that
variable, changing the object oriented style call to a functional style call.

PROC_C (Adjust query blocks)

Case C1: If the next node to process is a descendent of the current node
Continue current query block
Next step will decide whether to form a sub-query block inside the current one

Case C2: If the next node to process is a sibling of the current node
Close current query block
Next step will decide whether to form a sub-query block that is parallel to the
current one

Case C3: If the next node to process is a sibling of an ancestor node nodei of the
current node, which was processed before

Close current query block
Propagate up to close query blocks of the ancestor nodes of current node, till nodei
(including the query block of nodei)

 43

Next step will decide whether to form a sub-query block that is parallel to the query
block of nodei

Case C4: If the current node is the last node
Close the current query block
Close query blocks of all the ancestor nodes of the current node ■

 The main idea of the algorithm is that we process the XTree expression in the

construct clause from left to right. For each derivable node, we pick up its corresponding

XPath expression in the output of algorithm TRANS_QUERY, translate its node

expression to some XQuery statements, and use curly braces { } to form nested query

blocks according to the structure defined in the XTree expression in the construct clause.

5.4 Transformation algorithm for order by clause

The order by clause in XTree query is the same as that in XQuery. It is a list of ordering

fields, which defines the order of output. The new features of XTree query are not

applicable to the order by clause: we cannot order the result by a tree structure, and list-

valued variables are not used as ordering fields. Thus there is no translation needed for

order by clauses, and we just need to copy all the ordering fields, preserving their

sequence.

Algorithm TRANS_ORDERBY
Input: an order by clause of an XTree query.
Output: an order by clause in an XQuery script.

Copy all the ordering fields, in their original sequence. ■

Example 51. Translate the following XTree query:

query /bib/{book/{title→$t, author→{$a}},
 journal/{title→$jt, editor/{last→$last, first→$first}}}
construct /result/{book/{name→$t, authors/{@count→{$a}.count(), au→{$a}}},
 journal/{title→$jt, editor/{first→$first, last→$last}}
 lastUpdate→“01/09/2004”}

 Fig. 3a shows the XTree graph for querying part, and Fig. 3b shows the XTree graph

for result construction part.

 44

Fig. 3a. XTree graph for querying Fig. 3b. XTree graph for result construction

For the XTree expression in the query clause, by applying algorithm TRANS_QUERY,

we will get the following XPath expressions in for/let clauses (which will be selected

later in the algorithm PROC_A of TRANS_CONSTRUCT):

for $b in /bib/book
for $t in $b/title
let $a := $b/author
for $j in /bib/journal
for $jt in $j/title
for $e in $j/editor
for $last in $e/last
for $first in $e/first

 This XTree query does not have a where clause or an order by clause, and there is no

new condition added when executing TRANS_QUERY, thus the translated XQuery also

has no where clause or order by clause.

 For the construct clause, by applying algorithm TRANS_CONSTRUCT, we will get

the following XQuery script (the details of the algorithm are omitted):

<result> …………………………………………………….....
{
 for $b in /bib/book
 return <book> ………………………………………………
 {
 for $t in $b/title
 return <name> {$t/*} {$t/@*} {$t/text()} </name>
 } ……………………………………………………………..
 {
 let $a := $b/author
 return <authors count={count($a)}> ……………………
 {
 for $x in $a
 return <au> {$x/*} {$x/@*} {$x/text()} </au>
 }

(case A1, C1)

(case A2, C1)

(case A3, B1.b, C2)

(case A2, B3.b, C1)

bib

book journal

title author

last

editortitle

first

(→$b)

→$t →$jt

(→$j)

→{$a}

→$last →$first

→“01/09/2004”

→$first

result

book lastUpdate journal

name authors title editor

@count au first last
→$last →{$a} →{$a}.count()

→$t →$jt

 45

 </authors>
 }
 </book>
 } ……………………………………………………………..
for $j in /bib/journal
 return <journal> …………………………………………...
 {
 for $jt in $j/title
 return {$jt}
 } ……………………………………………………………..
 {
 for $e in $j/editor
 return <editor> …………………………………………..
 {
 for $first in $e/first
 return {$first}
 } …………………………………………………………..
 {
 for $last in $e/last
 return {$last}
 } </editor>
 } </journal> ………………………………………………...
 <lastUpdate>01/09/2004</lastUpdate>
} </result> …………………………………………………….

(case A3, B2.b, C3)

(case A2, C1)

(case A3, B1.a, C2)

(case A2, C1)

(case A3, B1.a, C2)

(case A3, B1.a, C3)

(case A4, C4)

6. CONCLUSION AND FUTURE WORKS

In this paper, we have discussed some limitations of XPath and XQuery, and proposed

more general languages XTree and XTree query language based on the complex object

data model [Liu and Ling 2002].

 XTree has a tree structure, which is more compact and convenient to use than XPath.

