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ABSTRACT 
Using materialized view to accelerate OLAP queries is one of the 
most common methods used in ROLAP systems. However, high 
storage and computation cost make this method very difficult to 
be implemented in the actual environment. Among various issues 
associated with this, index selection and view materialization are 
two of the top challenges. In this paper, we propose to build 
indexes on subsets of the primary keys rather than the full sets if 
the index selectivity for these smaller indexes can be maintained 
above the required level. Based on that we propose an index 
filtering rule, Dominant Prime (DPrime) Index Set Filter, to 
filter out candidate indexes that have insufficient index selectivity 
or have cheaper alternatives. In the second part, we propose a 
view materialization method, Nested Relation Approach, to 
group tuples with the same value for index attributes into one 
super tuple using a nested relation and implement this method 
using Oracle VARRAY. In performance tests, our method 
outperforms others significantly. 

1. INTRODUCTION 
In On-Line Analytical Processing (OLAP) systems, Multi-
Dimensional model (MD model) and summary-views are most 
commonly used query optimization methods [KIM97], however 
storage cost and computation cost for summary-views and 
associated indexes increase explosively with the rising number of 
dimensional attributes [OLAP]. To implement these methods in 
the real environment is very difficult. In our previous paper 
[QL00], we have proposed two methods to filter out large number 
of unhelpful summary-views. Here, we would like to extend our 
research to view indexing and view reorganizing. 

Indexes on summary-views are very important for OLAP query 
optimization, however they are also most expensive items in 
databases. Selection right index is very crucial for OLAP system 
design. First, we review attributes included in indexes. Because of 
the difference among dimensional attributes in OLAP 
environments, we might able to include only subsets of primary 
keys, defined as Dominant Primes or DPrimes, in indexes and get 

satisfied performance. Based on that, we develop an index filter, 
DPrime Index Set Filter to filter out those indexes, which have 
insufficient index selectivity or have cheaper alternatives. On top 
of that, we can still apply many existing index and view selection 
methods, e.g. [GHRU97], to further fine-tune the solution. 

In addition, we propose our view materialization method, Nested 
Relation Approach, to optimize summary-views with non-unique 
indexes. By grouping few related tuples into one super tuple, we 
can "influence" the DBMS engine to pack these related data into 
fewer adjacent disk blocks, so I/O can be performed more 
efficiently. In addition, we can build indexes on groups of tuples 
rather than on each individual tuples, reduce the space required 
for indexes significantly. Moreover, we reduce the space 
requirement for summary-views. In the paper, we implement this 
method using Oracle Variable Array or VARRAY, a new feature 
introduced in widely adopted Oracle 8. The test result is very 
impressive. 

In section 2, we discuss the background and related works. In 
section 3, a motivation example is given. In section 4 and section 
5, we present our index filtering method and view materialization 
method. An experiment is shown in section 6 where our methods 
are compared with those of others. Finally, the conclusion is 
presented in section 7. 

2. BACKGROUND and RELATED WORKS 
A summary-view is grouping some measure attributes along 
various dimensions, i.e. corresponding to different sets of group-
by attributes. By using summary-views, we can split OLAP query 
processes into few steps and perform costly aggregation 
operations in advance. To simplify the discussing below, we use 
SUM as the only aggregate function and assume that measure 
attributes are fixed. Thus, we can denote a summary-view as 
SV(GA) where GA is the set of dimensional attributes in the 
group-by clause, e.g. we denote the summary view below as 
SV(Product_Class).    

SELECT  Product_Class, sum(Dollar_sold)  
FROM  FACT_TABLE, PORDUCT_DIM  
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WHERE FACT_TABLE.Product_Code = 
  PRODUCT_DIM.Product_Code 
GROUP BY Product_Class 

 



One of the most serious issues with summary-view method is the 
space explosion -- the space requirement increases explosively 
when more summary-views and indexes are added into OLAP 
databases [OLAP]. To overcome this problem, we have proposed 
two methods in our previous paper [QL00], Functional 
Dependency Filter and Size Filter, to filter out summary-views 
that are not very useful for OLAP systems. In this paper, we 
would like to further optimize OLAP systems by building indexes 
and reorganizing views.  

There are a few proposals about selecting a set of views and 
indexes based on their contributions to a given set of queries. One 
of the most frequently referred papers is [GHRU97]. In this paper, 
a Greedy algorithm is proposed to treat indexes in a “similar” way 
as a view1 and choose indexes for any selected view by greedily 
adding one index at a time, until the benefit per unit space of the 
view and the chosen indexes can no longer be increased. The 
paper claims that the result generated by this method is never 
worse than 47% of the optimal solution. 

