
PathStack¬: A Holistic Path Join Algorithm for Path
Query with Not-predicates on XML Data

Enhua Jiao, Tok Wang Ling, Chee-Yong Chan

School of Computing, National University of Singapore
{jiaoenhu,lingtw,chancy}@comp.nus.edu.sg

Abstract. The evaluation of path queries forms the basis of complex XML
query processing which has attracted a lot of research attention. However, none
of these works have examined the processing of more complex queries that
contain not-predicates. In this paper, we present the first study on evaluating
path queries with not-predicates. We propose an efficient holistic path join al-
gorithm, PathStack¬, which has the following advantages: (1) it requires only
one scan of the relevant data to evaluate path queries with not-predicates; (2) it
does not generate any intermediate results; and (3) its memory space require-
ment is bounded by the longest path in the input XML document. We also pre-
sent an improved variant of PathStack¬ that further minimizes unnecessary
computations.

1 Introduction

Finding all root-to-leaf paths in tree-structured XML documents that satisfy certain
selection predicates is the basis of complex XML query processing. Such selection
predicates are called path queries (i.e., twig queries without branches), and there has
been a lot of research on the efficient evaluation of path queries (as well as the more
general twig queries) [1, 4, 7, 9, 10, 11]. However, none of these works have consid-
ered the processing of more general queries that involved not-predicates, which are
very common and useful in many applications.

As an example of a path query with a not-predicate, consider the XPath query:
//supplier[not(./part/color=’red’)], which finds suppliers who do not supply any red
color parts. A naïve approach to evaluate such path queries is to decompose it into
multiple simple path queries (without not-predicates) and evaluate each of the de-
composed path queries individually using an existing approach (e.g., PathStack [1]);
the final result is then derived by combining the individual results. Thus, the example
query can be computed by the set difference of two simple path queries: p1 – p2,
where p1 = //supplier and p2 = //supplier[./part/color=’red’]. Clearly, this approach
can be extended to process complex path queries with nested not-predicates by apply-
ing the decomposition recursively. However, such a naïve approach is obviously
inefficient as it not only incurs high I/O cost for the repetitive scans of the data and
the generation of intermediate results, but also incurs computational overhead to
combine the intermediate results to derive the final result.

In this paper, we study the problem of evaluating path queries with not-predicates
and make the following contributions:

1. We define both the representation of path queries with not-predicates as well as the
semantics of matching such queries.

2. We develop two novel algorithms, PathStack¬ and imp-PathStack¬, to effi-
ciently evaluate path queries with not-predicates. Our approach is a generalization
of the PathStack algorithm [1], which is based on using a collection of stacks to
store partial/complete matching answers.

3. We demonstrate the effectiveness of the proposed algorithms over a naïve ap-
proach with an experimental performance study.

To the best of our knowledge, this is the first paper that addresses this problem.
The rest of the paper is organized as follows. Section 2 defines the representation

and semantics of path queries with not-predicates. In Section 3, we present our first
algorithm for evaluating path queries with not-predicates called PathStack¬. In Sec-
tion 4, we present an improved variant of PathStack¬ called imp-PathStack¬ that
incorporates two optimizations to reduce unnecessary computations. We present a
performance study in Section 5. Section 6 discusses related work. Finally, we con-
clude our paper in section 7 with some future research plans. Due to space constraint,
proofs of correctness and other details are given in [6].

2 Preliminaries

2.1 Data Model

For simplicity and without loss of generality, we model an XML document as a
rooted, ordered labeled tree, where each node corresponds to an element and each
edge represents a (direct) element-subelement. As an example, Fig.1 (b) shows the
tree representation for the simple XML document in Fig.1 (a).

Similar to [1], our work does not impose any specific physical organization on the
document nodes, and it suffices that there is some efficient access method that returns
a stream of document nodes (sorted in document order) for each distinct document
element. We also further assume that each stream of returned nodes can be filtered to
support any value predicate matching in the path queries; thus, for simplicity, we
ignore value predicates in our path queries.

