
SemanticTwig: A Semantic Approach to
Optimize XML Query Processing

Zhifeng Bao1, Tok Wang Ling1, Jiaheng Lu2, and Bo Chen1

1 School of Computing, National University of Singapore
{baozhife, lingtw, chenbo}@comp.nus.edu.sg

2 University of California, Irvine, jiahengl@uci.edu

Abstract. Twig pattern matching (TPM) is the core operation of XML
query processing. Existing approaches rely on either efficient data struc-
tures or novel labeling/indexing schemes to reduce the intermediate re-
sult size, but none of them takes into account the rich semantic informa-
tion resided in XML document and the query issued. Moreover, in order
to fulfill the semantics of the XPath/XQuery query, most of them re-
quire costly post processing to eliminate redundant matches and group
matching results. In this paper, we propose an innovative semantics-
aware query optimization approach to overcome these limitations. In
particular, we exploit the functional dependency derived from the given
semantic information to stop query processing early; we distinguish the
output and predicate nodes of a query, then propose a query breakup
technique and build a query plan, such that for each distinct query out-
put, we avoid finding the redundant matches having the same results as
the first match in most cases. Both I/O and structural join cost are saved,
and much less intermediate results are produced. Experiments show the
effectiveness of our optimization.

1 Introduction

XML is emerging as a standard for information exchange and representation.
Efficient processing of XML queries attracts wide research attentions recently [2,
4, 10–12, 3]. The structure of an XML query [7, 13] is generally modeled as a twig
pattern (i.e. a small tree), while the values of XML elements or attributes are
used in selection predicates. Twig pattern edges are either parent-child (P-C) or
ancestor-descendant (A-D) relationships, denoted by “/” and “//”. E.g. an XML
query book[title=“XML”]/author returns the authors of all books titled “XML”.
author is the output, and title=“XML” is a value-based selection predicate.

So far, many twig pattern matching (TPM) methods have been proposed.
Bruno et al. proposed a holistic TwigStack join algorithm to avoid producing
large intermediate results [2]. Several following approaches [11, 12, 10, 4] suggest
different ways to optimize TwigStack. However, there are two important issues
that the existing TPMs haven’t addressed. Firstly, existing TPMs do not dis-
tinguish the output nodes and predicate nodes of a query and they return the
entire twig matches. However, many of them contribute to the same output re-
sult, and the entire twig matches are unnecessary for most XPath or XQuery

queries. After all twig matches are found, they have to apply a post-processing,
which includes eliminating redundant matches having the same query result (and
grouping part of results into a set for the variables in let clause of XQuery). This
post-processing is very costly, as shown in our experiments in section 5. Secondly,
none of them makes use of the rich semantic information resided in the XML
document and its schema to further optimize query processing.

Motivated by the above two observations, we propose an innovative semantics-
aware query optimization approach. There are three directions to exploit the ex-
isting information to optimize query processing: (1) optimizations based on the
schema information of XML documents; (2) optimizations based on the query
structure; (3) optimizations involving data storage and statistics (e.g. indexing).
Our work includes the first two: the first optimization (section 4.2) is based on
the ORA-SS model [14] described later; the second optimization (section 4.3) is
independent of ORA-SS model. To the best of our knowledge, this is the first
work that systematically exploit the known semantics in both XML data and
XML query to optimize query processing. As a result, for each distinct query
output t, we only find the first twig match in XML document that contains t,
and the cost of finding the remaining matches that return the same output as
the first match is avoided in most cases. The query processing can stop even
earlier if we exploit the semantics of XML document. As a result, both the I/O
and CPU cost is significantly reduced.

Another challenge is how to efficiently represent the semantic information in
XML documents. Although XML is the standard for publishing and exchanging
data on the Web, most business data is managed and will remain to be managed
by relational database management system (RDBMS) because of their powerful
data management services. There is an increasing need to accurately publish
relational data as XML documents for Internet-based applications as well as
preserve the semantics captured in RDBMS. In the transformation from rela-
tional schema to XML schema, some semantics can be captured by DTD and
XMLSchema, such as the identifier constraint (denoted by “unique” and “key”
constraint in XMLSchema), and participation constraint of child element on its
parent denoted by signs “ ∗ ”, “?” and “+”. However, richer semantics captured
in RDBMS cannot be captured by DTD/XMLSchema, e.g. the participation
constraints of a parent element on its child, etc. Fortunately, instead of writing
down those semantics as comments, notes, or in XML data creator’s own mind,
we can capture them in ORA-SS schema [14], which is a useful data model and
tool for semistructured data. The main advantage of ORA-SS is its ability to
distinguish between object classes, relationship types and attributes, and ex-
press the degree of an n-ary relationship type. Therefore, in this paper, in order
to fully leverage the semantic information in XML data to speedup XML twig
query processing, we adopt ORA-SS to model XML data, especially those that
are transformed from relational data.

The main contributions of this paper are summarized as follows:

– We exploit important semantics of XML document captured by ORA-SS
schema (such as object class identifier, participation constraints, etc.), to

derive functional dependencies useful for query optimization. This is the
first kind of optimization which depends on the ORA-SS model.

– We propose a Query Breakup technique to distinguish the processing of pred-
icate part and output part of a twig query, so for each distinct query result,
we only find the first twig match in XML document that contains it, and
avoid finding all the remaining redundant matches. This is the second kind
of optimization, which is independent of the ORA-SS model.

– We propose SemanticTwig, a semantics-aware query processing algorithm
which employs the above two kinds of optimizations. Both the I/O and
CPU cost reduce significantly compared to existing TPMs. Moreover, our
optimization is orthogonal to any existing structural-join based TPMs.

