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Abstract. It is well known that some XML elements correspond to objects (in
the sense of object-orientation) and others do not. The question we consider in
this paper is what benefits we can derive from paying attention to such object
semantics, particularly for the problem of keyword queries. Keyword queries
against XML data have been studied extensively in recent years, with several
lowest-common-ancestor based schemes proposed for this purpose, including
SLCA, MLCA, VLCA, and ELCA. It can be seen that identifying objects can
help these techniques return more meaningful answers than just the LCA node
(or subtree) by returning objects instead of nodes. It is more interesting to see
that object semantics can also be used to benefit the search itself. For this pur-
pose, we introduce a novel Nearest Common Object Node semantics (NCON),
which includes not just common object ancestors but also common object de-
scendants. We have developed XRich, a system for our NCON-based approach,
and used it in our extensive experimental evaluation. The experimental results
show that our proposed approach outperforms the state-of-the-art approaches in
terms of both effectiveness and efficiency.

1 INTRODUCTION
XML has become a widely accepted standard for data storage and data exchange in
many applications, such as electronic business1, science2, and text databases3. In ad-
dition, keyword search provides a simple and user-friendly query interface to access
XML data in most applications. Therefore, keyword search on data-centric XML docu-
ments has attracted great interest. One of the most successful approaches to XML key-
word search is the LCA semantics [5], which was inspired by the hierarchical structure
of XML. Following this, many extensions of the LCA semantics such as SLCA [20],
MLCA [13], ELCA [22] and VLCA [10] have been proposed to improve the effective-
ness of the search.

1.1 Limitations with the LCA semantics

While the LCA semantics and its variants work well for many types of XML docu-
ments, unfortunately, in several scenarios, they still suffer from two limitations: they
may return meaningless answers and incomplete sets of answers. Meaningless answers
are returned when the LCA node (or its variants) just simply matches query keywords

1 http://www.ebxml.org
2 http://www.biodas.org/documents/spec-1.53.html
3 http://www-connex.lip6.fr/∼denoyer/wikipediaXML/
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and does not provide any other additional information. More importantly, LCA-based
approaches return incomplete sets of answers because they only search up from the
matching nodes, i.e., the nodes containing keywords, for common ancestors, and never
search down to find common information appearing as descendants. From now on, we
use the term common descendant to refer to such common information. Example of
these drawbacks can be seen in the context of the XML data tree in Fig. 1.

EXAMPLE 1 (Meaninglessness) For query {Stanley, Brown}, an answer such
as the value node Stanley Brown (in the left most) is meaningless since it does not
provide any additional information about Stanley Brown. A meaningful answer
should contain additional information about keywords, i.e., it should be the subtree
rooted at node Professor(1.1).

EXAMPLE 2 (Incompleteness) For query {Bill, John}, the keywords match two
students: Student(1.1.1) and Student(1.1.2) respectively. Their common
ancestor Professor(1.1) is an answer returned by LCA-based approaches. How-
ever, this is not complete. Object <Paper:001>4, which is represented by groups
of nodes started at Paper(1.1.1.1) and Paper(1.1.2.1), should also be re-
turned as an answer. This paper is a common descendant of these student nodes. Intu-
itively, these students are not only supervised by the same professor <Stanley:Brown>,
but also co-authors of the same paper <Paper:001>.

The problem of incompleteness happens when the relationship between object classes
is many-to-many (m : n). Then, the child object is duplicated each time it occurs in the
relationship, and two nodes may have the same object as the child. In practice, m : n
relationships occur in many real XML datasets, including IMDb5 and NBA6 (used in
experiments of prevalent XML research works such as [17, 16]). In IMDb, an actor or
actress can play in many movies, and a company can produce several movies. In NBA,
a player can play for several teams in different years. Moreover, due to the flexibility
and exchangeability of XML, many relational datasets with m : n relationships can
be transformed to XML [8, 4] with duplication. Thus, it is very likely that LCA-based
approaches will return an incomplete answer set for such databases.

4
<Paper:001> denotes an object which belongs to object class Paper and has OID 001.

5 http://www.imdb.com/interfaces
6 http://www.nba.com



1.2 Our novel semantics based on object
To address limitations of the LCA semantics, we propose to use the concept of ob-
ject in XML keyword search. In XML data, an object may be represented as dif-
ferent object instances, each of which corresponds to a group of nodes, rooted at a
tag indicating object class, followed by a set of attributes and their associated val-
ues. We refer to this root node as object node and the others as non-object nodes.
For example, object <Paper:001> has four instances starting from four object nodes
Paper(1.1.1.1), Paper(1.1.2.1), Paper(1.2.1.1) and Paper(1.2.2.1)
respectively. Other nodes such as PID, 001, Title, Clinton& Kennedy are
non-object nodes. An object is identified by its object class and OID (object identifier).
Thus, two instances represent the same object if they have the same object class and
the same OID. This is all the object orientation we rely upon. Using just this much, we
show in this paper the benefits that accrue to keyword search.

