
From Revisiting the LCA-based Approach to a New

Semantics-based Approach for XML Keyword Search

Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, and Luochen Li

School of Computing

National University of Singapore

{ltngoc, wuhuayu, lingtw, luochen}@comp.nus.edu.sg

Abstract

Most keyword search approaches for data-centric XML documents are based on the compu-

tation of Lowest Common Ancestors (LCA), such as SLCA and MLCA. In this paper, we show

that the LCA is not always a correct search model for processing keyword queries over general

XML data. In particular, when an XML database contains relationships among objects, which

is quite common in practical data, LCA-based search may not be able to find desired answers

for many keyword queries. We propose to use semantics instead of the structure of XML data

to perform keyword search, and show that the semantics-based search can solve the problems

of the LCA-based approach. To the best of our knowledge, this is the first work to point out

serious problems of the LCA-based XML keyword search approach, and propose an approach to

perform XML keyword search based on semantics rather than the hierarchical structure of XML

data to address those problems.

1 Introduction

XML keyword search has been studied for several years. Inspired by the hierarchical structure of

XML data, most efforts in keyword search over data-centric XML documents focus on exploring an

XML tree to discover the useful information covered by query keywords. The LCA-based approach

is a typical XML keyword search approach, which is based on the hierarchical XML structure. It

searches for every subtree containing all query keywords and less irrelevant information. Many

LCA-based search models have been proposed, such as SLCA [22] and MLCA [17]. However, the

LCA-based approach is only correct for a part of practical XML databases and queries. If an XML

data contains relationships among objects, the LCA-based approach may be improper for processing

many keyword queries.

Consider the scenario in which a university needs to maintain an XML database for course

registration. To clearly explain the data, we use an ER (Entity-Relationship) diagram to model

the information, as shown in Fig. 1, where there are two many-to-many relationship types, the

take between Student and Course and the use between Course and Textbook. Generally, there are

several XML designs for this database. In these designs, Student and Course are usually put into

the hierarchical structure with an edge to reflect the relationship between them. Fig. 2 shows two

possible designs for this XML data. For simplicity, we only draw object class nodes and relationship

attribute nodes in these schema diagrams. The instance diagrams of these two schemas are the SC-

XMLDB in Fig. 3(a), in which Student nodes are ancestors of Course nodes, and the CS-XMLDB

in Fig. 3(b), in which Course nodes are ancestors of Student nodes.

1

Student Coursetake
nn

Textbookuse
n n

Grade

Figure 1: The University database in ER diagram.

Course

TextbookStudent

Grade

Course

Textbook

Student

Grade

(a) SC-XMLDB schema

Course

TextbookStudent

Grade

Course

Textbook

Student

Grade

(b) CS-XMLDB schema

Figure 2: Two possible XML schemas of the University database

Suppose that there are two XML keyword queries, Qa and Qb. Qa = {Bill, John} asks for

the common information of two students Bill and John, i.e., the common courses taken by these

two students in this document. Qb = {Database, Logic} asks for the common information of two

courses Database and Logic, i.e., the common students taking these two courses. With the SC-

XMLDB, the LCA-based approach returns the document root as the answer to Qa, because only

the root is the LCA of the query keywords. Obviously, this answer is not meaningful at all. The

LCA-based approach faces this problem because it cannot discover the real relationships between

Course objects and Student objects to find the common courses between two students. It is even

worse that under the LCA search model, a user cannot find any keyword query to fulfil the purpose

of Qa. With the CS-XMLDB, the LCA-based approach can answer Qa. However, it cannot find

correct results for Qb and the user cannot find any query to meet the search intention of Qb either.

More cases where the LCA-based approach fails to work will be discussed in Section 2. It shows

that when relationships among objects are considered, the LCA-based approach cannot find correct

answers for many keyword queries.

Unfortunately, relationships do frequently exist in practical databases. If we consider any rela-

tional database designed based on ER model, there will be many relationship tables, each of which

can correspond to a relationship type among several object classes. Generally, in XML data, any

two objects connected by an edge may be considered in a certain relationship, with or without

relationship attributes under the lowest object of the relationship. For any XML document with a

certain depth in structure, there may be many relationships among objects. Furthermore, in recent

years, to be exchanged on the Internet, relational data needs to be mapped to XML data [7, 21]

which definitely contains relationships between objects in their XML trees.

2

Lecturer
(18)

Title
(14)

Department
(16)

Student
(1)

Major
(9)

Course
(11)

Student
(27)

Database
(15)

Computing
(10)

Grade
(20)

A
(21)

University
(0)

Student_No
(28)

0801433
(29)

Kennedy
(19)

Computing
(17)

Name
(4)

First
(5)

Last
(7)

Bill
(6)

Kennedy
(8)

Name
(25)

DBMS
(26)

…

Course
(35)

Student
…………

……Textbook
(22)

Student_No
(2)

0012745
(3)

Code
(12)

CS5201
(13)

ISBN
(23)

105601
(24)

Code
(36)

CS5201
(37)

Grade
(40)

A
(41)

Name
(30)

First
(31)

Last
(33)

John
(32)

Clinton
(34)

Title
(38)

Database
(39)

Course
(42)

…… Code
(43)

CS301
(44)

Title
(45)

Logic
(46)

(a) An instance diagram of the SC-XMLDB

Lecturer
(8)

Title
(4)

Department
(6)

Course
(1)

Major
(23)

Student
(15)

Database
(5)

Computing
(24)

Grade
(25)

A
(26)

University
(0)

Student
(27)

Student_No
(28)

0801433
(29)

Kennedy
(9)

Computing
(7)

Name
(18)

First
(19)

Last
(21)

Bill
(20)

Kennedy
(22)

Name
(13)

DBMS
(14)

……..

Course
(37)

……

Textbook
(10)

Student_No
(16)

0012745
(17)

Code
(2)

CS5201
(3)

ISBN
(11)

105601
(12)

Grade
(35)

A
(36)

Name
(30)

First
(31)

Last
(33)

John
(32)

Clinton
(34)

Title
(40)

Logic
(41)

Code
(38)

CS301
(39)

…… Student
(42)

… Student_No
(43)

0801433
(44)

(b) The same data of the CS-XMLDB

Figure 3: The University database

To meet the purpose of Qa, i.e., finding the common courses taken by two students in the SC-

XMLDB, where Course is a descendent of Student in the XML schema, a user can use XQuery as

follows.

For $s1=doc(SC-XMLDB.xml)//Student[Name/First=Bill]

For $s2=doc(SC-XMLDB.xml)//Student[Name/First=John]

Where $s1/Course/Code=$s2/Course/Code

Return $s1/Course

In this XQuery expression, we need to join two paths $s1/course/code and $s2/course/code,

based on the same Code value. The rationale behind this XQuery is that we have to know the

semantics that every course and every student is an object, Code is the object ID (identifier) of

Course and there is a relationship between Student and Course, in order to compose that XQuery

query.

3

More generally, in XML query processing, we need such semantics to answer query Qa correctly

regardless of query types, e.g., XQuery query or keyword query. It means that either the search

engine or the query expression must contain the semantics. In XML keyword search, a keyword

query itself does not have the semantics. An end user does not need to know the semantics to

issue an XML keyword query. Even if he knows the semantics, he is not able to express it in any

XML keyword query. Therefore, in XML keyword search, to answer Qa correctly, a search engine,

whichever approach it applies, must use the semantics of the XML data. This semantics can be

provided by the XML data designer or the search engine administrator. Otherwise, i.e., neither the

query nor the search engine has the semantics, the Qa can never be answered correctly since the

common courses taken by the two students cannot be identified without knowing the ID attribute

of course.

Despite the important role of semantics for XML keyword search, very few systems pay attention

to using semantics for XML query processing. The only work we identified that may be considered

as a semantics-based approach is XKeyword [12]. It exploits the XML schema to improve search

quality. However, most XML schemas cannot fully capture semantics of XML data, especially for

relationships and relationship attributes. As a result, it cannot discover real relationships among

objects and cannot distinguish relationship attributes and object attributes. For example, in the SC-

XMLDB, most schemas cannot tell that Grade is an attribute of the relationship between Student

and Course. Thus, when XKeyword processes the query {Database, A} to the SC-XMLDB, it only

returns the object Course (11)1, which is not quite meaningful to that query.

In this paper, we propose a new semantics-based approach that uses the semantics of objects,

object IDs, relationships among objects and attributes of objects and relationships to process XML

keyword queries. In particular, we propose rules and guidelines to identify answers of those queries.

To avoid returning meaningless answers, our approach handles problems at the object and relation-

ship level in which each query keyword is associated with an object or a relationship rather than

with an attribute in XML data.

In summary, the contributions of our work are as follows.

• We illustrate serious limitations of the existing LCA-based XML keyword search approaches

when they handle XML data accompanied with relationships among objects. This finding is

important since most current XML keyword search approaches are still LCA-based. To the

best of our knowledge, this is the first work pointing out this problem, and showing that the

LCA-based search is not a correct search model for XML query processing.

• We propose to use semantics of XML data to process XML keyword queries. In particular,

we propose several rules and guidelines to identify the expected answers.

