

Automatic Generation of SQLX View Definitions
from ORA-SS Views

Ya Bing Chen, Tok Wang Ling, Mong Li Lee

School of Computing, National University of Singapore
{chenyabi, lingtw, leeml}@comp.nus.edu.sg

Abstract. Although XML is the dominant standard for publishing and exchang-
ing data for Internet-based business applications, data is typically stored in rela-
tional or object-relational databases. Thus, it is necessary to define XML views
over these traditional databases. Unfortunately, it is not easy for users to manu-
ally write SQLX queries to define the XML views. This paper describes a
method to automatically generate SQLX view definitions from object-relational
databases. We utilize the semantically rich ORA-SS data model to capture the
schematic structure and semantics of the underlying data. Valid ORA-SS views
are first designed on the ORA-SS schema, before they are mapped to XML
views. The generated view definitions are SQL queries with XML extension
(SQLX) that can be directly evaluated on object-relational databases to materi-
alize the views. This approach removes the need to manually write executable
view definitions for the XML views, and provides a user-friendly interface to
retrieve XML data via views.

1 Introduction

In this work, we consider XML views in a particular case where the XML
data are stored in an object-relational database. The conceptual schema for
XML views are first extracted using the semantically rich ORA-SS data
model [6]. The semantics captured in the ORA-SS data model are then used
to map the XML data into a set of nested tables in the object-relational data-
base [9]. This storage method avoids the unnecessary redundancies that exist
in the case where XML data are stored in XML files. Next, valid XML views
are designed based on the ORA-SS source schema with the query operators
defined in [3]. The designed XML views are also expressed in ORA-SS
schema, which is not executable on the underlying database. In order to gen-
erate the result of the XML views, we use SQLX [10] to express the ORA-SS
views. SQLX are SQL queries with XML extension (SQLX) which can be
directly evaluated in the object-relational database to produce XML docu-
ments.

However, it is difficult to manually write SQLX view definitions for the
XML views. Further, such definitions are not easy to understand. Thus, we
propose an approach to automatically translate the designed ORA-SS views
into SQLX query expressions. The approach removes the need for users to
manually write complex SQLX view definitions. It can be used to materialize
the views and map queries issued on ORA-SS views into the equivalent que-
ries in SQLX syntax on the underlying database.

The rest of the paper is organized as follows. Section 2 presents the pro-
posed approach to generate SQLX query definitions from valid ORA-SS
views. Section 3 briefly reviews related works and concludes.

2 Generating SQLX Query Definitions

There are two steps to generate SQLX query expressions from ORA-SS
views. First, we must discover how the relationship types in ORA-SS source
schema are changed into new relationship types in the view schema so that
we can identify the necessary mapping information when generating SQLX
view definitions. Second, we generate the appropriate query block for differ-
ent object classes and attributes in ORA-SS view schema. The following sub
sections give the details of these two steps.

2.1 Relationship Types in ORA-SS Views

There are two relationship types in ORA-SS views. The first is the original
relationship types that exist in the source schema, while the second is the new
relationship types that are derived from original relationship types in the
source schema. The new relationship types can be obtained in two ways dur-
ing the design of ORA-SS views.

A. Project Existing Relationship Types.
New relationship types can be derived by projecting existing relationship
types in the source schema.

Rule Proj: If an object class Oi������������	
���
	��������
�����
����
�
����

relationship type R involving Oi, we create
������key1,…,keyi-1, keyi+1, …, keyn R

in the view and the attributes of R (say attrj, j=1, 2,…,m) are dropped in de-
fault by the drop operator. R has the following storage relation schema:

R(key1, key2, …, keyn, attr1, attr2, …, attrm),
where key1, key2, …, keyn are the keys of O1, O2, …, On respectively, which
also form the key of R, and attr1, attr2, …, attrm are the attributes of R.

B. Join Existing Relationship Types
New relationship types can also be derived by joining existing relationship
types in source schema.

Rule Join: If all the object classes of relationship types R1 and R2 are in a
continual path in the source schema, and R1 and R2 have common object
classes and all the common object classes are dropped in a view, then R1 and
R2 are joined based on their common object classes in the view to create

������keyi, … key j (R1 keyl, … keym R2)
where keyl, … keym are the keys of the common object classes of R1 and R2,
while keyi, …, keyj are the keys of the rest object classes of R1 and R2 in the
view. Thus, R’ has the following relation schema

R’(keyi, …, keyj) .
Based on the above two rules, we can determine how relationship types are

derived in ORA-SS views. This enables us to map the derived relationship
types back to their corresponding original ones in source schema when gener-
ating condition constraints for an object class in view schema.