– We perform comprehensive experiments to demonstrate the efficiency and
scalability of our approach over existing approaches.

The rest of the paper proceeds as follows. Section 2 reviews the related work.
Section 3 gives an overview of ORA-SS. Section 4 propose two query optimization
approaches. Section 5 reports experimental results and we conclude in section 6.

2 Related Work

Extensive research efforts have been put into efficient twig query process-
ing with label based structural join. For binary structural join, Zhang et al.
[15] proposed a multi-predicate merge join (MPMGJN) algorithm based on re-
gion labelling of XML elements. The later work by Al-Khalifa et al. [1] gave a
stack-based binary structural join algorithm, called Stack-Tree-Desc/Anc. How-
ever, both generate many useless intermediate results for twig query. To solve
this problem, Bruno et al. [2] firstly proposed a holistic twig join algorithm
called TwigStack to solve the problem of useless intermediate results. However,
TwigStack is only optimal for twig query with only A-D edges in terms of inter-
mediate results. Many subsequent works try to optimize TwigStack in terms of
I/O. In particular, Lu et al. in [11] introduced a List structure called TwigStack-
List for a wider range of optimality. Jiang et al. in [10] proposed an XML Region
Tree (XR-tree) index structure and a TSGeneric+ algorithm to effectively skip
both ancestors and descendants that do not participate in a join. Chen et al. [4]
exploits different data partition methods to boost the holism. Lu et al. [12] used
Extended Dewey labeling scheme, and proposed a TJFast algorithm to access
labels of leaf nodes only. Recently, Chen et al. in [3] proposed a Twig2Stack al-
gorithm which uses hierarchical-stacks to enumeration the twig matches, but it
has to maintain a large amount of intermediate results in memory.

Existing semantic related works[5, 6] only rely on the integrity constraints
captured from the real world knowledge, rather than the schema of XML docu-
ment. It prepares a set of XML rewriting rules with semantic preserving prop-
erty from the integrity of the database, and a query is transformed into an
efficient and optimized form using these rules. It should be highlighted that sine
relational-based ones like XPath accelerator [9] and PPFS+ [8] also focus only
on output nodes and handle predicates using the exist clause of SQL; however
they cannot handle twig query well.

3 Background on ORA-SS Model

The ORA-SS (Object-Relationship-Attribute model for SemiStructured data)
data model has three basic concepts: object class, object classrelationship type
and relationship typeattribute. An object class is similar to an entity type in an
ER diagram. A relationship type describes a relationship among object classes.
Attributes are properties belonging to an object class or a relationship type. A
full description of the data model can be found in [14].

As Figure 1(b) shows, an ORA-SS schema represents an object class as a
labeled rectangle, an attribute as a labeled circle. The relationship type between
object classes is assumed on any edge between two objects, and described by a
label in form of “name(object class list), n, p, c”. Here, name denotes the name
of relationship type; optional object class list is the list of participating objects;
n indicates the degree of the relationship type; p and c are the participation
constraints of parent and child object classes respectively, defined using the
min:max notation. All attributes are assumed to be mandatory and single valued,
unless the circle contains a “?” indicating it is optional and single valued, “+”
indicating it is mandatory and multi-valued, and “*” indicating it is optional
and multi-valued. Identifier of an object class is a filled circle. The attribute of
a relationship type has the name of the relationship type to which it belongs
on its incoming edge, while the attribute of an object class has no edge label.

<!ELEMENT faculty (fname, department+)>
<!ElEMENT fname #PCDATA>
<!ELEMENT department (dname, course+)>
<!ElEMENT dname #PCDATA>
<!ELEMENT course (code, title, field, student+)>
<!ElEMENT code #PCDATA>
<!ElEMENT title #PCDATA>
<!ElEMENT field #PCDATA>
<!ELEMENT student (stuNo, sname,
 address?, hobby*, mark,tutor)>
<!ElEMENT sname #PCDATA>
<!ElEMENT stuNo #PCDATA>
<!ElEMENT address #PCDATA>
<!ElEMENT hobby #PCDATA>
<!ElEMENT mark #PCDATA>
<!ElEMENT tutor (staffNo, tname, feedback)>

(a) DTD

faculty

department

course

student

tutor? *

fname

dname

code title field

stuNo sname addresshobby mark

cst,3,1:1,1:n
cs

staffNo tname feedback

cs,2,1:n,1:n

dc,2,1:n,1:1

fd,2,1:n,1:1

cst

(b) ORA-SS Schema Diagram

Fig. 1. Two Schema Representations of XML Document

Figure 1(a) shows the DTD and Figure 1(b) shows an ORA-SS schema diagram
for an XML document describing the organization of a university. The rectangles
labeled faculty, department, course, student and tutor are five object classes, and
attributes fname, dname, code, stuNo and staffNo are the identifiers of faculty,
department, course, student and tutor respectively. For each student, address
is an optional single valued attribute, and hobby is an optional multi-valued
attribute. There are three binary relationship types, namely fd, dc and cs. cs
is a relationship type between course and student. dc represents a one-to-many
relationship type, where a department can have one or more (1:n) courses, and
a course belongs to exactly one (1:1) department. The label cs on the edge
between student and mark indicates that mark is a single valued attribute of

the relationship type cs, and a functional dependency (FD) {course, student} →
mark holds. A ternary relationship type cst involves course, student and tutor.
The label cst on the edge between tutor and feedback indicates feedback is an
attribute of relationship cst, and an FD {course,student,tutor} → feedback holds.

