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ABSTRACT 
The method of assigning labels to the nodes of the XML tree is 
called a labeling scheme. Based on the labels only, both ordered 
and un-ordered queries can be processed without accessing the 
original XML file. One more important point for the labeling 
scheme is the label update cost in inserting or deleting a node into 
or from the XML tree. All the current labeling schemes have high 
update cost, therefore in this paper we propose a novel quaternary 
encoding approach for the labeling schemes. Based on this 
encoding approach, we need not re-label any existing nodes when 
the update is performed. Extensive experimental results on the 
XML datasets illustrate that our QED works much better than the 
existing labeling schemes on the label updates when considering 
either the number of nodes or the time for re-labeling. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query processing 

General Terms 
Algorithms, Performance. 

Keywords 
Dynamic XML, Labeling scheme, Update, Quaternary. 

1. INTRODUCTION 
As a standard to represent and exchange data on the web, XML 
[7] has gained a lot of attention from both research and enterprise 
areas. Presently there is a lot of interest in query processing over 
XML that conforms to an ordered tree-structured data model. 

There are two main techniques, viz. structural index and labeling 
(numbering) scheme, to facilitate the XML queries. The structural 
index approaches [10, 14, 15] can help to traverse the hierarchy of 
XML, but this traversal is costly. The labeling scheme approaches 
[1, 2, 21] require smaller storage space, yet they can efficiently 
determine the ancestor-descendant (A-D) and parent-child (P-C) 
relationships between any two elements of the XML. In this 
paper, we focus on the labeling schemes. 

If the XML is static, the current labelling schemes can efficiently 
process different queries. However if the XML is dynamically 
changed, how to efficiently update the labels of the labelling 
schemes becomes to an important issue. 

As we know, the elements in the XML are intrinsically ordered, 
which is referred as document order (the element sequence in the 
XML). The relative order of two paragraphs in the XML is 
important because the order may influence the semantics, thus the 
standard XML query languages (e.g., XPath[5] and XQuery [6]) 
require the output of queries to be in document order by default. 
Hence it is very important to maintain the document order when 
the XML is updated. 

Though some researches [3, 8, 17, 18, 19, 21] have been done to 
maintain the document order in updating, the update costs of these 
approaches are still expensive. Therefore in this paper we focus 
on how to efficiently update the XML. 

The main contributions of this paper are summarized as follows: 

• We propose a novel dynamic quaternary encoding (called QED) 
that can be applied to different labeling schemes. 

• QED completely avoids the re-labeling when the XML is 
updated. 

• We conduct comprehensive experiments to demonstrate the 
benefits of our QED over the previous approaches. 

The rest of the paper is organized as follows. Section 2 reviews 
the related work. We propose our dynamic quaternary encoding in 
Section 3. The most important part of this paper is Section 4, in 
which we show that the approach proposed in this paper is much 
more efficient than the existing schemes in processing updates. 
The experimental results are illustrated in Section 5, and we 
conclude in Section 6. 

2. RELATED WORK 
In this section, we present three families of labeling schemes, viz. 
containment [2, 13, 24], prefix [1, 8, 17, 19] and prime [21]. 

2.1 Containment Scheme 
Zhang et al [24] use a labeling scheme in which every node is 
assigned three values: “start”, “end” and “level”. For any two 
nodes u and v, u is an ancestor of v iff u.start < v.start and v.end < 
u.end. In other words, the interval of v is contained in the interval 
of u. Node u is a parent of node v iff u is an ancestor of v and 
v.level – u.level = 1. For instance, in Figure 1, “5,6,3” is a child 
of “2,7,2” since interval [5, 6] is contained in interval [2, 7] and 
levels 3 – 2 = 1. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CIKM’05, October 31-November 4, 2005, Bremen, Germany. 
Copyright 2005 ACM 1-59593-140-6/05/0010...$5.00. 
 



 
 

Although the containment scheme is efficient to determine the 
ancestor-descendant relationship, the insertion of a node will lead 
to a re-labeling of all the ancestor nodes of this inserted node and 
all the nodes after this inserted node in document order (if we do 
not re-label, not only can not the document order be maintained, 
but the containment scheme can not work correctly to determine 
the A-D etc. relationships). This problem may be alleviated if the 
interval size is increased with values unused [13]. However, large 
interval size wastes a lot of numbers which causes the increase of 
storage, while small interval size is easy to lead to re-labeling. 