• We design XSem, a semantics-based XML keyword search engine, based on the rules and

guidelines we propose, and show the effectiveness of XSem experimentally.

The rest of this paper is organized as follows. In Section 2, we show problems of the current

LCA-based approach. To avoid these problems, we propose a new semantics-based approach in

1Course (11) refers to the node whose name is Course and label is 11. It is similar to other nodes.

4

Section 3. Section 4 presents XSem, a search engine of our semantics-based XML keyword search

approach. Our experimental results are shown in Section 5. Related work is reviewed in Section 6.

Finally, conclusion and future work are given in Section 7.

2 Problems of the LCA-based XML keyword search approaches

In an XML instance diagram, a node may correspond to an object, an object attribute, an object

attribute value, a relationship attribute or a relationship attribute value. For example, in the

SC-XMLDB, objects are Student (1), Student (27), Course (11), Textbook (22) etc. Major is an

attribute of the object class Student and Computing (10) is a value of object attribute Major. Grade

is a relationship attribute of the relationship type between object classes Student and Course and

A (21) is a relationship attribute value.

Most practical XML keyword queries involve objects and/or relationships among objects, and

aim to find the common information of those objects and/or relationships. We classify keyword

queries into different cases based on how the query keywords match objects and relationships.

Particularly, we divide queries into three cases: (1) query keywords matching only one object; (2)

query keywords matching more than one object but no relationship attribute value; and (3) some

query keywords matching relationship attribute values. In each case, we point out the problems

of the LCA-based XML keyword search approach by showing differences between its search result

and the expected result for each example query. Although we consider the scenario that each query

contains at most two keywords to illustrate the problems, such problems also occur for queries

containing more than two keywords. We use the University database introduced in Section 1,

i.e., the SC-XMLDB and the CS-XMLDB instance diagrams shown in Fig. 3(a) and Fig. 3(b)

respectively, for illustration. The label of each node in these diagrams is only for description

purpose.

2.1 Case 1: Keywords matching only one object

We further classify queries of this case into two subcases. In the first subcase, a query contains only

one keyword. In the second subcase, a query contains multiple keywords, but all these keywords

center at one object.

2.1.1 Case 1(A): Query containing only one keyword

Example 2.1 A user wants to find the information of a student whose name is Bill by issuing a

query {Bill}.

LCA-based answer. The LCA-based approach identifies node Bill (6) in the SC-XMLDB, or

Bill (20) in the CS-XMLDB, as an answer, as this node is the LCA of itself. However, returning

this node is not useful at all since it does not provide any useful information about Bill. Only with

more accurate complementary returned information inferences such as in [19, 20], the LCA-based

approach may return the correct object to answer the query.

5

Expected answer. The expected answer should be the object matching keyword Bill, i.e., Stu-

dent (1) in the SC-XMLDB, or Student (15) in the CS-XMLDB since they contain useful comple-

mentary information related to Bill.

Conclusion. If a query contains only one keyword, the LCA-based approach returns the node

matching this single keyword. This answer is meaningless since it does not provide any other useful

information.

2.1.2 Case 1(B): Query containing multiple keywords

Example 2.2 Consider the following illustrative query {Kennedy, Computing}.

LCA-based answer. With the SC-XMLDB, most LCA-based approaches, e.g., SLCA [22] and

MLCA [17], return node Course (11). Although node Student (1) is also an LCA of Kennedy (8)

and Computing (10), it is not returned by SLCA and MLCA, since its descendant node Course (11)

makes it unable to be an SLCA of the two keywords. Similarly, with the CS-XMLDB, SLCA and

MLCA only return Student (15), and ignore Course (1).

Expected answer. For this query, both Student 0012745 and Course CS5201 are meaningful

answers. In particular, this ambiguous query may search for students named Kennedy and majored

in Computing, or course taught by Kennedy and offered by the department of Computing.

Conclusion. Most LCA-based extension, e.g., SLCA and MLCA, put constraints to filter LCA

answers to make the query processing more effective. However, these constraints may filter out

many meaningful answers as well.

2.2 Case 2: Keywords matching more than one object, but no relationship

attribute value

We further classify queries of this case into two subcases according to how the objects referred by a

query are related to each other. In the first subcase, these objects are directly related to each other

through a relationship; while in the second subcase, these objects are not directly related.

2.2.1 Case 2(A): Objects having direct relationships

Example 2.3 Suppose that there is a query {Bill, Da-tabase} asking for the relationship between

student Bill and course Database.

LCA-based answer. With the SC-XMLDB, the LCA-based approach returns object Student (1).

The subtree of node Student (1) contains too much irrelevant information, e.g., all other courses

he takes and textbooks used in these courses. With the CS-XMLDB, the subtree of Course (1) is

returned. This subtree also contains a large amount of irrelevant information, e.g., all other students

taking this course. The irrelevant information makes users difficult to identify essential answers.

Filtering such irrelevant information is not trivial. No matter how the database is designed, the

LCA-based approach only returns some subtrees containing the two objects, instead of really finding

6

the relationship between them. Moreover, the corresponding results for different schemas, the SC-

XMLDB schema and the CS-XMLDB schema, are completely different though these schema designs

contain exactly the same information and we process the same query.

Expected answer. The expected answer to this query should be the relationship between student

Bill and course Database. From the ER diagram in Fig. 1, the relationship between these two

objects should be student Bill taking the course Database and getting a grade of A. Note that

Grade is a relationship attribute of the relationship type between Student and Course.

Conclusion. When a query contains two objects with a direct relationship, the relationship (with

relationship attribute values) should be returned as an answer. However, the LCA-based approach

cannot return such desired answers precisely since they cannot discover this relationship. Moreover,

they heavily depend on the XML hierarchical structure, i.e., returning different answers for different

hierarchical designs of XML data.

2.2.2 Case 2(B): Objects having indirect relationships

Some queries refer to objects with no direct relationship but may be related indirectly by some

intermediate objects connecting them through more than one relationship. There are two subcases:

one refers to objects of the same class and the other refers to objects of different classes.

Case 2(B1): objects belonging to the same class

Example 2.4 Recall the scenario in Section 1. Consider a query that finds the common information

of two students, i.e., {Bill, John}.

LCA-based answer. With the SC-XMLDB, the LCA-based approach returns the document root.

Definitely it is not meaningful. If the CS-XMLDB is used, the LCA-based approach can find the

common courses (if any) taken by these two students. However, if another query finds the common

information of two courses, e.g., {Database, Logic}, the LCA-based approach will also return the

document root and the common students taking both courses cannot be found.

Expected answer. The common information of the two students should be the common courses

(if any) taken by them, in our data set. No matter how the XML data is designed, the returned

answer should always be this common information.

Conclusion. When a query contains two objects from the same class, ideally we need to find the

common information of these two objects. However, the correctness of the LCA-based approach to

solve this type of query highly depends on the design of XML data and particular queries.

Case 2(B2): objects belonging to different classes

Example 2.5 The query {Bill, DBMS} asks for common information of student Bill and textbook

DBMS.

LCA-based answer. With the SC-XMLDB, node Student (1) is returned. The subtree rooted at

this node contains a lot of extraneous information such as all courses Bill takes and other textbooks.

With the CS-XMLDB, the Course (1) is returned. The subtree rooted at this node also contains a

7

lot of unnecessary information, such as all other students taking this course and other textbooks used

in this course. Similar to case 2(A), such irrelevant information makes users difficult to determine

expected answers and filtering this information is not easy. Besides, it shows again that different

schema designs have different answers for the same query, though all these designs contain the same

information.

Expected answer. When a user issues such a query, his search target is all common information

between student Bill and textbook DBMS. The expected answer should be object Course CS5201

which is taken by student Bill and uses textbook DBMS, i.e., this object has relationships with

both student Bill and textbook DBMS.

Conclusion. Similar to Case 2(B1), for this kind of queries, the common information of the two

objects, i.e., the common objects which have relationships with both of the two objects, should be

an answer. However, the correctness of the LCA-based approach to process keyword queries in this

case depends on the XML hierarchical structure and the queries.

2.3 Case 3: Some keywords matching relationship attribute values

Example 2.6 Consider a query {Database, A} asking for students getting A grade of course

Database.

LCA-based answer. With the SC-XMLDB, the LCA-based approach returns Course (11) and

Course (35) to answer this query. Although these two nodes appear at different places in the

XML tree, they refer to exactly the same object, which is the course whose Code is CS5201. The

above answers cannot provide the students getting A grade for the course Database. Obviously,

they are incorrect, because Grade is the attribute of the relationship between Student and Course,

rather than the attribute of Course. The existing LCA-based approach cannot distinguish between

an object attribute and a relationship attribute since they do not capture the semantic meaning of

relationships. With the CS-XMLDB, the LCA-based approach also returns the Course (1). Though

the subtree of this node contains the information of students taking this course and getting A, it

also contains a lot of irrelevant information, such as all other students taking this course. Moreover,

if users issue a query {Bill, A}, then using the CS-XMLDB schema makes the LCA-based approach

also face the same problems as the ones it has when using the SC-XMLDB.