Based on these object orientation concepts, we introduce a novel semantics, called
Nearest Common Object Node (NCON) for XML keyword search. The NCON seman-
tics has two key features. First, an NCON must be an object node rather than an arbitrary
node. This reduces the number of meaningless answers. Second, an NCON can be ei-
ther an LCOA (lowest common object ancestor) or an HCOD (highest common object
descendant). Although LCOA is similar to LCA [5, 10, 20], the important difference is
that an LCOA must be an object node. An HCOD (1) is a common object descendant of
a set of keywords, and (2) has no ancestor that is also a common object descendant of
that set of keywords. The second feature includes common descendants into the answer
set. Let us revisit the motivating examples introduced above and see how our proposed
NCON semantics helps.
EXAMPLE 3 (Example 1 Reprise) LCOA Professor(1.1) is the object node of
the non-object node Stanley Brown. Returning the former is meaningful, whereas
returning the latter is meaningless. LCOA semantics will return the object node, rather
than the non-object node.

Several works such as XSeek [14], XReal[1], and [19] have attempted to solve the
problem of meaningless answers by identifying entity (object), and they can obtain
more meaningful answers in several cases. However, these works do not use OIDs as
ours, and therefore do not always distinguish an object from an aggregation node, a
composite attribute, and a multi-valued attribute.
EXAMPLE 4 (Example 2 Reprise) We discover that Paper(1.1.1.1) and Paper
(1.1.2.1) refer to the same object: paper <PID:001>, because they belong to the
same object class Paper and have the same OID value 001. HCOD will find this
paper and return it as an answer. In contrast, LCA based approaches cannot detect this
common paper because it appears as a descendant, not as an ancestor.

For an XML document with ID/IDREF, graph-based approaches such as [2, 11, 7]
can provide common descendants. However, to maintain the tree structure, XML de-
signers may duplicate information instead of using ID/IDREF. Moreover, those graph-
based approaches can find common descendants only if XML documents contain ID/
IDREF. Otherwise, those graph-based approaches do not recognize instances of the
same object. Therefore, they cannot find common descendants either. To the best of our
knowledge, only [9] can detect such instances and find common descendants. Never-
theless, this work transfers an XML document to a graph which is similar to relational



database, and follows Steiner tree semantics. Thus, it suffers from the inefficiency and
may return meaningless answers because matching nodes may not be (or weakly) re-
lated (will be shown in Section 5).

A final answer obtained by LCA-based approaches includes two parts: an LCA node
and a presentation of the answer, e.g., a subtree or a path. Arguably, the presentation as
a subtree may contain common descendants. However, LCA-based approaches do not
explicitly identify them and it may be hard to identify them because this presentation
contains a great deal of irrelevant information. In contrast, our NCON semantics can
and does clearly identify both common ancestors and common descendants.

1.3 Our approach and contributions

Like existing LCA-based approaches such as [20, 22, 10, 13], we work with data-centric
XML documents without ID/IDREF, in which objects may be duplicated as different
instances due to m : n relationships. We follow the NCON semantics so that both
common ancestors and common descendants can be answers. Finding common de-
scendants is much more challenging than finding common ancestors. Given a set of
matching nodes, unlike a common ancestor which appears as only one node, a common
descendant may appear as many different nodes. Therefore, it requires more complex
techniques of indexing and searching to find common descendants.

We propose a new search strategy which uses XML object tree (O-tree) rather than
the whole XML document for the search. An O-tree is extracted from an XML data tree
by keeping only object nodes and associating all non-object nodes (e.g., attributes and
values) to the corresponding object nodes. This helps reduce the number of meaningless
answers because only object nodes are returned. Moreover, this reduces the search space
greatly since the number of nodes in O-tree is much smaller than those in the whole
XML document (due to not counting non-object nodes). To find common descendants,
we use a reversed O-tree, whose paths from the root to leafs are reversed from those
of the given O-tree. Then, HCODs of the given O-tree can be found as LCOAs of the
reversed O-tree. Fig. 2(b) shows the reversed O-tree w.r.t. the O-tree in Fig. 2(a).

We do not use ID/IDREF to connect instances of the same object because if we do
so, XML data will be modeled as an XML graph instead of an XML tree. Searching
over graph-structured data has been known to be equivalent to the group Steiner tree
problem, which is NP-Hard [3]. In contrast, with the duo of the original and the reversed
O-trees, we can leverage the efficient computation of finding common ancestors based
on common prefix of Dewey labels as the LCA-based approaches [20, 22, 10] do.