To solve the re-labeling problem, [3] uses Float-point values for 
the “start” and “end” of the intervals. It seems that Float-point 
solves the re-labeling problem [19]. But in practice, the Float-
point is represented in a computer with a fixed number of bits [3, 
19]. As a result, only 18 nodes can be inserted at a fixed place [3] 
since [3] uses the consecutive integer values at the initial labeling. 
Even if [3] uses values with large gaps, it still can not avoid the 
re-labeling due to the float-point precision. In fact, Float-point is 
equivalent to the method in [13] that some values are unused at 
the beginning. Therefore, using real values instead of integers 
only provides limited benefit for the node updating [19, 21]. 

2.2 Prefix Scheme 
In the prefix labeling scheme, the label of a node is that its 
parent’s label (prefix) concatenates its own (self) label. For any 
two nodes u and v, u is an ancestor of v iff label(u) is a prefix of 
label(v). Node u is a parent of node v iff label(v) has no prefix 
when removing label(u) from the left side of label(v). 

DeweyID [19] labels the nth child of a node with an integer n, and 
this n should be concatenated to the prefix (its parent’s label) and 
delimiter (e.g. “.”) to form the complete label of this child node. 
In practice, DeweyID uses UTF8 [23] to process the delimiter. 

[8] uses Binary Strings (BinaryString) to label the XML tree. 
When a node is inserted, DeweyID [19] and BinaryString [8] both 
need to re-label the sibling nodes after this inserted node and the 
descendants of these siblings to maintain the document order. [11] 
is also based on binary strings, but it is dynamic. However [11] 
still can not completely avoid the re-labeling due to the overflow 
problem (see Example 3.2). 

OrdPath [17] is similar to DeweyID, but it only uses the odd 
numbers at the initial labeling. When the XML tree is updated, it 
uses the even number between two odd numbers to concatenate 
another odd number. When the sizes of the OrdPath codes 
overflow (see Example 3.2 in Section 3 for more details about the 
overflow problem), it must re-label all the existing nodes.  

[9] is similar to OrdPath [17] and [9] is not as compact as 
OrdPath. 

2.3 Prime Scheme 
Wu et al [21] use Prime numbers to label XML trees. The root 
node is labeled with “1” (integer). Based on a top-down approach, 
each node is given a unique prime number (self_label) and the 
label of each node is the product of its parent node’s label 
(parent_label) and its own self_label. For any two nodes u and v, 
u is an ancestor of v iff label(v) mod label(u) = 0. Node u is a 
parent of node v iff label(v)/self_label(v) = label(u). 

Prime [21] uses SC (Simultaneous Congruence) values in Chinese 
Remainder Theorem [4] to determine the document order, i.e. SC 
mod self_label = document order. When the order is changed, 
Prime needs to re-calculate the SC values instead of re-labeling. 

Although Prime supports order-sensitive updates without any re-
labeling of the existing nodes, it needs to re-calculate the SC 
values based on the new ordering of nodes. The re-calculation is 
very time consuming. 

2.4 Motivation 
All the current labeling schemes except Prime can not completely 
avoid the re-labeling in updates (OrdPath will encounter the 
overflow problem). Though Prime can completely avoid re-
labeling, it needs to re-calculate the SC values which is much 
more expensive than re-labeling. Therefore the main objective of 
this paper is to dramatically decrease the update costs and 
completely avoid the re-labeling (see Sections 4.1, 5.1 and 5.2). 

3. QED ENCODING 
In this section, we elaborate our Quaternary Encoding for 
Dynamic XML data (QED) which supports label insertion without 
re-labeling or re-calculation (see Section 4.1). For the 
containment scheme shown in Figure 1 (Section 2.1), the “start” 
and “end” values are from 1 to 16. These decimal numbers can be 
encoded in binary codes with fixed length, called FixedLength1 
(FixedLength column of Table 1) or with variable length, called 
VarLength (VarLength column of Table 1). 

Definition 3.1 (Quaternary code) Four numbers “0”, “1”, “2” 
and “3” are used in the code and each number is stored with two 
bits, i.e. “00”, “01”, “10” and “11”. 

Definition 3.2 (QED code) QED code is a quaternary code. The 
number “0” is used as the separator and only “1”, “2” and “3” 
are used in the QED code itself. 

Now let us discuss how to encode the “start”s and “end”s (1-16) 
using our QED encoding (16 is only an example for the tree in 
Figure 1; our QED encoding can be applied to any other numbers; 
see the formal algorithm in Section 3.1). The following steps 
show the details of how to get the QED codes in Table 1 and these 
steps are examples for the formal algorithms in Section 3.1. 

Step 1: In the encoding of the 16 numbers, we suppose there is 
one more number before number 1, say number 0, and one more 
number after number 16, say number 17. 

                                                                 
1  Float-point, DeweyID, OrdPath, Prime, FixedLength and 

VarLength are all existing schemes. QED-PREFIX and QED 
(with all fonts capitalized) are schemes proposed in this paper. 