Expected answer. The proper answer to this query should be all students taking the Database

course and getting an A grade, as well as the relationship between them and that course. This

relationship contains other information (if any), such as their midterm grades.

Conclusion. If a query involves relationship attribute values, the LCA-based approach does not

return correct answers since they cannot distinguish whether an attribute value belongs to an

object or a relationship. Moreover, their answers highly depend on the hierarchical structure of the

underlying database as in above cases.

2.4 Summary

We pointed out serious problems of the existing LCA-based approach by various examples. Al-

though we only analyze binary relationships, in general, the discussed problems also occur in n-ary

8

relationships and recursive relationships. The main reason of these problems is that the LCA-based

approach highly relies on the hierarchical structure of an XML data and ignores real semantics of

objects and relationships between objects. Therefore, with the same query, they normally return

different answers for different schema designs of the same data source. Moreover, in many cases

when a query contains several objects involving certain relationships, the LCA-based search cannot

find meaningful answers by only considering the hierarchical structure of data. Additionally, the

LCA-based approach cannot identify duplicate answers and remove them out of the results. The

above observations motivate us to propose a new semantic approach for XML keyword search which

is independent of the hierarchical structure of XML data and exploits real semantics of XML data

to find answers.

3 Semantics-based approach

We provide an overview of our semantics-based XML keyword search approach in Section 3.1,

followed by technique details of identifying the expected answers in Section 3.2 and Section 3.3.

3.1 Overview of our approach

To correctly process an XML keyword query, we are interested in exploiting the semantics of objects,

object IDs, relationships among objects, and attributes of those objects and relationships in an

XML data. Such semantics can be provided by database designers or administrators. Also there

are semantically rich models such as ORA-SS [18], to capture and express semantic information

for XML data. As discussed in Section 1, semantics is very important to XML keyword search.

Without it, many queries can never be answered correctly.

Our approach works at object and relationship level which means that each query keyword is

associated to the corresponding objects and/or relationships. Specifically, a keyword matching an

attribute value is considered as matching the objects and/or the relationships to which this attribute

value belongs. Similarly, a keyword matching an attribute is considered as matching the object class

and/or the relationship type to which this attribute belongs. Additionally, working at object level

does not allow duplicate objects, i.e., one object appears as many different nodes. Two different

nodes are considered as matching the same object if they belong to the same object class and have

the same value of Object ID. Handling problems at object and relationship level has the following

advantages. First, it can avoid returning meaningless answers such as a subtree containing only one

value node or nodes which are not objects. Second, it can filter duplicate information when the

same object appears at different places in XML data. Third, the number of object combinations

to be considered is much less than the number of node combinations, when each object appears as

different nodes.

In contrast to the LCA-based approach, in which the results depend on the XML hierarchical

structure, our approach is independent of the XML hierarchical structure, i.e., it returns the same

results for any schema designs of the same data. In addition, it can also handle the case where there

is more than one relationship type between the same set of object classes. The most important

advantage is that our approach can handle all the problems of the LCA-based approach studied in

9

Section 2. Particularly, it returns the expected answers and does not return meaningless answers.

The process of our semantics-based approach can be briefly described as follows. We first

match each query keyword to a set of corresponding objects and/or relationships. We then exploit

semantics to find meaningful connections between those objects and/or relationships (if any). In

particular, for each object matching some query keywords, we find the relationships (if any) in which

this object participates and find the objects (if any) having relationships with this object. Based

on these meaningful connections, we finally apply rules and guidelines to identify expected results.

Specifically, we classify query keywords into two types (1) keywords as values in leaf nodes, and

(2) keywords as tag names. We refer them as value keywords and tag name keywords respectively.

Section 3.2 introduces rules to determine expected results. Section 3.3 introduces guidelines to

improve efficiency in the case where queries contain tag name keywords.

For ease of presentation, we summarize the concepts and notations used in this paper in Table

1 and Table 2 respectively.

Table 1: Concepts

Concept Description

Keyword k matching object o (or object o

matching keyword k)

Keyword k is contained by the object class

name, any attribute name or any attribute

value of object o.

Keyword k matching a relationship r (or

relationship r matching keyword k)

Keyword k is contained by any attribute

of relationship type of r or any attribute

value of relationship r.

Object o participating in relationship r (or

object o being a participating object of re-

lationship r)

r is a relationship among object o and

other object(s).

Keyword k matching objects of relation-

ship r (keyword k involving relationship r)

Keyword k matches at least one object

which participates in relationship r.

Object oi having a relationship with object

oj (or objects oi and oj have a relationship)

There exists a relationship among objects

oi, oj and other objects (if any).

Keyword k connecting object o (or object

o connecting keyword k)

Keyword k matches at least one object

which has a relationship with object o.

3.2 Rules to identify answers

In this section, we propose several rules to determine the expected results. In these rules, returning

an object means returning all attribute values of that object; while returning a relationship means

returning all attribute values of that relationship as well as all objects participating in that rela-

tionship. We re-use the examples in Section 2 to illustrate our rules to show that our approach can

handle the discussed problems of the LCA-based approach. Although only the SC-XMLDB instance

diagram is used for illustration, these rules enable us to return the same answers for any schema

designs, including the CS-XMLDB. In other words, our rules are independent of the hierarchical

structure of XML data.

10

Table 2: Notations

Notation Description

Q = {k1, . . . , kn} Query Q contains keywords k1, . . . , kn

Res(Q,D) The result of query Q to database D

Class(o) The object class of object o

R(oi, oj) Objects oi and oj have a relationship of relationship type R

r Relationship

r(o1, . . . , om) Relationship among objects o1, . . . , om,m ≥ 2

Obj(k) The set of objects matching keyword k

Obj(Q) The set of objects matching all keywords in query Q. If

Q = {k1, . . . , kn}, then Obj(Q) =
⋂
Obj(ki), i = 1..n

Obj(r) The set of objects participating in relationship r

Rel(o) The set of relationships which object o participating in

Rel(k) The set of relationships ri which matches keyword k

Rel(Q) Set of relationships matching all keywords in query Q. If

Q = {k1, . . . , kn}, then Rel(Q) =
⋂
Rel(ki), i = 1..n

Rule 1 Given a query Q = {k1, . . . , kn} to a document D. If o ∈ Obj(ki), ∀i = 1..n, then o ∈
Res(Q,D).

Rule 1 states that if an object matches all query keywords, then this object is an answer.

Example 3.1 Consider a query Q1 ={Bill}. This keyword matches object Student (1). By Rule

1, {Student (1)} is an answer.

The LCA-based approach returns only node Bill while our approach returns object Student (1).

This object provides more useful information about Bill. Therefore, it can be seen that returning

objects, instead of returning subtree rooted at LCA nodes, can avoid meaningless answers.

Rule 2 Given a query Q = {k1, . . . , kn} to a document D. Let oi ∈ Obj(ki), i = 1..n and r be a

relationship. If (|
⋃
{oi}| ≥ 2) and (

⋃
{oi} ⊆ obj(r)), then r ∈ Res(Q,D).

Rule 2 states that if all query keywords match objects of a relationship, then this relationship

is an answer. The condition (|
⋃
{oi}| ≥ 2) ensures at least two objects participating in that

relationship.

Example 3.2 Consider a query Q2 = {Bill, Database}. Keywords Bill and Database match object

Student (1) and Course (11) respectively. Since there is a relationship between these two objects,

by Rule 2, that relationship, i.e., Bill takes Database and gets an A, is an answer.

11

The following ER diagram represents a ternary relationship.

Lecture

Course

n Textbook
use

n

n

year

Lecturer

Course

n
Textbookuse

n

n

Figure 4: A ternary relationship type in ER diagram.

Example 3.3 Consider a ternary relationship type shown in Fig. 4 among three classes Lecturer,

Course and Textbook. Intuitively, for the same course, different lecturers may use different text-

books. Suppose there is a relationship r among John, Database, XML which belong to the classes

Lecturer, Course and Textbook respectively. In the query Q2a = {John, Database, XML} or

Q2b={John, Database}, all objects matching the query keywords participate in r. Therefore, by

Rule 2, relationship r is an answer.

Rule 3 Given a query Q = {k1, . . . , kn} to a document D. Let oi ∈ Obj(ki), i = 1..n and o be an

object. If |
⋃
{oi}| ≥ 2 and Ri(o, oi) and (Class(oq) = Class(op) =⇒ Rq = Rp, p, q ∈ [1, n]), then

o ∈ Res(Q,D).

Rule 3 states that if a common object connects all query keywords, then this common object

is an answer. Recall that an object o connecting a keyword k means that keyword k matches

at least one object which has a relationship with object o. This rule is similar to the LCA-based

computation. However, this rule can find the common object o no matter that object is the ancestor

or the descendent of objects oi; while LCA-based approach can only find answers when the common

object o are the ancestor of objects oi.

The condition (Class(oq) = Class(op) =⇒ Rq = Rp, p, q ∈ [1, n]) is necessary when there is

more than one relationship type between two object classes. In this case, if two objects oq and op

belong to the same class, then the relationships between the common object o and each of them must

belong to the same relationship type. Example 3.6 will illustrate the necessity of this condition. The

case where there is only one relationship type between two object classes is illustrated in Example

3.4 where all objects oi are in the same object class, and in Example 3.5 where objects oi are in

different classes.