Finally, our work also assumes an efficient method to determine the structural rela-
tionship between a given pair of document nodes (e.g., determine whether one node is
an ancestor or a parent of another node). Several positional encoding schemes for
document nodes have been proposed for this purpose (e.g., [1]), and our proposed
algorithms can work with any of these schemes.

2.2 Representation of Path Queries with Not-predicates

A path query with not-predicates is represented as a labeled path <n1, n2,…, nm>,
where each node ni (with level number i) is assigned a label, denoted by label(ni),
that is an element name. Each pair of adjacent nodes ni and ni+1 is connected by an
edge, denoted by edge(ni, ni+1), which is classified into one of the following four
types: (1) ancestor/descendant edge, represented as “||”; (2) parent/child edge, repre-
sented as “|”; (3) negative ancestor/descendant edge, represented as “||¬”; (4) nega-
tive parent/child edge, represented as “|¬”. A negative edge corresponds to a not-
predicate in XPath expression. Two examples of path queries are shown in Fig.1 (c)
and (d), where each node is depicted as ni:label(ni).

For convenience, we abbreviate the terms parent/child and ancestor/descendant by
P/C and A/D, respectively. Given a node ni, we use parentEdge(ni) to denote
edge(ni-1, ni) if i > 1, and use childEdge(ni) to denote edge(ni, ni+1) if i < m.

(a) doc
(c) query1

n1 : A
||

n2 : B
||

n3 : C
||

n4: D C2, f B1, f
B2, t

 A1

Sbool
3 S1Sbool

2

(h) result1

<A1, B2>
A1

B1

C1

D1 E1

B2

C2

Sbool
4

(f) stacks encoding the path
 from A1 to D1

Sbool
3 S1Sbool

2Sbool
4

(g) stacks encoding the path
 from A1 to C2

T1: [A1]
T2: [B1, B2]
T3: [C1, C2]
T4: [D1]

(e) associated
 streams

C1, t B1, f A1D1, t
<A>

 <C>
 <D/>
 <E/>
 </C>

 <C/>

 (b) tree

representation

n1 : A
|

n2 : B
||

n3 : C
||

n4: D

(d) query2 (i) result2

<A1, B1>

Fig. 1. (a) An XML document consisting of elements only; (b) the tree representation of the
document in (a) (integer subscript here is for easy reference to nodes with the same element
name); (c) representation of path query: //A//B[not(.//C//D)]; (d) representation of path query:
//A/B[not(.//C[not(.//D)])]; (e) the associated streams used in PathStack¬ algorithm; (f) and (g)
two examples of stack encoding for root-to-leaf paths in doc tree; (h) result for (c) on (b); (i)
result for (d) on (b).

2.3 Matching of Path Queries with Not-predicates

Definition 1. (output node, non-output node, output leaf node, leaf node) A node
ni in a path query is classified as an output node if ni does not appear below any
negative edge; otherwise, it is a non-output node. The output node with the maxi-
mum level number is also called the output leaf node. The last node nm in a path
query is also referred to as the leaf node.

For example, {n1, n2} and {n3, n4} are the sets of output nodes and non-output
nodes in Figs. 1(c) and (d), respectively. Note that n2 is the output leaf node and n4 is
the leaf node.

We use subquery(ni, nj) (1≤ i ≤ j ≤ m) to refer to a sub-path of a path query
that starts from node ni to node nj. For example, subquery(n2, n4) in Fig.1 (c) refers

to the sub-path consisting of the set of nodes {n2, n3, n4} and the two edges edge(n2,
n3) and edge(n3, n4).

Definition 2. (Satisfaction of subquery(ni, nj)) Given a subquery(ni, nj) and a node
ei in an XML document D, we say that ei satisfies subquery(ni, nj) if (1) the element
name of ei is label(ni); and (2) exactly one of the following three conditions holds:
(a) i = j; or
(b) edge(ni, ni+1) is an A/D (respectively, P/C) edge, and there exists a descendant

(respectively, child) node ei+1 of ei in D that satisfies subquery(ni+1, nj) ; or
(c) edge(ni, ni+1) is a negative A/D (respectively, P/C) edge, and there does not exist

a descendant (respectively, child) node ei+1 of ei in D that satisfies subquery(ni+1,
nj).