Figure 1. Containment scheme. 
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Table 1. Binary and our QED encoding approaches 

Decimal FixedLength VarLength QED 
1 00001 1  112 
2 00010 10  12 
3 00011 11  122 
4 00100 100  13 
5 00101 101  132 
6 00110 110  2 
7 00111 111  212 
8 01000 1000  22 
9 01001 1001  23 

10 01010 1010  232 
11 01011 1011  3 
12 01100 1100  312 
13 01101 1101  32 
14 01110 1110  322 
15 01111 1111  33 
16 10000 10000  332 

Total size 80 54 76 
 

 

Step 2: The (1/3)th number is encoded with “2”, and the (2/3)th 
number is encoded with “3”. The (1/3)th number is number 6, 
which is calculated in this way, 6 = round(0+(17–0)/3). The 
(2/3)th number is number 11 (11 = round(0+(17–0)× 2/3)). 

Step 3: The (1/3)th and (2/3)th numbers between number 0 and 
number 6 are number 2 (2 = round(0+(6–0)/3)) and number 4 (4 = 
round(0+(6–0)× 2/3)). The QED code of number 0 (left code) is 
now empty with size 0 and the QED code of number 6 (right code) 
is now “2” with size 1 (here 1 refers to 2 bits). This is Case (a) 
where the left code size is smaller than the right code size. In 
this case, the (1/3)th code is that we change the last symbol of the 
right code to “1” and concatenate one more “2”, i.e. the code of 
number 2 is “12” (“2” → “1” and “1” ⊕ “2” → “12”), and the 
(2/3)th code is that we change the last symbol of the right code to 
“1” and concatenate one more “3”, i.e. the code of number 4 is 
“13” (“2”→ “1” and “1”⊕ “3”→ “13”). 

Step 4: The (1/3)th and (2/3)th numbers between numbers 6 and 11 
are numbers 8 (8 = round(6+(11–6)/3)) and 9 (9 = round(6+(11–
6)× 2/3)). The QED code of number 6 (left code) is “2” with size 
1 (here 1 refers to 2 bits) and the code of number 11 (right code) 
is “3” with size 1 (here 1 refers to 2 bits). This is Case (b) where 
the left code size is larger than or equal to the right code size. 
In this case, the (1/3)th code is that we directly concatenate one 
more “2” after the left code, i.e. the code of number 8 is “22” 
(“2” ⊕ “2” → “22”), and the (2/3)th code is that we directly 
concatenate one more “3” after the left code, i.e. the code of 
number 9 is “23” (“2”⊕ “3”→ “23”). 

Step 5: The (1/3)th and (2/3)th numbers between numbers 11 and 
17 are numbers 13 (13 = round(11+(17–11)/3)) and 15 (15 = 
round(11+(17–11) × 2/3)). The code of number 11 (left code) is 
“3” with size 1 and the code of number 17 (right code) is empty 
now with size 0. This is still Case (b). Therefore the QED code of 
number 13 is “32” (“3”⊕ “2”→ “32”), and the code of number 
15 is “33” (“3”⊕ “3”→ “33”). 

In this way, all the numbers will be encoded. Finally we need to 
discard the codes for numbers 0 and 17 since they do not exist 
actually. It should be noted that Step 1 is not compulsory, but with 
Step 1 the total code size is smaller. It should be noted also that if 
the (2/3)th number exactly refers to the (1/3)th number, the code 
for the (2/3)th number will not appear since this number has 
already been encoded with the (1/3)th code. 

With the following example illustration for the total code size, the 
formal size analysis in Section 3.2 will be easier to understand. 

Example 3.1 Table 1 shows that VarLength has smaller total code 
size than FixedLength. However, we also need to store the size of 
each VarLength code, e.g., the size of “10000” is 5. We need to 
store this 5 using fixed length of bits (“101”; 3 bits). The sizes of 
other codes should also be stored using fixed length of bits (3 
bits), therefore the total code size for VarLength is 3× 16+54=102 
bits which is larger than the bits required by FixedLength. 

Example 3.2 The size of each VarLength code is stored with 
fixed length (e.g. 3), therefore if many nodes are inserted into the 
XML tree, the fixed length size (e.g. 3) is not enough for the new 
labels, then we have to re-label all the existing nodes. Even if we 
increase the size 3 to a larger number, it still can not completely 
avoid the re-labeling, and it will waste the storage space. This is 
called the overflow problem in this paper. Similarly FixedLength 
and OrdPath [17] will encounter the overflow problem. 

Example 3.3 On the other hand, our QED uses the separator “0” 
(2 bits) to separate different codes instead of storing the sizes of 
the codes. For example, “1120120” will be separated to “112” and 
“12”. Therefore the size of our QED is 2× 16+76=108 bits. Each 
size code of VarLength is stored with 3 bits, and this 3 will 
increase as the number of nodes increases, but the size 2 (bits) of 
our separator “0” will never increase. More important, we will 
never encounter the overflow problem in this way. 

