
Index Filtering and View Materialization
in ROLAP Environment

Shi Guang Qiu
School of Computing

National University of Singapore
3 Science Drive 2 Singapore 117543

65-7918843

qiusg@singnet.com.sg

Tok Wang Ling
School of Computing

National University of Singapore
3 Science Drive 2 Singapore 117543

65-7722734

lingtw@comp.nus.edu.sg

ABSTRACT
Using materialized view to accelerate OLAP queries is one of the
most common methods used in ROLAP systems. However, high
storage and computation cost make this method very difficult to
be implemented in the actual environment. Among various issues
associated with this, index selection and view materialization are
two of the top challenges. In this paper, we propose to build
indexes on subsets of the primary keys rather than the full sets if
the index selectivity for these smaller indexes can be maintained
above the required level. Based on that we propose an index
filtering rule, Dominant Prime (DPrime) Index Set Filter, to
filter out candidate indexes that have insufficient index selectivity
or have cheaper alternatives. In the second part, we propose a
view materialization method, Nested Relation Approach, to
group tuples with the same value for index attributes into one
super tuple using a nested relation and implement this method
using Oracle VARRAY. In performance tests, our method
outperforms others significantly.

1. INTRODUCTION
In On-Line Analytical Processing (OLAP) systems, Multi-
Dimensional model (MD model) and summary-views are most
commonly used query optimization methods [KIM97], however
storage cost and computation cost for summary-views and
associated indexes increase explosively with the rising number of
dimensional attributes [OLAP]. To implement these methods in
the real environment is very difficult. In our previous paper
[QL00], we have proposed two methods to filter out large number
of unhelpful summary-views. Here, we would like to extend our
research to view indexing and view reorganizing.

Indexes on summary-views are very important for OLAP query
optimization, however they are also most expensive items in
databases. Selection right index is very crucial for OLAP system
design. First, we review attributes included in indexes. Because of
the difference among dimensional attributes in OLAP
environments, we might able to include only subsets of primary
keys, defined as Dominant Primes or DPrimes, in indexes and get

satisfied performance. Based on that, we develop an index filter,
DPrime Index Set Filter to filter out those indexes, which have
insufficient index selectivity or have cheaper alternatives. On top
of that, we can still apply many existing index and view selection
methods, e.g. [GHRU97], to further fine-tune the solution.

In addition, we propose our view materialization method, Nested
Relation Approach, to optimize summary-views with non-unique
indexes. By grouping few related tuples into one super tuple, we
can "influence" the DBMS engine to pack these related data into
fewer adjacent disk blocks, so I/O can be performed more
efficiently. In addition, we can build indexes on groups of tuples
rather than on each individual tuples, reduce the space required
for indexes significantly. Moreover, we reduce the space
requirement for summary-views. In the paper, we implement this
method using Oracle Variable Array or VARRAY, a new feature
introduced in widely adopted Oracle 8. The test result is very
impressive.

In section 2, we discuss the background and related works. In
section 3, a motivation example is given. In section 4 and section
5, we present our index filtering method and view materialization
method. An experiment is shown in section 6 where our methods
are compared with those of others. Finally, the conclusion is
presented in section 7.

2. BACKGROUND and RELATED WORKS
A summary-view is grouping some measure attributes along
various dimensions, i.e. corresponding to different sets of group-
by attributes. By using summary-views, we can split OLAP query
processes into few steps and perform costly aggregation
operations in advance. To simplify the discussing below, we use
SUM as the only aggregate function and assume that measure
attributes are fixed. Thus, we can denote a summary-view as
SV(GA) where GA is the set of dimensional attributes in the
group-by clause, e.g. we denote the summary view below as
SV(Product_Class).