4 Semantic Query Optimization

This section investigates how our semantics-aware query optimization works.
Our primary objective is to avoid unnecessary computation on finding matches
contributing to the same query result and stop query processing as early as
possible. The optimization is carried out in two steps: we first try to exploit
the FDs explicitly given or derived from the semantics of the XML document to
answer a query through FD’s ability of capturing redundancies(section 4.2); if no
FD can be exploited, then we make use of the semantics of the XML query, i.e.
distinguish the output part and predicate part of a query, in which the predicate
is only used for existence checking. Therefore, we only need to find the matches
that have distinct output results, rather than the matches of the entire query’s
twig pattern (section 4.3). In addition, our optimization is orthogonal to most
existing structural join based TPMs. The optimization approach in section 4.2
relies on the semantics exclusively captured by ORA-SS schema, while section
4.3’s approach works without dependence on ORA-SS. Note that, FD could be
given explicitly instead of using ORA-SS model here.

4.1 Terminology
In this paper, we discuss three forms of predicates: (1) value predicate for

point query (in form of A[m = “value”]//B), and its predicate node set is a
set of nodes m involved in the equality condition; (2) the predicate used for
existence checking (in form of A[n]//B), and its predicate node set is a set of
nodes n; (3) the mixture of the above two forms, and its predicate node set is
the union of the predicate node set of the above two forms. E.g. given a query
A[//B[C[D=“v1” and E=“v2”]]]/F, predicate node set = {D,E,v1,v2}, because
we treat the element values “v1” and “v2” same as the element node. For query
A[B//C[D and E]]/F, predicate node set = {B,C,D,E}. Although a twig query
does not specify output and predicate explicitly, it is easy to identify them from
its corresponding XQuery query. The output node set contains all nodes in its
return clause.

Moreover, instead of returning the entire twig results, we return only the
output part of the query. The result is defined as a set of tuples, and each tuple
contains the element labels of output nodes only. If some output node n is a
multi-valued attribute and required to return as an ordered set, its matching
labels are grouped into a set under their common ancestor before returned. Our
approach outperforms the existing TPMs by avoiding the cost on finding as
many redundant matches as possible, which is defined below.

Definition 1 {Redundant Match} For a twig query Q, a match M1 is said
to be a redundant match, if there exists another match M2 found before M1,
such that M1 and M2 contribute to the same query output node values.

4.2 Optimization via Functional Dependency

Functional dependency (FD) is used to model real world constraints and cap-
ture redundancies. The given semantics in ORA-SS schema such as the identifier
of object class, n-ary relationship and the participation constraint can be used
to derive useful FD for efficient query processing. Given a query Q, if an FD in
form of predicate node set→output node set can be derived, then Q is answered
by finding the first match of Q appearing in XML document. The I/O cost is
saved since it avoids loading remaining labels from each query node’s stream;
the CPU cost is saved since most XML documents contain redundancies. But
it is only true when Q involves the value predicates. All Lemmas hold based on
this assumption.

FD within an object class The identifier of an object o can uniquely deter-
mine the value of any single-valued attribute of o, and uniquely determine the
whole set of values of any multi-valued attribute of o.

Lemma 1 Given a query Q with predicate node set P and output node set T .
Case 1: If ∀ti∈T , ti is a single-valued attribute of some object class Oi, and

∃p∈P , such that p is the identifier of Oi; then an FD P→T holds, and the query
result is the first match F of Q over XML data in document order.

Case 2: If some output node t′j∈T is a multi-valued attribute of some object
class Oj, and other output nodes in T are same as Case 1; then Q is answered by
finding its first match F (which finds the first value of each t′j), then retrieving
and grouping the remaining values of each t′j within F into a set.

In Case 1, the overall processing cost is reduced with the utilization of such
FD in two ways. Firstly, an object may have more than one occurrence in docu-
ment, and it’s safe to stop query processing after the first match of Q is found.
Secondly, there is no need to check the remaining labels in label streams of each
query node, which saves I/O cost. In Case 2, we only need to find one match;
however, existing approaches have to enumerate all path matches and merge-join
them, and finally eliminate redundant match. One important character that dis-
tinguishes our approach from the existing TPMs is that we treat the set/non-set
elements(i.e. multi/single-valued attributes) separately. The retrieval and group-
ing of the remaining occurrences of t′ are easy and efficient to implement, since
their labels are stored sequentially and compactly.

Example 1 Refer to ORA-SS schema in Figure 1(b)1, the following XQuery
query Q retrieves the name and hobby of a student with stuNo equal to “u12”.
for $s in //student[stuNo=“u12”], let $h := $s/hobby
return <stu>{$s/sname}{$h}</stu>

The above query Q’s twig pattern is shown in Figure 2. Its predicate node
set P = {stuNo, u12}, and output node set T = {sname, hobby}. stuNo is the
identifier of student and hobby is a multi-valued output, so by Case 2 of Lemma
1, it is enough to find the first match F of Q in XML data, then retrieve and
1 All queries throughout this paper refer to the schema diagram shown in Figure 1(b).

group all labels of remaining hobbies within F. A tuple containing sname and
a set of hobbies of this student is returned. The advantage of our approach

student

stuNo hobbysname

“u12”

Fig. 2. Example 1

course

code student

“cs101” snamestuNo hobby

title

mark

“123”

Fig. 3. Example 2

A

B t1

R

t2C

t3ED

p1 p2

MOT

MPT

(a) Q

A

B

R

C

ED

p1 p2

(b) Qpred

A

B t1

t2C

t3

(c) Qout

Fig. 4. Break query (Example 4)

is illustrated by an example as below. Assume student “u12” has 8 hobbies.
Existing TPMs find 8 matches of path //student/hobby and join the 8 matches
with the match(es) of paths //stduent/stuNo/ u12 and //student/sname, while
our approach needs only one structural join. Moreover, after finding 8 matches
of the entire twig, TPMs group all hobbies, which is a costly post-processing
operation; while we handle the grouping in the middle of twig pattern matching.
TPMs even need to do redundancy elimination if this student object has more
than one occurrences in XML document.

