
XDO2: A Deductive Object-Oriented Query

Language for XML

Wei Zhang1, Tok Wang Ling1, Zhuo Chen1, and Gillian Dobbie2

1School of Computing, National University of Singapore,
Lower Kent Ridge Road, Singapore 119260

{zhangwe2, lingtw, chenzhuo}@comp.nus.edu.sg
2Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand
gill@cs.auckland.ac.nz

Abstract. In the past decade, researchers have combined deductive and
object-oriented features to produce systems that are powerful and have
excellent modeling capabilities. More recently, an XML query language
XTree was proposed. Queries written in XTree are more compact, more
convenient to write and easier to understand than queries written in
XPath. In this paper, we introduce a novel XML query language XDO2
that extends XTree, with deductive features such as deductive rules and
negation, and object-oriented features such as inheritance and methods.
Our XDO2 language is more compact, and convenient to use than current
query languages for XML such as XQuery and XPath because it is based
on XTree, supports (recursive) deductive rules and the not-predicate.
An XDO2 database example is given to motivate the usefulness of the
language. The formal treatment of language syntax and semantics are
presented in the appendices.

Keywords: XML query language, deductive rule, not-predicate nega-
tion, fixpoint semantics

1 Introduction

In the past decade, a large number of deductive object-oriented database systems
have been proposed, such as F-logic [6], ROL [12] and DO2 [10]. Based on these
proposals and other work in the area of object-oriented data models, such as
O2 [4] and Orion [7], a large number of deductive and object-oriented features
have been investigated. The two most important features are deductive rules and
inheritance.

XML is fast emerging as the dominant standard for data representation and
exchange on the web. Many query languages have been proposed in the past few
years, such as XPath [3], XQuery [1], declarative XML query languages such as
[14] and XTree [2]. Although XPath has been widely adopted for XML querying,
XTree has been recently proposed as a declarative XML query language which is
more compact, more convenient to write and understand than XPath. However,

to the best of our knowledge, there is no XML query language that can support
deductive rules and object-oriented features in the XML querying community.
In this paper, we introduce a novel XML query language XDO2 which extends
XTree with deductive database features such as deductive rules and negation,
and object-oriented features such as inheritance and methods.

In this paper, we present the language XDO2, highlighting its salient features.
We present the full syntax and semantics of the language in the appendices.

The major contributions of the XDO2 query language are:

1. Negation is supported in the XDO2 language with semantics similar to the
not-predicate [8] instead of the conventional logical negation symbol “∼”
which is used in XQuery. A consequence of this decision is that XDO2 is
able to support nested negation and negation of sub-trees.

2. Methods that deduce new properties are implemented as deductive rules.
XDO2 can use the new properties directly. The presence of recursive deduc-
tive rules makes recursive querying possible.

3. Schema querying is made possible with a special term stru : value to ex-
plicitly distinguish the element name from the element value (or element
content). stru binds to the element name and value binds to the element
value. Unlike in XQuery, the name and value pair are bound to the variables
together.

4. Inheritance enables a subclass object to inherit all the attributes and sub-
elements from its superclass objects. These inherited properties can be di-
rectly used in querying.

5. Features such as the binding of multiple variables in one expression, compact
return format and explicit multi-valued variables are supported in the XDO2
language naturally due to the influence of XTree [2].

The rest of this paper is organized as follows. We provide a brief introduction
to XTree in section 2. We introduce an XDO2 database example in section 3.
Section 4 presents and discusses the most salient features of the XDO2 query
language. Section 5 compares our language with related languages. Section 6
summarizes this paper and points out some future research directions. The syn-
tax and semantics of the XDO2 language are presented in the appendices.

2 Background

XTree [2] was recently proposed as an alternative to the XML query language
XPath. The main advantages of XTree over XPath are:

1. XPath describes a linear path to the target XML node set. In the querying
part of a query, one XPath expression can only bind one variable. However,
XTree has a tree structure which is similar to the structure of an XML
document. In the querying part of a query, one XTree expression can bind
multiple variables.

2. XPath cannot be used to define the return format. However, in the result
construction part of a query, one XTree expression can be used to define the
result format. This effectively avoids the nested structure in the query.