SELECT Product_Class, sum(Dollar_sold)
FROM FACT_TABLE, PORDUCT_DIM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

WHERE FACT_TABLE.Product_Code =
 PRODUCT_DIM.Product_Code
GROUP BY Product_Class

One of the most serious issues with summary-view method is the
space explosion -- the space requirement increases explosively
when more summary-views and indexes are added into OLAP
databases [OLAP]. To overcome this problem, we have proposed
two methods in our previous paper [QL00], Functional
Dependency Filter and Size Filter, to filter out summary-views
that are not very useful for OLAP systems. In this paper, we
would like to further optimize OLAP systems by building indexes
and reorganizing views.

There are a few proposals about selecting a set of views and
indexes based on their contributions to a given set of queries. One
of the most frequently referred papers is [GHRU97]. In this paper,
a Greedy algorithm is proposed to treat indexes in a “similar” way
as a view1 and choose indexes for any selected view by greedily
adding one index at a time, until the benefit per unit space of the
view and the chosen indexes can no longer be increased. The
paper claims that the result generated by this method is never
worse than 47% of the optimal solution.

Also pointed out by [GHRU97], the number of possible index
plan can be estimated to approximately 3n! for an n-dimensional
data cube. An index filtering method is definitely required.
However, in the paper, the index size is estimated to be the same
size as the associated view. Which attributes and how many
attributes are included in the index are not considered for index
size estimation. Based on that, they developed their index filter
and only different sequences of primary key are considered as
index candidates. We believe this index filtering size estimation
method is not accurate. For instance, Oracle B+tree stores all
values of index attributes in its leave node. The index size does
related to sizes of attributes in the index. We believe it is possible
to build indexes only on subsets of keys and provide sufficient
query performance.

How to implement views and indexes is anther hot topic in OLAP
area. There are many proposals about various kinds of indexes,
e.g. Bitmap index, R-tree, Cubetree as well as their variations
[OG95][OQ97][JS97][SAR97]. Some researches cover data
materialization also [M98][KR98][RKR97]. The test results
released in these papers are very impressive. However, most of
these proposals are still in the research laboratories or depending
on certain special software packages. In addition, there are also a
few new developments from DBMS vendors and one of them is
Oracle Index-Oriented table. By merging data into a B+tree index,
there are no needs to repeat data in a separate index and data
access by full key is efficient. However, these B+trees, which are
holding all the information, could be very huge for many OLAP
views and building, deleting, inserting on such big trees are very
costly operations and OLAP system maintenance can be affected
seriously.

3. MOTIVATION EXAMPLE
Example 1. The test system is built on NT PC running Oracle
8.16. The data and queries are generated by a program
downloaded from the website of OLAP Council [OLAP]. Out of
these data, only one star schema (Fig. 1) is used. The data
statistics used below is collected in advance. Now, let us consider

1 Indexes cannot exist as standalone objects inside the database.

Views must be selected before associated indexes.

indexing and materialization issue for the fact table,
SALES_FACT.

Solution 1. Index on primary key.

SALES_FACT TABLE
(1239300)

Channel_id Char(12)
Code Char(12)
Store Char(12)
Month Char(12)
Unit sold Number(10)
Dollar sold Number(10,2)

CHANNEL_DIM
TABLE (9)

Channel_id

PRODUCT_DIM
TABLE (9000)

Code
Class
Group
Family
Line

Division

CUSTOMER_DIM
TABLE (900)

Store

Retailer

TIME_DIM
TABLE (24)

Month

Quarter

Year

 Fig. 1 Multidimensional model
(The number on the right of the table name indicates the number of tuples in that table)

The first solution is to materialize the fact table as a normal table
and build an index on the primary key, (CHANNEL_ID,
STORE,CODE,MONTH), as suggested by the Star Schema. The
storage space required for the fact table and the index are 94MB
and 112M. This index is very expensive.

Solution 2. Index on a subset of the primary key

The second solution is to replace the unique B+tree on four
dimensional attributes with a non-unique B+tree index on only
two dimensional attributes (STORE, CODE). As less attributes
need to be stored in the new index, the index size shrinks by
almost half to only 58MB. However, this saving is achieved at the
cost of extra I/Os in the query processing. Based on the statistics
below, on average 17 tuples will be fetched for each index search
on this index. If the hardware is powerful enough, this index is
still useful because of the significant saving for index storage.

