
XTree for Declarative XML Querying

Zhuo Chen1, Tok Wang Ling1, Mengchi Liu2, and Gillian Dobbie3

1 School of Computing, National University of Singapore,
Lower Kent Ridge Road, Singapore 119260

{chenzhuo, lingtw}@comp.nus.edu.sg
2 School of Computer Science, Carleton University,

Ottawa, Ontario, Canada K1S 5B6
mengchi@scs.carleton.ca

3 Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

gill@cs.auckland.ac.nz

Abstract. How to query XML documents to extract and restructure the infor-
mation is an important issue in XML research. Currently, XQuery based on
XPath is the most promising standard of W3C. In this paper, we introduce a
new set of syntax rules called XTree, which is a generalization of XPath. XTree
has a tree structure, and a user can bind multiple variables in one XTree expres-
sion. It explicitly identifies list-valued variables, and defines some natural built-
in functions to manipulate them. XTree expression can also be used in the result
construction part of a query, to make it easy to read and comprehend. With
these differences, XTree expressions are much more compact, and more con-
venient to write and understand than XPath expressions. We also give algo-
rithms to convert queries based on XTree expressions to standard XQuery que-
ries.

1 Introduction

XML is fast emerging as the dominant standard for data representation and exchange
in the web. How to query XML documents is an important issue in XML research.
There have been various query languages proposed in the past few years, such as
XPath[8], XQuery[9], Lorel[1], XML-GL[2], XQL[10], XML-QL[11], XSLT[12],
YATL[3], XDuce[4], a declarative XML query language[5], a rule-based query lan-
guage[6], etc. Some of them are in the tradition of database query languages, others
are more closely inspired by XML. The XML Query Working Group has published
XML Query Requirements for XML query languages[7], and XQuery has been se-
lected as the basis for an official W3C query language for XML.

Unlike querying on relational databases whose results are always flat relations, the
results of queries on XML documents are complex, and need to be formatted explic-
itly. Thus, XML queries must have two parts: a querying part and a result construction
part. The existing XML query languages intermix these two parts in a nested way and
thus make queries complicated. For example, XML-QL has two constructs: where and

construct, for querying and result construction respectively. However, the construct
clause can contain nested where-construct clauses so that querying and result-
construction are intermixed. Similarly, for XQuery, it uses five constructs: for, let,
where, order by and return, i.e., FLWOR expressions. As in XML-QL, FLWOR ex-
pressions can be nested in the return clause to form a nested querying structure.

In this paper, we will analyze the limitations of XPath, and propose a new set of
syntax rules called XTree, which is a generalization of XPath, and show how it can
efficiently replace the notations of XPath. To be compatible with current XQuery
parsers, we also give algorithms to convert queries based on XTree expressions to
standard XQuery queries.

The rest of this paper is organized as follows. Section 2 introduces the background
of XPath and XQuery, and discusses their limitations. Section 3 introduces the XTree
syntax with some examples. Section 4 gives algorithms to transform queries based on
XTree expressions to standard XQuery queries. Finally, section 5 summarizes this
paper and points out future research directions.

2 Background on XPath and XQuery

XPath[8] is a set of syntax rules for defining parts of XML documents. It uses paths to
locate nodes (elements and attributes) in XML documents, and the path expressions
look very much like computer file system paths. For example, consider the following
bibliography XML document in Fig. 1.

Fig. 1. Sample bibliography XML document

Table 1 gives some examples of XPath expressions, according to the XML docu-
ment in Fig. 1.

<bib name=“IT”>
 <book id=“b001” year=“1994”>
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 </book>
 <book id=“b002” year=“2000”>
 <title>Data on the Web</title>
 <author><last>Abiteboul</last><first>Serge</first></author>
 <author><last>Buneman</last><first>Peter</first></author>
 <author><last>Suciu</last><first>Dan</first></author>
 <publisher>Morgan Kaufmann</publisher>
 </book>
 <journal id=“j001” year=“1998”>
 <title>XML</title>
 <editor><last>Date</last><first>C.</first></editor>
 <editor><last>Gerbarg</last><first>M.</first></editor>
 </journal>
</bib>

Table 1. Sample XPath expressions

XPath expression Description
/bib/book/@year get attribute “year” of each book.
/bib/book/author get element “author” of each book.
//author get all elements named “author”, regardless of their absolute paths.
/bib/book/* get all subelements of each book.
/bib/book/@* get all attributes of each book.

