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Abstract. A number of labeling schemes have been designed to facilitate the 
query of XML, based on which the ancestor-descendant relationship between 
any two nodes can be determined quickly. Another important feature of XML is 
that the elements in XML are intrinsically ordered. However the label update 
cost is high based on the present labeling schemes. They have to re-label the ex-
isting nodes or re-calculate some values when inserting an order-sensitive ele-
ment. Thus it is important to design a scheme that supports order-sensitive que-
ries, yet it has low label update cost. In this paper, we design a binary string 
prefix scheme which supports order-sensitive update without any re-labeling or 
re-calculation. Theoretical analysis and experimental results also show that this 
scheme is compact compared to the existing dynamic labeling schemes, and it 
provides efficient support to both ordered and un-ordered queries. 

1   Introduction 

The growing number of XML [7] documents on the Web has motivated the develop-
ment of systems which can store and query XML data efficiently. XPath [5] and 
XQuery [6] are two main XML query languages. 

There are two main techniques to facilitate the XML queries, viz. structural index 
and labeling (numbering) scheme. The structural index approaches, such as dataguide 
[9] in the Lore system [11] and representative objects [13], can help to traverse 
through the hierarchy of XML, but this traverse is costly. The labeling scheme ap-
proaches, such as containment scheme [2, 10 16, 17], prefix scheme [1, 8, 11, 14] and 
prime scheme [15], require smaller storage space, yet they can efficiently determine 
the ancestor-descendant and parent-child relationships between any two elements of 
the XML. In this paper, we focus on the labeling schemes. 

One salient feature of XML is that the elements in XML are intrinsically ordered. 
This implicit ordering is referred to as document order (the element sequence in the 
XML). The labeling scheme should also have the ability to determine the order-
sensitive relationship. 

The main contributions of this paper are summarized as follows: 
l This scheme need not re-label any existing nodes and need not re-calculate any 

values when inserting an order-sensitive node into the XML tree. 



l The theoretical analysis and experimental results both show that this scheme has 
smaller storage requirement. 

The rest of the paper is organized as follows. Section 2 reviews the related work 
and gives the motivation of this paper. We propose our improved binary string prefix 
scheme in Section 3. The most important part of this paper is Section 4, in which we 
show that the scheme proposed in this paper need not re-label any existing nodes and 
need not re-calculate any values when updating an ordered node. The experimental 
results are illustrated in Section 5, and we conclude in Section 6. 

2   Related Work and Motivation 

In this section, we present three families of labeling schemes, namely containment [2, 
10 16, 17], prefix [1, 8, 11, 14] and prime [15]. 

Containment Scheme. Agrawal et al [2] use a numbering scheme in which every 
node is assigned two variables: “start” and “end”. These two variables represent an 
interval [start, end]. For any two nodes u and v, u is an ancestor of v iff label(u.start) < 
label(v.start) < label(v.end) < label(u.end). In other words, the interval of v is con-
tained in the interval of u. 

Although the containment scheme can determine the ancestor-descendant relation-
ship quickly, it does not work well when inserting a node into the XML tree. The 
insertion of a node may lead to a re-labeling of all the nodes of the tree. This problem 
may be alleviated if we increase the interval size with some values unused. However, 
it is not so easy to decide how large the interval size should be. Small interval size is 
easy to lead to re-labeling, while large interval size wastes a lot of values which causes 
the increase of storage.  

[3] uses real (float-point) values for the “start” and “end” of the intervals. It seems 
that this approach solve the re-labeling problem. But in practice, the float-point is 
represented in computer with a fixed number of bits which is similar to the representa-
tion of integer. As a result, there are a finite number of values between any two real 
values [14]. 

Prefix Scheme. In the prefix labeling scheme, the label of a node is its parent’s la-
bel (prefix) concatenates the delimiter and its own label. For any two nodes u and v, u 
is an ancestor of v iff label(u) is a prefix of label(v). There are two main prefix 
schemes, the integer based and the binary string based. 

DeweyID [14] is an integer based prefix scheme. It labels the nth child of a node 
with an integer n, and this n should be concatenated to the prefix (its parent’s label) to 
form the complete label of this child node.  