3. XPath does not express multi-valued variables explicitly. However, in XTree
expressions, multi-valued variables are explicitly indicated, and their val-
ues are uniquely determined. Some natural built-in functions are defined to
manipulate multi-valued variables in an object-oriented fashion.

Thus, although XPath and XTree have the same expressive power (i.e., any
query that can be expressed by XTree can also be expressed by several XPath
expressions), XTree is more compact and convenient to use than XPath, and
queries based on XTree expressions are shorter in length and easier to write and
comprehend. In short, XTree takes the XML tree structure into consideration
while XPath does not. For more details, please refer to XTree [2].

3 An XDO2 Database Example

In this section, using an example, we demonstrate many of the features of
the XDO2 language. We show an XDO2 database, Person Company Employee,
which combines features from XML, deductive databases, and object-oriented
databases. Section 3.1 presents the database schema, and explains how to express
deductive rules and inheritance in the database. Section 3.2 presents the XML
database data, including the extensional data from XML data element facts,
intensional data from deductive rules, and the class hierarchy relationships. An
XDO2 query with its result is also presented. The syntax and semantics of the
XDO2 language are presented in the appendices.

3.1 Schema and Rules ���� ��������	�
�� 	�����		 ��� ���	��� �
����	
���������	

��		� ���� ������	���������
	� ��	 ����	���	�� ������
���
	��� ���
Fig. 1. Person Company Employee ORASS schema diagram

The ORA-SS schema model [9] is used to represent the schema, with exten-
sions to model the deductive and inheritance features in Figure 1. In the schema
diagram, there are four object classes person, company, employee and spouse
represented as rectangles. In the person class, we model the age as a derived
attribute indicated by dashed circles. This is because person has an attribute
birthyear, and age can be derived using birthyear. Another derived attribute is
bachelor which can be derived using the person’s sex and spouse. The identifier
of person is pno. The employee class is a subclass of the person class, and inherits
all the attributes and derived attributes from the person class. The inheritance
relationship is denoted by the ISA diamond in the schema diagram. The identi-
fier of employee is eno. The candidate identifier pno indicated by a filled circle
inside a circle in employee class is from the person object class.

In this example, we can see the two new features that are not present in XML
databases: derived attribute and class inheritance. Class inheritance is supported
in XML schema [5]. We now highlight how to define the derived attributes of
object classes. In object-oriented programming languages, methods are defined
using functions or procedures and are encapsulated in class definitions. In deduc-
tive databases, rules are used instead of functions and procedures. By analogy,
derived attributes or methods in XDO2 are defined using deductive rules and
encapsulated in class definitions.

In the following, we use a deductive rule to define the method age encapsu-
lated in object class person.

$p/age : $a :- /root/person : $p/birthyear : $b, $a = 2005 − $b.

This rule says if there is a person element under the root element, and the per-
son has sub-element birthyear, then the age is equal to 2004 minus the birthyear.
In the method age above, the notation “:-” means if a substitution of all variables
to values makes the right hand side true, then the left hand side is also true. In
the method, there are predicates $p/age : $a, /root/person : $p/birthyear : $b,
and $a = 2004 − $b. The notation “:” binds the value of the left hand side to
the right hand side. If the left hand side is an object class, then the right hand
side binds to the object identifier, such as $p binds to the person’s identifier.
Otherwise, it binds to the value of the left hand side. The single-valued variable
is denoted by a “$” followed by a string literal.

The below rule defines the method bachelor encapsulated in object class
person.

$p/bachelor : true :- /root/person : $p/[sex : “Male”, not(spouse : $s)].

This rule says if a person element under root element has an attribute sex
with string value “Male”, and this same person does not have a spouse, then the
derived attribute bachelor of the object class person has boolean value true. The
two boolean values true and false are reserved in the language. The notation
“[]” in the bachelor method above is used to group the attributes, elements
or methods which are directly defined under the same parent element, such as
person in this case. The notation “not”[8] negates the predicate expression.