XQuery[9] is a powerful way to search XML documents for specific information. It
is based on XPath and has the FLWOR statements. For clause (syntax: “For $var in
xpath-expression”) iterates the variable over the result of the XPath expression,
whereas let clause (syntax: “Let $var := xpath-expression”) bind the variable to the
result of the XPath expression. XQuery also supports complex queries and complex
result constructions with nested clauses.

Although XPath can clearly define a unique path in the XML tree, it has some limi-
tations. Firstly, in an XPath expression, although the condition can be a branch, there
is still a linear path to the target node set. Thus, we can only assign one variable for
each XPath expression, which is very inefficient. If a query uses several paths, a user
must assign a variable to each path.
Example 1. If a user is interested in title, authors and publisher of each book in the
bibliography data in Fig.1, we have to write the following statements in querying part:

for $b in /bib/book
let $t := $b/title, $a := $b/author, $p := $b/publisher

Secondly, it is difficult to reveal the relationship among correlated XPaths, as
XPath does not show such correlation explicitly. This may cause some mistakes if the
user does not pay attention when writing a query.
Example 2. Create a flat list of all the title-author pairs for all the books, and each
pair is enclosed in a “result” element. Fig. 2a is a wrong answer, because it does not
pay attention to the correlation of the two XPaths. It will produce a Cartesian product
of all authors and titles, regardless whether they are of the same book. Fig. 2b gives
the correct version of this query. Note that the curly braces { } means enclosed expres-
sion in XQuery, which force the inner code to be evaluated and replaced by their value,
instead of being treated as literal text.

Fig. 2a. Wrong answer Fig. 2b. Correct answer

Thirdly, XPath expressions are only used in the querying part of XQuery, not in the
result construction part. For the result construction part of XQuery, XML segments
can be written directly in the return clauses. The mixture of literal text, enclosed ex-

for $t in /bib/book/title,
 $a in /bib/book/author
return
 <result>
 { $t }
 { $a }
 </result>

for $b in /bib/book,
 $t in $b/title, $a in $b/author
return
 <result>
 { $t }
 { $a }
 </result>

pressions and even nested sub-queries in the result construction make the whole query
difficult to read and comprehend.

Finally, XPath can only bind variables on the whole node (attribute or element)
structure, which is a name-value pair. If we want to get some substructure (name or
value) of the node, we have to invoke some built-in functions (local-name() to get
node name, string() to get string value). Thus it is difficult to query XML documents
with unknown structure, or to rename the nodes in the returned result.

3 XTree

We now introduce a new set of syntax rules called XTree, which is a generalization of
XPath. It has a tree structure like the structure of XML documents. As in XPath, child
node follows parent node via a slash /, and a double-slash // means no matter how
many levels down. However, in XTree expressions, sibling tree nodes are enclosed by
curly braces { } and are separated by commas, and { } can be nested.

In XTree expressions, we use logical variables as place holders to bind/match the
values at their places. Because we need to bind various parts of XML documents to
logical variables, in order to be flexible and easy to use in practice, the variables in
XTree are non-typed. A variable can be used for any location, but when the same
variable occurs in different places in the query, it has the same value. There are two
kinds of variables: single-valued variables and list-valued variables. Single-valued
variables start with $, such as $X. List-valued variables are of the form {$X} which is
constructed from the single-valued variable $X that ranges over all $X instances in a
list. Note that both sibling nodes and list-valued variables are enclosed by curly braces,
but it is very easy to differentiate them. Sibling nodes will have commas as separators
in the braces, whereas list-valued variables do not have comma in braces.