On the other hand, Cohen et al use Binary strings to label the nodes (Binary) [8]. 
Each character of a binary string is stored using 1 bit. The root of the tree is labeled 
with an empty string. The first child of the root is labeled with “0”, the second child 
with “10”, the third with “110”, and the fourth with “1110”, etc. Similarly for any 
node u, the first child of u is labeled with label(u).“0”, the second child of u is labeled 
with label(u).“10”, and the ith child with label(u).“1i-10”. 



Compared to the containment scheme, the prefix scheme only needs to re-label the 
sibling nodes after this inserted node and the descendants of these siblings, which is 
more dynamic in updating. 

Prime Number Scheme. Wu et al [15] proposed a novel approach to label XML 
trees with prime numbers (Prime). The label of a node is the product of its par-
ent_label and its own self_label (the next available prime number). For any two nodes 
u and v, u is an ancestor of v iff label(v) mod label(u) = 0. 

Furthermore, Prime utilizes the Chinese Remainder Theorem (CRT) [4, 15] for the 
document order. When using the Simultaneous Congruence (SC) value in CRT to mod 
the self_label of each node, the document order for each node can be calculated. 
When new nodes are inserted into the XML tree, Prime only needs to re-calculate the 
SC value for the new ordering of the nodes instead of re-labeling. 

In addition, Prime uses multiple SC values rather than a single SC value to prevent 
the SC value to become a very very larger number. 

The prefix and prime schemes are called dynamic labeling schemes, and we only 
compare the performance of dynamic labeling schemes in this paper. 

Motivation. The Binary and DeweyID prefix schemes both need to re-label the ex-
isting nodes when inserting an order-sensitive node. 

Although Prime is a scheme which supports order-sensitive updates without any re-
labeling of the existing nodes, it needs to re-calculate the SC values based on the new 
ordering of nodes. The SC values are very large numbers and the re-calculation is very 
time consuming. 

In addition, the Prime scheme skips a lot of integers to get the prime number, and 
the label of a child is the product of the next available prime number and its parent’s 
label, which both make the storage space for Prime labels large. 

Thus the objective of this paper is to design a scheme 1) which need not re-label 
any existing nodes and need not re-calculate any values when inserting an order-
sensitive node (Section 4.1 and 5.3), and 2) which requires less storage space for the 
labels (Section 3.2 and 5.1). 

3   Improved Binary String Prefix Scheme 

In this section, we elaborate our Improved Binary string prefix scheme (ImprovedBi-
nary). Firstly we use an example to illustrate how to label the nodes based on our 
ImprovedBinary. Then we describe the formal labeling algorithm of this scheme. Also 
we analyze the size requirements of different labeling schemes.  

In prefix schemes, the string before the last delimiter is called a prefix_label, the 
string after the last delimiter is called a self_label, and the string before the first delim-
iter, between two neighbor delimiters or after the last delimiter is called a component. 

Example 3.1. Figure 1 shows our ImprovedBinary scheme. The root node is la-
beled with an empty string. Then we label the five child nodes of the root. The pre-
fix_labels of these five child nodes are all empty strings, thus the self_labels are ex-
actly the complete labels for these five child nodes. The self_label of the first (left) 
child node is “01”, and the self_label of the last (right) child node is “011”. We use 



“01” and “011” as the first and last sibling self_labels because in this way, we can 
insert nodes before the first sibling and after the last sibling without any re-labeling of 
existing nodes. See Section 4.1. 

 
When we know the left and right self_labels, we can label the middle self_label and 

2 cases will be encountered: Case (a) left self_label size ≤  right self_label size, and 
Case (b): left self_label size > right self_label size. For Case (a), the middle self_label 
is that we change the last character of the right self_label to “0” and concatenate one 
more “1”. For Case (b), the middle self_label is that we directly concatenate one more 
“1” after the left self_label. 

Now we label the middle child node, which is the third child, i.e.   32/)51( =+ . 
The size of the 1st (left) self_label (“01”) is 2 and the size of the 5th (right) self_label 
(“011”) is 3 which satisfies Case (a), thus the self_label of the third child node is 
“0101” (“011” →  “010” →  “0101”). 