<root>

<person pno="p1">

<name>John</name>

<address>

<street>King</street>

<city>Ottawa</city>

</address>

<birthyear>1975</birthyear>

<sex>Male</sex>

</person>

<person pno="p2">

<spouse pno="p3" />

<name>Mike</name>

<address>

<street>Albert</street>

<city>Ottawa</city>

</address>

<birthyear>1954</birthyear>

<sex>Male</sex>

</person>

<person pno="p3">

<spouse pno="p2" />

<name>Mary</name>

<address>

<street>Albert</street>

<city>Ottawa</city>

</address>

<birthyear>1958</birthyear>

<sex>Female</sex>

</person>

<company cno="c1">

<name>Star</name>

<employee eno="e1" pno="p1">

<salary>6000</salary>

<hobby>Tennis</hobby>

<hobby>Soccer</hobby>

</employee>

<employee eno="e2" pno="p2">

<salary>4000</salary>

<hobby>Tennis</hobby>

</employee>

</company>

</root>

(a) XML extensional database

% Rule R1 defines that the age of a

% person is 2005 minus his/her

% birthyear.

(R1) $p/age : $a :- /root/person : $p/

birthyear : $b, $a = 2005 - $b.

% Rule R2 defines that a person is a

% bachelor if he is a male and without

% spouse.

(R2) $p/bachelor : true :- /root/

person : $p/[sex : "Male",

not(spouse : $s)].

(b) XML intensional database

employee ISA person

by employee.pno ISA person.pno

(c) XML class hierarchy relationships

Fig. 2. Person Company Employee database

3.2 Data and Query

The data or instance of the Person Company Employee database is shown in
Figure 2. There are three parts to the database: the XML extensional database,
the XML intensional database, and the XML class hierarchy relationships. The
XML extensional database contains the XML data element facts with their tree
structure. The XML intensional database contains the deductive rules which
can be used to derive new XML data elements or attributes from the exten-
sional database. The XML class hierarchy relationships define the object class
hierarchy in the database such as employee is a subclass of person. Multiple in-
heritances are allowed and we can resolve the multiple inheritance conflicts using
the explicit selection technique adopted from [11]. Storing the deductive rules
and class hierarchy relationships in the XML database system, enables querying
using deductive rules and the class hierarchy, as shown in the following example.

Example 1. This query retrieves the age and salary of all employees who are
bachelors, with age less than 30, and salary larger than 5000.

/db/youngRichBachelor : $e/[age : $a, payroll : $s] ⇐ /root/company/
employee : $e/[age : $a, bachelor : true, salary : $s], $a < 30, $s > 5000.

Notice the query format is similar to the deductive rule used to describe
methods. The notation “⇐” separates the return format of the query from the
query and conditional part. The left hand side is used to define the XML result
format, like in the return clause in XQuery, and the right hand side is the
query and the conditional parts like the for, let and where clauses in XQuery.
Therefore, our XDO2 query language is more simple and compact with only one
line of some predicate expressions instead of the FLWR clause in XQuery. With
the deductive rules and the inheritance feature defined in the XML database,
the user can directly query the attributes or methods both in employee and its
superclass person, such as age and bachelor in the example.

Using the XDO2 database in Figure 2, only employee ‘e1’, whose pno is
‘p1’ satisfies the conditions. The youngRichBachelor element and its two sub-
elements age and payroll form the query result as follows.

<db>

<youngRichBachelor eno="e1">

<age>29</age>

<payroll>6000</payroll>

</youngRichBachelor>

</db>

Notice $e binds to the object identifier value of the employee object, i.e., eno
value. The attributes of youngRichBachelor element, age and payroll are from
the derived attribute age of person object ‘p1’ inherited by ‘e1’, and salary of
employee object ‘e1’ respectively.

4 XDO2 Language Features

In the example of section 3, we have shown how to use deductive rules to de-
fine methods so that the query language can be simplified greatly and made
more compact. It also shows the advantages of the inheritance feature. In this
section, we will present some other important features of the XDO2 query
language. Specifically, they are multi-valued variables and aggregat function,
schema querying, negation using the not-predicate [8], and querying using re-
cursive deductive rules.

4.1 Multi-valued Variables

We use the expressions <$var> and {$var} to represent list-valued variables and
set-valued variables respectively. Functions that are defined on lists and sets are
consistently expressed in an object-oriented fashion.

Example 2. Consider the following query that returns the titles of the books
that have more than one author written in XDO2.