Example 3.4 Consider a query Q3a = {Bill, John}. Keywords Bill and John match object Stu-

dent (1) and Student (27) respectively in the SC-XMLDB data. There is an object Course CS5201

having relationships of the same type with both of them. Note that this object Course appears as

two nodes, Course (11) and Course (35). Though they appear in different places, these nodes refer

to the same object since their ID attribute values are the same, the code CS5201. Therefore, based

on Rule 3, Course CS5201 is an answer.

12

Different from the LCA-based approach, Rule 3 can find the common object Course CS5201

which has relationships with those two students, even though the former object is the descendent of

latter ones. In addition, by returning only object Course CS5201, it can filter duplicate information

contained by both node (11) and node (35).

Example 3.5 Consider a query Q3b = {Bill, DBMS}. Keywords Bill and DBMS match object

Student (1) and Textbook (22) in Fig. 3(a) respectively. There is an object Course (11) having

relationships with both of them. Therefore, based on Rule 3, Course (11) is an answer.

Student Course

take
nn

Textbook

use

n
n

drop nn John Bill

tak
e

tak
e

CS4221

CS5201

take

drop

XML

us
e

us
e

University

ta
ke

Bill

CS5201

XML

use

Bill XML

drop
use

CS4221

John

ta
ke

John

ta
ke

(a) ER diagram

Student Course

take
nn

Textbook

use

n
n

drop nn

University

ta
ke

Bill

CS5201

XML

use

Bill XML

drop
use

CS4221

John

ta
ke

John

ta
ke

University

CS5201

XMLdrop XML

CS4221

taketake

John Bill John Bill

(b) An instance diagram

- <University>
- <Course>
<Code>CS4221</Code>

- <Take>
- <Student>
<Name>John</Name>
</Student>
</Take>

- <Drop>
- <Student>
<Name>Bill</Name>
</Student>
</Drop>

- <Textbook>
<Name>XML</Name>
</Textbook>
</Course>

- <Course>
<Code>CS5201</Code>

- <Take>
- <Student>
<Name>John</Name>
</Student>

- <Student>
<Name>Bill</Name>
</Student>
</Take>

- <Textbook>
<Name>XML</Name>
</Textbook>
</Course>

</University>

Page 1 of 1

28/5/2011file://C:\Users\ltngoc\Dropbox\$Current work\semantic keyword search\Technical V1\...

(c) XML document

Figure 5: Two relationship types between the same set of object classes

13

Example 3.6 Consider a scenario where there are two relationship types, namely take and drop,

between two object classes Student and Course in Fig. 5(a). Suppose there is an example instance

diagram in Fig. 5(b) where student Bill drops course CS5201, student John takes course CS5201

and both of them take course CS4221. For explanation purpose, this instance diagram is at object

level. The corresponding XML document is in Fig. 5(c).

With a query Q3c = {John, Bill}, there are two common courses, namely CS5201 and CS4221,

having relationships with both of them. However, according to Rule 3, only {Course CS5201} is an

answer since CS4221 has relationships belong to different relationship types, take and drop, with

Bill and John respectively. Intuitively, this query searches for the common courses that those two

students take or drop together, instead of the courses that one of them takes and the other drops.

Rule 4 Given a query Q = {k1, . . . , kn} to a document D. If r ∈ Rel(ki), ∀i = 1..n, then r ∈
Res(Q,D).

Rule 4 states that if attribute values of a relationship matches all query keywords, then that

relationship is an answer. Recall that, a relationship matching a keyword means that this keyword

matches any attribute value of this relationship. This kind of query is rather rare in practice, as

most relationships are issued in queries together with some objects.

Rule 5 Given a query Q to a document D. Q is partitioned into two non-empty sets Q1 and Q2,

i.e., Q1
⋂

Q2 = ∅ and Q1
⋃

Q2 = Q. If r ∈ Rel(Q1) and r ∈ rel(Obj(Q2)), then r ∈ Res(Q,D).

Rule 5 states that if a relationship r matches some query keywords and all other query keywords

match some objects of relationship r, then that relationship is an answer. It means that each

keyword either matches an attribute value of that relationship or matches its participating object(s).

Example 3.7 Consider a query Q5= {Database,A}. A is the value of relationship attribute Grade

which belongs to a relationship between some Student object and some Course object. Database

matches a Course object. Then relationships between course Database and students taking Database

course and getting A are returned. The result contains information about all students taking

Database and getting an A, as well as other information (if any) of the relationship type between

the student and the course such as midterm grade.

The above rules handle general cases of practical queries. If a query refers to multiple relation-

ships and multiple objects, we have to find a minimal tree T of a connected, undirected graph which

covers all objects and relationships of the considered database. T must be the minimum tree among

tress which connect all keywords, as described in Rule 6.

Rule 6 Given a query Q = {k1, . . . , kn} to a document D. Let G be a connected, undirected graph

covering all objects and relationships of the considered database. In particular, each node of G is

either an object or a relationship and each edge connects an object and one relationship in which

this object participates. ∀ tree T such that T satisfies following conditions, then T ∈ Res(Q,D).

• T is a tree of G which contains at least one matching object or relationship of each keyword.

14

• ∀oi, oj ∈ Obj(Q), i 6= j, if Class(oi) = Class(oj), then ∀o such that Ri(o, oi) and Rj(o, oj),

Ri = Rj.

• If any node is omitted out of T , then T does not satisfy two above conditions.

Rule 6 implies that if there exist intermediate objects which form a minimal tree connecting

all the objects and relationships matching query keywords, then the expected result should include

that tree. Note that if there exist two objects oi, oj in the same object class, then any object having

a relationship with oi must have a relationship of the same type with oj .

Fig. 6 and Fig. 7 show the corresponding graph of the University database in Fig. 3, and the

data in Fig. 4 respectively.

O4
Student
0012745

O1
Course
CS5201

O5
Student
0801433

r4
use

O2
Course
CS4221

r3
take

r2
take

r1
take

O3
Textbook
105601

O2
John

O1
Database

O3
XML

r1
use

Figure 6: A corresponding graph (partial) of the University database

O4
Student
0012745

O1
Course
CS5201

O5
Student
0801433

r4
use

O2
Course
CS4221

r3
take

r2
take

r1
take

O3
Textbook
105601

O2
John

O1
Database

O3
XML

r1
use

Figure 7: A partial graph with a ternary relationship

3.3 Improving efficiency by handling tag name keywords

Many queries aim to find the object matched by a tag name, instead of values, such as queries

{John, student} and {John, course} aim to search for student John and the courses taken by John

respectively. Generally, the meaning of a tag name keyword is either a predicate/description name or

an output name. Though we can associate a tag name to all objects belonging to the corresponding

15

object class to process a keyword query, we propose two guidelines to handle tag name keywords

separately to identify the outputs efficiently.

Section 3.3.1 and Section 3.3.2 consider the case in which a query contains only one tag name

keyword and each query keyword can be either a tag name keyword or a value keyword, but not

both. Specifically, Section 3.3.1 and Section 3.3.2 handle the case where each value keyword matches

at most one object and the case where some value keywords match multiple objects respectively.

We then extend the method to handle queries containing multiple tag name keywords or a query

keyword can be both a tag name keyword and a value keyword in Section 3.3.3 and 3.3.4 respectively.

Since the query keywords are not order sensitive, for the ease of explanation, we assume that in

a keyword query Q = {k1, k2, . . . , kn}, k1 is the tag name keyword with Obj(k1) = {o1, o2, . . . , om},
and the rest of the keywords ki, i = 2..n are value keywords. We still use the SC-XMLDB in

examples in this section.

3.3.1 Value keywords matching at most one object

Guideline 1 If some value keyword ki, i = 2..n matches an object o ∈ Obj(k1), then rules in

Section 3.2 are applied to the rest value keywords since k1 can be considered as a predicate or

description of ki.

Example 3.8 Consider a query Q ={student, John} to the SC-XMLDB. Value keyword John

matches object Student (27). Keyword student is a tag name keyword, matching all student objects

including Student (27). Therefore, we only match John with Student object instead of any other

object class and get the result {Student (27)}.

Guideline 2 If no value keyword ki, i = 2..n matches any object o ∈ Obj(k1), then we imply that

k1 is the output. Therefore, the result should include objects of Obj(k1) that (1) have direct or

indirect relationships with all other objects referred to by value keywords, and (2) participate in all

relationships matching value keywords.

Similar to Rule 3, the following condition is necessary if there is more than one relationship

type between Class(o) and Class(oi), oi is some object matching some value keyword ki (i=2..n).

If there exists object oj such that Class(oj) = Class(oi), then the relationship between object o

and object oi must belong to the same relationship type with the relationship between object o and

object oj .

Example 3.9 Consider a query Q ={Database, student} to the SC-XMLDB. The value keyword

Database matches object Course (11) in the SC-XMLDB, and keyword student has the same mean-

ing in Example 3.8. Therefore, we can imply that tag name keyword student is the output and users

aim to search for all students who enroll course Database. Since Student (1) and Student (11) has

a relationship with Course (11), they are answers.