In brief, we make the following contributions.
– Based on object identification, we introduce a novel semantics for XML keyword

search, called NCON, which returns a more complete set of meaningful answers
(Section 2).

– We propose an efficient search which uses the O-tree rather than the whole XML
document, and reversed O-tree rather than ID/IDREF (Section 3 and Section 4).

– We have implemented all of our ideas in XRich system for evaluation. Although
XRich has overhead from finding HCODs, experimental results show that it out-
performs the state-of-the-art approaches in terms of both effectiveness and effi-
ciency because it is still based on tree and works with O-trees rather than whole
XML documents (Section 5).
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Fig. 2: The original and reversed XML object trees (O-trees)

2 OBJECT SEMANTICS
We propose to use the semantics of object for XML keyword search. In this section, we
first recall the concept of object in XML and the identification of object in Section 2.1.
Based on object, we introduce Nearest Common Object Node semantics for answering
XML keyword queries in Section 2.2.

2.1 Object identification

An object represents a real world entity. Recall that in XML, an object can be repre-
sented by multiple object instances, each of which corresponds to a group of nodes,
starting at an object nodes, followed by non-object nodes. An object node may have
other object nodes as its descendants. Among all nodes describing an object instance,
the object node (i.e., the object class tagged node) is the most “important” because it is
the root of the group containing these nodes. Hereafter, it is used as the representative
for the entire object instance in unambiguous contexts.

Among non-object nodes, a special attribute (or a set of attributes) together with
object class that can uniquely define an object is called object identifier (OID). An OID
can be a set of attributes because under several cases, a single attribute cannot uniquely
identify an object (similar to a key in relational database may contain more than one
attribute). OID is different from ID in XML schemas, e.g., DTD because an ID can
always be an OID but not vice versa. With ID/IDREF, an OID is defined as an ID in
XML schemas. However, in many cases, XML schemas may not have ID for objects
such as lower objects in m : n relationships in XML documents without ID/IDREF.
Therefore, we need to identify OID in such cases.

Object identification has been studied by third party algorithms such as [14, 15,
12]. We apply the algorithm in [12] which has high accuracy (greater than 99%, 93%
and 95% for discovering object class, OID and the overall process, respectively). Thus,
for this paper, we assume this task has been done. For example, from the XML data
Fig. 1, [12] identifies Professor, Student and Paper as object classes with the
corresponding OIDs: StaffID, Stu No and PID.

Once object classes and OIDs are identified, we can determine whether instances
(or object nodes in other words) refer to the same object based on whether they have the
same object class and the same OID. For example, object nodes Student(1.1.1)
and Student(1.2.1) are of the same object <Student:12745> since they have
the same object class Student and the same OID 12745. Multiple object nodes that
refer to the same object are usually identical. However, XML does not enforce this. If
we find two nodes that are not identical, they are still considered as referring to the same
object as long as they have the same object class and OID value.



2.2 The Nearest Common Object Node (NCON) semantics

Based on object identification, we introduce the NCON semantics, which includes both
common ancestors and common descendants. The purpose of this inclusion is to provide
a more complete set of answers for XML keyword search. Our proposed NCON seman-
tics can be built on the LCA semantics [5] or any of its variants such as SLCA [20],
VLCA [10] and ELCA [22]. For simplicity of presentation, we provide the following
definitions which are based on the LCA semantics. It is straightforward to make the
necessary minor modifications required if any of the variant semantics are preferred.

Let u ≺a (�a, �a, or �a) v denote that object node u is an ancestor (a de-
scendant, an ancestor-or-self, or a descendant-or-self respectively) of object node v. A
keyword k matches an object node u if k is contained by u or by any of non-object
nodes associated with u. The NCON semantics and its two components, i.e., LCOA
(Lowest Common Object Ancestor) and HCOD (Highest Common Object Descendant)
are defined as follows.

DEFINITION 1 (LCOA of a set of object nodes) Object node u is the LCOA of a set
of object nodes {u1, . . . , un} if (1) u �a ui ∀i = 1..n and (2) there exists no object
node v �a u s.t. v �a ui ∀i = 1..n.

An LCOA is similar to an LCA. However, an LCOA must be an object node while an
LCA can be an arbitrary node. This difference enables the NCON semantics to reduce
the number of meaningless answers.

DEFINITION 2 (HCOD of a set of object nodes) Given a set of object nodes S =
{u1, . . . , un}, the set of object nodes H = {h1, . . . , hn} is an HCOD of S if

– all hi’s refer to the same object and
– ui �a hi ∀i = 1..n and
– there exists no set of object nodes H′ = {h′1, . . . , h′n} where h′i ≺a hi ∀i = 1..n

which satisfies the above two conditions.