XDO2 query expression:
/result/multiAuthorBook/title : $t ⇐

/bib/book/[title:$t, author:<$a>], <$a>.count()>1.

XQuery expression:
for $book in /bib/book, $t in $book/title
let $a in $book/author
where count($a) > 1
return <result><multiAuthorBook>{$t}</multiAuthorBook></result>

In the XDO2 query, the variable <$a> is bound to the list of authors for each
book, and the variable $t is bound to the title of the book. The square brackets
[] enclosing title and author specifies that these two elements are siblings, and
share a common parent.

4.2 Schema Querying

We use the term stru : value to explicitly distinguish the element (or attribute)
name from the value of the element (or attribute). It provides simple and nat-
ural facilities for exploring the structure or schema of the XML data. The user
can put the variable such as $v in the left side of the : symbol to bind to the
attribute name or element tag. Unlike in XQuery, both the structure and value
can be bound to a variable.

Example 3. Consider the following query that finds two sibling element tags
with value “King” and “Ottawa” directly or indirectly under person.

⇐ /root/person//[$ele1 : “King”, $ele2 : “Ottawa”].

In this query, we omit the query result format. The square brackets enclosing
$ele1 and $ele2 specifies that these two elements are siblings. The path abbrevi-
ation “//” is used to indicate they are directly or indirectly under person. The
two variables $ele1 and $ele2 are used to bind the element tags that have the
values as specified. Using the data from Figure 2, $ele1 = street and $ele2 = city
satisfy the query.

4.3 Negation Querying

In deductive databases, negation makes the rules more powerful and queries
more meaningful. However, it complicates the query’s interpretation and evalu-
ation. To represent negation in XDO2, we chose the not-predicate [8] instead of
the conventional logical negation symbol “∼” to express negation. It has been
noted in [8] that the not-predicate is not always equivalent to “∼” in negation
expressions. The main difference between the not-predicate and “∼” lies in the
interpretation of the uninstantiable variables (i.e. variables that do not appear in
any positive expression in the body of the rule or query) in the negation expres-
sion. Otherwise, they are equivalent. Using the not-predicate, the uninstantiable
variables are existentially quantified while they are universally quantified using
“∼”. For the justification, please refer to [16].

As we know, XQuery [1] provides a function not() which needs a boolean
value as its argument and is similar to “∼”, and it does not support the not-
predicate operator. The function not() is usually combined with some and every
quantifiers. However, by using the not-predicate operator alone in XDO2, we can
achieve the same expressive power and make our queries more simple and com-
pact. In addition, the function not() in XQuery can only be applied to one XPath
expression, but not to a sub-tree structure. However since we have tree-structure
expressions in the XDO2 language, we can express the sub-tree structures nat-
urally. Two examples are shown as follows.

Example 4. Consider the following query expressed in XDO2 and XQuery that
retrieves the company name of companies where each employee of the company
has hobby “Tennis”.

XDO2 query expression:
/db/allLikeTennisCom : $n ⇐ /root/company : $c/name : $n,

$c/not(employee/not(hobby : “Tennis”)).
XQuery expression:
for $c in /root/company
where EVERY $e IN $c/employee SATISFIES

SOME $h IN $e/hobby SATISFIES string($h)=“Tennis”
return <db><allLikeTennisCom>{string($c/name)}

</allLikeTennisCom></db>

Example 5. Consider the following query that retrieves the companies which
do not have employees who have sex “Male” and birthyear 1975.

XDO2 query expression:

/db/company : $c ⇐ /root/company : $c/not(employee/
[sex : “Male”, birthyear : 1975]).

XQuery expression:
for $c in /root/company
where NOT (SOME $e IN $c/employee SATISFIES

($e/sex = “Male” AND $e/birthyear = 1975))
return <db>{$c}</db>

As we can see from the two examples, our XDO2 query using the not-
predicate is much more simple and compact compared with the XQuery ex-
pression which needs the key word “EVERY”, “SOME”, “NOT”, “IN”, “SAT-
ISFIES”, “AND” to express the same meaning.

4.4 Recursion Querying

In deductive databases, it is natural to define a recursive query using recursive
deductive rules. Similarly, in XDO2, we also support recursive deductive rules
and make the recursive query possible to extend the expressive power of the
XDO2 language.