Also pointed out by [GHRU97], the number of possible index 
plan can be estimated to approximately 3n! for an n-dimensional 
data cube. An index filtering method is definitely required. 
However, in the paper, the index size is estimated to be the same 
size as the associated view. Which attributes and how many 
attributes are included in the index are not considered for index 
size estimation. Based on that, they developed their index filter 
and only different sequences of primary key are considered as 
index candidates. We believe this index filtering size estimation 
method is not accurate. For instance, Oracle B+tree stores all 
values of index attributes in its leave node. The index size does 
related to sizes of attributes in the index. We believe it is possible 
to build indexes only on subsets of keys and provide sufficient 
query performance.   

How to implement views and indexes is anther hot topic in OLAP 
area. There are many proposals about various kinds of indexes, 
e.g. Bitmap index, R-tree, Cubetree as well as their variations 
[OG95][OQ97][JS97][SAR97]. Some researches cover data 
materialization also [M98][KR98][RKR97]. The test results 
released in these papers are very impressive. However, most of 
these proposals are still in the research laboratories or depending 
on certain special software packages. In addition, there are also a 
few new developments from DBMS vendors and one of them is 
Oracle Index-Oriented table. By merging data into a B+tree index, 
there are no needs to repeat data in a separate index and data 
access by full key is efficient. However, these B+trees, which are 
holding all the information, could be very huge for many OLAP 
views and building, deleting, inserting on such big trees are very 
costly operations and OLAP system maintenance can be affected 
seriously. 

3. MOTIVATION EXAMPLE 
Example 1. The test system is built on NT PC running Oracle 
8.16. The data and queries are generated by a program 
downloaded from the website of OLAP Council [OLAP]. Out of 
these data, only one star schema (Fig. 1) is used. The data 
statistics used below is collected in advance. Now, let us consider 
                                                                 
1 Indexes cannot exist as standalone objects inside the database. 

Views must be selected before associated indexes. 

indexing and materialization issue for the fact table, 
SALES_FACT.  

Solution 1. Index on primary key.  

SALES_FACT TABLE
(1239300)

Channel_id Char(12)
Code Char(12)
Store Char(12)
Month Char(12)
Unit sold Number(10)
Dollar sold Number(10,2)

CHANNEL_DIM
TABLE (9)

Channel_id

PRODUCT_DIM
TABLE (9000)

Code
Class
Group
Family
Line

Division

CUSTOMER_DIM
TABLE (900)

Store

Retailer

TIME_DIM
TABLE (24)

Month

Quarter

Year

                Fig. 1 Multidimensional model
(The number on the right of the table name indicates the number of tuples in that table )

The first solution is to materialize the fact table as a normal table 
and build an index on the primary key, (CHANNEL_ID, 
STORE,CODE,MONTH), as suggested by the Star Schema. The 
storage space required for the fact table and the index are 94MB 
and 112M. This index is very expensive. 

Solution 2. Index on a subset of the primary key 

The second solution is to replace the unique B+tree on four 
dimensional attributes with a non-unique B+tree index on only 
two dimensional attributes (STORE, CODE). As less attributes 
need to be stored in the new index, the index size shrinks by 
almost half to only 58MB. However, this saving is achieved at the 
cost of extra I/Os in the query processing. Based on the statistics 
below, on average 17 tuples will be fetched for each index search 
on this index. If the hardware is powerful enough, this index is 
still useful because of the significant saving for index storage. 

Size(SV({CHANNEL_ID,STORE, CODE, MONTH}))

Size(SV({STORE, CODE}))
=
1239300

72900
= 17

 
(Where Size(V) is defined as a function which returns 
number of tuples inside V. All statistics used above are 
collected in advance.) 

Solution 3. Nested Relation Approach. 

The last solution is on top of the previous. In this plan, we 
reorganize the table as Nested_SALES_FACT and combine 
tuples with the same value for STORE, CODE into a big super 
tuple by keeping STORE and CODE as normal columns and 
grouping the rest of columns into a nested relation. In this test, we 
store this nested relation as a VARRAY attached to the super 
tuple2. The whole plan is shown in Fig. 2. 