HCOD is the distinguishing feature of the NCON semantics. An HCOD contains
a set of object nodes which refer to the same object. Each of them is a descendant of
the corresponding matching object node. Note that a set of object nodes has only one
LCOA but may have several HCODs because a node has only one parent but several
children.

DEFINITION 3 (An NCON of a set of object nodes) An NCON of a set of object
nodes S is either an LCOA of S or an HCOD of S.

DEFINITION 4 (An NCON of a query) An NCON of a keyword queryQ = {k1, . . . , kn}
is an NCON of a set of object nodes S = {u1, . . . , un} where ui matches ki.

3 OVERVIEW OF OUR APPROACH
The problem tackled in this paper is to find the set of NCONs for a keyword query
issued against a data-centric XML document without IDREF. This section provides
an overview of our approach, including the ideas about object orientation and rever-
sal mechanism, and the overview of the process. Detailed techniques will be given in
Section 4.



3.1 Object orientation
Based on object nodes, we introduce the concept of XML object tree (O-tree) as follows.
CONCEPT 1 (O-tree) An O-tree OT is a tree extracted from an XML data tree DT by
keeping all object nodes, and associating non-object nodes to the corresponding object
nodes. For any object nodes u and v in DT having no other object nodes in between7,
there is a parent-child edge between u and v in OT .

For example, the O-tree extracted from the XML data in Fig. 1 is shown in Fig. 2(a),
in which in each node, Dewey label is used to identify object node while object class
and OID are used to identify object.

O-tree brings two important benefits to XML keyword search. First, an answer is
more likely to be meaningful since a returned node is an object node in O-tree and it
represents a whole object rather than just an attribute or a value. Second, the search
space is dramatically reduced because the number of nodes of the extracted O-tree is
much smaller than that of the corresponding XML data tree. Suppose that the average
number of attributes for an object class is N , then the number of nodes in the XML
document is at least 2×N times larger than that of O-tree (due to not counting attributes
and values for the O-tree). This extensively reduces the complexity of the search.

3.2 Reversal mechanism
The set of NCONs includes LCOAs and HCODs. LCOAs can be found by any of ex-
isting LCA-based approaches such as [20, 21]. To find HCODs, the idea is a reversal
mechanism by which HCODs of the given O-tree are turned into LCOAs in its reversed
O-tree, which is defined as follows.

CONCEPT 2 (Reversed O-tree) Given an O-tree OT , the reversed O-tree w.r.t. OT is
an O-tree OT

R
such that

– for each path of object nodes /u1/u2/ . . . /un−1/un from the root to a leaf inOT ,
there is a corresponding reversed path /u′n/u

′
n−1/ . . . /u

′
2/u
′
1 inOT

R
where each

pair of object nodes ui and u′i refer to the same object, and
– there does not exist any pairs of nodes in OT

R
such that they refer to the same

object and they have the same list of objects as their ancestors, and
– there is no other object node in OT

R
.

For example, Fig. 2(b) shows the reversed O-tree derived from the O-tree in Fig. 2(a).
To derive a reversed O-tree, we need to determine whether two object nodes refer to

the same object based on their object class and OID. The reversed O-tree is used with
the sole goal of finding HCODs. Although there may be duplication in O-trees, such
duplication does not affect the efficiency thanks to our index and search techniques.
We assume updating does not frequently happen as LCA-based approaches assume.
Otherwise, adding or deleting one node can lead to change Dewey labels of all nodes in
an XML document in those approaches.

For XML data containing only binary relationships, LCOAs can be found from
original O-tree while HCODs can be found from the reversed O-tree. Thus, although
other O-trees, apart from the reversed O-tree, may capture the same information with
the original O-tree, only the duo of the original and reversed O-tree is self-sufficient to

7 There may exist non-object nodes between them such as an aggregational node or a grouping node [12].



return the complete set of NCONs. For n-ary relationship (n ≥ 3), using the reversed
O-tree can return more answers than LCA-based approaches, but the results still may
not be complete. We leave the improvement of this kind of relationships for future work.
Fortunately, such relationships are rare in XML in practice.