3.3.2 Value keywords matching multiple objects

Suppose that Obj(k2) =
{
o2

1, o
2
2, . . . , o

2
l

}
, . . ., Obj(kn) = {on1 , on2 , . . . , onm}. Recall that k1 is a tag

name keyword and ki, ∀i = 2..n is a value keyword. Let cp is an object combination of value

16

keywords, cp =
(
o2
p2 , . . . , o

n
pn

)
in which oipi ∈ Obj(ki), i = 2..n, i.e., cp picks each object oipi ∈

Obj(ki). We apply guidelines in Section 3.3.1 for each object combination cp to get the corresponding

result Resp(Q,D). Then, the final result will be Res(Q,D) =
⋃

Resp(Q,D).

Example 3.10 Consider a query Q ={Kennedy, student} to the SC-XMLDB in Fig. 3(a). Key-

word student is a tag name keyword, matching all student objects including Student (1). The

ambiguous value keyword Kennedy matches two objects Student (1) and Course (11) in the SC-

XMLDB.

When value keyword Kennedy matches object Student (1), we can say that tag name keyword

student is just a description of value keywords Kennedy. Then, we apply Guideline 1 and get the

result Res1(Q,D) = {Student (1)}. It is aimed to search for a student whose name is Kennedy.

When Kennedy matches object Course (11), it does not match any student object. Therefore, by

applying Guideline 2, we can imply that the user aims to search for all students taught by Kennedy.

Then, Res2(Q,D) = {Course (11)}. Finally, Res(Q,D) = Res1(Q,D)
⋃

Res2(Q,D) =

{Student (1), Course (11)}.

3.3.3 Queries containing multiple tag name keywords

In this section, we consider the case where a query contains keywords matching multiple tag names

in the document. First, Guideline 1 is applied to those tag name keywords, to filter the keywords

that are for description purpose. Next, for each remaining tag name keyword, we recursively check

whether it satisfies Guideline 2. If so, the object it matches will be considered as a part of returned

information.

Example 3.11 Consider a keyword query Q ={Bill, John, student, course, textbook} to the SC-

XMLDB. Value keywords Bill and John match two objects of Student and no value keyword matches

tag name keyword course or textbook}. Therefore, by Guideline 1, tag name keyword student is a

description and by Guideline 2, tag name keywords course and textbook} are outputs. In particular,

this query aims to search for the common courses taken by both students Bill and John and all the

textbooks used in those courses.

3.3.4 Keywords which are both tag name keywords and value keywords

Suppose that Obj(k2) =
{
o2

1, o
2
2, . . . , o

2
l

}
, . . ., Obj(kn) = {on1 , on2 , . . . , onm}, and Obj(k1) = V al Obj(k1)⋃

Tag Obj(k1) where V al Obj(k1) and Tag Obj(k1) are the sets of objects match keyword k1 when

k1 is a value keyword and is a tag name keyword respectively. Firstly, to each combination of

V al Obj(k1), Obj(k2), . . . , Obj(kn), the rules as described in Section 3.2 are applied to get some

answers Resa(Q,D). After handling V al Obj(k1), k1 can be considered as a tag name keyword only.

Thus, guidelines in Section 3.3.1, 3.3.2, 3.3.3 will be applied for Obj(k2), . . . , Obj(kn) to identify

some answers Resb(Q,D). Finally, Res(Q,D) = Resa(Q,D)
⋃
Resb(Q,D).

Example 3.12 Consider a keyword query Q = {k1, k2} = {Bill, John} to an XML fragment in

Fig. 8, in which keyword k1 = Bill can be both a tag name keyword and a value keyword. Then,

V al Obj(k1) = {Student (1)} and Tag Obj(k1) = {Bill (3) and Bill (4)}, Obj(k2) = Obj(John) =

17

Sport_
fee

Bill_
No

Student
(1)

Bill
(3)

Student
(2)

30

Course
(0)

Student_No

0801433

Name

Bill

Bill
(4)

Bill_
No

Student_No

0012745 Tuitor_
fee

500

Tuitor_
fee

1000

Name

John Sport_
fee

20

Title

XML

Code

CS5201

AH01 BK20

Figure 8: An XML fragment with ambiguous labels.

{Student (2)}. When Bill is a value keyword, applying Rule 3 in Section 3.2 to V al Obj(k1) and

Obj(k2), the corresponding result is Resa(Q,D) = {Course (0)}. Intuitively, this query searches

for common courses taken by both Bill and John. When Bill is a tag name keyword, on apply-

ing Guideline 2 in Section 3.3.1, Bill is the output and the corresponding result is Resb(Q,D) =

{Bill (4)}. Intuitively, the bill of student John is returned as an answer. Thus, the final result is

{Course (0), Bill (4)}.

4 XSem search engine

This section presents XSem, a search engine to implement our semantics-based approach for XML

keyword search studied in Section 3.

Using Dewey labels for a XML tree can find answers for some queries but cannot find answers

for some other queries. Recall the scenario in Section 1 where there are symmetric queries Qa and

Qb, with the SC-XMLDB, using Dewey labels, a system for XML keyword search can answer Qa

but not Qb. Vice versa, with the CS-XMLDB, it can answer Qb but not Qa. Thus, XSem does not

use Dewey labels. Generally, XSem does not rely on the hierarchical structure of an XML data to

process keyword queries. As a result, it makes keyword search independent of XML designs, i.e.,

having the same result for the same query with any hierarchical structures.

XSem translates an XML document into object relational (OR) tables, and then indexes them. It

does not store data in relational tables because relational database has less semantics. In relational

database, it is difficult to capture objects and relationships having multi-valued attributes. An

object with multi-valued attributes is usually stored in several tables and primary keys are not

always object IDs. These may make the searching by joining relational tables based on primary-

foreign key constraints more complex and difficult or give meaningless answers.

18

4.1 Data storage and indexing

XSem captures semantic information, i.e., objects, object IDs, relationships among objects, object

attributes and relationship attributes of an XML document, then stores them into OR tables.

Specifically, each object table or relationship table captures semantic meanings of an object class

or a relationship type, in which each tuple corresponds to an object or a relationship.

For example, in the University database in Fig. 3, there are three object classes Student,

Course, Textbook and two relationship types, the take between Student and Course with relationship

attribute Grade, and the use between Textbook and Course. Suppose that there is a multi-valued

attribute Author of object class Textbook. Those objects classes and relationship types are stored

in the object tables and relationship tables whose schemas are as follows.

Student(Student No, First-Name, Last Name, Major)

Course(Code, Title, Department, Lecturer)

Textbook(ISBN, Name, {Author})
take(Student No, Code, Grade)

use(Code, ISBN)

It shows that although Textbook has a multi-valued attribute Author, it can be stored in a single

object table whose primary key ISBN is also its object ID. Relational database are not able to

capture such semantics in one object table. The example object and relationship tables are shown

in Table 3-7.

Table 3: Object table Student

Student No First Name Last Name Major

0012745 Bill Kennedy Computing

0801433 John Clinton

....

Table 4: Object table Course

Code Title Department Lecturer

CS5201 Database Computing Kennedy

....

Table 5: Object table Textbook

ISBN Name {Author}
105601 DBMS Standley White

Richard Smith

....

XSem uses B+ tree to index all attribute values and tag names in an XML document so that it

can efficiently retrieve the set of objects, relationships and tag names matching a keyword during

query processing.

19

Table 6: Relationship type take

Student No Code Grade

0012745 CS5201 A

0801433 CS5201 A

....

Table 7: Relationship type use

Code ISBN

CS5201 105601

....

4.2 Query processing

This section introduces how XSem processes an XML keyword query. This process is shown in

Algorithm 1, which finds the result Res(Q,D) of a given keyword query Q to an XML document D

by using rules and guidelines in Section 3. XSem finds all answers on applying all rules consecutively

instead of applying rules for each object combination. This makes the process more efficient,

especially when the number of objects matching each query keyword is large.

Algorithm 1: XSem query processing
Input: Query Q, document D

Output: Result Res(Q,D)

1 Res(Q,D) = ∅
2 tagList = get tag name keywords in Q

3 if tagList 6= ∅ then
4 Handle tag name keywords (Q, D, tagList) //Algo.2

5 else

6 //find objects matching all keywords

7 matchingObj = matchingObjects(Q,D) //Algo.3

8 Res(Q,D) = Res(Q,D)
⋃

commonObj //Rule 1

9 //find relationships which match and/or involve all keywords

10 relatedRel = relatedRelationships(Q,D) //Algo.4, 5

11 Res(Q,D) = Res(Q,D)
⋃

relatedRel //Apply Rule 2, 4, 5

12 //find common objects connecting all keywords

13 connectingObj = connectingObjects(Q,D) //Algo.6, 7

14 Res(Q,D) = Res(Q,D)
⋃

connectingObj //Rule 3

15 if Res(Q,D) = ∅ then
16 //find minimal trees connecting all keywords

17 Res(Q,D) = find minimal Trees(Q,D) //Algo.8, 9

18 Res(Q,D) = Res(Q,D)
⋃

subTrees //Apply Rule 6

In Algorithm 1, XSem first uses guidelines to handle tag name keywords (if any). If there is no

tag name keyword, it uses rules consecutively to identify expected answers. In particular, Rule 1 is

applied first to find all common objects which match all keywords. Then, Rule 2, 4, 5 are applied

to get all relationships which match and/or involve all keywords. Next, Rule 3 is used to find the

common objects having relationships with all keywords. The final result is the set of answers which

is the union of answers from all rules. Finally, if applying all above rules gives no answer, XSem will

20

find minimal trees which connects all keywords. Details of above functions are given in Algorithm

2-9.