In XTree expressions, symbol → is used to assign values to variables, it is used in
the querying part only; and symbol ← is used to get values from variables, it is used in
the result construction part only. Because we can write the result construction part as
an XTree expression, we do not need to use curly braces { } to indicate the enclosed
expression, or nested query blocks.

3.1 XTree in Querying Part

In the querying part of a query, XTree expressions can be used to bind variables on
some specific sets of nodes. Symbol → will assign values of nodes on the left side to
the variable on the right side. If the right side is a single-valued variable, it means to
iterate the node values one by one, as in for clause of XQuery; if the right side is a list-
valued variable, it means to keep all node values in the list, as in let clause of XQuery.
Example 3. For the XML document in Fig. 1, if we are interested in the year and title
of each book, and its authors’ last names and first names, we can use the variables $y,
$t, $first, $last to bind them respectively as follows:

bib/book/{@year→$y, title→$t, author/{last→$last, first→$first}}

In this way, we can instantiate many variables in one XTree expression, while each
XPath expression can only instantiate one variable. The above XTree expression cor-
responds to the following 6 XPath expressions in XQuery:

for $book in /bib/book,
 $y in $book/@year, $t in $book/title, $author in $book/author,
 $last in $author/last, $first in $author/first

Example 4. XTree allows a user to use path abbreviations as in XPath, suppose we
want to get the last name and first name elements at whatever depth in the document,
we can write the following XTree expression:

/bib//{last→$last, first→$first}
Here the curly braces { } enclosing two elements last and first specifies that these

two elements are siblings, they share a common parent, which is /bib/book/author or
/bib/journal/editor according to the sample XML document in Fig. 1.

XTree also allows a user to bind variables on the structure of XML document, that
is, a user can write variable $var on the left side of → symbol, and here $var will be
bound to the name of the corresponding element or attribute.
Example 5. If we want to obtain some attribute with value “2000” in some book
element, and bind variable $b to that book, we can use the following expression:

/bib/book→$b/@$attr=“2000”
According to the sample XML document in Fig. 1, $b will bind to the second book

element, and $attr will bind to string “year”, which is the attribute name. The XQuery
version of this query is as following, which is more complicated (note the use of built-
in functions to split the name-value pair of variable $attr):

for $b in /bib/book,
 $attr in $b/@*
where string($attr) = “2000”
return local-name($attr)

3.2 List-valued Variables

List-valued variables are like the variables in let clauses of XQuery, however in
XQuery these variables look exactly like single-valued variables. In XTree, list-valued
variables are explicitly indicated by curly braces { }. Also, unlike XPath and XQuery
which use many unintuitive functions, we define some natural functions that are obvi-
ous and easy to understand, and they are used in object-oriented fashion.
Example 6. Suppose list-valued variable {$numbers} binds to a list of numbers, then
we can obtain their aggregate values as follows:

{$numbers}.count() returns the number of items in the list
{$numbers}.avg() returns the average value of items in the list
{$numbers}.min() returns the minimum value in the list
{$numbers}.max() returns the maximum value in the list
{$numbers}.sum() returns the sum of values in the list

Example 7. Suppose list-valued variable {$names} bind to a list of name elements,
then we have the following built-in functions and operators:

{$names}[1-3, 6] returns a sublist containing 1st to 3rd items, and the 6th item
{$names}.last() returns the last item in the list
{$names}.sort() sorts the items in the list in ascending order
{$names}.sort_desc() sorts the items in the list in descending order
{$names}.distinct() eliminates duplicate items in the list
{$names}.random(3) picks out 3 items randomly
$name ∈ {$names} checks whether an item is in the list
{$names’}⊆{$names} checks whether the first list is a sublist of the second list

Next we will define the semantics of list-valued variables.
Definition 1. The associated path of variable $a (or {$a}) is the absolute path ex-
pression from root to the nodes represented by $a (or {$a}).

For example, in XTree expression /bib/book→$b/title→$t, the associated path of
$t is /bib/book/title.
Definition 2. Variable $a is an ancestor variable of $b if $a and $b are defined in the
same XTree expression, and the associated path of $a is a prefix of the associated path
of $b.