3.3 Overview of the process
The process of our approach, as shown in
Fig. 3, comprises two components for pre-
processing and query processing. Detailed
techniques of these components will be dis-
cussed in Section. 4. For pre-processing, the
three main tasks are extracting the O-tree
from the input XML document, generating
the reversed O-tree from the original O-tree
and indexing.
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Fig. 3: Overview of the process

For query processing, we follow the reversal mechanism in which HCODs of the
original O-tree are turned into LCOAs of the reversed O-tree. Therefore, our process
has three steps: finding LCOAs in the original O-tree, finding LCOAs in the reversed
O-tree, and converting LCOAs in the reversed O-tree to HCODs in the original O-tree.
Our process is flexible in the sense that, it is independent of any LCA semantics adopted,
and can be easily deployed to existing LCA-based approaches.

We observe that for several cases, using the reversed O-tree is not necessary because
there is no HCOD. So we can optimize the processing with the following lemma.

Lemma 1. Given an XML keyword query Q = {k1, k2, . . . , kn}, the reversed O-tree
does not provide any new answer if any of the following holds:

– Q has only one keyword.
– All keywords of Q match the same object.
– Keywords of Q may have multiple matches. For a set of matching object nodes
S = {u1, u2, . . . , un} where ui matches keyword ki, the reversed O-tree does not
provide any new answer for S if there exist two different object nodes ui, uj ∈ S
which do not represent the same object such that they are the leaf nodes in the
original O-tree.
The first two conditions are intuitive. The rationale behind the third condition is

that when ui and uj are the leaf nodes in the original O-tree, they become the high-
est nodes in the reversed O-tree with no ancestor beside the root. They do not have
ancestor-descendant relationship for one of them to become a common ancestor either.
Therefore, there is no common ancestor of these two nodes. Thus, there is no common
ancestor of S. Hence, the reversed O-tree does not provide new answer.

4 DETAILED TECHNIQUES OF OUR APPROACH
Following Section 3, this section presents detailed techniques of our approach.

4.1 Generating the reversed O-tree
The process of generating the reversed O-tree from the original O-tree OT has two
steps corresponding to two first conditions of Concept 2.



Step1: reversing object node paths. To reverse object node paths in OT , we traverse
OT backward from each leaf node to the root to form a reversed path. Then, all reversed
paths are connected to form the intermediate O-tree. Algorithm 1 presents this process.
We use an array-like-stack S to store all object nodes in OT . An array-like-stack is
an array in which push and pop operators are used in similar way to a stack while we
still can access any element in S like an array. We traverse OT by depth first order and
push visited object nodes into S. To handle the branches in the tree, we maintain the
parent of each object node. Thus, we use the triple 〈i, (objCls(i) : OID(i)), pre(i)〉 to
represent each object node i, where i is the index by depth first order (i starts from 1),
objCls(i) and OID(i) are the object class and OID of i and pre(i) is the index of the
parent of i. Note that during the reversal, we associate relationship attributes (if any) to
the lowest object node of the relationship it belongs to. Fig. 4 shows the intermediate
O-tree w.r.t. the original O-tree in Fig. 2(a).

Algorithm 1: Reversing object node paths
Input: The original O-treeOT
Output: Intermediate O-treeOT

I

1 Variables: Array-like-Stack S: store object nodes inOT by DF order
2 for visited object node i ∈ OT by DF order do
3 S.Push (〈i, (objCls(i) : OID(i), pre(i)〉)
4 OT

I
. Add (Root)

5 OT
I

. NewBranch
6 while S 6= ∅ do
7 〈i, (objCls(i) : OID(i), pre(i)〉 ← S.Pop
8 OT

I
. Add (objCls(i) : OID(i))

9 //pre(i) = 0:parent is current top element
10 if pre(i) = 0 then
11 OT

I
. NewBranch

12 //pre(i) 6= 0: parent has branches
13 if pre(i) 6= i− 1 and pre(i) 6= 0 then
14 k← pre(i)
15 while k 6= 0 do
16 Access element k 〈k, (objCls(k) : OID(k), pre(k)〉
17 OT

I
. Add (objCls(k) : OID(k))

18 if pre(k) = 0 then
19 OT

I
. NewBranch

20 if pre(k) = k − 1 then
21 k. Next

22 k ← pre(k)

Step 2: merging object nodes. To generate the reversed O-tree from reversed object
node paths, we merge object nodes having the same set of ancestors. Particularly, at
the first level of the intermediate O-tree, we merge branches where the starting object
nodes refer to the same object. Then we recursively merge in the lower levels. Fig. 5
demonstrates merging processes w.r.t. the intermediate O-tree in Fig. 4.
Size of the reversed O-tree. In the worst case where there exist 1 : m relationships, the
size of the reversed O-tree is N×h

2×l where N,h, l are the number of nodes, the height,
and the least number of attributes of an objects in the original XML document. The
number of object nodes in the original O-tree is N/l. All leaf nodes ((N/l)/2 nodes)
become the nodes in the first level (after the root node). In the worst case where there is
no duplication among them, there will be maximum N×h