Size(SV({CHANNEL_ID,STORE, CODE, MONTH}))

Size(SV({STORE, CODE}))
=
1239300

72900
= 17

(Where Size(V) is defined as a function which returns
number of tuples inside V. All statistics used above are
collected in advance.)

Solution 3. Nested Relation Approach.

The last solution is on top of the previous. In this plan, we
reorganize the table as Nested_SALES_FACT and combine
tuples with the same value for STORE, CODE into a big super
tuple by keeping STORE and CODE as normal columns and
grouping the rest of columns into a nested relation. In this test, we
store this nested relation as a VARRAY attached to the super
tuple2. The whole plan is shown in Fig. 2.

As tuples associated with each distinct pair of STORE and CODE
can be fetched as one super tuple, query performance is
drastically improved. Another big benefit is the significant
reduction of the index size. As the number of tuples in

2 In case data are skew, we might need to pack tuples associated

with the same STORE and CODE into few super tuples because
of Oracle VARRAY implementation.

NESTED_SALES_FACT drops to 72900 from 1239300, down
94%, much less leave nodes are required in the index and space
required is only 6MB or 10% of the previous 58MB. The fact
table shrinks significantly as well to only 47MB from 94MB,
50% of the original size because of the removal of redundancy
storage for STORE, CODE.

In the last part of this example, we randomly get 20 queries that
are running against the fact table3 from the query set generated by
query generator from [OLAP] and run these queries against views
prepared in above three solutions. The result is shown in Fig. 3.
Solution 3 is significant better than the rest, for both storage cost
and query performance.

Solution 1.
 Index on primary key

Solution 2.
Index on a subset of the

primary key

Solution 3.
Nested Relation Approach

Space requirement
for tables 94MB 94MB 47MB

Space requirement
for indexes 112MB 58MB 6MB

Total 206MB 152MB 53MB
Query Performance 0.302 sec/per query 3.943 sec/per query 0.236 sec/per query

Fig. 3 Performance Result

4. INDEX FILTERING
For index selection, the first major problem is the huge number of
possible index plans. Putting aside index materialization, such
kind of searching space is too big for many selection algorithms.
Some kinds of index filtering algorithms are definitely required.

We start our discussion on index selectivity, the criteria for index
selection. In an OLTP system, the index selectivity is defined as
the average percentage of tuples associated with each instance of
index attributes. The lower the percentage is, the lower percentage
of tuples need to be retrieved from the view if this index is used in
the query processing, i.e., the bigger I/O saving can be expected.
An index is useful for a query processing unless its index

3 Queries are selected based on the attributes in the where clause

and group-by clauses

selectivity is good4. In [O8TUN], the recommended value for the
index selectivity is less than 2% to 4%.

While in an OLAP system, the most important query optimization
goal is to push the query performance to the OLAP level, i.e.
answering queries in seconds. To achieve that, we must control
number of I/Os for each query. We believe “lower number of
tuples”, rather than “lower percentage of all tuples”, need to be
retrieved in a query is more important for good query
performance. In this paper, we redefine the INDEX
SELECTIVITY as the average number of tuples associated with
each instance of index attributes. Comparing above two
definitions of index selectivity, our definition is more
emphasizing on real-time response. In the rest of paper, we will
use our definition unless specified.

NESTED_SALES_FACT
TABLE (72900)

Store
Code

CHANNEL_DIM
TABLE (9)

Channel_id

PRODUCT_DIM
TABLE (9000)

Code
Class
Group
Family
Line

Division

CUSTOMER_DIM
TABLE (900)

Store

Retailer

TIME_DIM
TABLE (24)

Month

Quarter

Year

Fig. 2 Fact table organized with Oracle variable array
(with the number on the right of the table indicates the number of tuples in that table)

VARRAY

Channel_id
Month

Unit sold
Dollar sold

Example 2 Let’s review the Example 1 posted in previous
section, and look at following two cases of indexing on
SALES_FACT table.