2.2 Generation Rules

Without the semantics of relationship types among object classes in the view,
we have to consider all the ancestors of an object class in the view to generate
the condition constraints. Fortunately, we have identified the various relation-
ship types that can occur in an ORA-SS view. This allows us to identify
which particular ancestors’ values determine the value of an object class
through the relationship types involved. In other words, based on the ances-
tors and the relationship types, we can generate the condition constraints for
the object class.

Definition 1. Given an object class O in an ORA-SS view V, if an ancestor
of O participates in a relationship type R with O in V, then the ancestor is
called a Determining Object Class (DOC) of O in the view, and the relation-
ship type R is called a Determining Relationship Type (DRT) of O in the
view.

We employ the information of DRTs and DOCs of each object class to
construct two rules to generate the condition constraints for an object class in
an ORA-SS view. Rule Gen 1 generates condition constraints for the query
expression of object class O in the case where the set of DRTs of O is not
null in the view. Since the attributes of O are stored together with O in the
underlying database, we do not need to consider the attributes of O separately
when we generate the condition constraints for O. Rule Gen 2 generates ap-
propriate query block for attributes of relationship types in the view.

Suppose the DRTs of O in the view is {R1, R2, …, Rk}. There are three
cases for Ri (i=1, …, k) in the DRTs which cover all the possible cases in
which a relationship type in an ORA-SS view can be. For each case, we will
give a sub-rule for generating condition constraints for O.

Rule Gen 1: If the set of DRTs of O in the view is {R1, R2, …, Rk}, then
Case 1. If Ri� �������� ��� ��� �
�������

����������� ���
� �
��� ��
� ���
�
�

schema and contains the DOCs of O (say {O1, …, Oi}), then we generate the
following condition constraints in the Where clause of the query block of O:

O.key=Ri.O.key and Ri.O1.key=O1.key and … and Ri. Oi.key=Oi.key
The condition constraints indicate that only those instances of O are cho-

sen which exist in an record of Ri whose values of O1, …, Oi are equal to the
current values of O1, …, Oi.

Case 2. If Ri��������������	

��
	�

��������������
��
�

ated by applying
projection operators to an original relationship type Ri’ in source schema and
Ri contains the DOCs of O (say {O1, …, Oi}), then we use Ri’ to generate the
following condition constraints in the Where clause of the query block of O:

 O.key=Ri’.O.key and Ri’.O1.key=O1.key and … and Ri’. Oi.key=Oi.key
The difference between Case 1 and Case 2 is that we replace Ri with the

original one Ri’ in Case 2. Without such rewriting, the condition constraints
will not be executable because Ri is a virtual one only shown in the view.

Case 3. If Ri��������������	

��
	�

��������������
��
�

��
	�������������

join operators to several original relationship types (say Ri1, Ri2, …, Rij) in
source schema and involves the DOCs of O (say O1, …, Oi) in the view, then
we first generate the following condition constraints using Ri in the Where
clause of the query block of O:

 O.key = Ri.O.key and O1.key = Ri.O1.key and … and Oi.key = Ri.Oi.key
This condition constraints express the influence of DOCs (O1, …, Oi) on O

through Ri in the view. However, Ri is a virtual relationship type and does not
exist in the source schema. The following steps rewrite the condition con-
straints to involve the actual relations.

Step 1. If O participates in the original relationship type Rip������������
��

O.key = Ri.O.key in the condition constraints is rewritten into O.key =
Rip.O.key.

Step 2. If Oq� �������� ��
�������
�� ��� ��
� �
�������

����������� ���
� �ip
�����������
��Oq.key = Ri.Oq.key in the condition constraints is rewritten into
Oq.key = Rip.Oq.key.

Step 3. If O, O1, O2, …, Oi participate in the original relationship types Ri1,
Ri2, …, Rim� ��������

��
����
���� ��
�� �
� ���
�	� ��
� ��llowing condition
constraints in the rewritten condition constraints: Ri1.Oc1.key = Ri2.Oc1.key
and … and Rim-1.Ocr.key = Rim.Ocr.key, where Oc1, …, Ocr are the common
object classes of Ri1, …, Rim, based on which they are joined.