2×l nodes.
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Fig. 4: The intermediate O-tree de-
rived from the O-tree in Fig.2(a)
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Fig. 5: Merging branches having the same set of ancestors

4.2 Indexes
Since a common descendant may appear as many different nodes, we need more com-
plex kinds of index to accelerate finding common descendants.
Keyword list. Keyword list is to efficiently retrieve the set of matching objects8 in the
original XML document. Each keyword matches a list of objects ordered decreasingly
by hierarchical level of objects. The space cost of the keyword list is K ×M where
K is the number of keywords in XML document and M is the maximum number of
objects matching a keyword. Table 1 shows a part of keyword list of the XML data in
Fig. 1.

Table 1: A part of keyword list of the XML data in Fig. 1
Keyword Matching objects
Kennedy <Professor:tken>, <Student:12745>, <Paper:001>
Clinton <Student:002>, <Paper:001>
... ...

Object list. Object list is created for two purposes. It is used to determine whether two
object nodes refer to the same object or not, and more importantly, to identify the set of
object nodes in the reversed O-tree w.r.t. a given object. The latter will be used to find
HCODs. Each object corresponds to a list of Dewey labels of its object nodes sorted by
preorder numbering. The space cost of the object list is M × N where M is the total
number of objects in the original O-tree andN is the maximum number of object nodes
of an object. Part of the object list of the O-trees in Fig. 2 is given in Table 2.

Table 2: A part of object list of the O-trees in Fig. 2
Objects Objects nodes in the original O-tree Object nodes in the reversed O-tree
<Professor:sbrown> 1.1 1.1.1.1, 1.1.2.1, 1.2.1.1, 1.3.1.1
<Student:12745> 1.1.1, 1.2.1 1.1.1, 1.2.1
<Student:81433> 1.1.2 1.1.2, 1.3.1
<Paper:001> 1.1.1.1, 1.1.2.1, 1.2.1.1, 1.2.2.1 1.1
... ... ...

Reversed list. Given an object node in the reversed O-tree, reversed list is to trace
back to corresponding object nodes in the original O-tree for final output presentation.
It costs N × L where N is the number of object nodes in the reversed O-tree and L is
the maximum number of object nodes in the original O-tree w.r.t. a given object node in
the reversed O-tree. Table 3 shows a part of the reversed lists w.r.t. the O-trees in Fig. 2.

Table 3: A part of reversed list of the O-trees in Fig. 2
Object nodes in reversed O-tree Corresponding object nodes in original O-tree
1.1 1.1.1.1, 1.1.2.1, 1.2.1.1, 1.2.2.1
1.1.1 1.1.1, 1.2.1
... ...

8 An object matches keyword k when any of its object node matches k.



4.3 QUERY PROCESSING
As shown in Fig. 3, to process a keyword queryQ = {k1, . . . , kn}, we have three steps.
Step1: finding LCOAs from the original O-tree OT. We can use any of existing
LCA-based algorithms for this task. The list of object nodes matching keyword ki
can be retrieved from the keyword list and object list. Consider a set of matching
object nodes S = {u1, . . . , un} where ui matches ki. We denote LCOAO(S) and
LCOAR(S) be the set of LCOAs for S w.r.t. the original O-tree OT and the reversed
O-tree OT

R
, respectively.

Based on Lemma 1, we determine whether we need to find LCOAR(S) or not.
Since the reversed O-tree is used without users’ awareness, LCOAR(S) will be con-
verted to HCODs w.r.t. the original O-tree.
Step 2: finding LCOAs of the reversed O-tree OT

R
. To find LCOAR(S), from S

we identify the corresponding sets of object nodes on OT
R

. To do this, we look up the
object list. Note that, there may be more than one corresponding set in OT

R
. After that,

we can apply the same algorithm with the algorithm of finding LCOAO(S).
Step 3: converting LCOAR(S) into HCODs of OT. An LCOAs v of OT

R
corre-

sponds a set Superset of nodes in OT , which can be found by looking up reversed list.
HCODs is the subset H = {h1, . . . , hn} of Superset where hi is a descendant of ui.

All ideas discussed above about finding HCODs for a given set of matching object
nodes S = {u1, . . . , un} are presented in Algorithm 2.