As tuples associated with each distinct pair of STORE and CODE 
can be fetched as one super tuple, query performance is 
drastically improved. Another big benefit is the significant 
reduction of the index size. As the number of tuples in 

                                                                 
2 In case data are skew, we might need to pack tuples associated 

with the same STORE and CODE into few super tuples because 
of Oracle VARRAY implementation. 



NESTED_SALES_FACT drops to 72900 from 1239300, down 
94%, much less leave nodes are required in the index and space 
required is only 6MB or 10% of the previous 58MB. The fact 
table shrinks significantly as well to only 47MB from 94MB, 
50% of the original size because of the removal of redundancy 
storage for STORE, CODE. 

In the last part of this example, we randomly get 20 queries that 
are running against the fact table3 from the query set generated by 
query generator from [OLAP] and run these queries against views 
prepared in above three solutions. The result is shown in Fig. 3. 
Solution 3 is significant better than the rest, for both storage cost 
and query performance. 

Solution 1.
 Index on primary key

Solution 2.
Index on a subset of the

primary key

Solution 3.
Nested Relation Approach

Space requirement
for tables 94MB 94MB 47MB

Space requirement
for indexes 112MB 58MB 6MB

Total 206MB 152MB 53MB
Query Performance 0.302 sec/per query 3.943 sec/per query 0.236 sec/per query

Fig. 3 Performance Result  

4. INDEX FILTERING 
For index selection, the first major problem is the huge number of 
possible index plans. Putting aside index materialization, such 
kind of searching space is too big for many selection algorithms. 
Some kinds of index filtering algorithms are definitely required. 

We start our discussion on index selectivity, the criteria for index 
selection. In an OLTP system, the index selectivity is defined as 
the average percentage of tuples associated with each instance of 
index attributes. The lower the percentage is, the lower percentage 
of tuples need to be retrieved from the view if this index is used in 
the query processing, i.e., the bigger I/O saving can be expected. 
An index is useful for a query processing unless its index 

                                                                 
3 Queries are selected based on the attributes in the where clause 

and group-by clauses 

selectivity is good4. In [O8TUN], the recommended value for the 
index selectivity is less than 2% to 4%. 

While in an OLAP system, the most important query optimization 
goal is to push the query performance to the OLAP level, i.e. 
answering queries in seconds. To achieve that, we must control 
number of I/Os for each query. We believe “lower number of 
tuples”, rather than “lower percentage of all tuples”, need to be 
retrieved in a query is more important for good query 
performance. In this paper, we redefine the INDEX 
SELECTIVITY as the average number of tuples associated with 
each instance of index attributes. Comparing above two 
definitions of index selectivity, our definition is more 
emphasizing on real-time response. In the rest of paper, we will 
use our definition unless specified. 

NESTED_SALES_FACT
TABLE (72900)

Store
Code

CHANNEL_DIM
TABLE (9)

Channel_id

PRODUCT_DIM
TABLE (9000)

Code
Class
Group
Family
Line

Division

CUSTOMER_DIM
TABLE (900)

Store

Retailer

TIME_DIM
TABLE (24)

Month

Quarter

Year

Fig. 2 Fact table organized with Oracle variable array
(with the number on the right of the table indicates the number of tuples  in that table)

VARRAY

Channel_id
Month

Unit sold
Dollar sold

Example 2 Let’s review the Example 1 posted in previous 
section, and look at following two cases of indexing on 
SALES_FACT table. 

Case (1) If we have an index on attributes (STORE, CODE) for 
the SALES_FACT table, then the index selectivity for this index 
is 17 as shown in Example 1, while the selectivity in term of 
percentage is 0.00137%. As the index selectivity is quite good, we 
don’t have to build some other bigger indexes such as 
(STORE,CODE,MOTH) if we already have this index. 

Case (2) If we have an index on attribute STORE only for the 
view SALES_FACT table, then the index selectivity for it is 
24205, while the selectivity in term of percentage is 0.19%. 
Obviously, this index is not very useful for OLAP queries as there 
are more than 2000 tuples need to be retrieved by the database 
engine. 

Size(SV({CHANNEL_ID,STORE, CODE, MONTH}))

     Size(SV({STORE}))
 =

1239300

   512
= 2420

 
(All statistics used above are collected in advance) 

Form the above two cases, it is easy to observe that we can 
actually filter out lots of candidate indexes based on data statistics 
available.                                                                     

In the next step, we would like to propose our heuristic index 
filtering rule to filter out indexes which are either not useful for 
OLAP queries or have cheaper alternatives. Before we dive into 
details, we would like to develop the notation for INDEX SET. 

