
Materialized View Maintenance Using Version Numbers

Tok Wang Ling Eng Koon Sze
School of Computing

National University of Singapore
Lower Kent Ridge Road, Singapore 119260

flingtw,szeengkog@comp.nus.edu.sg

Abstract

A data warehouse stores materialized views over data
from one or more sources in order to provide fast access
to the integrated data, regardless of the availability of the
data sources. In this paper, we define a new compensation
algorithm that is used in removing the anomalies, caused
by interfering updates at the base relations, of incremental
computation for updating the view. Unlike existing methods
on view maintenance, our algorithm does not assume that
messages from a data source will reach the view mainte-
nance machinery in the same order as they are generated,
and we are also able to detect update notification messages
that are lost in their transit to the view, which would oth-
erwise cause the view to be updated incorrectly. These are
achieved with the use of version numbers that reflect the
states of the base relations. Our algorithm also does not
require that the system be quiescent before the view can be
refreshed.

1. Introduction

Data warehousing is used for reducing the load of on-
line transactional systems by extracting and storing the data
needed for analytical purposes. A materialized view of the
system is kept at a site called the data warehouse, and user
queries are processed using this view. As this view is an in-
tegration of data from many sources that undergo constant
updating, algorithm for efficient maintenance of this mate-
rialized view is an important current research area. Simple
recomputing of the view relation from scratch in response to
each source update will not work well as the base relations
are generally large. An algorithm is needed for the view to
decide how to refresh its relation with respect to this update.
Existing works on this approach include the Eager Compen-
sating Algorithm (ECA) [10], the Strobe algorithm [11], the
SWEEP algorithm [1], and the algorithm of [2].

Our algorithm is designed to work for a materialized

view that integrates data from multiple distributed au-
tonomous sources, where the base relations of these sources
are not materialized at the view. Unlike other methods, this
algorithm does not require that the system be quiescent be-
fore the materialized view can be refreshed. We do not
assume that messages from the data sources are delivered
in the same order to the view as they are generated, and
we are able to handle update notification messages that are
lost in their transit to the view maintenance machinery, both
through the use of version numbers that reflect the states
of the base relations. We also handle modification as one
update in certain cases, rather than simply treating it as a
deletion update, followed by an insertion update. This is
more efficient since the splitting of a modification update
into 2 updates would possibly involve the removal of tu-
ples, together with their indexes, from the view relation and
the subsequent adding in of the same tuples (but with the
relevant updating of the modified attributes) as well as the
re-building back of their indexes. This would create a lot of
processing overhead for applications that deal mainly with
modification updates.

In Section 2, we show a general model for a data ware-
house. Section 3 describes some existing materialized view
maintenance algorithms. We discuss our algorithm in Sec-
tion 4, together with an example. Section 5 concludes the
work of this paper.

2. Data warehouse model

In this section, we describe the general architecture of a
data warehouse. There are m sites for the data sources and
another site for housing and maintaining the materialized
view. There is communication between each data source
and the site storing the view, but no assumption is made
with regard to any communication between individual data
sources. Thus, the data sources are treated as completely
independent and may not be able to communicate with one
another. No assumption is made with regard to the reliabil-
ity of the network connection between the view and each

data sources, i. e., messages sent could be lost. We also do
not assume that messages will reach the view maintenance
machinery in the same order as they are generated at the
data sources.

The underlying database model for each data source and
the view is considered to be a relational data model. Each
data source can store any number of base relations. Updates
to different data sources are assumed to be not related at all,
but a transaction can involve multiple base relations residing
at the same data source. For each update transaction, the
data source will send an update notification message to the
view after the transaction is committed.

We consider the case where the view relation is defined
by selection-projection-join expression. Hence, given n

base relations, fR�� ���� Ri� ���� Rng with � � i � n, and
each data source can hold one or more of these relations,
the view V is given as:

V �
Y

proj attr

�sel condR� �� ��� �� Ri �� ��� �� Rn (1)

If the materialized view V does not contain any of the
keys of R� �� ��� �� Ri �� ��� �� Rn, then each tuple in V

will have a count value which indicates in how many differ-
ent ways the same tuple can be derived from the given view
definition and the base relations.

3. Previous works

The view maintenance problems for a centralized rela-
tional databases are tackled in [3], [4], [5] and [8]. [6]
and [7] examine when is a view self-maintainable with re-
spect to an update, while [9] derives auxiliary views of
parts of the base relations, using key and referential integrity
constraints, to make a view self-maintainable. Our work is
closer to that of [10], [11], [1] and [2].