For example, in XTree expression /bib/book→$b/{title→$t, author→$a}, $b is an
ancestor variable of $t and $a, but $t is not an ancestor variable of $a.
Definition 3. In an XTree expression, when a variable is bound to a value in the
query evaluation, the variable is instantiated.

For example, in XTree expression /bib/book/{author→$a/first→$first, title→$t},
in the evaluation, when we have reach /bib/book/author, $a is instantiated; when
reach /bib/book/author/first, $first is instantiated.
Definition 4. The value of list-valued variable {$a} is a list of all instances of $a with
all its ancestor variables instantiated.
Example 8. Compare the following two XTree expressions:

XTree expression Value of {$a}
/bib/book/author→{$a} all the author elements of all the books.
/bib/book→$b/author→{$a} all the authors of a certain book $b. When $b is bound to

next book, {$a} will also bind to the authors of next book.

Note that in the first expression, value of {$a} is the concatenation of all the authors
of each book, which may include duplicated authors (an author may write several
books). We can use the function {$a}.distinct() to remove duplicates.

3.3 XTree in Result Construction Part

XTree expressions not only can be used to bind variables in the querying part, but also
can be used to define the result format. We use symbol ← to get values of variables
from right side and assign them to the expressions on the left side. If the right side is a
single-valued variable, we just put its value of current iteration to the left side expres-
sion; if the right side is a list-valued variable, we will put each value in the list to the
left side expression. Unlike the return clause in XQuery that often mixes XML plain
text, enclosed expressions and even sub-queries, here the result construction part is
just an XTree expression without nesting, which is very simple and easy to read.

Note that unlike the XTree expressions in the querying part, which allow conditions
and abbreviations (such as // for any levels down, * for all sub-elements, @* for all
attributes), the XTree expression in the result construction part must be a concrete one,
which does not allow any condition checking or uncertainty in the structure.

The query based on XTree expressions is similar to XQuery, and it has the QWOC
(Query-Where-Order by-Construct) statements. Query clause contains one or more
XTree expressions for selection and variables binding; where clause and order-by
clause are optional, they are used for constraints and ordering respectively; construct
clause contains one XTree expression to define the output format, it does not have a
nested structure as the return clause in XQuery.
Example 9. If we want to list the titles and publishers (but not authors) of books
which are published after 1995, we can write the query as follows:

query /bib/book/{@year→$y, title→$t, publisher→$p}
where $y > 1995
construct /result/recentbook/{title←$t, publisher←$p}

In the above query, the construct clause is an XTree expression, which defines the
result format: under the root result, each recentbook element will store the title and
publisher of that book.
Example 10. For each book that has more than three authors, list its title and the first
two authors, and order the result by the titles.

query /bib/book/{title→$t, author→{$a}}
where {$a}.count() > 3
order by $t
construct /result/book/{title←$t, author←{$a}[1-2]}

4 Algorithms to Tranform XTree Query to XQuery

We have seen that XTree is more compact and convenient than XPath, however, we
want to transform queries based on XTree expressions to standard XQuery queries, to
make them executable by existing XQuery parsers. In this section, we will present two
algorithms, the first one is to transform an XTree expression in the querying part to a
set of XPath expressions, and the second one is to transform an XTree expression in
the result construction part to some nested XQuery expressions.

Before introducing the algorithms, we will make the following definitions.
Definition 5. Defintion 1 defines the associated path. Function path($var) returns the
associated path of single-valued variable $var, path({$var}) returns the associated
path of list-valued variable {$var}.

For example, for XTree expression /bib/book/{title→$t, author→{$a}}, path($t) =
/bib/book/title, path({$a}) = /bib/book/author.
Definition 6. The relative path of path1 with regard to path2 is the path that starts
from the endpoint of path2 and ends at the endpoint of path1. Function relaPath(path1,
path2) returns the relative path of path1 with regard to path2. It can be evaluated by a
prefix elimination of path2 in path1.