An INDEX SET X of SV(V) is a set of indexes of SV(V) on the 
same set of dimensional attributes X, regardless of attribute 
sequence, and denoted as ISV(V)(X).  

In normal cases, different dimensional attributes are “playing” 
different roles inside each summary-view. Values of some 
dimensional attributes might repeat themselves less frequently in 
certain views and we can actually identify tuples in these views 

                                                                 
4 Issues with BITMAP indexes are not discussed here. In some 

cases, the queries do not access the table and purely work on the 
indexes 

5 Although there are 900 stores in the dimensional table, there are 
only 512 stores actually recorded in the fact table. 



approximately by these attributes. Thus, we will call these 
attributes “Dominant Prime” or DPrime in short for these views. 

Definition 1. Dominant Prime (DPrime). Assuming we have a 
summary-view SV(V) and X is a subset of a primary key. We 
define X is the DPrime for SV(V) iff the index selectivity for the 
index set X of SV(V) or size(SV(V))/size(SV(X)) is smaller than 
DOMRATE, a predefined constant.                                           

The DOMRATE is a threshold for index selectivity, its value is 
depending on several factors, e.g. hardware, software and user 
requirement. The lower the DOMRATE is, the higher requirement 
for index selectivity. If the DOMRATE is 1, only the index sets 
on primary keys are selected. On the other end, the higher the 
DOMRATE, the higher requirement for hardware as more tuples 
need to be retrieved in the required time. In our paper, we 
determine the DOMRATE for our test system mainly on disk I/O 
and user requirement. Assuming the required system response 
time is 5 seconds. In Solution 2 of Example 1, we find that the 
system can handle test queries using an index with index 
selectivity of 17 in about 3 seconds. Therefore, we fix the 
DOMRATE as 20 conservatively. 

Definition 3. Primary DPrime. In a MD model, X is a DPrime 
for SV(V), we define X as the Primary DPrime for SV(V), iff 
there is no DPrime Y for SV(V), which Y⊂X.                            

Similar to primary keys that we have defined in the traditional 
database, Primary DPrimes are smallest DPrimes that can satisfy 
the index selectivity requirement and are good candidates for 
indexes. It is quite straightforward if there is only one Primary 
DPrime for each view. However, in many cases, there could be 
more than one Primary DPrimes for a summary-view. Under such 
situation, we need to consider indexes on the union of Primary 
DPrimes as well. It is easy to prove that the union of Primary 
DPrimes is a DPrime also and the cost for the index on the union 
of DPrimes might be smaller than the combined cost for indexes 
on each individual DPrimes. 

Index Filtering Rule —  
                            Dominate Prime (DPrime) Index Set Filter 

For a summary-view, only index sets of its Primary DPrimes and 
their unions are considered as candidate index sets for the view  

In an MD model, the number of attributes holding tiny domains is 
quite big and index selectivity for the index set on them or few of 
them are normally not good enough. Thus, we can filter out a 
large number of candidate indexes based on DPrime Index Set 
Filter.  

It is also true that the number of indexes selected by DPrime 
Index Set Filter might still be too big for materialization. We need 
to apply other algorithms based on other information, e.g., the 
Greedy algorithm [GHRU97] based on user queries. With this 
already greatly reduced searching space for indexes, these 
algorithms can be applied easily. 

Example. 3. Following MD model (shown in Fig. 4) is from 
TPC-D, which is the same as the sample used in [GHRU97]. 
There are three attributes -- part, supplier, and customer and we 
abbreviate part to P, supplier to S and customer to C. The 
statistics for eight views are listed below. 

Size(SV(PSC)) = 6 Million Size(SV(PC))  = 6M 

Size(SV(PS))   = 0.8M  Size(SV(SC))  = 6M 
Size(SV(P))     = 0.2M  Size(SV(S))     = 0.01M 

Size(SV(C))     = 0.1M  Size(SV(Ø))    = 1 

PSC

PS

P

SC

S C

P C

∅

Fig. 4 TPC-D Example

In this example, we will compare our DPrime Index Set Filter 
with the index filtering algorithm used in [GHRU97] rather the 
Greedy index selection method proposed in the same paper. In 
fact, we need to use apply the same Greedy index selection 
method on top of the result of our DPRIM Index Set Filter. 