We say that ei fails subquery(ni, nj) if ei does not satisfy subquery(ni, nj). For no-
tional convenience, we use the notation ei to represent a document node that has an
element name equal to label(ni).

Example 1. Consider the XML document and query in Figs.1 (b) and (c), respec-
tively. Observe that (1) D1 satisfies subquery(n4, n4) (condition a); (2) C1 satisfies
subquery(n3, n4) because of (1) and D1 is a descendant of C1 (condition b); and (3)
B1 fails subquery(n2, n4) because of (2) and C1 is a descendant of B1 (condition c).

Definition 3. (Matching of Path Queries with Not-predicates) Given an XML
document D and a path query <n1, n2,…, nm> with nk as the output leaf node, a tuple
<e1, …, ek> is defined to be a matching answer for the query iff (1) for each adjacent
pair of nodes ei and ei+1 in the tuple, ei+1 is a child (respectively, descendant) node of
ei in D if edge(ni, ni+1) is a P/C (respectively, A/D) edge; and (2) ek satisfies sub-
query(nk, nm). We refer to a prefix of a matching answer <e1, …, ek> as a partial
matching answer.

Example 2. Consider the document in Fig.1 (b). For query1 in Fig.1 (c), <A1, B1> is
not a matching answer for it since C1 satisfies subquery(n3, n4) and therefore B1 fails
subquery(n2, n4); hence <A1, B1> fails condition (2) of Definition 3. However, <A1,
B2> is a matching answer for it because there does not exist a Ci node in Fig.1 (b)
which is a descendant of B2 and satisfies subquery(n3, n4); therefore B2 satisfies
subquery(n2, n4). Clearly, <A1, B2> satisfies condition (2) of Definition 3. Similarly,
for query2 in Fig.1 (d), <A1, B1> is a matching answer for it since B1 satisfies sub-
query(n2, n4) and <A1, B1> satisfies condition (2) in Definition 3. However, <A1, B2>
is not a matching answer for query2 because B2 fails subquery(n2, n4).

3 PathStack¬ Algorithm

In this section, we describe our first algorithm, called PathStack¬ , for evaluating
path queries that contain not-predicates. As the name implies, our approach is based
on the stack encoding technique of the PathStack approach [1] for evaluating path
queries without not-predicates.

3.1 Notations and Data Structures

Each query node ni is associated with a data stream Ti, where each Ti contains all
document nodes for element label(ni) sorted in document order. Each stream Ti main-
tains a pointer that points to the next node in Ti to be returned. The following opera-
tions are supported for each stream: (1) eof(Ti) tests if the end of the stream Ti is
reached; (2) advance(Ti) advances the pointer of Ti; and (3) next(Ti) returns the
node pointed to by the pointer of Ti.

Each query node ni is also associated with a stack Si which is either a regular stack
or a boolean stack. In a regular stack, each item in Si consists of a pair <ei, pointer to
an item in Si-1>, where ei is a document node with the element name of ei equal to
label(ni). In a boolean stack, each item in Si consists of a triple <ei, pointer to an item
in Si-1, satisfy>, where satisfy is a boolean variable indicating whether ei satisfies
subquery(ni, nm) w.r.t. all the nodes in the data streams that have been visited so far
during the evaluation. Note that the pointer to an item in Si-1 is null iff i=1. The stack
Si associated with ni is a boolean stack if ni is a non-output node or the output leaf
node; otherwise, Si is a regular stack. If Si is a boolean stack, we can also denote it
explicitly by Sbool

i. Note that only regular stacks are used in the PathStack algorithm
[1].

The following operations are defined for stacks: (1) empty(Si) tests if Si is empty;
(2) pop(Si)/ top(Si) pops/returns the top item in Si; and (3) push(Si, item) pushes item
into Si. For an input XML document D, the stacks are maintained such that they sat-
isfy the following three stack properties:

1. At every point during the evaluation, the nodes stored in the set of stacks must lie
on a root-to-leaf path in the input XML document D.