FD in an n-ary relationship type From ORA-SS schema diagram, the FD
in an n-ary relationship is in the form that, identifiers of participating object
classes functionally determine the single-valued attributes of the relationship.

Lemma 2 Given a twig query Q with predicate node set P and output node set
T . For each output node t∈T ,

Case 1: t is a single-valued attribute of a n-ary relationship R involving n object
classes O1,...,On, and ∃pi∈P for each i∈[1,n], s.t. pi is the identifier of Oi;

Case 2: t is a single-valued attribute of some object class Ok, ∃pk∈P s.t. pk is
the identifier of Ok. Then in both cases, FD P→T holds, and Q can be answered
by finding the first match F of Q;

Case 3: if some t∈T is a multi-valued attribute of R or any participating object
class, and each remaining node t′∈T belongs to either Case 1 or Case 2, then
we can adopt the approach in Case 2 of Lemma 1 to efficiently answer Q.

Example 2 Find the title of course with code “cs101”, and the mark, name and
hobby of student taking it, whose stuNo is “123”.
for $c in //course, for $s in $c[code=“cs101”]/student[stuNo=“123”]
let $h := $s/hobby
return <stu> {$c/title} {$s/sname} {$s/mark} {$s/hobby} </stu>

Figure 3 shows the twig pattern of the above query Q. The predicate set P
= {code, stuNo}, the output node set T = {title, sname, mark,hobby}, in which

mark is a single-valued attribute of relationship type cs. From Figure 1(b), it
is easy to identify the FD {code, stuNo} → mark, which means a student has
exactly one mark for each course taken. stuNo→sname and code→title also hold.
So we can infer {code,stuNo} → {sname,title,mark}. So by Lemma 2 Case 3, Q
can be answered by finding its first twig match F in XML document, followed
by retrieving and grouping the values of remaining hobbies.

Participation constraint in n-ary relationship The 1:1 participation con-
straint intuitively infers an FD between the participating object classes. A typical
example is the one-to-many relationship type dc shown in Figure 1(b), in which
the 1:1 participation of course on relationship type dc specifies a course is of-
fered by exactly one department, i.e. course→department. The 1:1 participation
between some object classes can simplify the functional dependency of an n-ary
relationship R. E.g. as Figure 1(b) shows, single-valued attribute feedback of
ternary relationship cst is determined by the 3 participating object classes, i.e.
{course,student,tutor} → feedback. The 1:1 participation of tutor on cst specifies
{course,student} → tutor, which means a student has exactly one tutor for each
course he takes. Therefore, a new FD {course,student} → feedback is derived.

Example 3 Find the name of faculty and department offering course “cs101”.
for $f in //faculty, $d in $f/department, $c in $d/course[code=“cs101”]
return <fac>$f/fname<dept>$d/dname</dept></fac>

In this query, two binary relationships fd and dc exist, and the participation
of parent node on child node are both 1:1, so two FDs course→department
and department→faculty hold. Then a new FD course→ {faculty,department} is
inferred. Since the predicate node code is the identifier of course, the query has
a unique answer and we can stop query processing after the first match is found.

4.3 Optimization via Query Breakup
Motivation According to the semantics of an XPath/XQuery query, only
the output results with no duplicates are expected to return. However, existing
approaches are not aware of this distinction of output and predicate nodes in
a query, and assume all nodes in a query tree need to be output. They answer
a query by applying pattern matching on its entire twig, followed by a costly
post-processing which includes the tasks of redundant matches elimination and
results grouping. In this section, we aim to fulfill the post-processing task during
the pattern matching procedure with low extra cost. In fact we are able to avoid
finding as many redundant matches as possible by distinguishing the output
nodes and predicate nodes of a query.

Another motivation to propose the query breakup technique is: for each dis-
tinct output result of the query Q, there are many redundant matches of the
predicate part in XML document. If we can break Q into two sub-twigs corre-
sponding to Q’s predicate and output part respectively, and avoid finding those
redundant matches, then both I/O and CPU cost are reduced. Because we skip
reading the elements of redundant matches into memory, and need less number
of structural joins, and process a twig query of smaller size.

Find the breakpoint The choice of breakpoint is not unique, but it depends on
the definition of predicate node of a query (defined in section 4.1), and its choice
determines the breakup method used. Therefore, the predicate node, breakpoint,
the breakup method and query optimization based on breakup are defined in
a consistent and cooperative way to meet three properties: (1) guarantee the
completeness and correctness of query result; (2) read as few elements as possible
into memory; (3) less structural join cost. Before introducing the definition of
breakpoint, we have the following two definitions.

Definition 2 {Minimal Predicate Tree (MPT)} The Minimal Predicate
Tree of a query Q is the minimal sub-tree of Q’s twig tree that covers all nodes
in the predicate node set. If there is only one predicate node p, the MPT is a
path connecting p and its parent. The root node of MPT is called RMPT .