Step 1. Index Filtering  

DPrime Index Set Filter. We pick 20 as the DOMRATE and have:   

• DPrime for SV(PSC) are PSC, PS, PC, SC with index 
selectivity of 1, 7.5, 1, 1. 

• Primary DPrime for SV(PSC) are PS, PC and SC. 

• The candidate index sets are ISV(PSC)(PS), ISV(PSC)(PC), 
ISV(PSC)(SC), ISV(PSC)(PSC) 

While for the index filter used in [GHRU97], only ISV(PSC)(PSC) is 
selected as the candidate set. 

Step 2. Index Selection 

In the sample of [GHRU97], the Greedy algorithm is used to 
select views and indexes based on a given set of user queries and 
three indexes on attributes (CSP), (PCS) and (SPC) are selected 
for SV(PSC). Based on the candidate index sets picked by our 
index filtering algorithm, indexes on (CS), (PC) and (SP) will be 
used instead. 

Comparison between above two methods 

Obviously, the storage saving for indexes is significant if our 
index plan is used. For each indexes, we only include two 
attributes instead of three attributes. For query performance, the 
index on (SP) might not be as good as the index on (SPC) for 
some queries, as the index selectivity for index on (SPC) is better. 
However, we believe the performance difference should not be 
significant as SP is still a DPrime. While comparing indexes on 
(CS) and (PC) with indexes on (CSP) and (PCS), our solution is 
better. With similar index selectivity, indexes picked by us 
require much less storage space. Thus, we believe our index 
filtering method is better that used in [GHRU97]. 

5. VIEW MATERIALIZATION 
In a RDBMS system, information is logically manipulated as 
tuples. However, at lower levels, data are actually handled by 
much bigger units, e.g. blocks and pages. When a small tuple is 
fetched from harddisks, data stored nearby are also fetched in. It 



is certainly much desirable if we can make full use of each I/O by 
packing tuples which are usually used in the same query 
processing together and reduce the total number of I/O required. 

In query processing, data are accessed by either table scan or 
index search. With today’s technology, it is still difficult to push 
the performance of table scan operations on huge tables to the 
OLAP level. In this paper, we will only discuss issues related to 
the index search. For an index search on an index, all tuples with 
the same value for index attributes are always fetched together. If 
the index selectivity is bigger, e.g. using DPrime rather than 
primary key, index search performance is certainly affected as 
shown in Solution 2 of the example 1. To solve this problem, we 
propose our view materialization method to reorganize views by 
grouping related tuples into a super tuple and building indexes on 
these super tuples instead. 

View Materialization Method — Nested Relation Approach 
For a summary-view with decided index plan, we define all 
dimensional attributes included in the index or indexes as Index 
Attributes, those not included as Non-Index Attributes; and 
reorganize the view by grouping tuples with the same values for 
Index Attributes into one super tuple and store all Non-Index 
Attributes in the original tuples as a nested relation attached to 
this super tuple.                                                                          

Example 4. Let’s review the fact table, SALES_FACT, used in 
Example 1 (as shown in Fig. 1). A non-key index on (Store, 
Code) is selected as the only index and its index selectivity is ρ = 
17. Based on our Nested Relation Approach, we convert 
SALES_FACT to NESTED_SALES_FACT. (Fig. 5) 

Store Code Channel_ID Month Udollar Usales
s1 c1 cn1 d1 vd1 vs1
s1 c1 cn1 d5 vd2 vs4
s1 c2 cn1 d6 vd3 vs5
s1 c2 cn6 d3 vd4 vs6
s2 c1 cn1 d1 vd7 vs7

 C
onvert

SALES_FACT

Store Code Internal
Pointer

s1 c1
s1 c1
s1 c2
s1 c2

Index (Store, Code)

Store Code Internal
Pointer

s1 c1

s1 c2

Index_N (Store,Code)

NESTED_SALES_FACT

Channel_ID Month Udollar Usales
cn1 d1 vd1 vs1
cn1 d5 vd4 vd4

Channel_ID Month Udollar Usales
cn1 d6 vd5 vs5
cn6 d3 vd6 vs6

Fig. 5  Nested Relation Approach

Store Code
s1 c1
s1 c2

 
The benefit of this proposal has already been shown in Case 3 of 
example 1.  

• Significant saving for index storage. As tuples with the same 
values for index attributes will be grouped into a super tuple, the 
number of big super tuples is certainly much less, thus the size of 
the new index will be dropped significantly. 