Case (1) If we have an index on attributes (STORE, CODE) for
the SALES_FACT table, then the index selectivity for this index
is 17 as shown in Example 1, while the selectivity in term of
percentage is 0.00137%. As the index selectivity is quite good, we
don’t have to build some other bigger indexes such as
(STORE,CODE,MOTH) if we already have this index.

Case (2) If we have an index on attribute STORE only for the
view SALES_FACT table, then the index selectivity for it is
24205, while the selectivity in term of percentage is 0.19%.
Obviously, this index is not very useful for OLAP queries as there
are more than 2000 tuples need to be retrieved by the database
engine.

Size(SV({CHANNEL_ID,STORE, CODE, MONTH}))

 Size(SV({STORE}))
 =

1239300

 512
= 2420

(All statistics used above are collected in advance)

Form the above two cases, it is easy to observe that we can
actually filter out lots of candidate indexes based on data statistics
available.

In the next step, we would like to propose our heuristic index
filtering rule to filter out indexes which are either not useful for
OLAP queries or have cheaper alternatives. Before we dive into
details, we would like to develop the notation for INDEX SET.

An INDEX SET X of SV(V) is a set of indexes of SV(V) on the
same set of dimensional attributes X, regardless of attribute
sequence, and denoted as ISV(V)(X).

In normal cases, different dimensional attributes are “playing”
different roles inside each summary-view. Values of some
dimensional attributes might repeat themselves less frequently in
certain views and we can actually identify tuples in these views

4 Issues with BITMAP indexes are not discussed here. In some

cases, the queries do not access the table and purely work on the
indexes

5 Although there are 900 stores in the dimensional table, there are
only 512 stores actually recorded in the fact table.

approximately by these attributes. Thus, we will call these
attributes “Dominant Prime” or DPrime in short for these views.

Definition 1. Dominant Prime (DPrime). Assuming we have a
summary-view SV(V) and X is a subset of a primary key. We
define X is the DPrime for SV(V) iff the index selectivity for the
index set X of SV(V) or size(SV(V))/size(SV(X)) is smaller than
DOMRATE, a predefined constant.

The DOMRATE is a threshold for index selectivity, its value is
depending on several factors, e.g. hardware, software and user
requirement. The lower the DOMRATE is, the higher requirement
for index selectivity. If the DOMRATE is 1, only the index sets
on primary keys are selected. On the other end, the higher the
DOMRATE, the higher requirement for hardware as more tuples
need to be retrieved in the required time. In our paper, we
determine the DOMRATE for our test system mainly on disk I/O
and user requirement. Assuming the required system response
time is 5 seconds. In Solution 2 of Example 1, we find that the
system can handle test queries using an index with index
selectivity of 17 in about 3 seconds. Therefore, we fix the
DOMRATE as 20 conservatively.

Definition 3. Primary DPrime. In a MD model, X is a DPrime
for SV(V), we define X as the Primary DPrime for SV(V), iff
there is no DPrime Y for SV(V), which Y⊂X.

Similar to primary keys that we have defined in the traditional
database, Primary DPrimes are smallest DPrimes that can satisfy
the index selectivity requirement and are good candidates for
indexes. It is quite straightforward if there is only one Primary
DPrime for each view. However, in many cases, there could be
more than one Primary DPrimes for a summary-view. Under such
situation, we need to consider indexes on the union of Primary
DPrimes as well. It is easy to prove that the union of Primary
DPrimes is a DPrime also and the cost for the index on the union
of DPrimes might be smaller than the combined cost for indexes
on each individual DPrimes.

Index Filtering Rule —
 Dominate Prime (DPrime) Index Set Filter

For a summary-view, only index sets of its Primary DPrimes and
their unions are considered as candidate index sets for the view

In an MD model, the number of attributes holding tiny domains is
quite big and index selectivity for the index set on them or few of
them are normally not good enough. Thus, we can filter out a
large number of candidate indexes based on DPrime Index Set
Filter.