It can be used in both the querying part and the result construction part of a query: in the

querying part, multiple variables can be defined in one XTree expression; in the result

construction part, a user can write one XTree expression to define the result format in a

clearer and more compact way. In XTree expressions, list-valued variables are explicitly

indicated, and their values are uniquely determined. Some natural built-in functions are

defined to manipulate list-valued variables in an object-oriented fashion.

 The XTree query language effectively avoids nesting in the query, making the query

easier to read and comprehend. It also directly supports join, negation, grouping,

recursion, quantification, updates and some special queries (such as URL-related

querying, structure level querying, sample querying and top-k querying) which are not

supported by XQuery, or not supported directly. Compared to XQuery, queries written in

XTree query are much shorter in length and easier to understand.

 46

 To utilize existing XQuery parsers, we have also designed algorithms to translate an

XTree query to a standard XQuery script. The algorithms will translate each clause in an

XTree query to XQuery statements, and assemble query blocks to form a nested XQuery

script.

We have already started investigating more expressive query languages based on

XTree. An example is the query language XDO2 [Zhang et al. 2005], which supports

recursive rules and object-oriented features such as methods and inheritance, extending

both the expressive and modeling powers of the XTree query language.

 For future research, we intend to implement the XTree query system that executes

XTree queries directly, instead of translating it to XQuery. The query evaluation will be

more efficient, since in XTree query we have a global view of the entire query tree.

 We also want to extend the transformation algorithms to support recursive queries. To

do this, we need to study how the queries recur in XTree query and define corresponding

recursive functions in XQuery.

 Usually the XQuery scripts output by the transformation algorithms are very lengthy,

because the algorithms assume nothing is known in the structure of the XML document,

thus all the possible content of an element/attribute need to be considered. If we do know

the schema of the document, we may optimize the queries to be more compact. We will

investigate the formal optimization algorithms that can utilize the schema of the XML

documents, to make the output XQuery scripts simpler.

 In addition, we will observe the progressive development of XQuery to continuously

enhance the expressive power of the XTree query language.

 47

REFERENCES
ABITEBOUL S., QUASS D., MCHUGH J., WIDOM J., and WIENER J.L. 1997. The Lorel Query Language

for Semistructured Data. Intl. Journal of Digital Libraries, 1(1):68-99.
BERGHUND A., BOAG S., CHAMBERLIN D., FERNANDEZ M.F., KAY M., ROBIE J., SIMEON J., 2003.

XML Path Language (XPath) 2.0. W3C Working Draft, http://www.w3.org/TR/xpath20/
BOAG S., CHAMBERLIN D., FERNANDEZ M.F., FLORESCU D., ROBIE J., SIMEON J., 2003. XQuery

1.0: An XML Query Language. W3C Working Draft, http://www.w3.org/TR/xquery/
BONIFATI A., CERI S. 2000. Comparative Analysis of Five XML Query Languages. SIGMOD Record,

29(1):68-79.
CATTELL R.G.G., BARRY D. 1997. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, Los

Altos, CA..
CERI S., COMAI S., DAMIANI E., FRATERNALI P., PARABOSHI S., TANCA L. 1999. XML-GL: a

Graphical Language for Querying and Restructuring WWW data. In Proceedings of the 8th
International World Wide Web Conference, Toronto, Canada.

CERI S., COMAI S., DAMIANI E., FRATERNALI P., TANCA L. 2000. Complex Queries in XML-GL.
SAC(2) :888-893.

CHAMBERLIN D., FANKHAUSER P., MARCHIORI M., ROBIE J. 2003. XML Query Requirements. W3C
Working Draft. http://www.w3.org/TR/xquery-requirements/

CHAMBERLIN D., ROBIE J., FLORESCU D. 2000. Quilt: An XML query language for heterogeneous data
sources, In Proceedings of International Workshop on the Web and Databases.

CHIPPIMOLCHAI P., WUWONGSE V., ANUTARIYA C. 2002. Semantic Query Formulation and
Evaluation for XML Databases. In Proceedings of WISE 2002, 205-214, Singapore.

CLUET S., SIMEON J. 1999. YATL: a Functional and Declarative Language for XML. http://db.bell-
labs.com/user/simeon/icfp.ps.

COHEN S., KANZA Y., KOGAN Y., NUTT W., SAGIV Y., SEREBRENIK A. 1998. Equix – Easy Querying
in XML Databases. In Proceedings of Webdb’98 – The Web and Database Workshop.

COMAI S., DAMIANI E., FRATERNALI P. 2001. Computing Graphical Queries over XML Data. ACM
Transactions on Information Systems, Vol. 19, No. 4, Pages 371-430.

COMAI S., DAMIANI E., TANCA L. 1998. The WG-Log System: Data Model and Semantics. INTERDATA
technical report, T2-R06.