Definition 3 {Minimal Output Tree (MOT)} The Minimal Output Tree
of a query Q is the minimal sub-tree of Q’s twig tree that covers all nodes in the
output node set. If there is only one output node t, the MOT is a path connecting
p and its parent. The root node of MOT is called RMOT .

Definition 4 {Breakpoint} The breakpoint BP of the query Q with the pred-
icate node set P and the output node set T is:

Case 1: the lowest common ancestor LCA of RMPT and RMOT in Q, if there
is no A-D relationship between RMPT and RMOT ; (line 7 of Algorithm 1)

Case 2: the node t∈MOT , such that t is the ancestor of an output node of Q,
and t has the lowest hierarchy along the path downward from RMOT to RMPT ,
if RMOT is the (self) ancestor of RMPT ; (line 3-4 of Algorithm 1)

Case 3: the node p∈MPT , such that p is the ancestor of a predicate node of Q,
and p has the lowest hierarchy along the path downward from RMPT to RMOT ,
if RMPT is the (self) ancestor of RMOT . (line 5-6 of Algorithm 1)

Algorithm 1: findBreakPoint(Q, MPT , MOT)
r1 = root(MOT); r2 = root(MPT)1

P 1 = path(r1,r2); P 2 = path(r1,r2)2

if (r1.isAncestorof(r2)) then3

brkpoint = t | t∈MOT ∩ t∈P 1 ∩ ∀t′∈T t′ 6=t ⇒ level(t)>level(t’)4

else if (r2.isAncestor(r1)) then5

brkpoint = t | t∈MPT ∩ t∈P 2 ∩ ∀t’∈P t′ 6=t ⇒ level(t)>level(t’)6

else brkpoint = findLowestComAncestor(r1,r2,Q)7

return brkpoint8

Break up the query Based on the breakpoint BP found, a query Q is broken
into two sub-twigs namely Qpred and Qout. Besides the three properties intro-
duced in last subsection, the breakup method should guarantee the union of
Qpred and Qout entirely constitute Q. Since some nodes in Q are not covered by
either MOT or MPT , the main problem is how to distribute them into Qpred

and Qout to meet the above four properties. Since the definition of Breakpoint

has three cases, the query breakup is presented to handle the query in each case.
In Algorithm 2, lines 1-3 handle the query in Case 1 of Algorithm 1; lines 4-10
handle the query in Case 2; optimization is impossible in Case 3, because no
redundant match exists (line 11).

Example 4 We show how findBreakPoint and breakup work for the query type
in Case 2 of Definition 4. In Figure 4, the query Q has two predicate nodes
p1 and p2 and three output nodes t1, t2 and t3. The Minimal Predicate Tree
(MPT) and Minimal Output Tree (MOT) of Q are highlighted by dotted circles
in Figure 4(a). A and C are the root of MPT and MOT respectively, and A
has a higher hierarchy than C. C is chosen as the breakpoint because it satisfies
the three conditions in line 4 of Algorithm 1: C is a node in both the path P 1

and MOT , and among the three nodes A, B and C that have an output node as
descendant, C has the lowest hierarchy. Next, we follow Algorithm 2 to break Q.
We first find the minimal tree Qtemp covering both MPT and C (line 5). Figure
4(b) shows Qpred, which is the minimal tree covering both Qtemp and Q’s root
R(line 6). Qrem resulted from removing Qpred from Q except breakpoint C. Since
Qrem is a sub-structure of MOT , Figure 4(c) shows the Qout is MOT (line 7-9).

Algorithm 2: breakup(Q, MPT , MOT , BP)
if (!isAD(RMPT ,RMOT) ∩ !isAD(RMOT ,RMPT)) then1

Qpred = findMinTree(MPT , root(Q))2

Qout = (Q - Qpred) ∪ BP3

if (isAD(RMOT ,RMPT)) then4

Qtemp = findMinTree(MPT , BP)5

Qpred = findMinTree(Qtemp, root(Q))6

Qrem = (Q - Qpred) ∪ BP7

if (Qrem.isSubTree(MOT)) then8

Qout = MOT9

else Qout = Qrem10

else no optimization is possible11

Example 5 The query Q below finds the name of faculty and department,
in which a student descendant is called “Bob” and one of his hobby is “tennis”.
for $f in //faculty, $d in $f/department, $s in $d//student
where $s/sname=“Bob” and $s/hobby=“tennis”
return <fac>$f/fname<dept>$d/dname</dept></fac>

The predicate node set P={sname,hobby,Bob,tennis}, and the output node set
T={fname,dname}. Thus, RMPT is node student, and RMOT is node faculty.
Since department is the lowest hierarchy node along the path from faculty to
student and is the ancestor of output node dname, the breakpoint is department
by case 2 of Definition 4. So Q is broken into two sub-twigs Qpred and Qout

shown in figure 5(b) and 5(c). If dname is removed from the return clause of the
above query, then the breakpoint is node faculty rather than department.

Optimization based on query breakup After Q is broken into two sub-
queries Qpred and Qout, we build a 4-step query plan to achieve optimization.

student

sname hobby

“tennis”

department

faculty

fname

dname

“Bob”

(a) original twig Q

student

sname hobby

“tennis”

department

“Bob”

(b) Qpred

fname

faculty

department

dname

(c) Qout

Fig. 5. Breakup a twig query

Step 1: Initialize the set SBP to empty, which stores the labels of breakpoint
BP , each of which contributes to a distinct query output.
Step 2: Once a match F of sub-twig Qpred is found, add the label A of current
BP -element into SBP .
Step 3: Keep moving the cursor of BP , i.e. CBP forward, until the current BP -
element pointed by CBP is not the descendant of A found in F . Go back to Step
2 to locate the next match of Qpred until CBP reaches the end.
Step 4: Replace the label stream of BP by SBP , and evaluate the sub-twig query
Qout. Note that no join between Qpred and Qout is needed.