It is also true that the number of indexes selected by DPrime
Index Set Filter might still be too big for materialization. We need
to apply other algorithms based on other information, e.g., the
Greedy algorithm [GHRU97] based on user queries. With this
already greatly reduced searching space for indexes, these
algorithms can be applied easily.

Example. 3. Following MD model (shown in Fig. 4) is from
TPC-D, which is the same as the sample used in [GHRU97].
There are three attributes -- part, supplier, and customer and we
abbreviate part to P, supplier to S and customer to C. The
statistics for eight views are listed below.

Size(SV(PSC)) = 6 Million Size(SV(PC)) = 6M

Size(SV(PS)) = 0.8M Size(SV(SC)) = 6M
Size(SV(P)) = 0.2M Size(SV(S)) = 0.01M

Size(SV(C)) = 0.1M Size(SV(Ø)) = 1

PSC

PS

P

SC

S C

P C

∅

Fig. 4 TPC-D Example

In this example, we will compare our DPrime Index Set Filter
with the index filtering algorithm used in [GHRU97] rather the
Greedy index selection method proposed in the same paper. In
fact, we need to use apply the same Greedy index selection
method on top of the result of our DPRIM Index Set Filter.

Step 1. Index Filtering

DPrime Index Set Filter. We pick 20 as the DOMRATE and have:

• DPrime for SV(PSC) are PSC, PS, PC, SC with index
selectivity of 1, 7.5, 1, 1.

• Primary DPrime for SV(PSC) are PS, PC and SC.

• The candidate index sets are ISV(PSC)(PS), ISV(PSC)(PC),
ISV(PSC)(SC), ISV(PSC)(PSC)

While for the index filter used in [GHRU97], only ISV(PSC)(PSC) is
selected as the candidate set.

Step 2. Index Selection

In the sample of [GHRU97], the Greedy algorithm is used to
select views and indexes based on a given set of user queries and
three indexes on attributes (CSP), (PCS) and (SPC) are selected
for SV(PSC). Based on the candidate index sets picked by our
index filtering algorithm, indexes on (CS), (PC) and (SP) will be
used instead.

Comparison between above two methods

Obviously, the storage saving for indexes is significant if our
index plan is used. For each indexes, we only include two
attributes instead of three attributes. For query performance, the
index on (SP) might not be as good as the index on (SPC) for
some queries, as the index selectivity for index on (SPC) is better.
However, we believe the performance difference should not be
significant as SP is still a DPrime. While comparing indexes on
(CS) and (PC) with indexes on (CSP) and (PCS), our solution is
better. With similar index selectivity, indexes picked by us
require much less storage space. Thus, we believe our index
filtering method is better that used in [GHRU97].

5. VIEW MATERIALIZATION
In a RDBMS system, information is logically manipulated as
tuples. However, at lower levels, data are actually handled by
much bigger units, e.g. blocks and pages. When a small tuple is
fetched from harddisks, data stored nearby are also fetched in. It

is certainly much desirable if we can make full use of each I/O by
packing tuples which are usually used in the same query
processing together and reduce the total number of I/O required.

In query processing, data are accessed by either table scan or
index search. With today’s technology, it is still difficult to push
the performance of table scan operations on huge tables to the
OLAP level. In this paper, we will only discuss issues related to
the index search. For an index search on an index, all tuples with
the same value for index attributes are always fetched together. If
the index selectivity is bigger, e.g. using DPrime rather than
primary key, index search performance is certainly affected as
shown in Solution 2 of the example 1. To solve this problem, we
propose our view materialization method to reorganize views by
grouping related tuples into a super tuple and building indexes on
these super tuples instead.

View Materialization Method — Nested Relation Approach
For a summary-view with decided index plan, we define all
dimensional attributes included in the index or indexes as Index
Attributes, those not included as Non-Index Attributes; and
reorganize the view by grouping tuples with the same values for
Index Attributes into one super tuple and store all Non-Index
Attributes in the original tuples as a nested relation attached to
this super tuple.