The most important feature of our QED is that it is based on the 
lexicographical order (for efficient updates in Section 4.1). 

Definition 3.3 (Lexicographical order  ) Given two 
Quaternary codes CA and CB, CA is lexicographically equal to CB 
iff they are exactly the same. CA is said to be lexicographically 
smaller than CB (CA   CB) iff 

(a) “0”   “1”   “2”   “3”, or 

(b) compare CA and CB symbol by symbol from left to right. If 
the current symbol SA of CA and the current symbol SB of CB 
satisfy condition (a), then CA   CB and stop the comparison, 
or 

(c) CA is a prefix of CB. 

Theorem 3.1 Our QED codes are lexicographically ordered but 
not numerically ordered. 

Example 3.4 The QED codes in Table 1 are lexicographically 
ordered from top to bottom. For example, “132”   “2” because 
the comparison is from left to right, and the 1st symbol of “132” is 
“1”, while the 1st symbol of “2” is “2”. Another example, “23”   
“232” because “23” is a prefix of “232”. 

When we replace the “start”s and “end”s (1-16) in Figure 1 with 
our QED codes, and based on the lexicographical comparison, a 
QED containment scheme is formed. 



3.1 The Formal Encoding Algorithm 
Algorithm 1: GetOneThirdAndTwoThirdCodes(Left_Code, 
Right_Code) 
Input: QED codes Left_Code, Right_Code, and Left_Code   
Right_Code 
Output: QED codes: Code_AtOneThirdPos, 
Code_AtTwoThirdPos, such that Left_Code   
Code_AtOneThirdPos   Code_AtTwoThirdPos   Right_Code 
  1: get the sizes of Left_Code and Right_Code 
  2: if Left_Code and Right_Code are both empty 
  3:     then Code_AtOneThirdPos = “2” 
  4:              Code_AtTwoThirdPos = “3” 
  5: else   //the below ⊕  means concatenation 
  6:     if size(Left_Code) <  size(Right_Code)   //case (a) 
  7:         then Temp_Code = the Right_Code with the last  
  8:                                                              symbol changed to “1” 
  9:                   Code_AtOneThirdPos = Temp_Code ⊕  “2” 
10:                   Code_AtTwoThirdPos = Temp_Code ⊕  “3” 
11:     else if size(Left_Code) ≥  size(Right_Code)   //case (b) 
12:         then Code_AtOneThirdPos = Left_Code ⊕  “2” 
13:                  Code_AtTwoThirdPos = Left_Code ⊕  “3” 

Figure 2. GetOneThirdAndTwoThirdCodes algorithm. 
 

Algorithm 2: Encoding(TN) 
Input: A positive integer TN 
Output: The QED codes for numbers 1 to TN 
  1: suppose there is one more number before the first number,  
      called number 0, and one more number after the last number, 
      called number (TN+1) 
  2: SubEncoding(codeArr, 0, TN+1)    
                                      //here codeArr is an array with size TN+2 
  3: discard the 0th and (TN+1)th elements of the array codeArr 
 
Procedure SubEncoding(codeArr, PL, PR) 
/*SubEncoding is a recursive procedure; codeArr is an array, PL is 
the left position, and PR is the right position*/ 

  4: PM1 = PL+round((PR-PL)/3)           (PM1 is the (1/3)th position) 
  5: PM2 = PL+round((PR-PL)× 2/3)     (PM2 is the (2/3)th position) 
  6: if PL ≠ PR 
  7:    then GetOneThirdAndTwoThirdCodes(codeArr[PL],  
                                                                                    codeArr[PR]) 
  8:    if PM1 ≠ PL and PM1 ≠ PR 
  9:       then codeArr[PM1]=Code_AtOneThirdPos  //from line 7 
10:    if PM2 ≠ PM1 and PM2 ≠  PR 
11:       then codeArr[PM2]=Code_AtTwoThirdPos  //from line 7 
12:    if (PM1 ≠ PL and PM1 ≠ PR) or (PM2 ≠ PL and PM2 ≠ PR) 
13:       then SubEncoding(codeArr, PL, PM1) 
14:                SubEncoding(codeArr, PM1, PM2) 
15:                SubEncoding(codeArr, PM2, PR) 

Figure 3. QED encoding algorithm. 
 
Algorithm 1 and Algorithm 2 are a summary of Step 1 to Step 5 
(in the previous page) which can be used to encode any total 
number (not only 16). Here we do not explain them in detail.  