2. If ei and e’i are two nodes in Si, then ei appears below e’i in Si iff ei is an ancestor
of e’i in D.

3. Let mi=<ei, pointeri> and mi-1=<ei-1, pointeri-1> be two items in stacks Si and Si-1,
respectively. If pointeri=mi-1 (i.e., ei is linked to ei-1), then ei-1 must be an ancestor
of ei in D such that there is no other node (with the same element name as ei-1) in D
that lies along the path from ei-1 to ei in D.

3.2 Algorithm

The main algorithm of PathStack¬ (shown in Fig.2) evaluates an input path query q
by iteratively accessing the data nodes from the streams in sorted document order,
and extending partial matching answers stored in the stacks. Each iteration consists of
three main parts. The first part (step 2) calls the function getMinSource to determine
the next node from the data streams to be processed in document order. Before using
the selected next node to extend existing partial matching answers, the algorithm first
needs to pop off nodes from the stacks that will not form a partial matching with the
next node (i.e., preserve stack property1). This “stack cleaning” operation is done by
the second part (steps 3 to 9). Each time an item <ei, pointeri, satisfy> is popped from
a boolean stack Sbool

i, the algorithm will output all the matching answers that end with
ei (by calling showSolutions) if ni is the output leaf node and satisfy is true. Other-

wise, if ni is a non-output node, then Si-1 must necessarily be a boolean stack, and
updateSatisfy is called to update the satisfy values of the appropriate nodes in Si-1.
Finally, the third part (step 11) calls the function moveStreamToStack to extend the
partial answer currently stored in stacks by pushing the next node into the stack Smin.

Algorithm PathStack¬(q)
01 while (¬end(q))
02 nmin = getMinSource(q) // find the next node
03 for query node ni of q in descending i order // clean stack
04 while((¬empty(Si)∧(top(Si) is not an ancestor of next(Tmin))
05 ei = pop(Si)
06 if (ni is the output leaf node ∧ ei.satisfy=true)
07 showSolutions(e) // output solution i

08 else if (n is a non-output node) i

09 updateSatisfy(ni, ei)
10 //push the next node
11 moveStreamToStack(n , T , S , pointer to top(S)) min min min min-1

12 repeat steps 03 to 09 for the remaining nodes in the stacks

Function getMinSource(q)
 Return query node ni of q such that next(Ti) has the minimal document
order among all unvisited nodes.

Function end(q)
Return ∀ ni in q ⇒ eof(Ti) is true.

Fig. 2. PathStack¬ Main Algorithm

Procedure moveStreamToStack(n , T , S , pointer) i i i

01 if S is a regular stack // regular stack, no Boolean value i

02 push(S , <next(T), pointer>) i i

03 else if n is the leaf node i

04 push(S , <next(T), pointer, true>) i i

05 else if childEdge(n)is negative i

06 push(S , <next(T), pointer, true>) i i

07 else if childEdge(n)is positive i

08 push(S , <next(Ti

09 advance(T
i), pointer, false>)

i)

Procedure updateSatisfy(ni, ei)
01 if ei.satisfy = true
02 ei-1 = ei.pointer
03 if parentEdge(ni) is a negative edge
04 newvalue = false
05 else
06 newvalue = true
07 if parentEdge(ni) is an A/D edge
08 for all e’i-1 in S

bool

i-1 that are below ei-1 (inclusive of ei-1)
09 e’i-1.satisfy = newvalue
10 else // parentEdge(ni) is an P/C edge
11 if ei-1 is a parent of ei

12 ei-1.satisfy = newvalue

Fig. 3. Procedures moveStreamToStack and updateSatisfy

The details of the procedures moveStreamToStack and updateSatisfy are shown
in Fig.3. In moveStreamToStack, if the input stack Si is a boolean stack, then the
satisfy value of the data node ei to be pushed into Si is initialized as follows. If ni is
the leaf node in the query (step 3), then ei trivially satisfies subquery(ni, nm) and

satisfy is set to true. Otherwise, satisfy is set to false (respectively, true) if child-
Edge(ni) is a positive (respectively, negative) edge since ei satisfies (respectively, fails)
subquery(ni, nm) w.r.t. all the nodes that have been accessed so far.