For example, relaPath(/a/b/c/d, /a/b) = c/d, relaPath(/a/b, /a/b) = null

Definition 7. Variable $a is the nearest ancestor variable of variable $b if $a is an
ancestor variable of $b, and no other ancestor variables of $b are defined between
path($a) and path($b).

For example, in XTree expression /bib/book→$b/{title→$t, author/last→$last}, $b
is the nearest ancestor variable of $last.

4.1 Transformation Algorithm for Querying Part

Transforming an XTree expression in the querying part to a set of XPath expressions
is not just extracting each path associated with a variable to be an XPath expression,
because variables may correlate to each other by some common ancestors, thus we
need to use such common ancestors to constrain the descendent variables, and define
them correctly.

It is very easy to get these common ancestors, by just analyzing the textual XTree
expression itself. The paths just before every pair of curly braces for branching (not
for list-valued variables) are the common ancestors we want, because the pair of curly
braces implies that all the enclosed sibling branches are interested by the user, no
matter the sibling branches will head to some variable bindings or some constraints.

Fig. 3 gives the pseudo code of the algorithm that transforms an XTree expression
in the querying part to a set of XPath expressions.

Fig. 3. Algorithm to transform an XTree expression in querying part

The main idea of this algorithm is that we find all the common ancestors of vari-
ables, except the root (since an XML document only has one root node), and assign
single-valued variables on them if they are not bound to variables originally. Then we

Process the textual XTree expression from left to right
for each node traversed {
 if it is bound to a single-valued variable $svar {
 find its nearest ancestor variable $ancvar (or {$ancvar})
 if no such $ancvar found, output XPath: For $svar in path($svar)
 else output XPath: For $svar in $ancvar/relaPath(path($svar), path($ancvar))
 }
 else if it is bound to a list-valued variable {$lvar} {
 find its nearest ancestor variable $ancvar (or {$ancvar})
 if no such $ancvar found, output XPath: Let $lvar := path({$lvar})
 else output XPath: Let $lvar := $ancvar/relaPath(path({$lvar}), path($ancvar))
 }
 else if it is directly followed by a pair of curly braces for branching, and it is not the root {
 assign a single-valued variable $new_svar to this node
 find its nearest ancestor variable $ancvar (or {$ancvar})
 if no such $ancvar found, output XPath: For $new_svar in path($new_svar)
 else output XPath:
 For $new_svar in $ancvar/relaPath(path($new_svar), path($ancvar))
 }
}

translate each single-valued variable to be an XPath expression in a for clause, and
translate each list-valued variable to be an XPath expression in a let clause. For each
variable, if it has a nearest ancestor variable, we will output its XPath expression to be
the relative path from its nearest ancestor variable; otherwise we will output its XPath
expression to be the absolute path from the root of the document.

Note that in the above algorithm, whenever we encounter a list-valued variable
{$lvar}, we will just use its inner name $lvar (without curly braces { }) in the output,
because in XQuery a variable defined by a let clause does not have curly braces in its
name. Also, since we process the XTree expression in a left-to-right manner, after
applying the algorithm to an XTree expression, the output paths will be in depth-first
order of the XTree.

4.2 Transformation Algorithm for Result Construction Part

Transforming an XTree expression in the result construction part to some XQuery
expressions is more complicated, since we will often encounter nested sub-queries in
XQuery. Also, if the node name to get the variable value is different from the node
name where the variable was bound in the querying part, it will be difficult to handle.
Fig. 4 gives the pseudo code of the algorithm that transforms an XTree expression in
the result construction part to some XQuery statements.