Algorithm 2: handling tag name keyword
Input: Query Q = {k1, . . . , kn}, document D,

tag name keyword list tagList

Output: Result Res(Q,D)

1 Res(Q,D) = ∅
2 allComb = get all object combinations (Q)

3 foreach object combination comb ∈ allComb do

4 predicate = get predicate tag name keywords of tagList

5 output = get output tag name keywords of tagList

6 Q = Q− predicate

7 if output = ∅ then
8 tempRes = Apply rules to Q //Guideline 1

9 Res(Q,D) = Res(Q,D)
⋃

tempRes

10 else

11 tempRes = Apply Rule 3

12 tempRes = filter answers (tempRes) //Guideline 2

13 Res(Q,D) = Res(Q,D)
⋃

tempRes

Algorithm 2 processes an XML keyword query containing tag name keywords. XSem will process

each object combination of the query. Each of tag name keywords is checked to see whether it is

a predicate/description or an output tag name keyword. XSem then filters answers which do not

match any output tag name keywords. Only Rule 3 is applied since the answers must be objects

which can connect all the value keywords.

Algorithm 3: matchingObjects
Input: Query Q = {k1, . . . , kn}, document D

Output: Set of objects matchingObj matching all keywords

1 foreach keyword ki do

2 Obj(ki) = get objects matching ki //retrieve B+ tree

3 //find objects matching all keywords

4 matchingObj =
⋂

(Obj(ki)), i = 1..n

Algorithm 3 finds objects which match all keywords which are answers from Rule 1. Implemen-

tation of Rule 1 is straightforward. For each keyword, XSem retrieves B+ tree to get the set of

matching objects. The intersection of such sets for all keywords is the set of objects matching all

keywords.

Algorithm 4 find relationships matching and/or involving all keywords. Implementation of Rule

4 is straightforward and similar to that of Rule 1. For each keyword, XSem retrieves B+ tree to

get the set of matching relationships. The intersection of such sets for all keywords is the set of

relationships matching all keywords.

Rule 2 finds the set of relationships which involve all keywords. This set is the intersection of sets

s of relationships which involve each keyword k. To find s, XSem first gets object ID of each object

matching k and then finds relationships which contain this ID. Those relationships involve keyword

k since they contain object ID of some object matching k. Details of finding those relationships is

21

Algorithm 4: relatedRelationships
Input: Query Q = {k1, . . . , kn}, document D

Output: Set of relationships relatedRel

1 relatedRel = ∅
2 foreach keyword ki do

3 matchingRel(ki) = get relationships matching ki //retrieve B+ tree

4 //get relationships whose objects matching keyword ki
5 involvingRel(ki) = getInvolvingRelationships(Obj(ki))

6 referredRel(ki) = get relationships matching and/or involving keywords ki

7 //find relationships matching all keywords

8 commonRel =
⋂

(matchingRel(ki)), i = 1..n

9 relatedRel = relatedRel
⋃

commonRel //Rule 4

10 //find relationships involving all keywords

11 involvingRel =
⋂

(involvingRel(ki)), i = 1..n

12 relatedRel = relatedRel
⋃

involvingRel //Rule 2

13 //find relationships matching or involving all keywords

14 referredRel =
⋂

(referredRel(ki)), i = 1..n

15 relatedRel = relatedRel
⋃

referredRel //Rule 5

given in Algorithm 5.

Implementation of Rule 5 is a combination of those of Rule 2 and 3 with one additional constraint

to make sure these three rules are not overlapped.

Algorithm 5: getInvolvingRelationships
Input: Keyword k

Output: Involving relationships of keyword k involvingRel(k)

1 involvingRel(k) = ∅
2 Obj(k) = Getting matching objects of k

3 foreach matching object in Obj(k) do

4 Getting object ID

5 tempInvolvingRel = Getting relationships containing Object ID

6 involvingRel(k) = involvingRel(k)
⋃

tempInvolvingRel

7 Removing duplicate elements in involvingRel(k)

Algorithm 6: connectingObjects
Input: Query Q = {k1, . . . , kn}, document D

Output: Connecting objects connectingObj

1 foreach keyword ki do

2 //getting objects connecting keyword ki, i.e., objects having relationships with objects in Obj(ki)

3 connectingObj(ki) = getConnectingObjects(ki)

4 //finding common objects connecting all keywords

5 connectingObj =
⋂

connectingObj(ki), i = 1..n

Algorithm 6 finds objects connecting all keywords which is answers from Rule 3. The imple-

mentation of Rule 3 is the extension of that of Rule 2. After getting relationships r which involve

keyword k from Rule 2, XSem finds the rest of participating objects of r, i.e., excluding the ob-

ject matching k. These rest objects connect to k. Details of finding these rest objects is given in

Algorithm 7.

22

Algorithm 7: getConnectingObjects
Input: Keyword k

Output: Connecting objects of keyword k connectingObj(k)

1 connectingObj(k) = ∅
2 Obj(k) = Getting matching objects of k

3 foreach matching object o in Obj(k) do

4 Getting object ID

5 tempInvolvingRel = Getting relationships containing Object ID

6 foreach relationship r in tempInvolvingRel do

7 tempConnectingObj = finding the rest of objects, except object o involving r

8 connectingObj(k) = connectingObj(k)
⋃

tempConnectingObj

9 Removing duplicate elements in connectingObj(k)

Let G be the connected, undirected graph covering all objects and relationships of D. To find

the minimal tree connecting all keywords, XSem first finds sets of objects o which has the biggest

number of connecting keywords and creates some trees T connecting o and these keywords. XSem

then recursive creates trees tempT to connect as many of the rest keywords as possible. tempT is

merged to T and XSem checks whether T satisfies Rule 6. If not, XSem keeps creating tempT until

there is no keyword left.

Algorithm 8: Find minimal trees
Input: Query Q, document D

Output: Result Res(Q,D)

1 Res(Q,D) = ∅
2 Tree T is empty

3 Recursively create trees (Q, T , Res(Q,D))

Algorithm 9: Recursively create trees
Input: Set of keywords Q

Output: Tree T , Result Res(Q,D)

1 importantObj = find sets of objects which has the biggest number of connecting keywords

2 foreach object o ∈ importantObj do

3 Create tree tempT containing o

4 Kw(o) = set of keywords connecting o

5 notyetKw = Q - Kw(o)

6 foreach keyword k ∈ Kw(o) do

7 Add oi to tempT . oi has relationships with o and matches k

8 T = merge tempT into T

9 if T satisfies conditions in Rule 6 then

10 Res(Q,D) = Res(Q,D)
⋃

T

11 else

12 if notyetKw = ∅ then
13 Return;

14 else

15 Find minimal trees (notyetKw, T , D)

Ranking. Since the results may contain a lot of answers, XSem ranks these answers based on

the similarity between the query keywords. The ranking in XSem is similar to XSEarch [6]. In

23

particular, the priority of results is ordered as follows: (1) objects matching all keywords, i.e.,

answers of Rule 1; (2) relationships matching and/or involving in all keywords, i.e., answers of Rule

4, Rule 2 and Rule 5; (3) objects connecting all keywords, i.e., answers of Rule 3; and (4) minimal

trees connecting all keywords, i.e., answers from Rule 6. XSem does not focus on result ranking

currently. We leave effective ranking methods as our future work.

5 Experiments

In this section, we evaluate the quality of results and running time of our XSem, by comparing

with the LCA-based approach. We use the SLCA, the most popular LCA-based approach as a

representative of LCA-based approach, and take the XKSearch [22] as the implementation. SLCA

returns subtrees rooted at some node while XSem returns an object or a relationship. Recall that

in XSem, returning an object means returning all attribute values of that object, and returning

a relationship means returning all attribute values of that relationship as well as all participating

objects.

We use two real data sets: Basketball Player2 and eBay3. In the Basketball Player data set,

we filter out old information with the year earlier than 1990. A 28 MB Basketball Player XML

document used in our experiment is available at [1]. The experiments were performed on a In-

tel(R) Core(TM)2 Duo CPU 2.33GHz with 3.25GB of RAM. A set of queries covering all cases

discussed in Section 3 are tested for each data set. We present the result of running queries for the

Basketball Player data set and the eBay dat aset in Table 8 and Table 9 respectively.

5.1 Effectiveness evaluation

5.1.1 Results for Basketball Player data set

To make readers well understand the result, we show the schema diagram of the Basketball Player

data in Fig. 9. From this schema, we can easily figure out the following semantics of the data.