Procedure updateSatisfy maintains the satisfy values of stack entries such that
when a data node ei is eventually popped from its stack Si, its satisfy value is true iff
ei satisfies subquery(ni, nm), i.e, w.r.t. the whole input XML document. The correct-
ness of updateSatisfy is based on the property that once an initialized satisfy value is
complemented by an update, its value will not be complemented back to the initial-
ized value again.

The details of procedure showSolutions can be found in [1].

Example 3. This example illustrates the evaluation of query1 in Fig.1 (c) on the
XML document in Fig.1 (b) using algorithm PathStack¬ .

(1) The nodes A1, B1, C1, and D1 are accessed and pushed into their corresponding
stacks; the resultant stack encoding is shown in Fig.1 (f).

(2) B2 is the next node to be accessed (E1 is not accessed as it is irrelevant to the
query), and nodes C1 and D1 need to be first popped off from their stacks to pre-
serve the stack properties. When node D1 is popped, it is detected to satisfy sub-
query(n4, n4), and therefore C1.satisfy is updated to true. When C1 is popped, it
is determined to satisfy subquery(n3, n4). Consequently, B1.satisfy is updated to
false.

(3) B2 is accessed and pushed into Sbool
2.

(4) C2 is accessed and pushed into Sbool
3; the resultant stack encoding is shown in

Fig.1 (g).
(5) Since all the relevant data nodes have been accessed, the algorithm now pops off

the remaining nodes in the stacks in the order of C2, B2, B1, and A1. When C2 is
popped, it is detected to fail subquery(n3, n4) and so no update takes place.
When B2 is popped, it is detected to satisfy subquery(n2, n4). Since B2 is a leaf
output node, the matching answer <A1, B2> is generated. When B1 is popped, it
is detected to fail subquery(n2, n4) and so no matching answer is produced. Fi-
nally, A1 is popped without triggering any operations.

(6) Since all the stacks are empty, the algorithm terminates with exactly one match-
ing answer <A1, B2>.

3.3 Performance Analysis

In this section, we present an analysis of the time and space complexity of algorithm
PathStack¬. Let Sizei denote the total number of nodes in the accessed data streams,
Sizeℓ denote the length of the longest path in the input XML document, and Sizeo
denote the size of the matching answers.

Since the number of iterations in the outer while loop (steps 1 to 11) is bounded by
the number of nodes in the input streams, and both the inner for loop (steps 3 to 9)
and step 12 are bounded by the longest path in the input XML document, the CPU
complexity of PathStack¬ is given by O(Sizei * Sizeℓ + Sizeℓ). The I/O complexity is
O(Sizei + Sizeo) since the input data streams are scanned once only and the only out-

puts are the matching answers. The space complexity is given by O(Sizeℓ) since at any
point during the evaluation, the data nodes that are stored in the stacks must lie on a
root-to-leaf path in the input XML document.

4 Improved PathStack¬ Algorithm

In this section, we present an improved variant of PathStack¬, denoted by imp-
PathStack¬, that is based on two optimizations to reduce unnecessary computations.
Due to space constraint, the details of the optimizations are omitted in this paper but
can be found in [6].

4.1 Reducing the number of boolean stacks

One key extension introduced by our PathStack¬ algorithm to handle not-predicates
is the use of boolean stacks for output leaf and non-output query nodes. Boolean
stacks are, however, more costly to maintain than regular stacks due to the additional
satisfy variable in each stack entry. In this section, we present an optimization to
minimize the number of boolean stacks used in the algorithm.