3.2 Size Analysis 
The size in this paper refers to bits. The log in this paper is 
used as the logarithm to base 2. The log3 in this paper is 
used as the logarithm to base 3. 

In this section, we analyze the size required by Prime, Float-point, 
FixedLength, VarLength and our QED. The “D” and “N” are 
respectively used to denote the maximal depth and the number of 
nodes of an XML tree. 

Prime According to the size analysis of Prime in [21], the size 
required to store all the nodes in the XML tree is: 

))log(log( NNDN ×××     (1) 

Float-point According to [3], each float-point number is stored 
with 64 bits, thus the size of Float-point: 

642 ×N       (2) 

FixedLength The size of FixedLength is: 

))2log(log()2log(2 NNN +
)1)log(log(2)log(2 +++= NNNN    (3) 

))2log(log( N  is the size of label size (stored only once). 

VarLength For VarLength, one number 1 is stored with one bit 
(see VarLength column of Table 1), two numbers 2 and 3 are 
stored with 2 bits, four numbers 4, 5, 6 and 7 are stored with 3 
bits, ···, thus the total size of VarLength is: 

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn  

12 1 +×= +nn      (4) 

Since the number of nodes is N, the number of “start”s and “end”s 
is 2N which should be equal to 12222 110 −=+⋅⋅⋅++ +nn . 
However 2N is an even number and can not be equal to 12 1 −+n . 
We assume that there are 2N+1 numbers. After getting the 
VarLength codes, we can discard one number, i.e. 2N numbers 
are left. There is only a constant difference between 2N and 
2N+1, thus we assume that 2N+1= 12 1 −+n , then formula (4) 
becomes: 1)1log(2)1log(2 ++++ NNN   (5) 

Note that formula (5) is a little larger than the actural size required 
by VarLength. 

We need to store the size of each “start” and “end”. A fixed-
length number is used to store the size of the VarLength code. 
The maximal size for a “start” or an “end” is )2log( N . To store 
this size, the bits required are ))2log(log( N , then the total bits 
required to store the sizes of VarLength codes are 

))2log(log(2 NN . When taking formula (5) into account, the 
total size of VarLength is: 

1)1log(2)1log(2))2log(log(2 +++++ NNNNN  (6) 

QED When considering our QED, it has two numbers 6 and 11 
stored with size 1 (2 bits), 6 numbers 2, 4, 8, 9, 13 and 15 stored 
with size 2 (2 bits), ···, therefore its size is: 

+×××+×××+××× )23()32()22()32()21()32( 210                                            

                                        )2)1(()32( ×+××+⋅⋅⋅ nn  (bits) 

13)12( 1 +×+= +nn     (7) 

We assume +×+×= )32()32(2 10N 13)32( 1 −=×+⋅⋅⋅ +nn  (both 
sides are even numbers), then formula (7) becomes to: 



NNNN 2)12(log2)12(log4 33 −+++   (8) 

When considering the separator (“0”) size 22 ×N , the total label 
size of our QED is: 

NNNN 2)12(log2)12(log4 33 ++++   (9) 

It can be seen that VarLength has larger label size than 
FixedLength. Prime has larger size than VarLength. To make the 
size of Float-point smaller than VarLength, N should be grossly 
larger than 264, but generally speaking, an XML file can not have 
so many nodes. That is to say, Float-point has larger label size 
than VarLength. If N>264, 64 bits are not enough to store the 
Float-point values.  

When N=1, the size of our QED is 1.6 times of that of VarLength; 
when ]7,2[∈N , the multiple is between 1.16 and 1.28; when 

]38,8[∈N , the multiple is between 1.12 and 1.15; when 
]10000000,39[∈N , the multiple is between 1.11 and 1.13. Thus 

the size of our QED is only a little larger than the size of 
VarLength. 

Also we need to consider the “level” size for the containment 
schemes which is ))log(log()log( DDN +  and should be added 
into formulas (2), (3), (6) and (9) to form the total label sizes of 
these schemes.  

Note that for simplicity, we omit the ceiling functions on the log 
functions in all the formulas. 

3.3 Application Scope of QED 
Property 3.1 Our QED is orthogonal to specific labeling 
schemes, thus it can be applied to all the labeling schemes or 
other applications which need to maintain the order. 

Our QED encoding can be applied to the prefix scheme and prime 
scheme also to maintain the document order. When QED is 
applied to prefix, we call it QED-PREFIX. 

Example 3.5 Figure 4 shows that we apply QED to the prefix 
scheme. The root has 4 children. To encode 4 numbers based on 
our QED, the codes will be “12”, “2”, “3” and “32”. Similarly if 
there are two siblings, their self_labels are “2” and “3”. If there is 
only one sibling, its self_label is “2”. 

For the prefix scheme, the delimiter “.” can not be stored together 
with the numbers in the implementation to separate different 
components. 