– Case 1: If every output node t∈Q is a single-valued attribute, then Q is
answered by finding all matches of Qout over the XML document.

– Case 2: If some output node t′∈Q is a multi-valued attribute and declared
to return as an ordered set (i.e. t′ is declared in the let clause of XQuery),
then Qout is replaced by Qout′ by removing all those t′ nodes; and once each
match FM ′ of Qout′ is located, all labels of such t′ nodes within FM ′ are
retrieved one by one and grouped together.

Example 6 This example illustrates the superiority of our approach. The query
is same as Example 5 except that the output node is fname. Suppose the univer-
sity has 8 faculties, 5 departments per faculty, 100 students per department; in
each department dept, 3 students are called “Bob” and have a hobby “tennis”.
TwigStack [2] is used as a representative of existing TPMs.

TwigStack decomposes Q into 3 root-to-leaf paths, i.e. //faculty/fname,
//faculty/department//student/sname/Bob and //faculty/department//student
/hobby/tennis. The number of matches for each path is 8, 8*5*3 and 8*5*3 re-
spectively. Then it joins these path matches to get the entire twig match of Q,
which is 8*5*6*0.5 = 120 matches. Finally, it eliminates redundant matches. In
the optimal case, total number of labels scanned is 8+8+8*5*3+8*5*3*4 = 716.

In contrast, our approach finds the breakpoint department, and breaks Q into
Qpred and Qout (Figure 5). Number of matches of Qpred and Qout are both 5*8,
so in total 80 matches are found. In the optimal case, 8+8+8*5 = 56 labels are
scanned. 8 structural joins are needed in processing Qpred; no structural join is
needed in processing Qout. Compared to TwigStack, our approach scans smaller
number of labels, needs less structural joins and avoid many redundant matches.

4.4 SemanticTwig Optimization Algorithm
Algorithm 3 presents the two kinds of optimizations introduced in section

4.2 and 4.3. If an FD in form of {predicate part→output part} can be derived
from the semantic information in ORA-SS schema, then the query is answered
by only finding the first occurrence of its twig pattern in XML document (lines
1-3). Otherwise, we execute the second optimization, i.e. query breakup. Firstly,
the Minimal Predicate Tree and Minimal Output Tree are found (line 4-5). The
breakpoint n is identified by calling Algorithm 1(lines 6), and used to break Q
into Qpred and Qout(line 7). Secondly, the labels of n are collected into Sn, each
label contributes to a distinct query output(lines 8-13). The cursor Cn of node n
keeps moving forward until the current n is not the descendant of the n-element
found in last match of Qpred(lines 12-13). Thirdly, based on the shortened label
stream of node n(line 14), all matches of sub-twig Qout are located(lines 15-21).
TwigStack algorithm is the backbone of findMatch() and find1stMatch().

Theorem 1 Given a twig query Q with specified predicate node set P and output
node set T , and an XML database D. Algorithm SemanticTwig correctly returns
all the answers for Q on D.

PROOF:[Sketch] The main difference of SemanticTwig and TwigStack is the
movement of cursors. In SemanticTwig, the cursor of breakpoint n skips all
elements that are descendants of the n-element A in previous match of Qpred,
but the output results R′ associated with these descendants are not skipped.
Because each time the first match of Qpred is found, all the matches MS of Qout

associated with A are located, and R′ is in fact a subset of the query results in
MS. Therefore, it is safe for Cn to directly jump to the first element which is
not the descendant of the A in previous match of Qpred.2

Time and Space Complexity

Theorem 2 Consider an XML database D, a query twig pattern Q consisting
of m nodes and ancestor-descendant(A-D) edges only, with specified predicate
node set P and output node set T . Algorithm SemanticTwig has the worst-case
I/O and CPU complexities linear in the sum of sizes of the m input lists and
the output list of Q’s sub-twig Qout (which is retrieved via query breakup). The
upper bound is O(m ∗ |R|+ |X|), where |X| is the size of the m input lists, and
|R| is the number of matches of Qout.

PROOF: SemanticTwig first finds the matches of sub-twig Qpred where each
match contributes a distinct output result, and it costs O(m1*|R|); then it locates
all the matches of sub-twig Qout based on the shrinked label stream Sn of node n,
and it costs O(m2*|R|). Since m1 and m2 is number of query nodes in Qpred and
Qout respectively, we have m1+m2= m + 1. The cost of reading input streams
of each query node is |X|. Thus, the total cost is O(m ∗ |R|+ |X|).2

Since SemanticTwig calls twigstack to find matches of the sub-twigs of Q,
and the worst-case size of any stack in TwigStack is proportional to the maximal
length of a root-to-leaf path XML database, we have the following results about
the space complexity of SemanticTwig.