Our optimization is based on the observation that boolean stacks are actually only
necessary for query nodes that have negative child edges. To understand this optimi-
zation, note that a non-output node ni can be classified into one of three cases: (1) ni
is also the leaf node; or (2) ni has a positive child edge; or (3) ni has a negative child
edge. For case (1), since each data node ei in Si trivially satisfies subquery(ni, nm),
ei .satisfy is always true and therefore Si can be simplified to a regular stack (i.e., Si
can be viewed as a virtual boolean stack). For case (2), the satisfy value of each node
in Si can effectively be determined from the nodes in Sj, where nj is the nearest de-
scendant query node of ni that is associated with a (real or virtual) boolean stack.
Details of this are given in [6]. Thus, Si again can be simplified to a regular stack.
Consequently, only non-output nodes belonging to case (3) need to be associated with
boolean stacks.

4.2 Nodes Skipping

Our second optimization aims to exploit the semantics of not-predicates to minimize
the pushing of “useless” data nodes into stacks that do not affect the input query’s
result. In the following, we explain and illustrate the intuition for this optimization;
more details are given in [6].

Consider a stack Sbool
i that corresponds to a query node ni with a negative child

edge. Suppose ei, the topmost node in Sbool
i, has a false value for satisfy. Then there

are two cases to consider for the optimization depending on whether childEdge(ni) is
an A/D or P/C edge.

Case 1: If childEdge(ni) is an A/D edge, then it follows that every data node be-
low ei in Sbool

i also has a false value for satisfy. Therefore, for each j > i, the nodes in
Tj that precede next(Ti) in document order can be skipped as they will not contribute
to any matching answers. For example, consider the query query1 on document doc1
in Fig.4. Note that after the path of nodes from A1 to C1 have been accessed, the sat-
isfy values for both A1 and A2 are determined to be false. Thus, the stream of nodes
{B2,…,B5} and {C2,…,C4} can be skipped as they will not affect the satisfy value of
A3.

Case 2: If childEdge(ni) is a P/C edge, then let e’i be the lowest node in Sbool
i with

a false value for satisfy. It follows that for each j > i, the data nodes in Tj that are
descendants of e’i and precede next(Ti) in document order will not contribute to any
matching answers and can therefore be skipped. For example, consider the query
query2 on document doc2 in Fig.4. Note that after the path of nodes from A1 to C1
have been accessed, the satisfy values for both A1 and A2 are determined to be false,
and the stream of nodes {B3, B4} and {C2,…,C4} can be skipped. As another example,
consider query query2 on document doc1 in Fig.4. After the path of nodes from A1 to
C1 have been accessed, the satisfy value for A2 is determined to be false, the stream of
nodes {B2, B3} and {C2} can be skipped. Note that B4 and C3 can not be skipped in
this case as they will affect A1’s satisfy value which is yet to be determined.

A1

B1

A2

C1

B3

D1

root

B2

C2

B4

C3

A3B5

C4

E1

D2

A1

B4

D1

root

B3

C4

A3

(b) doc2(a) doc1

n1: A
|

n2: B
||

n3: C

n1: A
||

n2: B
||

n3: C

(c) query1 (d) query2

Bn

Cm
A2

B1

B2

C1 C2 C3

Fig. 4. XML documents and path queries

The node skipping optimization becomes even more effective when combined with

the boolean stack reduction optimization since it enables the nodes’ satisfy values to
be updated earlier and a more aggressive node skipping. For example, consider the
query query1 on document doc2 in Fig.4. When the boolean stack optimization is
used, there is only one boolean stack Sbool

2, and the satisfy values of A1 and A2 are
both determined to be false once the path of nodes from A1 to C1 have been accessed.
In contrast, without the first optimization, all the stacks are boolean, and the satisfy
values of A1 and A2 are determined to be false only after B2 is popped off from its
stack when B3 is accessed; consequently, the nodes C2 and C3 can not be skipped.

5 Experimental Evaluation

This section presents experimental results to compare the performance of our pro-
posed algorithms, PathStack¬ and imp-PathStack¬, as well as the decomposition-
based naïve approach described in Section 1 (referred to as Naïve).