Fig. 4. Algorithm to transform an XTree expression in result construction part

String $begin := “”, String $end := “”
for (stepi) { //execute step by step, suppose stepi concerns nodei
 if stepi has no “←” symbol {
 if it has compatible structure with some lowest common ancestor $anc in last algorithm
 $begin := $begin + “{” + the XPath expression of $anc from last algorithm
 $begin := $begin + “return <nodei>”
 $end := “</nodei>” + $end
 else //it is the first several levels in result structure, e.g., root of result
 $begin := $begin + “<nodei>”, $end = “</nodei>” + $end
 }
 else { //suppose the expression of current step is: $expri := nodei←$vari or nodei←{$vari}
 $begin := $begin + “{” + the XPath expressions of variable $vari or {$vari}
 $begin := $begin + “return ” + translate($expri) + “}”
 if next step is descendent of current step, or this is the last step (no next step)
 $end := “</nodei> }” + $end
 else if next step is sibling of current step
 $begin := $begin + “</nodei> }”
 else //next step is sibling of some stepj (which concerns nodej) processed before
 //let string $endj be the substring of $end from beginning till “</nodej> }”
 $begin := $begin + “</nodei> }”
 $begin := $begin + $endj,, $end := $end - $endj
 }
}
output $begin + $end

The main idea of this algorithm is that we process the XTree expression in result
construction part step by step. We will find the corresponding XPath expressions of
each variable in the output of last algorithm, and use curly braces { } to form sub-
query blocks according to the structure of the XTree expression in construct clause.

Function translate($expr) in Fig. 5 translates a value substitution expression to be a
return clause in XQuery, depending on whether the node name for value substitution
is the same as the node name where the variable was bound in querying part. If the
node name remains the same, it just puts the value of the variable at the place. Other-
wise if the node name is changed, it will get the inner structure (subelements, attrib-
utes, text fields, etc) of the node and put their values enclosed by the new node name.

Fig. 5. Function translate

4.3 An Example

To illustrate how our algorithms work, consider the following example:
Example 11. Suppose we want to list the books and journals. For each book, we
rename its title to be name, add an element authors that consists of all the authors of
this book, add an attribute count in authors which counts the number of authors, and
rename element author to au. For each editor of a journal, we put its first name before
last name.

query /bib/{book/{title→$t, author→{$a}},
 journal/{title→$jt, editor/{last→$last, first→$first}}}
construct /result/{book/{name←$t, authors/{@count←{$a}.count(), au←{$a}},
 journal/{title←$jt, editor/{first←$first, last←$last}}}

define function translate($expr) {
 case 1. $expr is of format: element ← $var {
 if element is the same name as the node where $var was bound in querying part
 return “{$var}”
 else //name changed
 return “<element> {$var/*} {$var/@*} {$var/text()} </element>”
 }
 case 2. $expr is of format: element ← {$var} {
 if element is the same name as the node where {$var} was bound in querying part
 return “{$var}”
 else
 return “{ for $x in $var

 return <element> {$x/*} {$x/@*} {$x/text()} </element> }”
 }
 case 3. $expr is of format: @attr ← $var {
 if attr is the same name as the node where $var was bound in querying part
 return “{$var}”
 else //suppose the parent element name of $var is elem
 return “<elem attr = {string($var)}>”
 }
}

For the XTree expression in the querying part, by applying the first algorithm, we
process it from left to right. The algorithm will output an XPath expression for each
node bound to a variable and each branch node.

First we reach the node book, which is followed by a branch, thus we assign a new
single-valued variable $b to it, and output a for clause: for $b in /bib/book.

Next we reach the node title, which is bound to a single-valued variable $t, and we
find that it has $b as its nearest ancestor variable, so we will output its XPath expres-
sion with reference to $b: for $t in $b/title.

By continuing such procedure, finally we will have the following output:
 for $b in /bib/book
 for $t in $b/title

let $a := $b/author
for $j in /bib/journal
for $jt in $j/title
for $e in $j/editor
for $last in $e/last
for $first in $e/first

For the result construction part, by applying the second algorithm, we will get the
following XQuery (detailed execution omitted) as in Fig. 6.