For our QED encoding, we use the following approach to process 
the delimiters. We use one separator “0” as the delimiter to 
separate different components of a label (e.g. separate “12” and 
“3” in “12.3”; the separator “0” is equivalent to the “.” in Figure 
4), and use two consecutive separators “00” as the separator to 
separate different labels (e.g. separate “12.2” and “12.3”). 

 

We can apply our QED to the prime labeling scheme also to 
record the document order. But because Prime employs the 
modular and division operations to determine the ancestor-
descendant etc. relationships, its query efficiency is quite bad. 
Thus we do not discuss in detail how QED is applied to Prime. 

Similarly we can and it is better to apply our QED to the P-
Containment scheme proposed in [12] to completely avoid re-
labeling. 

4. UPDATE 
In Section 4.1, we show that our QED has much cheaper update 
cost. Section 4.2 analyzes the case for the frequent update. 

4.1 Avoid Re-labeling in Updates 
The deletion of a node will not affect the ordering of the nodes in 
the XML tree. Thus in this section, we only discuss the insertion. 

Algorithm 3 is similar to Algorithm 1, and their difference is 
marked in Figure 5 with italic fonts. Based on Algorithm 3, we 
can avoid the re-labeling. As the QED codes are long which can 
not be put in Figures 6, we still use decimal numbers in Figure 6 
for the “start” and “end” values, but in practice, these numbers are 
stored using our QED codes. Refer to Table 1 for the mappings 
between the decimal numbers and our QED codes. We use an 
example to show how Algorithm 3 works. 

Example 4.1 When inserting node “a” (see Figure 6), we should 
insert a number between the “start” of the parent “1” (Left_Code) 
and the “start” of the first sibling “2” (Right_Code). If we use the 
traditional approach, we can not insert a number between “1” and 
“2”, and we must re-label the nodes. However, when referring to 
Table 1, our QED codes for “1” and “2” are “112” and “12”. 
Based on the GetInsertedCode algorithm, we insert a value 
between “112” and “12”, then the “start” value of the inserted 
node “a” is “113” (see lines 5-8 of the GetInsertedCode algorithm 
in Figure 5). The “end” value of node “a” is an insertion between 
the new “start” “113” and the “start” of the first sibling “12”, thus 
the “end” value of “a” is “1132” (see lines 5, 9 and 10 in Figure 
5). Obviously, “112”   “113”   “1132”   “12” 
lexicographically. We need not re-label any existing nodes, but 
we can keep the containment scheme working correctly. 
 

Algorithm 3: GetInsertedCode 
Input: Left_Code, Right_Code 
Output: Inserted_Code, such that Left_Code   Inserted_Code 
  Right_Code lexicographically. 
  1: get the sizes of Left_Code and Right_Code 
  2: if size(Left_Code)  < size(Right_Code) 
  3:     then Inserted_Code = (the Right_Code with the last  
  4:                                                 symbol changed to “1”) ⊕  “2” 
  5: else if size(Left_Code) > size(Right_Code) 
  6:     if the last symbol of Left_Code is “2” 
  7:          then Inserted_Code = the Left_Code with the  
  8:                                        last symbol changed from “2” to “3” 
  9:     else if the last symbol of Left_Code is “3” 
10:          then Inserted_Code = Left_Code ⊕  “2” 
11: else if size(Left_Code) = size(Right_Code) 
12:    then Inserted_Code = Left_Code ⊕  “2”  

Figure 5. GetInsertedCode algorithm. Figure 4. QED-PREFIX scheme. 
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Theorem 4.1 Algorithm 3 guarantees that infinite number of 
QED codes can be inserted between any two consecutive QED 
codes with the orders kept and without any re-encoding of the 
existing numbers. 

Based on Theorem 4.1, the insertions of nodes “b”, “c” and “d” 
will not cause any re-labeling also. After insertion, the level 
values of “a”, “b” and “c” are still 2 (2 is a decimal number for 
illustration), but the level value of node “d” is 3. 

Now let us study the updates based on other schemes. 

Example 4.2 For the containment schemes FixedLength and 
VarLength, when “a” is inserted into the XML tree in Figure 6, all 
the “start” and “end” values except the “start” value of the root 
need to be added with 2. The “end” value of the root will be “18” 
after update. It is similar for “b”, “c” and “d”. 

Example 4.3 For the prefix schemes, our QED-PREFIX also need 
not re-label any existing nodes. DeweyID has to re-label all the 
sibling nodes after the inserted node and the descendants of these 
following sibling nodes. For Prime, the insertion of nodes will 
make the document order change (the orders of the nodes after 
this inserted node should all be added with 1), therefore Prime has 
to re-calculate the SC values. 