Algorithm 2: Finding HCODs(S)
Input: A set of matching object nodes S = {u1, . . . , un}

Object list
Reversed list

Output:HCODs(S)
1 for each ui do
2 Si← looking up object nodes ofOT

R
in object list

3 LCOAR(S)← LCOA(S1, . . . , Sn)

4 for each v ∈ LCOAR(S) do
5 Superset← looking up object nodes ofOT w.r.t. v

in reversed list
6 for each matching object node ui in S do
7 hi← e ∈ Superset and e �a ui

8 HCOD(S).Add({h1, . . . , hn})

Complexity. The cost of finding
HCODs(S) is dominated by the cost
of looking up a node in object list
and reversed list. In the worst case,
it is log(m) × log(n) for the for-
mer, where m and n are the number
of objects matched query keywords
and the maximum number of object
nodes w.r.t. an object. For the later,
it is log(N)× log(L) where N and
L has similar meanings in reversed
list.

Presentation of an answer. To avoid irrelevant information, we present an answer as
a path from a returned NCON, i.e., a (set of ) object node(s) to matching object nodes.

Fig. 6 shows the process and outputs for a set of matching nodes of query {Clinton,
Kennedy} issued again the XML data in Fig. 1, in which one final output corresponds
to an LCOA and the other corresponds to an HCOD.
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5 EXPERIMENT
We have developed XRich, a system for XML keyword search, based on our proposed
approach. XRich was implemented using Java and was used for experimental evalua-
tion. This section evaluates XRich on three aspects including efficiency, effectiveness
and quality of the generated reversed O-tree.
5.1 Experimental Setup
Environment. Experiments were performed on a dual-core Intel Xeon CPU 3.0GHz
running Windows XP operating system with 4GB of RAM and a 320GB hard disk.
Datasets. We pre-processed two real datasets including IMDb9, and Basketball10. We
used the subsets with the sizes 150MB and 86MB for IMDb and Basketball respectively.
IMDb dataset contains information about movies, actors, actresses, companies, and etc.
An actor or actress can play for many movies, and a company can produce for several
movies. Basketball dataset contains information about coaches, teams, players where a
player and a coach can work for different teams in different years. Table 4 gives more
statistics of the datasets.

Table 4: Statistics of datasets

Dataset No. of
nodes

No. of ob-
ject nodes

No. of ob-
ject classes

No. of key-
words

Data size

IMDb 2,501,780 387,422 6 291,004 150M
Basketball 1,035,940 100,140 3 123,100 86M

Query set. We randomly generated 120 queries from document keywords. To avoid
meaningless queries, we filtered out generated queries which do not contain any value
keyword, such as queries contains only tags, or prepositions, or articles, e.g., query
{actor, the, to}. 87 remaining queries include 34 and 53 queries for Basketball and
IMDb datasets respectively.
Compared Algorithms. We compared XRich with an LCA-based approach to show
the advantages of our approach over LCA-based approaches. We chose Set-intersection [21]
because it is recent and it outperforms other LCA-based approaches in term of ef-
ficiency. We also compare XRich with ORGraph[9] because it can also find com-
mon descendants. ORGraph converts XML document to a graph similar to relational
database and is based on the Steiner tree semantics.
Metrics. To measure the efficiency, we compared the running time of approaches. We
selected five (among 87) queries for each kind of queries, e.g., 2-keyword query. For
each query, we ran it ten times to get the average response time. We finally reported the
average response time of five queries for one kind of query.

To evaluate the effectiveness, we used standard Precision (P), Recall (R), and F-
measure (F) metrics. F-measure is the harmonic mean of precision and recall, and is
calculated as Fα = (1+α2)×P×R

α2×P+R . Here we choose α = 1 to evenly weight to precision

9 http://www.imdb.com/interfaces
10 http://www.databasebasketball.com/stats download.htm
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Fig. 9: Efficiency evaluation

and recall. Other values of α provides similar results. We randomly selected a subset
(32 queries) of 87 generated queries for effectiveness evaluation. To compute precision
and recall, we conducted surveys on the above 32 queries and the tested datasets. We
asked 15 students in major of computer science to interpret 32 queries. Due to ambiguity
of queries, a student may interpret a query in different ways. Common interpretations
from at least 12 out of 15 (80%) students are considered as common intuitions. We then
manually reformulate these interpretations into schema-aware XQuery queries and use
their results as the ground truth.

5.2 Effectiveness Evaluation

Effectiveness. Fig. 7 shows the effectiveness of all compared approaches. As seen,
XRich achieves high precision and recall (both are higher than 96%). Compared to Set-
intersection, XRich outperforms Set-intersection both in term of recall and precision
because XRich returns common descendants while Set-intersection does not; and a
returned node of XRich corresponds an object node rather than an arbitrary node of
Set-intersection. The difference in terms of recall (more than 25%) is higher than in
term of precision. XRich improves both precision and recall, but the more important
contribution is improving recall.