There are three object classes Player, Team and Course with ilkID, team and coachID as their ID

attributes respectively. There are two many-to-many relationship types. The one between Player

and Team has relationship attributes year, gp, etc. The other between Team and Course has

relationship attributes year, year order, etc.

For this data set, we compare the results of different queries covering all cases mentioned in

Section 1 between XSem and SLCA, as shown in Table 8. Matching objects or relationship column

shows the matching objects and/or relationships of each query keywords. Node occurrences column

shows the number of nodes matching each query keywords. It can be seen that the number of

matching objects and/or relationships is much less than number of matching node to be processed.

Moreover, SLCA contains duplicate answers Q1, Q4, Q′4, Q5), irrelevant answers (Q3, Q′3, Q4, Q′4)

and meaningless answers (Q1, Q2, Q′2, Q′′2, Q3, Q′3). XSem can avoid all of them. Most important

thing is XSem can return expected answers as discussed in Section 2 while SLCA sometimes cannot.

2http://www.databasebasketball.com/
3www.cs.washington.edu/research/xmldatasets/data/auctions/ebay.xml

24

Table 8: Results for Basketball Player data set
Query Matching

objects or

relation-

ships

XSem result Node oc-

curences

SLCA-based ap-

proach result

Discussion

Q1 Celtics Celtics: 1

team (Celtics

matches 1

team object)

1 answer: team

Celtics

Celtics:

136

136 answers: 136

nodes with value

Celtics (team Celtics

appreas as 136 nodes

corresponding to 136

players working for

team Celtics)

SLCA-based approach re-

turns a meaningless answer,

i.e., the node with value

Celtics with no other infor-

mation, while XSem returns

a team object which pro-

vides more useful relevant

information about Celtics.

Moreover, SLCA-based ap-

proach has many duplicated

answers while XSem can fil-

ter them.

Q2 Michael

Thomas

Brown

Michael: 2

coaches and

13 players;

17 teams hiring

players whose

name are Michael,

Thomas and

Brown

Michael:

265;

Matching objects of these

queries are in the same class,

i.e., class Player. XSem re-

turns common objects, i.e.,

teams related to all of them;

Q′
2 Michael

Thomas

Thomas: 15

players;

Brown: 4

coaches, 17

players

20 teams hiring

players whose

name are Michael

and Thomas

Thomas:

15;

Brown:

2900

The document root while SLCA-based approach

gives a meaningless answer,

the root, since the common

ancestor of two players is

only the root.

Q3 Johnson

Ed-

wards

Johnson: 5

coaches, 14

players;

Edwards: 4

players

2 answers: team

Hawks and Pacers

(common teams of

two players John-

son and Edwards)

Johnson:

19;

Edwards: 4

4 answers: players

(whose common name

is Edwards, working

with the coaches whose

name is Johnson). The

root is answer for com-

binations of 2 players

If combination of objects in

the same class, SLCA-based

approach faces the same

problem with Q2, Q′
2. If

they are in different classes,

XSem can find common ob-

jects having relationships

with both of them,

Q′
3 Brown

Thomas

Brown: 4

coaches, 17

players;

Thomas: 15

players

22 teams, 2 teams

(Sun and Knicks)

between a coach

and a player,

20 other teams

between 2 players

Brown:

2900;

Thomas:

15

45 answers: 45 play-

ers (whose name is

Thomas and work with

the coach whose name

is Brown). The root

is answer for combina-

tions of 2 players.

i.e., team; while SLCA-

based approach returns ei-

ther object, the one in

higher level in the XML

tree. This makes answers

contain a lot of irrelevant in-

formation.

Q4 Bicker-

staff

1996

Bickerstaff: 1

coach;

1996: year,

attribute of

378 relation-

ships

2 answers: 2 teams

Nuggets and Bul-

lets (teams trained

by coach Bicker-

staff in 1996)

Bickerstaff:

830;

1996: 5750

700 answers: 700 coach

nodes (a lot of dupli-

cate information)

Q4 and Q′
4 are about one

object and one relationship

attribute, XSem return the

relationship which all ob-

jects and relationships at-

tribute involve in; while

Q′
4 Buechler

1991

Buechler: 1

player;

1991: year,

attribute of

157 relation-

ships

3 answers: 3 teams

Nuggets, Bullets,

and Bickersta

(player Buechler

working for these

teams in 1996)

Buechler:

1;

1991: 5052

1 answers: player

Buechler (including

a mount of irrelevant

information)

SLCA-based approach can-

not identify such relation-

ship correctly and only re-

turn objects with contain a

lot of irrelevant and/or du-

plicate information.

Q5 Celtics

team

Celtics: 1

team;

team: tag

name key-

word

1 answer: team

Celtics

Celtics:

136;

team: 3676

136 answers: 136 team

node containing team

name Celtics. (dupli-

cate information)

XSem and SLCA-based ap-

proach approach give the

same results for this query

but SLCA-based approach

contains duplicate informa-

tion.

25

leaglocate name

Team

lastName

Coach

…….

Player

Player_Team
_info

yearfirstNamecoachID

team

Coach_Team_
info

lastName positionfirstNameilkID …...

……..gp

year ……..yr_order

Figure 9: The schema of Basketball dataset.

5.1.2 Results for eBay data set

For explanation purpose, the matching tag name (attribute) for value keywords are shown in column

Matching attributes instead of matching objects or relationships as when discussing results for the

Basketball Player dataset.

bid_
history

auction_
info

listing

seller_
info

item_
info

memory
seller_
rating

Descrip‐
tion

seller_
name

payment
_types

cpu high_
bidder

hard_
drive

brand

bidder
_name

bidder_
rating

quantity
highest_bid_

amout
…...

…...

Figure 10: The schema of eBay dataset.

The semantic information supposed to be available for this data set is as follows. There are

three object classes, seller info, high bidder and item info whose ID attributes are seller name,

bidder name and itemID respectively. There is a ternary relationship type listing among three

object classes seller info, high bidder and item info. This relationship type has several attributes,

including the highest bid amout which is the highest price given by a bidder for a particular item

in an auction.

26

Table 9: Results for the eBay data set
Query Matching

attributes

XSem result Node oc-

curences

SLCA result Discussion

Q1 ct-inc ct-inc:

seller name

All information

about the object

whose seller name

is ct-inc.

ct-inc: 1 Just a node whose

value is ct-inc

SLCA only returns one node

with value ct-inc with no other

useful information while Sem-

XSearch can provide all object

information of this seller.

Q2 petitjc,

hsclm9

petitjc: bid-

der name;

hsclm9: bid-

der name

The seller ct-inc

(the common seller

who selling items

for both bidders)

petitjc: 1;

hsclm9: 1

The document root Q2 contains the names of two

bidders, XSem returns the com-

mon seller who sells items to

both of them; while SLCA re-

turns the document root which

is meaningless since they can-

not find any common informa-

tion between these bidders.

Q3 cubsfantony,

gosha555

cubsfantony:

seller name;

gosha555:

bidder name

The item I01 (sold

from the seller

cubsfantony to the

buyer gosha555),

and all attribute

values of the re-

lationship among

them, such as high-

est bid amount

cubsfantony:

1;

gosha555:

1

One listing node

(besides infor-

mation of XSem,

it also includes

unnecessary infor-

mation about the

seller, bidder and

item)

Q3 is about two objects, a seller

and a bidder, having a relation-

ship, XSem returns the rest par-

ticipating objects, the item, as

well as the relationship between

these objects. SLCA can also re-

turn the relationship since it is

putted as a sub-root.

Q4 wizbang4,

$610.00

wizbang4:

bid-

der name;

$610.00:

high-

est bid amount

The seller ct-inc

and the item I04

(item I04 are sold

from the seller ct-

inc to the buyer

wizbang4 with the

price $610.00) as

well as other in-

formation of the

relationship among

them

wizbang4:

1;

$610.00:

1

One listing node

(information of

the relationship

between the bidder

wizbang4, the

seller ct-inc and

the item I04, and

information about

all these nodes)

Q4 is related to one object, the

bidder, and one relationship at-

tribute, the price, XSem can

return the rest objects partici-

pating in the relationship, the

seller and the item, as well as

attributes of relationships these

objects participates in. SLCA

can also return the relationship

since it is put at the higher level

of participating objects.

Q5 highest-

bid amout,

$680.00

highest-

bid amout:

tag name;

$680.00:

highest-

bid amout

Information of the

relationship among

seller ct-inc, buyer

petitjc@yahoo.com

and item I02 (its

attribute high-

est bid amount

has value $680.00)

highest-

bid amout:

1;

$680.00:1

An internal node

highest bid amout,

no any extra infor-

mation besides the

keyword

Q5 is about a value keyword and

a predicate tag name keyword.

This value keyword refers to a

relationship. XSem can return

this relationship while SLCA

return only one node matches

with this value with no other

useful information.

Q6 256MB

PC-133

SDRAM,

seller

256MB

PC-133

SDRAM:

memory;

seller:tag

name

The sellers whose

name is cubs-

fantony, ct-inc

(sellers who sells

memory 256MB

PC-133)

256MB

PC-133

SDRAM:

1;

seller:1

One listing node

(relationship con-

tains this kind of

memory, including

other unnecessary

attributes, e.g.,

bidder informa-

tion and auction

information.)