We used the synthetic data set Treebank.xml [14] with about half a million of
nodes, an average path length of 8 levels, and a maximum path length of 35 levels.
We generated three sets of path queries (denoted by Q1, Q2, and Q3), where each
query in Qi contains exactly i number of not-predicates and has 7 levels. About 30%
of the data nodes are accessed for each query, and the matching answers are formed
from about 0.4% of the data nodes. For each query and approach, we measured both
the total execution time as well as the disk I/O (in terms of the total number of data
nodes that are read/written to disk). Our experiments were conducted on a 750MHz
Ultra Sparc III machine with 512MB of main memory.

5.1 Naïve vs. PathStack¬

Fig.5 compares the execution time of Naïve and PathStack¬, and the results show
that PathStack¬ is much more efficient than Naïve. In particular, observe that while
the execution time of Naïve increases almost linearly as the number of not-predicates
increases, the execution time of PathStack¬ remains constant. This can be explained
by the results in Fig.6 (which compares their I/O performance) and Fig.7 (which
gives the detailed breakdown).

Fig.6 shows that the I/O cost of PathStack¬ is independent of the number of not-
predicates since each data stream is scanned exactly once (without any intermediate
results generated), and the final matching answers written to disk have about the same
size. On the other hand, Fig.7 reveals that as the number of not-predicates increases,
Naïve incurs more disk I/O as it needs to access the data streams multiple times and
output intermediate results to disk.

PathStack Naive

31 . 1

51 . 1

69

21 . 421. 421 . 3

0

20

40

60

80

QS1 QS2 QS3ex
ec

ut
io

n
ti

me
(s

ec
)

 Q1 Q2 Q3

Fig. 5. Execution time comparison between

PathStack¬ and Naïve.

193. 9

346. 2

480. 2

153. 9154. 1 154. 4

0

200

400

600

QS1 QS2 QS3di
sk

 I
/O

 (

of
 n

od
es

)

PathStack Naive

 Q1 Q2 Q3

Fig. 6. Disk I/O comparison between Path-

Stack¬ and Naïve.
Streams Intermediate Result Final Results Total

of nodes % of total # of nodes % of total # of nodes % of total # of nodes

Q1
PathStack 152.1 k 98.7% 0 k 0% 2 k 1.3% 154.1 k

Naive 185.7 k 95.8% 6.2 k 3.2% 2 k 1% 193.9 k

Q2
PathStack 152.0 k 98.8% 0 k 0% 1.9 k 1.2% 153.9 k

Naive 337.1 k 97.4% 7.2 k 2.1% 1.9 k 0.5% 346.2 k

Q3
PathStack 152.3 k 98.6% 0 k 0% 2.1 k 1.4% 154.4 k

Naive 466.8 k 97.2% 11.3 k 2.4% 2.1 k 0.4% 480.2 k
Fig. 7. Breakdowns of disk I/O in PathStack¬ and Naïve.

5.2 PathStack¬ vs. imp-PathStack¬

Fig.8 compares the execution time of PathStack¬ and imp-PathStack¬; the amount
of time spent only on scanning the accessed data streams is also shown (labeled as

“sequential scan”) for comparison. Our results show that imp-PathStack¬ is only
slightly faster than PathStack¬, with about 90% of the total execution time being
dominated by the scanning of the data streams. Note that our implementation of imp-
PathStack¬ did not utilize any indexes for accessing the data streams. We expect
that if the data streams were indexed, the performance improvement of imp-
PathStack¬ over PathStack¬ (due to the additional reduction of I/O cost in node
skipping) would become more significant.

Fig.9 compares the number of skipped nodes for various queries using imp-
PathStack¬. Our results did not reveal any interesting relationship between the num-
ber of not-predicates and the percentage of skipped nodes (which is between 2.4%
and 18.5%); we expect this percentage to be higher for an XML document that has a
higher fan-out (note that the fan-out of treebank.xml is only around 2-3). More analy-
sis can be found in [6].

sequential scan

imp-PathStack

PathStack

18.718.718.7
20.7 21.1 20.2

21.3 21.4 21.4

0
5

10

15
20
25

QS1 QS2 QS3

ex
ec

ut
io

n
tim

e
(s

ec
)

 Q1 Q2 Q3

Fig.8. Execution time comparison between Se-
quential Scan, imp-PathStack¬ and PathStack¬.