Example 4. Let’s review the fact table, SALES_FACT, used in
Example 1 (as shown in Fig. 1). A non-key index on (Store,
Code) is selected as the only index and its index selectivity is ρ =
17. Based on our Nested Relation Approach, we convert
SALES_FACT to NESTED_SALES_FACT. (Fig. 5)

Store Code Channel_ID Month Udollar Usales
s1 c1 cn1 d1 vd1 vs1
s1 c1 cn1 d5 vd2 vs4
s1 c2 cn1 d6 vd3 vs5
s1 c2 cn6 d3 vd4 vs6
s2 c1 cn1 d1 vd7 vs7

 C
onvert

SALES_FACT

Store Code Internal
Pointer

s1 c1
s1 c1
s1 c2
s1 c2

Index (Store, Code)

Store Code Internal
Pointer

s1 c1

s1 c2

Index_N (Store,Code)

NESTED_SALES_FACT

Channel_ID Month Udollar Usales
cn1 d1 vd1 vs1
cn1 d5 vd4 vd4

Channel_ID Month Udollar Usales
cn1 d6 vd5 vs5
cn6 d3 vd6 vs6

Fig. 5 Nested Relation Approach

Store Code
s1 c1
s1 c2

The benefit of this proposal has already been shown in Case 3 of
example 1.

• Significant saving for index storage. As tuples with the same
values for index attributes will be grouped into a super tuple, the
number of big super tuples is certainly much less, thus the size of
the new index will be dropped significantly.

• Better OLAP query performance. By grouping related
tuples together into nested relations and storing them physically
together into few adjacent disk blocks, we can reduce the number
of disk I/O access significantly for OLAP queries.

• Significant saving for summary-view storage. By grouping
tuples together, index attributes with the same value only need to

be stored once. The summary-view size can be reduced also.
Thus, besides index search, we also accelerate table scan
operation.

The first concern for this method is how the nested relation should
be materialized. It is very difficult to do it in a traditional
RDBMS. We can store the nested relation as a separate table to
save some storage space or use cluster table for high performance.
But all these methods have some serious weak points, e.g. high
join cost, high storage overhead.

However, with the introduction of the new generation of
ORDBMS, the database engine has greatly extended its functions.
In Oracle 8, a new data type, VARRAY or variable array, has
been added to database to support array and list operation inside
the tuple. For the view shown in Example 4, view SALES_FACT
can be materialized as Nested_SALES_FACT_V. (Fig. 6)

Store Code
Code N_RELATION

Channel_ID Month Udollar Usales

s1 c2
cn1 d1 vd1 vs1
cn1 d5 vd4 vs4

s1 c2
cn1 d6 vd5 vs5
cn6 d3 vd6 vs6

s2 c1 cn1 d1 vd7 vs7

Store Code Internal
Pointer

s1 c1
s1 c2
s2 c1

Index_SALES_FACT_V NESTED_SALES_FACT_V

Fig. 6 Nested-Relation Approach (Oracle VARRAY)

Comparing with solutions in traditional RDBMS, VARRAY has
some wonderful features very suitable for our Nested Relation
Approach.

• Low storage overhead. The size of the array is of varying
size. Although the maximum size for the VARRAY must be
specified when it is declared, but the actual storage depends only
on the current count of elements in the VARRAY. If data are
skew, we can pack less tuples into one super tuple with limited
storage overhead or pack more tuples into few super tuples.
Although the index on these super tuples will not be a unique
index, there is no significant impact for query performance if the
B+tree is small6.

• Good query performance. The VARRAY requires no joins
to retrieve data inside the nested relation. In addition, the
VARRAY also gives better performance if the VARRAY is
manipulated as a single unit in applications, e.g. OLAP batch
loading.

• Compatible with front-end tools. In Oracle release 8.16, an
additional feature has been added to allow VARRAYs to be
viewed in the traditional flat (relational) form by using the
TABLE syntax. For example 4, a normal view,
VIEW_SALES_FACT, can be created as below to make the
VARRAY object transparent to other applications. Many front-
end tools can be used directly without any changes.