Next we label the two middle child nodes between “01” and “0101”, and between 
“0101” and “011”. For the middle node between “01” (left self_label) and “0101” 
(right self_label), i.e. the second child node (   22/)31( =+ ), the left self_label size 2 
is smaller than the right self_label size 4 which satisfies Case (a), thus the self_label of 
the second child is “01001” (“0101” →  “0100” →  “01001”). For the middle node 
between “0101” (left self_label) and “011” (right self_label), i.e. the fourth child 
(   42/)53( =+ ), the left self_label size 4 is larger than the right self_label size 3 
which satisfies Case (b), thus the self_label of the fourth child is “01011” (“0101” ⊕  
“1” →  “01011”). 

Theorem 3.1. The sibling self_labels of ImprovedBinary are lexically ordered. 
Theorem 3.2. The labels (prefix_label ⊕  delimiter ⊕  self_label) of ImprovedBi-

nary are lexically ordered when comparing the labels component by component. 
Example 3.2. The self_labels of the five child nodes of the root in Figure 1 are 

lexically ordered, i.e. “01”   “01001”   “0101”   “01011”   “011” lexically. 
Furthermore, “0101.011”   “011.01” lexically. 

3.1   The Formal Labeling Algorithm 

We firstly discuss the AssignMiddleSelfLabel algorithm (Figure 2) which inserts the 
middle self_label when we know the left self_label and the right self_label. If the size 
of the left self_label is smaller than or equal to the size of the right self_label, the 
self_label of the middle node is that we change the last character of the right 
self_label to “0” and concatenate one more “1”. Otherwise, the self_label of the mid-
dle node is the left self_label concatenates “1”. 

01 01001 0101 01011 011 

0101.01 0101.011 011.01 011.011 
 Fig. 1. ImprovedBinary scheme. 



 
Next we discuss how to label the whole XML tree. Figure 3 shows the Labeling al-

gorithm. We firstly get all the sibling child nodes of a node. If there is only one sibling, 
the self_label of this node is “01”. Otherwise, the self_label of the first sibling node is 
“01” and the self_label of the last sibling node is “011”. We use the SubLabeling 
function to get all the self_labels of the rest sibling nodes. 

 
SubLabeling is a recursive function, the input of which is a self_label array, the left 

element index of self_label “L” and the right element index of self_label “R”. This 
function assigns the middle self_label (self_label[M]) using the AssignMiddleSelfLa-
bel algorithm (Figure 2), then it uses the new left and right self_label positions to call 
the SubLabeling function itself, until each element of the self_label array has a value. 

Finally the label of each sibling node is the prefix_label concatenates the self_label. 

Fig. 3. Labeling algorithm. 

Algorithm 2: Labeling 
Input: XML document 
Output: Label of each node 
begin 
1: for all the sibling child nodes of each node of the XML document 
2: for the first sibling child node, self_label[1]=“01” //self_label is an array 
3: if the Number of Sibling nodes SN > 1 
       then self_label[SN]=“011” 
               self_label=SubLabeling(self_label, 1, SN) 
4: label = prefix_label ⊕ delimiter ⊕  each element of self_label array 
end 
 

SubLabeling 
Input: self_label array, left element index of self_label array L, and right ele-

ment index of self_label array R 
Output: self_label array 
begin 
1: M = floor((L+R)/2)  //M refers to the Mth element of self_label array 
2: if L+1<R 
       then self_label[M]=AssignMiddleSelfLabel(self_label[L], self_label[R]) 
               SubLabeling(self_label, L, M) 
               SubLabeling(self_label, M, R)  
end 

Algorithm 1: AssignMiddleSelfLabel 
Input: left self label self_label_L, and right self label self_label_R 
Output: middle self label self_label_M, such that 

 self_label_L self_label_M self_label_R lexically. 
begin 
1: calculate the size of self_label_L and the size of self_label_R 
2: if size(self_label_L) ≤  size(self_label_R) 

            then self_label_M = change the last character of self_label_R to “0”,  
                                      and concatenate ( ⊕ ) one more “1” 

3: else if size(self_label_L) > size(self_label_R) 
            then self_label_M = self_label_L ⊕  “1” 

end 
Fig. 2. AssignMiddleSelfLabel algorithm. 