DATE C.J. 1981. An Introduction to Database Systems. 3rd Edition, Addison-Wesley Publishing Company.
DEUTSCH A., FERNANDEZ M., FLORESCU D., LEVY A., SUCIU D. 1998. XML-QL: A Query Language

for XML. http://www.w3.org/TR/1998/Note-xml-ql-19980819.
DRAPER D., FANKHAUSER P., FERNANDEZ M.F., MALHOTRA A., ROSE K., RYS M., SIMEON J.,

WADLER P. 2003. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft,
http://www.w3.org/TR/xquery-semantics/

HOSOYA H., PIERCE B. 2000. XDuce: A Typed XML Processing Language (Preliminary Report). In
Proceedings of WebDB Workshop.

KAY M. 2003. XSL Transformations (XSLT) Version 2.0, W3C Working Draft 12,
http://www.w3.org/TR/xslt20/.

LIU M.., LING T.W. 2002. Towards Declarative XML Querying. In Proceedings of WISE 2002, 127-138,
Singapore.

LIU M., LU L. WANG G.R. 2003. A Declarative XML-RL Update Language. In Proceedings of ER2003, 506-
519, Chicago, USA.

MUNROE K.D., PAPAKONSTANTINOU Y. 2000. BBQ: A visual interface for integrated browsing and
querying of XML. In Proceedings of Visual Database Systems.

ROBIE J., LAPPJ., SCHACH D. 1998. XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

TATARINOV I., IVES Z.G., HALEVY A.Y., WELD D.S. 2001. Updating XML. In Proceedings of SIGMOD
2001, pages 413-424.

ZHANG W., LING T.W., CHEN Z., DOBBIE G. 2005. XDO2 for XML Deductive Object-Oriented Query
Language. To appear DASFAA’05.

 48

Appendix I. Sample XML document of bibliography data

<?xml version=“1.0” encoding=“UTF-8”?>
<bib name=“IT”>
 <book id=“b001” year=“1994”>
 <title>TCP/IP Illustrated</title>
 <author>
 <last>Stevens</last>
 <first>W.</first>
 </author>
 <publisher pid=“p01”>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book id =“b002” year=“1992”>
 <title>Advanced Programming in the Unix Environment</title>
 <author>
 <last>Stevens</last>
 <first>W.</first>
 </author>
 <publisher pid=“p01”>Addison-Wesley</publisher>
 <price>59.95</price>
 </book>
 <book id=“b003” year=“2000”>
 <title>Data on the Web</title>
 <author>
 <last>Abiteboul</last>
 <first>Serge</first>
 </author>
 <author>
 <last>Buneman</last>
 <first>Peter</first>
 </author>
 <author>
 <last>Suciu</last>
 <first>Dan</first>
 </author>
 <publisher pid=“p02”>Morgan Kaufmann</publisher>
 <price>39.95</price>
 </book>
 <journal id=“j001” year=“1998”>
 <title>XML</title>
 <editor><last>Date</last><first>C.</first></editor>
 <editor><last>Gerbarg</last><first>M.</first></editor>
 <publisher pid=“p02”>Morgan Kaufmann</publisher>
 </journal>
</bib>

 49

Appendix II. Sample DTD for three XML documents

Three XML documents sailors.xml, boats.xml and reservations.xml use the following

Document Type Definition (file name: sample.dtd):

<!DOCTYPE sailors [
 <!ELEMENT sailors (sailor*)>
 <!ELEMENT sailor (sname, gender, age)>
 <!ATTLIST sailor sid ID #REQUIRED>
 <!ELEMENT sname (#PCDATA)>
 <!ELEMENT gender (#PCDATA)>
 <!ELEMENT age (#PCDATA)>
]>

<!DOCTYPE boats [
 <!ELEMENT boats (boat*)>
 <!ELEMENT boat (bname, model, year)>
 <!ATTLIST boat bid ID #REQUIRED>
 <!ELEMENT bname (#PCDATA)>
 <!ELEMENT model (#PCDATA)>
 <!ELEMENT year (#PCDATA)>
]>

<!DOCTYPE reservations [
 <!ELEMENT reservations (reservation*)>
 <!ELEMENT reservation (start-time, end-time)>
 <!ATTLIST reservation sid CDATA #REQUIRED>
 <!ATTLIST reservation bid CDATA #REQUIRED>
 <!ELEMENT start-time (#PCDATA)>
 <!ELEMENT end-time (#PCDATA)>
]>

 Note: In sailors.xml, there is a line <!DOCTYPE sailors SYSTEM “sample.dtd”> at

the beginning; in boats.xml, there is a line <!DOCTYPE boats SYSTEM “sample.dtd”>

at the beginning; and in reservations.xml, there is a line <!DOCTYPE reservations

SYSTEM “sample.dtd”> at the beginning.