CREATE VIEW VIEW_SALES_FACT as
SELECT p.Store, p.Code, n.Channel_ID,

n.Month, n.Udollar, n.Usales
FROM NESTED_SALES_FACT_V p,

6 Base on our test, overhead for Oracle 8 is still quite high, but

there are some significant improvements in Oracle 8i.

TABLE(p.N_RELATION) n

Because of the efficiency of VARRAY, we can pick a larger
number for DOMRATE and try to pack more related tuples
together if possible and further optimize OLAP systems. However
if DOMRATE is too big, we might have too big super tuples for
retrieval in query processing.

Certainly, Nested Relation Approach cannot be applied for all
views, especially indexes with very low index selectivity (around
1). For views with multiple selected indexes selected, Nested
Relation Approach might not be applied easily also. More
research works are required in this area.

6. EXPERIMENT
Example 5. In this example, we continue the work in Example 1.
Instead of working on only one view, we work on the whole MD
model. At the first stage, we apply the Functional Dependency
Filter and Size Filter [QL00] to filter out summary-views and get
33 views out of 4096 candidate views. For the performance test,
we use Query Set 1 (Channel Sales Analysis) generated by the
data generator program [OLAP]. These queries are randomly
generated to simulate the ad hoc and dynamic nature of OLAP
queries. There are 2500 queries in this set, but we run the first 500
queries only because of resource limitation. For each query, the
test program built by us loads in query parameters and based on
attributes in the group-by clause and where clause, rewrite the
query so that queries can be redirected to the "fittest" summary-
views, which are prepared in advance according to following
materialization plans. Then the test program starts the query and
logs the execution time.

Plan A. Flat Tables

All views are materialized as flat tables. For the biggest view, it
will be materialized as:

A4095 (CODE, CLASS, GROUP, FAMILY, LINE, DIVISION,
STORE, RETAILER, CHANNEL, MON, QTR, YR, USALES,
UDOLLAR);

Space required these 33 tables in the Oracle database is about
1.07 GB. The average query processing time for these queries is
5.98 seconds.

Plan B. Star Schemas

All views are materialized as Star Schemas. For the biggest view,
it is materialized as Fig. 1. Space required for these 33 fact tables
inside these Star Schemas is about 658 MB and the space
requirement for small dimensional tables (10 altogether) and
associated indexes (very small) is additional 3 MB. Comparing
with plan A, we have saved 40% of storage cost. However, if we
use the traditional index strategy and build a B+tree index on the
primary key for each view, the storage space required for these 33
indexes is 690 MB and the total space requirement shoot up to
1.351 GB.

Again, we run the same 500 queries against this indexed view set.
Average response time for these queries is only 0.16 seconds. It is
a big improvement. Space requirement is still very huge and index
loading and maintenance is very costly.

Plan C. Nested Relation Approach

First, we apply DPrime Index Set Filter on these 33 views. The
DOMRATE we used in this example is 20 and get 52 primary
DPrimes with four views with three primary DPrimes and eleven
views with two primary DPrimes.

If we have a known set of user queries, we can apply the Greedy
method used in [GHRU97] to pick various views and indexes. To
be fair with another two plans, we select all these 33 views and
select one index on primary DPrime for each view. For those
views with multiple primary DPrimes, we will pick the smallest
one. For the key sequence, we adopt a simple rule again and pick
the attributes from product dimension followed by those from
customer dimension, channel dimension and time dimension.

At the last step, we reorganize each view using the Nested
Relation Approach and materialize all views using Oracle
VARRAY. The space required for these 33 views is only 310
MB, or only 47% of space required for 33 views in Plan B. While
these 33 indexes require only 33 MB, or 4.8% of 690 MB for 33
indexes in Plan B. The total space required for all dimension
tables and indexes is 345MB, which is only 25% of overall space
requirement for Plan B.