3.2   Size Analysis1 

In this section, we analyze the size required by the DeweyID, Binary, Prime and our 
ImprovedBinary. The “D”, “F” and “N” are respectively used to denote the maximal 
depth, maximal fan-out and number of nodes of an XML tree.  

DeweyID. The maximal size to store a single self_label is )log(F  (all the 
self_labels of DeweyID use this size). When considering the prefix, the maximal size 
to store a complete label (prefix_label ⊕  self_label) is )log(FD ×  since the maximal 
depth is D and there are at most (D-1) delimiters in the prefix_label. Thus the maximal 
size required by DeweyID to store all the nodes in the XML tree is 

)log(FDN ××  (1) 

Binary. The size of the first sibling self_label is only 1, the second is 2, ···, and the 
Fth is F. Thus the actual total sibling self_label size is =+⋅⋅⋅++ F21  

=×+ 2/)1( FF 2/2/2 FF + , and the average size for a single self_label is 
2/12/ +F . Thus the maximal size to store all the nodes in the XML tree is 

)2/12/( +×× FDN  (2) 

From formulas (1) and (2), we can see that the size of Binary is larger than the size 
of DeweyID. 

Prime. According to the size analysis of Prime in [15], the maximal size required 
to store all the nodes in the XML tree is 

))log(log( NNDN ×××  (3) 

Comparing formulas (1) and (3), F is definitely less than )log( NN × , thus 
DeweyID requires smaller label size than Prime when considering the worst case. This 
is intuitive when we notice that Prime skips many integers to get the prime number 
and uses the product of two numbers. 

ImprovedBinary. Finally we consider the size required by our ImprovedBinary. 
Example 3.3. For the 5 sibling self_labels of the child nodes of the root in Figure 1, 

the first and last sibling self_labels are “01” and “011” with size 2 and 3 bits respec-
tively. The middle self_label between “01” and “011” is “0101” with size 4 bits.  Then 
for the two middle nodes “01001” and “01011” (between “01” and “0101”, and be-
tween “0101” and “011”), their sef_label sizes are both 5, and so on. 

Table 1 shows the relationship between the size of a label and the number of labels 
with this size. There is one label with size 2, one label with size 3, 20 label with size 4, 
21 labels with size 5, 22 labels with size 6, 23 labels with size 7, ···, and 2n labels with 
size n+4. The number of sibling nodes F is equal to 1+1+20+21+22+23+···+2n=2n+1+1. 
Therefore 2/)1(2 −= Fn , and 3)1log(4 +−=+ Fn . Thus the total sibling self_label 
size is 

⋅⋅⋅+×+×+×+×++ 7262524132 321 )4(2 +× nn  
= ⋅⋅⋅+×+×+×+×++ 7262524132 321 )3)1(log(2/)1( +−×− FF  

                                                           
1 The size in this paper refers to bits and the log in this paper is used as the logarithm to base 2. 



1)1log(2)1log( +−−+−= FFFF  
Hence the average size for a single self_label is 

FFFF /1/)1log(2)1log( +−−+−=  
Accordingly the maximal size required to store all the nodes in the XML tree is 

)/1/)1log(2)1(log( FFFFDN +−−+−××  (4) 

Table 1. Number of sibling nodes and single sibling self_label size of ImprovedBinary. 

Number of labels with this size Size (bits) 
1 2 
1 3 

1 (20) 4 
2 (21) 5 
4 (22) 6 
8 (23) 7 
··· … 
2n n+4 

 
It can be seen from formulas (1) and (4) that the size required by ImprovedBinary 

is as small as the size required by DeweyID. In addition, DeweyID uses fixed length 
for all the self_labels. On the other hand, our ImprovedBinary uses variable length, 
therefore the self_label size of our ImprovedBinary will not always employs the maxi-
mal fan-out F. As a result, the actual total label size of our ImprovedBinary should be 
smaller than the actual total label size of DeweyID. Consequently the size required by 
our ImprovedBinary is smaller than the size required by Binary and Prime. This will 
be confirmed in Section 5.1 by the experimental results. 