• Better OLAP query performance. By grouping related 
tuples together into nested relations and storing them physically 
together into few adjacent disk blocks, we can reduce the number 
of disk I/O access significantly for OLAP queries. 

• Significant saving for summary-view storage. By grouping 
tuples together, index attributes with the same value only need to 

be stored once. The summary-view size can be reduced also. 
Thus, besides index search, we also accelerate table scan 
operation.                                                                                   

The first concern for this method is how the nested relation should 
be materialized. It is very difficult to do it in a traditional 
RDBMS. We can store the nested relation as a separate table to 
save some storage space or use cluster table for high performance. 
But all these methods have some serious weak points, e.g. high 
join cost, high storage overhead.  

However, with the introduction of the new generation of 
ORDBMS, the database engine has greatly extended its functions. 
In Oracle 8, a new data type, VARRAY or variable array, has 
been added to database to support array and list operation inside 
the tuple. For the view shown in Example 4, view SALES_FACT 
can be materialized as Nested_SALES_FACT_V. (Fig. 6) 

Store Code
Code N_RELATION

Channel_ID Month Udollar Usales

s1 c2
cn1 d1 vd1 vs1
cn1 d5 vd4 vs4

s1 c2
cn1 d6 vd5 vs5
cn6 d3 vd6 vs6

s2 c1 cn1 d1 vd7 vs7

Store Code Internal
Pointer

s1 c1
s1 c2
s2 c1

Index_SALES_FACT_V NESTED_SALES_FACT_V

Fig. 6 Nested-Relation Approach (Oracle VARRAY)
 

Comparing with solutions in traditional RDBMS, VARRAY has 
some wonderful features very suitable for our Nested Relation 
Approach. 

• Low storage overhead. The size of the array is of varying 
size. Although the maximum size for the VARRAY must be 
specified when it is declared, but the actual storage depends only 
on the current count of elements in the VARRAY. If data are 
skew, we can pack less tuples into one super tuple with limited 
storage overhead or pack more tuples into few super tuples. 
Although the index on these super tuples will not be a unique 
index, there is no significant impact for query performance if the 
B+tree is small6. 

• Good query performance. The VARRAY requires no joins 
to retrieve data inside the nested relation. In addition, the 
VARRAY also gives better performance if the VARRAY is 
manipulated as a single unit in applications, e.g. OLAP batch 
loading. 

• Compatible with front-end tools. In Oracle release 8.16, an 
additional feature has been added to allow VARRAYs to be 
viewed in the traditional flat (relational) form by using the 
TABLE syntax. For example 4, a normal view, 
VIEW_SALES_FACT, can be created as below to make the 
VARRAY object transparent to other applications. Many front-
end tools can be used directly without any changes. 

CREATE VIEW VIEW_SALES_FACT as  
SELECT  p.Store, p.Code, n.Channel_ID, 

n.Month, n.Udollar, n.Usales 
FROM    NESTED_SALES_FACT_V p, 

                                                                 
6 Base on our test, overhead for Oracle 8 is still quite high, but 

there are some significant improvements in Oracle 8i. 



TABLE(p.N_RELATION) n  

Because of the efficiency of VARRAY, we can pick a larger 
number for DOMRATE and try to pack more related tuples 
together if possible and further optimize OLAP systems. However 
if DOMRATE is too big, we might have too big super tuples for 
retrieval in query processing. 

Certainly, Nested Relation Approach cannot be applied for all 
views, especially indexes with very low index selectivity (around 
1). For views with multiple selected indexes selected, Nested 
Relation Approach might not be applied easily also. More 
research works are required in this area. 

6. EXPERIMENT 
Example 5. In this example, we continue the work in Example 1. 
Instead of working on only one view, we work on the whole MD 
model. At the first stage, we apply the Functional Dependency 
Filter and Size Filter [QL00] to filter out summary-views and get 
33 views out of 4096 candidate views. For the performance test, 
we use Query Set 1 (Channel Sales Analysis) generated by the 
data generator program [OLAP]. These queries are randomly 
generated to simulate the ad hoc and dynamic nature of OLAP 
queries. There are 2500 queries in this set, but we run the first 500 
queries only because of resource limitation. For each query, the 
test program built by us loads in query parameters and based on 
attributes in the group-by clause and where clause, rewrite the 
query so that queries can be redirected to the "fittest" summary-
views, which are prepared in advance according to following 
materialization plans. Then the test program starts the query and 
logs the execution time. 