Stream Size
(# of nodes)

Nodes Skipped
(# of nodes)

% of
skipping

Q1 152.1 k 10.2 k 6.7 %
Q2 152.0 k 3.6 k 2.4 %
Q3 152.3 k 28.1 k 18.5 %

Fig.9. Percentage (%) of nodes skipped
for each query set in imp-PathStack¬.

6 Related Work

XML query processing and optimization for XML databases have attracted a lot of
research interests. Particularly, path query matching has been identified as a core
operation in querying XML data. While there is a lot of work on path and twig query
matching, none of these works addressed the evaluation of queries with not-
predicates. Below, we review the existing work on path/twig query evaluation, all of
which do not address not-predicates.

Earlier works [3, 5, 9, 10, 12, 13, 14] have focused on a decomposition-based ap-
proach in which a path query is decomposed into a set of binary (parent-child and
ancestor-descendant) relationships between pairs of query nodes. The query is then
matched by (1) matching each of the binary structural relationships against the XML
data, and (2) “stitching” together these basic matches. The major problem with the
decomposition-based approach is that the intermediate results can get very large even
when the inputs and final results are small.

The work in [1, 2] are more closely related to ours. The algorithms PathStack and
PathMPMJ were proposed to evaluate path queries without not-predicates. These
algorithms process a path query in a holistic manner, which do not generate large
intermediate results and also avoid costly binary structural joins. PathStack has been
shown to more efficient than PathMPMJ as it does not require repetitive data scans.

7 Conclusions and Future Work

In this paper, we have proposed two novel algorithms PathStack¬ and imp-
PathStack¬ (which is an improved variant of PathStack¬ to further minimize un-
necessary computation) for the efficient processing of path queries with not-
predicates. We have defined the representation and matching of path queries with
not-predicates, and proposed the simple but effective idea of using boolean stacks to
support efficient query evaluation. Our proposed algorithms require only a single
scan of each data stream associated with the input query without generating any in-
termediate results. To the best of our knowledge, this is the first work that addresses
the evaluation of path queries with not-predicates.

While our proposed algorithms can be easily extended to handle twig queries with
at most one path containing not-predicates, we are currently extending our work to
process more general twig queries that have not-predicates in multiple branches.

References

1. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML pattern match-
ing. In Proc. of the SIGMOD, 2002.

2. N. Bruno, N. Koudas, D. Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching.
Technical Report. Columbia University. March 2002.

3. D. Florescu and D. Kossman. Storing and querying XML data using an RDMBS. IEEE Data
Engineering Bulletin, 22(3): 27-34, 1999.

4. H. Jiang, H. Lu, W. Wang, Efficient Processing of XML Twig Queries with OR-Predicates,
In Proc. of the SIGMOD 2004.

5. H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins on indexed XML documents. In
Proc. of the VLDB, pages 273-284, 2003.

6. E. Jiao, Efficient processing of XML path queries with not-predicates, M.Sc. Thesis, Na-
tional University of Singapore, 2004.

7. Q. Li and B. Moon. Indexing and querying XML data for regular path expressions. In Proc.
of the VLDB, pages 361-370, 2001.

8. R. Riebig and G.Moerkotte. Evaluating queries on structure with access support relations. In
Proc. of the WebDB’00, 2000.

9. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Rela-
tional databases for querying XML documents: Limitations and opportunities. In Proc. of
VLDB, 1999.

10. D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, and Y. Wu. Structural
joins: A primitive for efficient XML query pattern matching. In Proc. of the ICDE, pages
141-152, 2002.

11. H. Wang, S. Park, W. Fan, and P. S. Yu. Vist: A dynamic index method for querying XML
data by tree structures. In Proc. of the SIGMOD, pages 110-121, 2003.

12. Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order selection for XML query opti-
mization. In Proc. of the ICDE, pages 443-454, 2003.

13. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On supporting containment
queries in relational database management systems. In Proc. of the SIGMOD, 2001.

14. Treebank.xml: http://www.cis.upenn.edu/~treebank/.