Fig. 6. Result XQuery of Example 11

5 Conclusion

In this paper, we have illustrated some problems with XPath, and proposed our XTree
which is a generalization of XPath. XTree has a tree structure, which is more compact
and convenient to use than XPath. For the queries based on XTree expressions, in the

<result> {
 for $b in /bib/book
 return <book> {
 for $t in $b/title
 return <name> {$t/*} {$t/@*} {$t/text()} </name>
 }
 {
 let $a := $b/author
 return <authors count={count($a)}> {
 for $x in $a
 return <au> {$x/*} {$x/@*} {$x/text()} </au>
 }
 </authors>
 }
 </book>
 }

{
 for $j in /bib/journal
 return <journal> {
 for $jt in $j/title
 return {$jt}
 }
 {
 for $e in $j/editor
 return <editor> {
 for $first in $e/first
 return {$first}
 }
 {
 for $last in $e/last
 return {$last}
 } </editor>
 } </journal>
} </result>

querying part, multiple variables can be defined in one XTree expression; in the result
construction part, a user can just write one XTree expression to define the result for-
mat. The separation of querying part and result construction part effectively avoids
nested structure in the query, and makes the whole query easy to read and understand.
In XTree expressions, list-valued variables are explicitly indicated, and their values
are uniquely determined. Some natural built-in functions are defined to manipulate
list-valued variables in an object-oriented fashion.

To utilize the current XQuery parsers, we have also designed two algorithms that
convert a query based on XTree expressions to a standard XQuery query. The first
algorithm transforms an XTree expression in the querying part to a set of XPath ex-
pressions, and the second algorithm transforms an XTree expression in the result con-
struction part to some nested XQuery expressions.

For the future research, we would like to extend XTree by adding more useful fea-
tures, such as negation, group by, join, etc. Currently in XQuery, grouping and join
are done by nested sub-queries, which are very inefficient. We will investigate how to
integrate these features into XTree expressions. Also we would like to implement an
XTree query parser so that queries based on XTree expressions can be executed di-
rectly, instead of translating to XQuery queries. The querying evaluation will be more
efficient on this approach, since we will have a global view of the whole query tree.

References

1. S.Abiteboul, D.Quass, J.McHugh, J.Widom, and J.L. Wiener. The Lorel Query Language
for Semistructured Data. International Journal of Digital Library 1(1):68-99, 1997.

2. S.Ceri, S.Comai, E.Damiani, P.Fraternali, S.Paraboschi, and L.Tanca. XML-GL: a Graphi-
cal Language for Querying and Restructuring WWW data. In Proceedings of the 8th Inter-
national World Wide Web Conference, Toronto, Canada, 1999.

3. S.Cluet and J.Simeon. YATL: a Functional and Declarative Language for XML. Draft
manuscript, March 2000.

4. H.Hosoya and B.Pierce. XDuce: A Typed XML Processing Language (Preliminary Report).
In Proceedings of WebDB Workshop, 2000.

5. M.Liu and T.W.Ling. Towards Declarative XML Querying. In Proceedings of WISE 2002,
127-138, Singapore, 2002.

6. P.Chippimolchai, V.Wuwongse and C.Anutariya. Semantic Query Formulation and Evalua-
tion for XML Databases. In Proceedings of WISE 2002, 205-214, Singapore, 2002.

7. D.Chamberlin, P. Fankhauser, M.Marchiori, and J.Robie. XML Query Requirements. W3C
Working Draft, In http://www.w3.org/TR/xquery-requirements/, June 2003.

8. J. Clark and S.DeRose. XML Path Language (XPath) Version 1.0. W3C Recommendation,
In http://www.w3.org/TR/xpath, November 2001.

9. D.Chamberlin, D.Florescu, J.Robie, J.Simon, and M.Stefanescu. XQuery 1.0: A Query
Language for XML. W3C Working Draft, In http://www.w3.org/TR/xquery/, May 2003.

10. J.Robie, J.Lapp, and D.Schach. XML Query Language (XQL). In
http://www.w3.org/TandS/QL/QL98/pp/xql.html, 1998.

11. A. Deutsch, M.Fernandez, D.Florescu, A.Levy, and D.Suciu. XML-QL: A Query Language
for XML. In http://www.w3.org/TR/NOTE-xml-ql/, August 1998.

12. J.Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation, In
http://www.w3.org/TR/xslt, November 1999.