Plan A. Flat Tables 

All views are materialized as flat tables. For the biggest view, it 
will be materialized as: 

A4095 (CODE, CLASS, GROUP, FAMILY, LINE, DIVISION, 
STORE, RETAILER, CHANNEL, MON, QTR, YR, USALES, 
UDOLLAR); 

Space required these 33 tables in the Oracle database is about 
1.07 GB. The average query processing time for these queries is 
5.98 seconds. 

Plan B. Star Schemas 

All views are materialized as Star Schemas. For the biggest view, 
it is materialized as Fig. 1. Space required for these 33 fact tables 
inside these Star Schemas is about 658 MB and the space 
requirement for small dimensional tables (10 altogether) and 
associated indexes (very small) is additional 3 MB. Comparing 
with plan A, we have saved 40% of storage cost. However, if we 
use the traditional index strategy and build a B+tree index on the 
primary key for each view, the storage space required for these 33 
indexes is 690 MB and the total space requirement shoot up to 
1.351 GB. 

Again, we run the same 500 queries against this indexed view set. 
Average response time for these queries is only 0.16 seconds. It is 
a big improvement. Space requirement is still very huge and index 
loading and maintenance is very costly. 

Plan C. Nested Relation Approach 

First, we apply DPrime Index Set Filter on these 33 views. The 
DOMRATE we used in this example is 20 and get 52 primary 
DPrimes with four views with three primary DPrimes and eleven 
views with two primary DPrimes. 

If we have a known set of user queries, we can apply the Greedy 
method used in [GHRU97] to pick various views and indexes. To 
be fair with another two plans, we select all these 33 views and 
select one index on primary DPrime for each view. For those 
views with multiple primary DPrimes, we will pick the smallest 
one. For the key sequence, we adopt a simple rule again and pick 
the attributes from product dimension followed by those from 
customer dimension, channel dimension and time dimension. 

At the last step, we reorganize each view using the Nested 
Relation Approach and materialize all views using Oracle 
VARRAY. The space required for these 33 views is only 310 
MB, or only 47% of space required for 33 views in Plan B. While 
these 33 indexes require only 33 MB, or 4.8% of 690 MB for 33 
indexes in Plan B. The total space required for all dimension 
tables and indexes is 345MB, which is only 25% of overall space 
requirement for Plan B.  

We get an even better result in the performance test. The average 
query processing time is 0.14 seconds. The summary of result for 
these three plans is shown in Fig. 7. 

Plan A
Flat Tables

Plan B
Star Schemas

Plan C
Nested Re lation Approach

Space requirement for tables 1070 MB 658 MB 310 MB

Space requirement for indexes 0 690 MB 33 MB

Space required for
  Dimension tables & indexes 0 3 MB 3 MB

Total 1070 MB 1351 MB 346 MB

Query Performance 5.98 sec/per query 0.16 sec/per query 0.14 sec/per query

Fig. 7 Performance Summary
 

The above results show that indexing is one of most efficient 
methods to boost the query performance in OLAP systems. 
However, the traditional index selecting method, indexing on 
keys, is not very suitable for OLAP systems. While with our 
newly proposed DPrime Index Set Filter and Nest Relation 
approach method, the space requirement for indexes and views 
reduces significantly. Moreover, the query performance gets 
boosted also. 

7. CONCLUSION  
In this paper, we propose the index filtering method, DPrime 
Index Set Filter, to filter out indexes that have insufficient index 
selectivity or have cheaper alternatives. In addition, we also 
propose a view materialization method, Nested Relation 
Approach, to reorganize views based on selected indexes using 
Oracle VARRAY. Besides accelerating OLAP queries efficiently, 
this method cuts down the storage cost significantly, especially 
for indexes. 

In example 3, we apply our index filtering method on the same 
example used in [GHRU97]. While maintaining index selectivity 
above a pre-designed level, we build smaller indexes on subsets 
of the primary key. Comparison shows that our method greatly 



reduces the storage cost for indexes and keeps sufficient query 
performance. 

In addition, we also apply both of our methods upon a test system 
based on data from OLAP Council. Result shows our method is 
significant better than the widely used Star Schema. We achieve 
better query performance with 4.7% of storage space for indexes 
and 47% of storage space for tables, or less than 25% of total 
storage space required by Star Schema method. Although real 
systems are much bigger, we believe the efficiency of our 
methods should remain. 
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