Algorithm 3: semanticTwig(Q, predSet, outSet)
Identify FDs F1, F2,..., Fm from ORA-SS schema of XML data1

if FD Predicate→output is derived then2

resultSet += find1stMatch(Q)3

MPT = findMinPredicateTree(Q, predSet)4

MOT = findMinOutputTree(Q, predSet)5

Node n = findBreakPoint(Q, MPT , MOT)6

{Qpred, Qout} = breakup(Q, n, MPT , MOT)7

let Cn be the cursor of node n, let Sn be a label set of n8

while (!end(n)) do9

predMatch = find1stMatch(Qpred)10

Sn += Cn; prevC = Cn; Cn = Cn.advance()11

while (Cn.isDescendantof(prevC)) do12

Cn = Cn.advance()13

T ′ = t′| t′ is multi-valued output ∩ t′ in let clause of Q14

Replace the label stream of node n by Sn15

while (!end(root(Qout))) do16

fm = findMatch(Qout)17

Let t1,t2,... be labels of each single-valued node of Qout18

foreach t′∈T ′ do19

Sett′ += retrieveLabels(t′, fm)20

ResultSet += <t1,t2,...,Sett′ ,...>21

return resultSet22

Theorem 3 Consider a query twig pattern Q with m nodes and an XML database
D. The worst case space complexity of Algorithm SemanticTwig is the minimum
of (i) the sum of sizes of the m input lists, and (ii) m times the maximum length
of a root-to-leaf path in D.

Theorem 4 The two optimization methods in SemanticTwig are both orthogo-
nal to all existing structural join based TPMs. The only difference is the imple-
mentation of method find1stMatch() and findMatch().2

Moreover, SemanticTwig is optimal for twig queries with A-D edges only, but
sub-optimal for queries with P-C edges. But this sub-optimality is due to the
sub-optimality of TwigStack on which our optimization method applies.

5 Experimental Study

We implement TwigStack and SemanticTwig in JDK 1.4, and run experi-
ments on a 3.0 GHz Pentium 4 processor PC with 1GB RAM running on windows
XP system. We compare them in terms of intermediate path solutions, I/O cost
(i.e. number of elements read into memory) and total execution time.

In order to evaluate the performance of a particular operation exactly, we
choose DBLP as the real dataset; and generate the synthetic dataset based on
the university’s schema diagram shown in Figure 1(b), by manually specifying

semantic constraints such as the uniqueness of certain values, the frequency of
some node value in document etc. Three synthetic datasets are used, details
summarized in Table 1. Doc1 is a non-recursive document corresponding to
the schema in Figure 1(b); Doc2 is adapted from Doc1, in which course be-
comes a recursive element, s.t. a course is the prerequisite of other courses. Doc3
is adapted from Doc2 by increasing the frequency of some leaf nodes’ values.
DBLP’s summarization is shown in the last row of Table 1.

Table 1. XML Data Sets

Data Size(MB) Nodes Depth
Doc1 10.4 882854 7/4.1
Doc2 11.7 889453 13/5.2
Doc3 18.3 1522218 7/4.5
DBLP 130 3736406 6/2.9

Table 2. Queries over data sets

Q1 //course[code=“cs101”]/student[stuNo=“u1”]/mark
Q2 //department[.//course/field=“www”]/dname
Q3 //student[hobby]/sname
Q4 //faculty[.//student/hobby=“tennis”]/fname
Q5 //dblp/article[author]//year
Q6 let $t:=//inproceedings[.//title]/author return {$t}

5.1 SemanticTwig VS TwigStack

Queries Q1-Q4 are chosen for synthetic datasets Doc1-Doc3, and Q5-Q6 are
selected for DBLP dataset, as shown in Table 2. Q1 is used to test the effect of the
first optimization method exploiting the FD {course,student}→mark, and Q2-
Q6 are used to test the effect of the pure second optimization or the deployment
of both optimizations. In particular, Q3 can exploit the role of multi-valued at-
tribute hobby as existence check; Q2 and Q4-Q6 test the effects of query breakup
technique.

SemanticTwig outperforms TwigStack on both synthetic and real datasets,
as shown in Figure 6 and 7. We also compared it to TJFast, and find Seman-
ticTwig outperforms TJFast in a similar fashion, due to its orthogonality to all
structural-join based TPMs. The comparison is further analyzed in terms of the
cost of disk access, size of intermediate results and query running time.

Cost of disk access As shown in Figure 6, SemanticTwig reads much fewer el-
ements than TwigStack (at least two orders of magnitude, the y-axis’s statistics
is log-scaled). This huge gap results from the fact that TwigStack scans elements
for all the query nodes, while SemanticTwig scans only the elements of matches
contributing to distinct query results, so the elements of redundant matches are
skipped. As Figure 6(b) and 6(c) show, TwigStack performs even worse for re-
cursive document, while SemanticTwig’s I/O cost has small change. E.g. in eval-
uating Q2, within a certain department, once the first course-element C whose
field is “www” is found, we can skip all descendants of C which have the same
node type as C, i.e. all courses which are the pre-requisite of C can be skipped,
since they contribute to the same output value as C; however TwigStack still
loads them into memory. Figure 6(d) shows our approach reads less elements
than TwigStack for DBLP.

Size of intermediate results Table 3(a) shows the number of intermediate
path solutions generated by TwigStack and SemanticTwig for non-recursive

 1

 10

 100

 1000

Q1 Q2 Q3 Q4

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(K

B
)

TwigStack
SemanticTwig

(a) Doc1

 1

 10

 100

 1000

Q1 Q2 Q3 Q4

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(K

B
)

TwigStack
SemanticTwig

(b) Doc2

 1

 10

 100

 1000

Q1 Q2 Q3 Q4

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(K

B
)

TwigStack
SemanticTwig

(c) Doc3

 0

 5

 10

 15

Q5 Q6

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(M

B
) TwigStack

SemanticTwig

(d) DBLP

Fig. 6. TwigStack vs SemanticTwig on Number of Elements Read (log-scale)

Doc1. The 4th column is the minimal number of merge-joinable path contribut-
ing to distinct query answers. TwigStack outputs more path solutions than
SemanticTwig for all queries except Q1 which has the same number of path
solutions, because in Q1 a student has only one mark for each course he takes.
TwigStack even generates much more partial solutions for a query on recursive
XML document, shown in Table 3(b). The reduction of intermediate path solu-
tions on Doc3 is similar to the result on Doc1, we do not show the table due
to space limitation. The reduction is 32.8% for Q5 and 13.7% for Q6 on DBLP.
Since each article often has no more than three authors, the reduction is not
significant. This is because SemanticTwig only generates matches with distinct
output result here, while multiple matches contributing to the same result are
generated by TwigStack.