Sometimes Float-point [3] and OrdPath [17] also need not re-
label the nodes. Sections 5.1 and 5.2 are the update performance 
comparisons among Float-point, OrdPath and our approach. 

4.2 Frequent Update 
The size analysis in Section 3.2 is based on the initial labeling of 
the XML. Our encoding algorithm (see Figure 3) is step by step 
insertions of nodes uniformly at different places. Therefore if a 
sequence of nodes are inserted randomly at different places of the 
XML, the size analysis in Section 3.2 is still valid. 

For the case that nodes are always inserted at a fixed place of the 
XML, the size of our QED increases quickly. [8] proves that any 
deterministic labeling scheme which does not re-label nodes must 
in the worst case assign labels of size Omega(N). Our QED can 
not escape from this claim also, i.e. the label size of our QED 
increases linearly in the worst case. OrdPath [17] also has this 
skewed insertion problem. [18] uses B-tree to balance the update 

and lookup performance which can be used to process this skewed 
insertion problem. The skewed insertion is not an emphasis of this 
paper. In this paper, we mainly focus on how to completely avoid 
the re-labeling. 

5. PERFORMANCE STUDY 
In this section, we evaluate and compare the performance of 
different labeling schemes. All the schemes are implemented in 
Java and all the experiments are carried out on a 3.0 GHz Pentium 
4 processor with 1 GB RAM running Windows XP Professional. 

Table 2 shows the characteristics of the test datasets. D1, D2 and 
D3 are from [16], D5 and D6 are from [20], and all of them are 
real-world XML data. D4 is a benchmark generated by XMark 
[22]. 

Static XML is not the emphasis of this paper. However, we also 
test how our QED works on the static XML data which shows that 
our QED works not worse even in the static environment of XML 
(its label sizes are small in the six datasets shown in Table 2 and 
its query performance is not worse). 

For the dynamic XML, in Section 5.1 we show that our QED 
works much better compared to the existing labeling schemes 
except OrdPath and Float-point. Although it seems that OrdPath 
and Float-point also work well in the intermittent insertions, the 
wide update performance difference between OrdPath and our 
QED-PREFIX, and between Float-point and our QED can be seen 
from Section 5.2, where frequent updates are performed. 

OrdPath and our QED-PREFIX are prefix schemes. Float-point, 
FixedLength, VarLength, and our QED are containment schemes. 

5.1 Intermittent Update 
We select one XML file Hamlet in D2 to test the update 
performance (it is similar for other XML files). Hamlet has 5 act 
elements. We test the following six cases: inserting an act before 
act[1], inserting an act between act[1] and act[2], ···, inserting an 
act between act[4] and act[5], and inserting an act after act[5]. 

Figure 7(a) shows the number of nodes for re-labeling when 
applying different labeling schemes. FixedLength and VarLength 
have the same number of nodes to re-label in all the six cases. For 
case 1, 6596 (total 6636) nodes need to be re-labeled. 

For Prime, the number of SC values that are required to re-
calculate is counted in Figure 7(a). Because Prime uses each SC 
value for every five labels [21], the number of SC values required 
to re-calculate is 1/5 of the number of nodes required by 
FixedLength and VarLength to re-label. Note that it is impossible 
to use a single SC value for all the nodes in the XML since the SC 
value will be too large. 

Table 2. Test datasets 

Datasets Topics # of files Max/average fan-
out for a file 

Max/average 
depth for a file 

Total # of nodes 
for each dataset 

D1 Company 24 529/135 5/3 161576 
D2 Shakespeare’s play 37 434/48 6/5 179689 
D3 NASA 1882 1188/9 7/5 370292 
D4 XMark 1 25500/3242 12/6 1666315 
D5 Treebank 1 56384/1623 36/8 2437666 
D6 DBLP 1 328858/65930 6/3 3332130 

1,16,1 

14,15,2 
a b c 

d 

2,7,2 8,9,2 10,13,2 

3,4,3 5,6,3 11,12,3 
Figure 6. Update. 
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Figure 7. Performance study on intermittent update. 

 

In all the six cases, OrdPath1 (without overflow here), OrdPath2 
(without overflow here), our QED-PREFIX, Float-point (less than 
18 nodes), and our QED need not re-label any existing nodes. 

Next we study the time required to re-label nodes or re-calculate 
SC values. Figure 7(b) shows that the time required by Prime to 
re-calculate the SC values is much larger (more than 202 times; 
sum time of Case 1 to Case 6) than the time required by 
FixedLength and VarLength to re-label the nodes. Prime 
theoretically is a good scheme in updating order-sensitive nodes, 
but it is not practicable. In contrast, our QED-PREFIX and QED 
need less than 0.001 second (processing time) for the insertion in 
all the 6 cases. The processing time of FixedLength or VarLength 
is at least 84 times of that of QED-PREFIX and QED even if we 
assume that our QED needs 0.001 second for the update (in fact, 
it will be much larger than 84 times; see Section 5.2). 