For refreshing a materialized view through incremental
computation in response to an update, queries are issued to
the various base relations to retrieve those tuples that join
with this updated tuple to form the affected tuples of the
view relation. However, other updates could occur between
the time the view first receives this update and the final re-
ceiving of the query results from the last base relation that
the view queried. Consider the view defined in Equation (1),
in which the view first receives the insertion update of�Ri
and proceeds to query the base relations. Before the view
queries the relation Rj with j � i, another insertion update
of�Rj occurs. Thus, for�Ri the answer that the view has
is R� �� ��� �� �Ri �� ��� �� �Rj � �Rj� �� ��� �� Rn

(note that in all our discussion, unless stated explicitly in
the expression by prefixing the relation with “�” to denote
a group of updated tuples, any other relations indicated by
“...” refers to the whole relation), while that of �Rj gives

R� �� ��� �� �Ri � �Ri� �� ��� �� �Rj �� ��� �� Rn. Thus
the term R� �� ��� �� �Ri �� ��� �� �Rj �� ��� �� Rn is
computed and inserted into the view relation twice, and the
redundant set of tuples is known as an error term, causing
anomaly to the maintenance of the materialized view.

The Eager Compensating Algorithm (ECA) [10], de-
signed to work for only one source with multiple base re-
lations, attempts to solve this interfering updates anomaly
problem by means of compensating queries. This algo-
rithm assumes that messages are delivered to the view in
the same order as they are sent out by the source. An update
notification received by the view triggers a query process-
ing event for incremental computation, and those updates
that arrive before this update but have not completed their
query processing will be used in generating the compensat-
ing queries for this update. Hence in the above scenario
in which update �Rj arrives after the issue of the query
R� �� ��� �� �Ri �� ��� �� Rn to the source for update
�Ri but before the view receives back this answer, there
is a need to generate a corresponding compensating query
of R� �� ��� �� �Ri �� ��� �� �Rj �� ��� �� Rn for
�Rj , and the compensated answer of �Rj will be given
as �R� �� ��� �� �Ri � �Ri� �� ��� �� �Rj �� ��� ��

Rn�� �R� �� ��� �� �Ri �� ��� �� �Rj �� ��� �� Rn�.
The Strobe algorithm [11] is designed for an environ-

ment with multiple data sources, thus overcoming the sin-
gle source restriction imposed by the ECA algorithm. This
algorithm handles the compensation of interfering updates
locally by requiring that the keys of all base relations be in-
cluded in the view relation. Besides the restriction on the
view definition, the materialized view cannot be updated
until there is quiescence in the system. The correct working
of this algorithm also requires that messages are delivered
in the same order to the view as they are generated at the
data sources.

The SWEEP algorithm [1] is another view maintenance
method designed for a system with multiple data sources.
The definition of the view relation is more flexible as com-
pared to the Strobe algorithm in that there is no require-
ment for the keys of all base relations to be kept in the view.
This algorithm also differs from the Strobe algorithm in that
it does not require that the system be quiescent before the
view can be refreshed. Messages are again assumed to be
delivered to the view in the same order as they are gener-
ated at the data sources. This algorithm works by removing
immediately the effect of interfering updates from the inter-
mediate answer of the querying process of an update. Thus
using the same scenario as above, if insertion update �Rj
reaches the view before the view receives the intermediate
answer from Rj for update �Ri, there is a need to remove
�Rj from this answer (if it is present) before it is used for
querying the next base relation.

The concept of using counters to identify the states of

a base relation in [2] overcomes the assumption of the
delivery order of messages. However, the need to update
the counter at the view only after each update has com-
pleted both its query processing and compensation forces
the maintenance machinery to handle the incremental com-
putation of one update at any one time.

4. View maintenance solution

In this paper, we propose a compensating algorithm that
removes the interfering updates anomalies found in the an-
swers of the incremental computation. Unlike the 3 al-
gorithms mentioned in the previous section, our proposed
view maintenance solution takes into consideration the sit-
uation where the delivery of messages from a data source
to the site housing the view is delayed, resulting in mes-
sages reaching the view in a different order from what was
sent out at the data source. Our algorithm can also detect
update notification messages that are lost in their transit to
the view maintenance machinery, which if left unattended
might cause the view to be maintained incorrectly.

4.1. Motivation

We achieve the above through the use of version numbers
to order the updates occurring at a base relation. A group
of updates of a transaction occurring at a base relation will
increment its version number by one, and the base relation
notifies the view maintenance machinery on the updates in-
volved, together with the new version number of this base
relation. The version numbers not only allow the view to
arrange the updates from the same base relation in the same
order as they have occurred, instead of the order that they
arrived at the view, they also provide a means for the view
to detect update notification messages that are lost by keep-
ing track of the highest version number received and the set
of version numbers that should have reached the view but
have not done so.