Table 3. Number of intermediate path solutions

(a) Doc1 (b) Doc2
Q Twig SemTwig Useful Reduction
Q1 3 3 3 0%
Q2 18 8 8 55.6%
Q3 213008 53252 53252 75%
Q4 76828 16 16 99.9%

Q Twig SemTwig Useful Reduction
Q1 66 3 3 95.5%
Q2 30 8 8 73.3%
Q3 213008 53252 53252 75.2%
Q4 76828 16 16 99.9%

(c) DBLP
Q Twig SemTwig Useful Reduction
Q5 331997 223218 223218 32.8%
Q6 703819 607680 697680 13.7%

Query running time Figure 7 reports the total execution time on both syn-
thetic and real datasets. In order to be fair, we do not include the time spent on
post-eliminating redundant matches into the TwigStack’s total execution time.
SemanticTwig is at least 4 times faster than TwigStack. The improvement is
not significant on DBLP, due to the fact that DBLP is a shallow and wide doc-
ument, and less redundant matches exist for Q5 and Q6. The improvement is
much more significant if post-processing time is counted.

6 Conclusion and Future Work

In this paper, we aim to avoid finding redundant matches that return the
same results by making use of the semantic information resided in XML doc-
ument and the issued query. On one hand we utilize the semantics resided in

 2

 4

 6

 8

 10

 12

 14

 16

Q1 Q2 Q3 Q4
E

xe
cu

tio
n

T
im

e
(S

ec
on

d)
Query

TwigStack
SemanticTwig

(a) Doc1

 2

 4

 6

 8

 10

 12

 14

 16

Q1 Q2 Q3 Q4

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Query

TwigStack
SemanticTwig

(b) Doc2

 2

 4

 6

 8

 10

 12

 14

 16

 18

Q1 Q2 Q3 Q4

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Query

TwigStack
SemanticTwig

(c) Doc3

 0

 10

 20

 30

 40

 50

Q5 Q6

E
xe

cu
tio

n
tim

e
(S

ec
on

d)

TwigStack
SemanticTwig

(d) DBLP

Fig. 7. TwigStack vs SemanticTwig on Execution Time

XML document to derive functional dependencies; on the other hand we explore
the semantics of an XML query, distinguish its predicate and output nodes and
initiate a query breakup technique. These two techniques can be deployed simul-
taneously in the same query. As a result we propose SemanticTwig, which is a
novel semantics-aware query optimization algorithm. As part of future work, we
want to investigate more semantics useful for efficient XML query processing.

References

1. S. Al-Khalifa, H. V. Jagadish, J. Patel, Y. Wu, N. Koudas, and D. Srivastava.
Structural joins: A primitive for efficient xml query pattern matching. In ICDE,
pages 141–152, 2002.

2. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal xml pattern
matching. In SIGMOD, pages 310–321, 2002.

3. S. Chen, H. Li, J. Tatemura, W. Hsiung, D. Agrawal, and K. Selçuk Candan.

Twig2stack: Bottom-up processing of generalized-tree-pattern queries over xml
documents. In VLDB, pages 283–294, 2006.

4. T. Chen, J. Lu, and T. W. Ling. On boosting holism in xml twig pattern matching
using structural indexing techniques. In SIGMOD, pages 455–466, 2005.

5. P. Chippimolchai, V. Wuwongse, and C. Anutariya. Semantic query formulation
and evaluation for xml databases. In WISE, pages 205–214, 2002.

6. P. Chippimolchai, V. Wuwongse, and C. Anutariya. Towards semantic query op-
timization for xml databases. In ICDE Workshops, 2005.

7. J. Clark and S. DeRose. Xml path language xpath version 1.0, 1999.
8. Haris Georgiadis and Vasilis Vassalos. Xpath on steroids: exploiting relational

engines for xpath performance. In SIGMOD, pages 317–328, 2007.
9. Torsten Grust, Maurice Van Keulen, and Jens Teubner. Accelerating xpath eval-

uation in any rdbms. ACM Trans. Database Syst., 29(1):91–131, 2004.
10. H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig joins on indexed xml docu-

ments. In VLDB, pages 273–284, 2003.
11. J. Lu, T. Chen, and T. Ling. Efficient processing of xml twig patterns with parent

child edges: A look-ahead approach, 2004.
12. J. Lu, T. Ling, C. Chan, and T. Chen. From region encoding to extended dewey:

On efficient processing of twig pattern matching. In VLDB, pages 193–204, 2005.
13. D. Florescu S. Boag, D. Chamberlin and J. Robie. Xquery 1.0: An xml query

language, 2007.
14. Xiaoying Wu, Tok Wang Ling, Mong-Li Lee, and Gillian Dobbie. Designing

semistructured databases using ora-ss model. In WISE, pages 171–180, 2001.
15. C. Zhang, J. Naughton, J. DeWitt, and Q. Luo andM. Lohman. On supporting

containment queries in relational database management systems. In SIGMOD,
pages 425–436, 2001.