It can be seen that OrdPath1, OrdPath2 and Float-point also need 
less than 0.001 second for the update. This is because only several 
nodes are inserted into the XML. The update performance 
difference among OrdPath, Float-point and our approach can be 
seen in Section 5.2 where frequent insertions are executed. 

5.2 Frequent Update 
When intermittent nodes are inserted into the XML, Prime, 
FixedLength and VarLength have much larger update time, thus it 

will be a disaster for them to update the XML with frequent and 
tiny insertions, which makes them impossible to answer any 
queries in either the uniformly frequent or skewed frequent 
insertion environment. In this section, we mainly compare the 
update performance between OrdPath and our QED-PREFIX, and 
between Float-point and our QED. Section 5.2.1 discusses the 
case that frequent insertions are randomly at different places of 
the XML. Section 5.2.2 discusses the worst case that frequent 
insertions are always at a fixed place of the XML. 

5.2.1 Uniformly Frequent Update 
In this section, we test the uniformly distributed frequent 
insertions. The Hamlet file has totally 6636 nodes. We insert 6635 
nodes between every two consecutive nodes of the 6636 nodes. 
Based on the new file after insertion, we insert another 13270 
nodes between any two consecutive nodes. We repeat this kind of 
insertion 6 times. After the 6th time insertion, the node number in 
Hamlet is 424641 that is 63.99 times of the original node number. 

The first two time insertions and the first four time insertions 
respectively will not cause OrdPath [17] (without overflow) and 
Float-point [3] (less than 18 nodes at a fixed place) to re-label the 
existing nodes. Even without re-labeling, Figure 8(a) shows that 
the update time of OrdPath is still at least 529 times of that of our 
QED-PREFIX and Figure 8(b) shows that the update time of 
Float-point is 386 times of that of our QED. OrdPath and Float-
point have much larger update time because they need the 
addition and division operations to get the numbers between two 
numbers which are very expensive. On the other hand, our QED-
PREFIX and QED only need to modify the last quaternary 
number (two bits) of the neighbor label to get the label of the 
inserted node which is much cheaper. 

At the 3rd time insertion, OrdPath needs to re-label all the existing 
nodes, and at the 5th and 6th time insertions, Float-point needs to 
re-label all the existing nodes. The re-labeling time of OrdPath 
and Float-point is at least 2492 times of that of our QED-PREFIX 
and QED (see Figures 8(a) and 8(b)). 

5.2.2 Skewed Frequent Update 
In this section, we test the case that nodes are always inserted at a 
fixed place of the Hamlet XML. 

Figure 9 shows the re-labeling time (the update time without re-
labeling in skewed frequent insertions is similar to the update time 
shown in Figure 8). For OrdPath (OrdPath1 and OrdPath2) [17], 
after inserting 163 nodes at the fixed place, it needs to re-label 5 
times. The re-labeling time of OrdPath is at least 8126 times of 
that of our QED-PREFIX (see Figure 9(a)). When every 18 nodes 
are inserted at the fixed place of the XML, Float-point [3] needs 
to re-label. The update time of Float-point is 34383 times of that 
of our QED after 199 nodes are inserted (see Figure 9(b)). 

 

The very large update time makes OrdPath and Float-point 
unsuitable to answer queries no matter in the uniformly or in the 
skewed frequent insertion environment. This means even if we do 
not use any skeweness processing technique, our QED still works 
the best to answer queries in the environment that frequent 
insertions are executed. 

For the frequent update, our QED-PREFIX and QED have much 
cheaper update cost than OrdPath and Float-point. 
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Figure 8. Performance study on uniformly frequent update. Figure 9. Performance study on skewed frequent update.

6. CONCLUSION 
In this paper, we have proposed a novel Dynamic Quaternary 
Encoding (QED) approach for the labeling schemes. This 
encoding approach is orthogonal to specific labeling schemes, 
therefore it can be applied broadly to different labeling shemes, 
e.g. containment, prefix and prime schemes, to maintain the 
document order when the XML is updated. 

The QED (or QED-PREFIX) proposed in this paper completely 
(no overflow) avoids the re-labeling in XML update. When a 
node is inserted, our QED (or QED-PREFIX) only needs to 
modify the last quaternary number (two bits) of the neighbor label 
to get the label of the inserted node which is very easy and cheap 
compared to Float-point (or OrdPath). The experimental results 
show that our QED (or QED-PREFIX) encoding is the only 
approach which supports frequent insertions efficiently. 
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