4   Order-Sensitive Update and Query 

The most important part of this paper is Section 4.1, in which we show that our Im-
provedBinary scheme need not re-label any existing nodes and need not re-calculate 
any values when inserting an order-sensitive node. In Section 4.2, we briefly introduce 
how to answer order-sensitive queries based on different schemes. 

4.1   Order-Sensitive Update 

The deletion of a node will not affect the ordering of the nodes in the XML tree. 
Therefore in this section, we discuss the following three order-sensitive insertion cases. 

Case (1): Insert a node before the first sibling node. The self_label of the in-
serted node is that the last character of the first self_label is changed to “0” and is 
concatenated with one more “1”. After insertion, the order is still kept. 



Case (2): Insert a node at any position between the first and last sibling node. 
We use the AssignMiddleSelfLabel algorithm introduced in Section 3.1 to assign the 
self_label of the new inserted node. After insertion, the order is still kept. 

Case (3): Insert a node after the last sibling node. The self_label of the inserted 
node is that the last self_label concatenates one more “1”. After insertion, the order is 
still kept. 

In the above three cases, the prefix_labels of the inserted nodes are the same as the 
prefix_labels of the sibling nodes. 

 
Example 4.1. When inserting the node “a” (see Figure 4), it is Case (1), thus the 

self_label (label) of “a” is “001” (“01” →  “00”→  “001”). When inserting the node 
“b”, it is case (2) and we use the AssignMiddleSelfLabel algorithm to assign the 
self_label of “b”. The left self_label of “b” is “01001” with size 5 and the right 
self_label of “b” is “0101” with size 4, therefore we directly concatenate one more “1” 
after the left self_label (“01001” ⊕  “1” →  “010011”), then the self_label of “b” is 
“010011”. When inserting the node “c”, it is still case (2), but the left self_label (“01”) 
size < the right self_label (“011”) size, therefore the self_label of “c” is “0101” (“011” 
→  “010” →  “0101”), and the complete label of “c” is “0101.0101”. When inserting 
the node “d”, it is case (3), thus the self_label of “d” is “0111” (“011” ⊕  “1” →  
“0111”). After insertion, the orders are still kept, i.e. label(a)   “01”, “01001”   
label(b)   “0101”, “0101.01”   label(c)   “0101.011”, and “011”   label(d) lexi-
cally. 

It can be seen that for all the above three cases, ImprovedBinary need not re-label 
any existing nodes and need not re-calculate any values. 

On the other hand, DeweyID and Binary need to re-label all the sibling nodes fol-
lowing the inserted node and all the descendant nodes of the following sibling nodes 
for Case (1) and (2). Prime needs to re-calculate the SC values for the new ordering. 

4.2   Order-Sensitive Query 

Besides the ancestor-descendant and parent-child relationship determinations, there 
are the following order-sensitive queries. 

1) position = i: 
Selects the ith node within a context node set. For example, the query “/play/act[2]” 

will retrieve the second act of the play. 
2) preceding-sibling or following-sibling: 
Selects all the preceding (following) sibling nodes of the context node. For example, 

the query “/play/act[2]/preceding-sibling::act” will retrieve all the acts (“::act”) 
which are sibling nodes of act[2] and are before act[2]. 

a 
01011 

011.011 011.01 

01 01001 0101 

0101.01 0101.011 
Fig. 4. Order-sensitive update for ImprovedBinary. 

011 
b d 

c 



3) preceding or following: 
Selects all the nodes before (after) (in document order) the context node excluding 

any ancestors (descendants). For example, the query “/play/act[2]/following::*” will 
retrieve all the nodes (“::*”) after act[2] in document order and these nodes should 
not be the descendants of act[2]. 

The Prime scheme uses the SC value and the self_label to calculate the order of 
each node, then it can fulfill these three types of order-sensitive queries.  

From the labels only, the prefix schemes (including DeweyID, Binary and Improv-
edBinary) can determine the sequence of nodes, hence they can fulfill these three 
order-sensitive queries. 