Example 6. Suppose there are child sub-elements directly under the person
element. The following deductive rules define descendants of a person.

(R3) $p/descendant : $c :- /root/person : $p/child : $c.
(R4) $p/descendant : $d :- /root/person : $p/child : $c,

$c/descendant : $d.

The rule R4 says for each person bound to $p, if $c is his/her child, then
$c is a descendant of $p. The rule R5 says if $c is a child of $p, and $d is
a descendant of $c, then $d is also a descendant of $p. Note the rule R5 is
recursively defined. Using the rules defined, we can write a recursive query to
retrieve all the descendants of a person with identifier (i.e. pno) value ‘p1’ as
follows,

⇐ /root/person : ‘p1’/descendant : $d.

5 Comparison with Related Work

The success of F-logic [6] was due to the clean combination of the object-oriented
and deductive paradigms. Flora-2 [15] extended F-logic for the semantic web.
However, the underlying data in F-logic and Flora-2 are objects and can not
handle the current popular XML tree data structure. The XDO2 language is de-
signed for the XML tree data while including the deductive and object-oriented
features. Many languages, such as XPath [3], XQuery [1], and XTree [2] have
been proposed for querying XML documents. However, they can not support
(recursive) deductive rules which can be used to derive new properties to sim-
plify the querying as in XDO2. The XML RL [13] for XML is a language with

the deductive features, however this query languages does not support object-
oriented inheritance. Furthermore, since XDO2 is based on XTree, where queries
are more compact, more convenient to write and understand than XPath queries,
the XDO2 inherits these merits. Another major difference between XDO2 and
other logical query languages for XML lies in the use of the not-predicate [8]
for querying. As section 4.2 shows, the XDO2 query using the not-predicate is
much more simple and compact compared with the XQuery expressions.

XDO2 XQuery XTree

Query

F-logic XML RL

Underlying data XML tree XML tree XML tree Object XML tree

Path expression XTree XPath XTree Path
expression

XTree-like
expression

Deductive rule Yes No No Yes Partial

Recursion recursive
rules

recursive
function

recursive
query

recursive
rule

recursive
query

Negation not-
predicate

logical
negation

logical
negation

logical
negation

logical
negation

Quantification No need Yes Yes Yes Yes

Multi-valued
variable

Yes No Yes No Yes

Direct structure
querying

Yes No Yes Yes Yes

Object-oriented
features

Yes No No Yes No

Table 1. Comparison between XML query languages

A summary of the comparison with other XML query languages is shown in
table 1.

6 Conclusion

Deductive databases and object-oriented databases are two extensions of the
current relational database systems. Guided by this, we propose a novel new
XML query language XDO2 with deductive database features such as deductive
rules and negation, and object-oriented features such as inheritance and meth-
ods. Our XDO2 language is more compact, and convenient to use than current
query languages for XML such as XQuery, XPath and XML RL[13] because it is
based on XTree [2], supports (recursive) deductive rules, not-predicate negation
and schema querying. An XDO2 database example is presented to motivate the
usefulness of the language. In the appendices, we present a formal treatment of
the XDO2 language syntax and semantics.

In the future we would like to investigate how to evaluate the queries effi-
ciently, especially for the not-predicate and recursive queries.

References

1. D. Chamberlin, D. Florescu, J. Robie, J. Simon, and M. Stefanescu. XQuery 1.0:
A query language for XML, May 2003. http://www.w3.org/TR/xquery.

2. Zhuo Chen, Tok Wang Ling, Mengchi Liu, and Gillian Dobbie. XTree for declar-
ative XML querying. In Proceedings of DASFAA, pages 100–112, Korea, 2004.

3. J. Clark and S. DeRose. XML path language(XPath) version 1.0, November 2001.
http://www.w3.org/TR/xpath.

4. O. Deux et al. The story of O2. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91–108, 1990.

5. D.C. Fallside. XML schema part 0: Primer, May 2001.
http://www.w3.org/TR/xmlschema-0.

6. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of ACM, 42(4):741–843, 1995.