Q6 is related to a output tag

name and a value keyword. Af-

ter using Guideline 2 to handle

this tag name, XSem can return

the expected answers which are

sellers who sell that kind of

memory; while SLCA approach

returns relationship listing.

27

5.2 Efficiency evaluation

We evaluate efficiency of SLCA and XSem by varying the number of query keywords and node

frequency of keywords. We run data set Basketball Player on both hot cache and cold cache and

use the average time of 10 runs for each query. The response time of varying node frequencies of

query keywords and varying the number of query keywords are shown in Table 11 and 12 respectively.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

<200 200-500 500-1000 1000-2000 2000-5000 >5000

R
es

po
ns

e
tim

e
(m

se
c)

Node frequency

XSem
SLCA

(a) hot cache

 0

 750

 1500

 2250

 3000

 3750

 4500

<200 200-500 500-1000 1000-2000 2000-5000 >5000

R
es

po
ns

e
tim

e
(m

se
c)

Node frequency

XSem
SLCA

(b) Cold cache

Figure 11: Varying the node frequency of keywords

The response time of varying node frequencies of query keywords is given in Fig. 11. A set

of queries with two keywords are randomly chosen. The response time of XSem depends on the

frequency of matching objects and relationships rather than the node frequency since it works

at object and relationship level instead of node level as SLCA. Therefore, XSem runs stable while

SLCA response time increases very fast as the node frequency increases. Moreover, working at object

and relationship level makes XSem run much faster than SLCA because the number of matching

objects and relationships to be processed is much less than the number of nodes to be processed.

Additionally, handling tag name keywords separately makes XSem process queries involving tag

names much more efficient since most tag name keywords have very high frequency, especially those

appearing at low levels.

 14

 16

 18

 20

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

se
c)

Number of query keywords

XSem
SLCA

(a) hot cache

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

se
c)

Number of query keywords

XSem
SLCA

(b) Cold cache

Figure 12: Varying the number of keywords

The processing time of varying the number of query keywords from 1 to 5 is given in Fig. 12. A

set of queries whose keywords with medium node frequency, i.e., from 1000 to 2500, are randomly

28

chosen. With cold cache, response time of both XSem and SLCA increases almost linear with the

increasing of the number of keywords. However, XSem run faster than SLCA since XSem works at

object and relationship level as stated.

6 Related work

LCA-based XML keyword search. Most existing XML keyword search methods are LCA-based

and depend on hierachical structure of the data. XRANK [8] proposes a stack based algorithm to

efficiently compute LCAs, and also presents a ranking method to rank subtrees rooted at LCAs.

XKSearch [22] defines Smallest LCAs (SLCAs) to be the LCAs that do not contain other LCAs,

and proposes efficient algorithms to compute SLCAs, such as indexed lookup and scan eager. Mean-

ingful LCA (MLCA) [17] incorporates SLCA into XQuery. MCTs [10] introduces MCTs (minimum

connecting trees) to exclude the subtrees rooted at the LCAs that do not cover query keywords.

VLCA [15] introduces the concept of valuable LCA to improve the effectiveness of SLCA.

XSeek [19] and MaxMatch [20] infer semantics from the query. They may only infer semantics

of objects since it is impossible to infer any semantics of object ID, relationship and relationship

attribute from a keyword query. XSEarch [6] adds more information into query by some format

such as l:k, l:, :k where l is a label and k is a keyword. This additional information does not contain

any concepts of object, object ID, relationship and attribute to handle queries of all cases correctly.

Although researchers have put efforts on improving LCA-based effectiveness, their works are still

based on the hierarchical structure and face serious problems and faults as pointed out in Section

2.

Relation-based XML keyword search. The most related work to XSem is XKeyword [12] in

which an XML document is stored in a relational database. XKeyword views an XML document as

a graph of nodes. The result of a keyword query is the minimal total target object networks which

are the minimal graphs involving all query keywords and in which each node is a target object. It

exploits the properties of the schema of the database to facilitate the result presentation, to find

target objects and to optimize the performance of the search system, e.g., reducing search space.

By using XML schema, it can avoid some (yet not all) problems of the LCA-based approach. It

can filter duplicate answers and does not return meaningless answers by using target objects as

nodes of the returned networks. The most significant difference between XSem and XKeyword is

that although XKeyword has connection relationships, it does not discover real relationships among

objects and does not distinguish relationship attributes and object attributes as XSem does as

discussed in Section 1.

Graph-based XML keyword search. There are several other works on keyword search in XML

graph databases. A bi-directional expansion heuristic algorithms to search as small portion of graph

as possible is discussed in Bidirectional [13]. BLINKS [9] suggests a bi-level index to prune and

increase speed of searching for top-k results. EASE [16] introduces a unified graph index to handle

keyword search on heterogeneous data. More recent work has focused on efficiency issues [4, 14]. [14]

also focuses on ranking answers of keyword search in databases over a graph, in which a database

can be an XML document or a relational database. Some of these work consider the schematic

29

information to reduce search space in graph, but they still did not use real semantics, i.e., object,

object ID, relationship, object attribute and relationship attribute, to infer search result. Thus,

they may not have enough capability to capture the semantic information and may produce less

relevant results.

Keyword search over relational database. Many works have focused on keyword search over

relational database such as DBXplorer [2], DISCOVER [11], BANKS [5]. DBXplorer generates

trees of tuples that contain all query keywords and are connected through primary key-foreign

key relationship. DISCOVER handles problem of keyword proximity search. BANKS uses an

approximation of the Steiner tree problem to identify connected trees in a labeled graph. Our

approach is different from keyword search over relational database especially when the database

contains multi-valued attributes as discussed in Section 4.

Handling tag name keywords. Identifying meaningful return nodes are introduced in XReal [3]

and XSeek [19]. XReal focuses on interpreting the search intentions of a keyword query according

to the statistics in XML database and the pattern of keyword co-occurrence in a query. XSeek

first applies the SLCA algorithm to find master entities, i.e., SLCA nodes, then infers the query

interpretations from the input keywords to predict which parts of the subtrees rooted at the master

entities should be selected. This happens in the post-processing phrase, i.e., after getting the SLCA

nodes, while XSem determines the user’s search intention in processing phrase (XSem uses guidelines

for tag name keywords to identify the expected answers effectively).

7 Conclusion and Future work

We systematically illustrated several serious problems and faults of the existing LCA-based XML

keyword search approaches, when they handle XML data and queries involving relationships among

objects. Whether the LCA-based approach can find correct answers depends on how relationship

types are represented by some hierarchical structure in XML. We conclude that the LCA-based

search model is not a correct model for XML keyword search in general cases. This finding is

significant since most current XML keyword search approaches are LCA-based. As a result, we

proposed to use semantics to process XML keyword queries. In particular, we proposed rules and

guidelines to infer answers for general XML keyword queries. Based on these rules and guidelines, we

designed XSem, a search engine for semantics-based XML keyword search. Our experiments show

that XSem returns more accurate answers for queries involving relationship than the LCA-based

approach. As part of our future work, we will design more efficient algorithms for semantics-based

XML keyword search. Another future work direction is to use tag name for improving ranking and

output information.

References

[1] http://www.comp.nus.edu.sg/∼ltngoc/basketballplayer.xml.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXPlorer: A system for keyword-based search over

relation databases. In ICDE, 2002.

30

[3] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Efficient XML keyword search with relevance oriented

ranking. In ICDE, 2009.

[4] K. Benny and S. Yehoshua. Finding and approximating top-k answers in keyword proximity

search. PODS, 2006.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and

browsing in databases using BANKS. In ICDE, 2002.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine for XML.

In VLDB, 2003.

[7] M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan. Publishing relational data in XML:

the silkroute approach.

[8] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword search over

XML documents. In SIGMOD Conference, 2003.

[9] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs. In

SIGMOD Conference, 2007.

[10] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword proximity search

in XML trees. IEEE Trans. Knowl. Data Eng., 2006.

[11] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases. In

PVLDB, 2002.

[12] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on XML graphs.

In ICDE, 2003.

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and R. D. Hrishikesh Karambelkar.

Bidirectional expansion for keyword search on graph databases. In VLDB, 2005.

[14] G. Konstantin, K. Benny, and S. Yehoshua. Keyword proximity search in complex data graphs.

SIGMOD, 2008.

[15] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable LCAs over XML

documents. In CIKM, 2007.

[16] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: Efficient and adaptive keyword search

on unstructured, semi-structured and structured data. In SIGMOD, 2008.

[17] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.

[18] T. W. Ling, M. L. Lee, and G. Dobbie. Semistructured Database Design. Springer-Verlag,

2004.

[19] Z. Liu and Y. Chen. Identifying meaningful return information for XML keyword search. In

SIGMOD Conference, 2007.

31

[20] Z. Liu and Y. Chen. Reasoning and identifying relevant matches for XML keyword search.

PVLDB, 1(1), 2008.

[21] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh, and B. Rein-

wald. Efficiently publishing relational data as XML documents. The VLDB Journal, 2001.

[22] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML databases.

In SIGMOD, 2005.

32