It should be noted when inserting a node, DeweyID and Binary need to re-label the 
existing nodes and Prime needs to re-calculate the SC values before they can process 
the order-sensitive queries. 

5   Performance Study 

We conduct three sets of experiments (storage, query and update) to evaluate and 
compare the performance of the four dynamic labeling schemes, namely DeweyID, 
Binary, Prime and ImprovedBinary. All the four schemes are implemented in Java and 
all the experiments are carried out on a 2.6GHz Pentium 4 processor with 1 GB RAM 
running Windows XP Professional. We use the real-world XML data available in [18] 
to test the four schemes. Characteristics of these datasets are shown in Table 2 which 
shows the depths of real XMLs are usually not too high (confirmed by [12]). 

Table 2. Test datasets. 

Datasets Topics # of files Max fan-out 
for a file 

Max depth 
for a file 

Total # of nodes 
for each dataset 

D1 Bib 18 25 4 2111 
D2 Club 12 47 3 2928 
D3 Movie 490 38 4 26044 
D4 Sigmod Record 988 26 6 39058 
D5 Department 19 257 3 48542 
D6 Actor 480 368 4 56769 
D7 Company 24 529 4 161576 
D8 Shakespeare’s play 37 434 5 179689 
D9 NASA 1882 1188 6 370292 

5.1   Storage Requirement 

The label size in Figure 5 refers to the total label size for all the nodes in each dataset. 
As expected, ImprovedBinary has the smallest label size for each of the nine datasets. 
Furthermore, the total label sizes of all the nine datasets for Binary, Prime and our 
ImprovedBinary are 3.97, 2.00 and 0.78 times of that of DeweyID. 
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Fig. 6. Processing time of the nine queries. 

5.2   Query Performance2 

In this experiment, we test the query performance of the four schemes based on all the 
XML files in the Shakespeare’s play dataset (D8). In order to make a more sizeable 
data workload, we scale up (replicate) D8 10 times as described in [14]. The ordered 
and un-ordered queries and the number of nodes returned from this scaled dataset are 
shown in Table 3. Except Q3, ImprovedBinary works the fastest for the rest 8 ordered 
and un-ordered queries (see Figure 6). 

Table 3. Test queries on the scaled D8. 

Queries # of nodes returned 
Q1 /play/act[4] 370 
Q2 /play/act[5]//preceding::scene 6110 
Q3 /play/act/scene/speech[2] 7300 
Q4 /play/*/* 19380 
Q5 /play/act//speech[3]/preceding-sibling::* 30930 
Q6 /play//act[2]/following::speaker 184060 
Q7 /play//scene/speech[6]/following-sibling::speech 267050 
Q8 /play/act/scene/speech 309330 
Q9 /play/*//line 1078330 

5.3   Order-Sensitive Update Performance 

The elements in the Shakespeare’s plays (D8) are order-sensitive. Here we study the 
update performance of the Hamlet XML file in D8. The update performance of other 
XML files is similar. Hamlet has 5 acts, and we test the following six cases: inserting 
an act before act[1], inserting an act between act[1] and act[2], ···, inserting an act 
between act[4] and act[5], and inserting an act after act[5]. Figure 7 shows the number 
of nodes for re-labeling when applying different schemes. 

                                                           
2 The query time and re-labeling (re-calculation) time in this paper refer to the processing time 
only without including the I/O time. 



DeweyID and Binary have the same number of nodes to re-label in all the six cases. 
The Hamlet XML file has totally 6636 nodes, but DeweyID and Binary need to re-
label 6595 nodes when inserting an act before act[1]. 

For Prime, the number of SC values that are required to be re-calculated is counted 
in Figure 7. Because we use each SC value for every three3 labels, the number of SC 
values required to be re-calculated is 1/3 of the number of nodes required to be re-
labeled by DeweyID and Binary. (Note that all the act nodes are the child nodes of the 
root play.) 

In all the six cases, ImprovedBinary need not re-label any existing nodes and need 
not re-calculate any values. 