7. W. Kim. Introduction to object-oriented databases. The MIT Press, Cambridge
Massachusetts, 1990.

8. Tok Wang Ling. The prolog not-predicate and negation as failure rule. New
Generation Computing, 8(1):5–31, 1990.

9. Tok Wang Ling, Mong Li Lee, and Gillian Dobbie. Semistructured Database Design.
Springer, 2005.

10. Tok Wang Ling and W.B.T. Lee. DO2: A deductive object-oriented database
system. In Proceedings of the 9th International Conference on Database and Expert
System Applications, pages 50–59, 1998.

11. Tok Wang Ling and P.K. Teo. Inheritance conflicts in object-oriented systems. In
DEXA, pages 189–200, 1993.

12. Mengchi Liu. The ROL deductive object base language. In Proceedings of Database
and Expert Systems Application, pages 189–200, 1993.

13. Mengchi Liu. A logical foundation for XML. In CAiSE, pages 568–583, 2002.
14. Mengchi Liu and Tok Wang Ling. Towards declarative XML querying. In Pro-

ceedings of WISE, pages 127–138, Singapore, 2002.
15. G.Z. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based knowledge representation

and inference infrastructure for the semantic web. In CoopIS/DOA/ODBASE,
pages 671–688, 2003.

16. Wei Zhang. XDO2: An XML deductive object-oriented query language. Master’s
thesis, School of Computing, National University of Singapore, 2004.

A XDO2 Language Syntax

Let U be a set of URLs, C be a set of constants, and V be a set of variables. The
set of constants C contain strings enclosed by “ ”, integers, real numbers, two
boolean values and object identifiers enclosed by ‘ ’. The set of variables V are
partitioned into single-valued and multi-valued variables. Single-valued variables
have format $S where S is a string literal. Multi-valued variables include set-
valued variables with format {$S} and list-valued variables with format <$S>
where S is a string literal.

Definition 1. The values are defined as follows,

1. null is a null value.

2. if c∈C then c is a constant value.
3. a set of object ids is a set value.
4. a list of constant values is a list value.

Definition 2. The terms are recursively defined as follows,

1. Let t be an XML attribute name. Then @t is an attribute term.
2. Let t be an XML element tag. Then t is an element term.
3. Let X be an attribute name or a single-valued variable, and Y a constant

value, a set value, a single-valued variable or a set-valued variable. Then @X
: Y is an attribute value term, and Y denotes the value of the attribute X.

4. Let X be an element tag or a single-valued variable, and Y a constant value,
a list value, a single-valued variable or a list-valued variable. Then X : Y is
an element value term, and Y denotes the value of the element X.

5. Let X be a term. Then not(X) is a negation term.
6. Let X1,. . . , Xn, (n ≥ 2) be a set of terms. Then [X1, . . . , Xn] is a grouping

term.
7. Let X1,. . . , Xn, (n ≥ 2) be a set of terms where X1, . . . , Xn−1 are either

element terms or element value terms. Then X1/. . . /Xn is a path term.

Definition 3. The expressions are defined as follows,

1. Let u ∈ U be a URL and P be a path term. Then (u)/P is an absolute path
expression.

2. Let X be a variable or an object id, and P be a term. Then X/P is a relative
path expression. An instantiable relative path expression is a relative path
expression X/P where either X is some object id, or the variable X has been
defined in a positive term (i.e. not negation term).

3. Arithmetic, logical expressions are defined using variables, values, aggregate
functions and operators in the usual way. Instantiable arithmetic, logical ex-
pressions are arithmetic, logical expressions such that all the variables inside
have been defined in a positive term.

Definition 4. A deductive rule has the form H :- L1, . . . , Ln. where H is the
head and L1, . . . , Ln is the body of the rule. H is a positive instantiable relative
path expression and L1, . . . , Ln are either absolute path expressions or instan-
tiable expressions.

Definition 5. A query has the form R ⇐ L1, . . . , Ln. where R is the result
format expression and L1, . . . , Ln are the query or conditional expressions. R
is a positive absolute path expression and L1, . . . , Ln are either absolute path
expressions or instantiable expressions. If there is no result format expression
specified, we use ⇐ L1, . . . , Ln.

B XDO2 Language Semantics

For the language semantics, please refer to [16].