Step 1 rewrites the condition constraint involving object class O. Step 2
rewrites the condition constraints involving all DOCs of O (O1, …, Oi) in Ri

in the view. Step 3 constructs new condition constraints involving the com-
mon object classes of Ri1, Ri2, …, Rim�����������	����
�	���
�������
�

�
�t-
ten one, which actually link the condition constraints rewritten in Steps 1 and
2. In this way, the rewritten condition constraints still express the influence of
DOCs (O1, …, Oi) on O through Ri.

Next, we need to process the relationship attributes in the view in Rule
Gen 2. There are two cases in which an attribute of a relationship type can be
in an ORA-SS view.

Rule Gen 2: If an attribute A belongs to a relationship type R and is lo-
cated below object class O in the ORA-SS view, then

Case 1 If R is an original relationship type in source schema and involves
the DOCs of O (say {O1, …, Oi}) in the view, then we generate an xmlele-
ment function for the attribute A as a sub-element of O within the Select
clause of the query block of O: xmlelement(“A”, R.A)

In this case, we generate the attribute A as a sub element of O instead of an
attribute of O since A is a relationship attribute.

Case 2 If R is a derived relationship type generated by projecting a original
relationship type R’ in source schema, and R involves DOCs of O in the view:
O1, O2, …, Oj and Oj+1, Oj+2, …, Op are the dropped object classes from R’,
and the original attribute for A is A’ in the source, then we generate a sub-
query for the attribute A as a sub-element of O within the Select clause of the
query block of O:

 Select xmlelement(agg(A’))
 From R’
 Where O1.key=R’.O1.key and … and Oj.key=R’.Oj.key
 Group by Oj+1, Oj+2, …, Op

The attribute A must be an aggregate attribute by applying some aggregate
function such as sum, avg, or max/min to the original attribute A’. Thus, we
have to use a sub query to express the correct occurrences of A in the XML
view.

We have developed an algorithm based on Rule Gen 1 & 2 to automatically
generate the SQLX query definition for an ORA-SS view schema. The algo-
rithm takes as input an ORA-SS view, the underlying ORA-SS source schema,
and the corresponding storage schema in the object-relational database. The
output is the SQLX query definition for the view.

3 Conclusion

SilkRoute [7] adopts a declarative language RXL to define XML views over
relational data and the other language XML-QL to query views. XPERANTO
[2] uses a canonical mapping to create a default XML view from relational
data. Then it utilizes XQuery to define other views based on the default view.
Xyleme [5] defines XML views on XML source data by connecting one ab-
stract DTD to a large collection of concrete DTDs. XML views are also sup-
ported as a middleware in integration systems, such as MIX [1], YAT [4] and
Agora [8] in order to fulfill the potential of XML.

Our work differs from the related work in the following aspects. First, we
take into consideration semantic information when designing XML views,
which are thus guaranteed to be valid. Second, we adopt a user-friendly ap-
proach to retrieve XML data via views by automatically generating SQLX
query expressions for the ORA-SS views.

The proposed approach not only materializes XML views, but also maps
queries issued on the XML views into the equivalent queries in SQLX syntax
on the underlying database. To the best of our knowledge, this is the first
work to employ a semantic data model to design and query XML views.

References

1. C. Baru, A. Gupta, B. Ludaescher, et. al. XML-Based Information Mediation
with MIX, ACM SIGMOD (Demo), 1999.

2. M. Carey, J. Kiernan, J. Shanmugasundaram, et. al. XPERANTO: A Middleware
for Publishing Object-Relational Data as XML Documents, VLDB, 2000.

3. Y.B. Chen, T.W. Ling, M.L. Lee. Designing Valid XML Views, ER Conference,
2002.

4. V. Christophides, S. Cluet, J. Simeon. On Wrapping Query Languages and Effi-
cient XML Integration, ACM SIGMOD, 2000.

5. S. Cluet, P. Veltri, D. Vodislav. Views in a Large Scale XML Repository, VLDB,
2001.

6. G. Dobbie, X.Y Wu, T.W Ling, M.L Lee. ORA-SS: An Object-Relationship-
Attribute Model for SemiStructured Data, Technical Report TR21/00, School of
Computing, National University of Singapore, 2000.

7. M. Fernandez, W. Tan, D. Suciu. SilkRoute: Trading Between Relations and
XML, World Wide Web Conference, 1999.

8. I. Manolescu, D. Florescu, D. Kossmann. Answering XML Queries over Hetero-
geneous Data Sources, VLDB, 2001.

9. Y.Y.Mo, T.W.Ling. Storing and Maintaining Semistructured Data Efficiently in
an Object-Relational Database, WISE Conference, 2002.

10. SQLX. http://www.sqlx.org