                                                           
3 The SC values for every 4 or more nodes will be very large numbers which can not be stored 

using 64 bits in Java for calculation, for every 1 or 2 nodes will cause more SC values to be 
re-calculated. 
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Fig. 8. Processing time for re-labeling or 

re-calculation. 
Next we study the time required to re-label nodes or re-calculate SC values. The 

time in Figure 8 shows that the time required by Prime to re-calculate the SC values is 
at least 337 times larger than the time required by DeweyID and Binary to re-label the 
nodes. In contrast, our ImprovedBinary needs 0 milliseconds (ms) for the insertion in 
all the six cases. 

6   Conclusion and Future Work 

When an order-sensitive node is inserted into the XML tree, the present node labeling 
schemes need to re-label the existing nodes or re-calculate some values to keep the 
document order which is costly in considering either the number of nodes for re-
labeling (re-calculation) or the time for re-labeling (re-calculation). To address this 
problem, we propose a node labeling scheme called ImprovedBinary in this paper, 
which need not re-label any existing nodes and need not re-calculate any values when 
inserting order-sensitive nodes into the XML tree. 

In the future, we will further study how to efficiently process the delimiters of the 
prefix schemes and decrease the label size, as well keep the low label update cost. 



References 

1. Serge Abiteboul, Haim Kaplan, Tova Milo: Compact labeling schemes for ancestor queries. 
SODA 2001: 547-556 

2. Rakesh Agrawal, Alexander Borgida, H. V. Jagadish: Efficient Management of Transitive 
Relationships in Large Data and Knowledge Bases. SIGMOD Conference 1989: 253-262 

3. Toshiyuki Amagasa, Masatoshi Yoshikawa, Shunsuke Uemura: QRS: A Robust Numbering 
Scheme for XML Documents. ICDE 2003: 705-707 

4. James A. Anderson and James M. Bell, Number Theory with Application, Prentice-Hall, 
New Jersey, 1997. 

5. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay, Jonathan 
Robie, and Jerome Simon. XML path language (XPath) 2.0 W3C working draft 16. Techni-
cal Report WD-xpath20-20020816, World Wide Web Consortium, Aug. 2002. 

6. Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and 
Jerome Simon. XQuery 1.0: An XML Query LanguageW3C working draft 16. Technical 
Report WD-xquery-20020816, World Wide Web Consortium, Aug. 2002. 

7. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau. Exten-
sible markup language (XML) 1.0 third edition W3C recommendation. Technical Report 
REC-xml-20001006, World Wide Web Consortium, Oct. 2000. 

8. Edith Cohen, Haim Kaplan, Tova Milo: Labeling Dynamic XML Trees. PODS 2002: 271-
281 

9. Roy Goldman, Jennifer Widom: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. VLDB 1997: 436-445 

10. Quanzhong Li, Bongki Moon: Indexing and Querying XML Data for Regular Path Expres-
sions. VLDB 2001: 361-370 

11. Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, Jennifer Widom: Lore: A 
Database Management System for Semistructured Data. SIGMOD Record 26(3): 54-66 
(1997) 

12. Laurent Mignet, Denilson Barbosa, Pierangelo Veltri: The XML web: a first study. WWW 
2003: 500-510 

13. Svetlozar Nestorov, Jeffrey D. Ullman, Janet L. Wiener, Sudarshan S. Chawathe: Represen-
tative Objects: Concise Representations of Semistructured, Hierarchial Data. ICDE 1997: 
79-90 

14. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eugene J. 
Shekita, Chun Zhang: Storing and querying ordered XML using a relational database sys-
tem. SIGMOD Conference 2002: 204-215 

15. Xiaodong Wu, Mong-Li Lee, Wynne Hsu: A Prime Number Labeling Scheme for Dynamic 
Ordered XML Trees. ICDE 2004: 66-78 

16. Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, Shunsuke Uemura: XRel: a 
path-based approach to storage and retrieval of XML documents using relational databases. 
ACM Trans. Internet Techn. 1(1): 110-141 (2001) 

17. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, Guy M. Lohman: On Sup-
porting Containment Queries in Relational Database Management Systems. SIGMOD Con-
ference 2001 

18. The Niagara Project Experimental Data. Available at:  
 http://www.cs.wisc.edu/niagara/data.html 