Compared to ORGraph, based on undirected Steiner tree, ORGraph has a lightly
higher recall than XRich, however, XRich significantly outperforms ORGraph in
term of precision because beside common descendants, ORGraph may also return many
meaningless answers in sense that it is hard (or even impossible) to interpret such an-
swers because the matching nodes have weak or no relationships. Therefore, if precision
and recall is evenly weighed, the F-measure of XRich is higher than that of ORGraph
as shown in Fig. 7(c).
Percentage of HCODs in NCONs. Fig. 8 shows the percentage of HCODs and LCOAs
in NCONs for 9 queries containing 1−4 keywords. Low (L), medium (M ) and high (H)
frequencies of keywords correspond to the number of matching objects between 1-100,
100-1000, and above 1000, respectively.Q(f, k) denotes a query containing k keywords
with frequency f . For 1-keyword queries, there is 0% HCOD because the reversed
tree provides no new answers for such cases. For other queries, the high percentage of
HCODs (20% - 40%) shows the importance of finding HCODs. The higher k and f are,
the higher that percentage is.

5.3 Efficiency Evaluation

Efficiency. The response time of approaches is shown in Fig. 9, in which we varied
the number of query keywords and the number of matching nodes. Although XRich
has overhead from finding HCODs, it still outperforms the other algorithms because it
searches over the O-tree which is much smaller than the XML document and only uses
the reversed O-tree when necessary. Set-intersection runs slower because it works with
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the whole large XML document. ORGraph runs also slower because ORgraph follows
undirected Steiner tree semantics, which would lead exponential computation [3].
Overhead of finding HCODs. Fig. 12 shows the overhead of finding HCODs for 9
queries discussed in Fig. 8. As shown, it is around 24.7% of the total time, which is not
double thanks to Lemma 1.
Impact of object on efficiency. Fig 11 shows the response time of XRich when it
searches over the O-trees versus the corresponding XML documents. It shows that it
runs much faster with the O-trees, especially when the number of keywords increases
because the size of the O-trees is much less than that of the XML documents. We
randomly chose IMDb because Basketball dataset provides similar results.

5.4 Quality of the extracted and reversed O-trees
To test the quality of the O-tree extracted from XML document, we check the accuracy
of the object class and OID discovery. To test the reversed O-tree, we computed the
ratio of the number of satisfied object nodes over the total number of object nodes in
the reversed O-tree. The satisfied nodes are those in the reversed O-tree that satisfy the
reversed schema (object class) which is manually generated. The results are given in
Table 10. As can be seen, the quality of the reversed O-tree depends on the quality of
the O-tree extracted from XML document, which is very high since our technique can
discover object class and OID with high accuracy. Once the O-tree is extracted, the
reversed O-tree can be derived accurately. The cost of these processes is not expensive
since this computation is performed offline and only once.

6 RELATED WORK
LCA-based approaches. XRANK [5] proposes a stack based algorithm to efficiently
compute LCAs. XKSearch [20] defines Smallest LCAs (SLCAs) to be the LCAs that
do not contain other LCAs. Meaningful LCA (MLCA) [13] incorporates SLCA into
XQuery. VLCA [10] and ELCA [22] introduces the concept of valuable/exclusive LCA
to improve the effectiveness of SLCA. MESSIAH [18] handles cases of missing values
in optional attributes. Although extensive works have been done on improving the effec-
tiveness, these works may return incomplete answer sets since they find only common
ancestors but not common descendants.

Graph-based approaches. Graph-based approaches can be classified based on the
semantics such as the Steiner tree [2], distinct root [6] and subgraph [11, 7]. The Stener
tree semantics can return common descendants if the XML document contains ID/IDREF,
but it also returns meaningless answers as well. Distinct root semantics is similar to
LCA semantics and cannot find common descendant. Sub-graph semantics provides
more information for answers but still miss common descendants if ID/IDREF is not
used in XML documents.

Object-oriented approaches. Object have been introduced in XSeek [14], XReal [1],
and [19]. However, none of the above works considers OID. Thus, they may not distin-
guish an object and a composite attribute and/or a multi-valued attribute.



7 CONCLUSION
This paper shows advantages of object identification in XML keyword search. Based
on object identification, we introduced the NCON semantics for XML keyword search,
by which an answer corresponds to an object and the answer set includes not only
common ancestors but also common descendants. We also proposed an approach based
on the NCON semantics and use both the original and the reversed O-trees to find
answers. Experimental results showed that XRich outperforms LCA-based and graph-
based approaches in terms of both effectiveness and efficiency. Therefore, the approach
could be a promising direction for XML keyword search to return a more complete
set of meaningful answers. More broadly, this paper demonstrates the benefit of object
orientation in XML. In future work, we will explore how other XML processing can
similarly benefit and how to handle n-ary (n ≥ 3) relationships.
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