We get an even better result in the performance test. The average
query processing time is 0.14 seconds. The summary of result for
these three plans is shown in Fig. 7.

Plan A
Flat Tables

Plan B
Star Schemas

Plan C
Nested Re lation Approach

Space requirement for tables 1070 MB 658 MB 310 MB

Space requirement for indexes 0 690 MB 33 MB

Space required for
 Dimension tables & indexes 0 3 MB 3 MB

Total 1070 MB 1351 MB 346 MB

Query Performance 5.98 sec/per query 0.16 sec/per query 0.14 sec/per query

Fig. 7 Performance Summary

The above results show that indexing is one of most efficient
methods to boost the query performance in OLAP systems.
However, the traditional index selecting method, indexing on
keys, is not very suitable for OLAP systems. While with our
newly proposed DPrime Index Set Filter and Nest Relation
approach method, the space requirement for indexes and views
reduces significantly. Moreover, the query performance gets
boosted also.

7. CONCLUSION
In this paper, we propose the index filtering method, DPrime
Index Set Filter, to filter out indexes that have insufficient index
selectivity or have cheaper alternatives. In addition, we also
propose a view materialization method, Nested Relation
Approach, to reorganize views based on selected indexes using
Oracle VARRAY. Besides accelerating OLAP queries efficiently,
this method cuts down the storage cost significantly, especially
for indexes.

In example 3, we apply our index filtering method on the same
example used in [GHRU97]. While maintaining index selectivity
above a pre-designed level, we build smaller indexes on subsets
of the primary key. Comparison shows that our method greatly

reduces the storage cost for indexes and keeps sufficient query
performance.

In addition, we also apply both of our methods upon a test system
based on data from OLAP Council. Result shows our method is
significant better than the widely used Star Schema. We achieve
better query performance with 4.7% of storage space for indexes
and 47% of storage space for tables, or less than 25% of total
storage space required by Star Schema method. Although real
systems are much bigger, we believe the efficiency of our
methods should remain.

REFERENCES
[GHRU97] H.Gupta, V.Harinarayan, A.Rajaraman, and

J.D.Ullman. Index selection for OLAP. In Proc.
ICDE’97, pp. 208 – 219

[HRU96] V.Harinarayan, A.Rajaraman, J.D.Ullman,
Implementing Data Cubes Efficiently, ACM
SIGMOD ’96, pp. 205-216

[JS97] T.Johnson and D.Shasha, Some approaches to Index
Design for Cube Forests, IEEE Data Engineering
Bulletin, MAR 1997, pp 36-35

[KIM97] R.Kimbal A Dimensional Modeling Manifesto AUG
1997 //www.dbmsmag.com

[KR98] Yannis Kotidis, Nick Roussopoulos, An Alternative
Storage Organization for ROLAP Aggregate View
Based on Cubetree, SIGMOD 1998

[M98] Guido Moerkotte, Small Materialized Aggregates: A
light Weight Index Structure for Data Warehousing,
Proc. VLDB’98

[O8TUN] Oracle 8 Turning, Release 8.0, pp. 10-3
[OG95] P.O’Neil, and G. Graefe, Multi-table joins through

bitmapped join indices. SIGMOD’1995
[OLAP] //www.olapcouncil.org
[OQ97] P.O’Neil, D.Quass, Improved Query Performance

with Variant Indexes, SIGMOD’97
[QL00] SG.Qiu, TW.Ling, View Selection in OLAP

Environment, DEXA 2000
[RKR97] Nick Roussopoulos, Yannis Kotidis, Mema

Roussopoulos, Cubetree: Organization of and Bulk
Incremental Updates on the Data Cube, SIGMOD
1997

[SAR97] Sarawagi, Indexing OLAP Data, IEEE Data
Engineering Bulletin, MAR 1997, pp 36-43

	INTRODUCTION
	BACKGROUND and RELATED WORKS
	MOTIVATION EXAMPLE
	INDEX FILTERING
	VIEW MATERIALIZATION
	EXPERIMENT
	CONCLUSION
	REFERENCES