Updates (updates of the same transaction for a relation
are grouped together) from the same relation need to be or-
dered based on their version numbers, otherwise we might
get the wrong results in the incremental computation if the
updates are on the same tuple, for instance modifying a tu-
ple before inserting it. As for updates from different base
relations, we can just order them arbitrary based on the or-
der that we process them, since updates from different rela-
tions can never involve the same tuple. However, the order
of refreshing the view relation should follow the same or-
der as the updates that are picked for processing. In the
compensation of the answer of the query of an update, we
will eliminate the effects of those updates (interfering up-
dates) that are ordered to occur after this particular update,

but leaving behind the effects of those updates that are or-
dered to occur before it.

4.2. Compensation algorithm

We first consider the working of the data source in sup-
port of our maintenance machinery, followed by that of the
view.

For each base relation, three types of events could occur.
They are update, query (query here refers to the query from
the view for incremental computation) and re-send. The up-
date event handles all the updates involved in this base rela-
tion of a transaction, increments its version number and pass
this information to the data source, so that the data source
can put the information from all base relations involved in
this transaction into one update notification message before
sending it to the view. For a query event on a base relation,
the required tuples will be retrieved through the computa-
tion of the join operation, and they are then sent back to
the view, together with the current version number (no in-
crementation required here) of this base relation known as
the queried version number. A re-send event occurs when
the view maintenance machinery detects that an update no-
tification message is lost. This re-send event will request
that the base relation re-transmit the update notification of
a particular version number. The base relation responds by
retrieving the information from its log file.

We now describe the working of the view maintenance
machinery for a materialized view defined by Equation (1).
For each of the base relation Ri, the view keeps track of the
highest version number, �i, of the updates sent for process-
ing. Processing here refers to the querying of the base rela-
tions for incremental computation. Note that �i might not
coincide with the highest version number that has already
reached the view for two reasons. First, the view might not
be able to process the updates as fast as they have reached
the view. Secondly, the next version of update notification
after the previous version of update notification sent for in-
cremental computation might not have reached the view yet.

Definition 1 The collection of the highest version numbers
of all the base relations, � ��� ���� �n �, that the view has
picked for incremental computation (processing) are called
the highest processing version numbers.

Whenever the view receives an update transaction noti-
fication from a data source, it is first placed in a pending
queue, one for each data source and ordered according to
their version numbers. Whenever the view is ready to pick
an update transaction for incremental computation, it can do
so from any pending queue as long as the version number
of this update transaction is equal to the highest processing
version number plus one for that base relation. For an up-
date transaction that involves more than one base relation,

the version numbers of the updates from the various base
relations in this transaction have to be equal to the highest
processing version number plus one for each of the base re-
lation concerned (this ensures that the atomic updates of a
transaction are processed and applied to the view together).
The highest processing version number for the base relation
is then incremented by one to reflect the current processing
state.

Definition 2 The storing of the highest processing version
numbers of all base relations, � ��� ���� �n �, to a group
of updates at the start of its incremental computation are
called its initial version numbers.

Several consistency notions have been associated with
the views at the data warehouse ([10], [11]). They are
complete consistency (most stringent), strong consistency,
weak consistency, and convergence (least stringent). The
arbitrary picking of updates from any base relation can en-
sure complete consistency (complete order-preserving map-
ping between the states of the view and the states of the data
sources) if the data source contains only one base relation.
Otherwise, only convergence (the view is consistent with
the data sources after the last update and after all activity
has ceased) is ensured. To achieve complete consistency for
the case of a data source with multiple base relations, there
is a need to add another level of version number to this data
source, and this version number is incremented for each up-
date transaction occurring at the data source. The update
transactions in the pending queue for such data source will
be ordered according to this version number. With this we
would be able to tell, for example, the exact order of 2 up-
date transactions from the same data source, but involving a
different base relation in each case.

Assuming that we have R� �� ��� �� �Ri �� ��� �� Rn as
an optimized query operation for update �Ri, queries are
sent to the various base relations on both sides of Ri, for
the relations on the left, fR�� ���� Ri��g, starting with Ri��,
and for the relations on the right, fRi��� ���� Rng, starting
with Ri��. The query processing on both sides of Ri can
occur in parallel, but for each side query will be sent to one
relation at a time, using the results of the previous query
for the next query. The query for each side will stop ei-
ther when relation R� (or Rn for the other side) has been
queried, or when an empty results is returned for a query.
Although the view is defined by a natural join operation,
outerjoin (denoted as “�r” for right outerjoin and “�l” for
left outerjoin) of the tuples returned through the querying
process is used for storing the answer in order to support
the compensation process. Thus we store the results tempo-
rary asR� �

r ����r�Ri �
l ����lRn. Note that right outerjoin

is used for those relations on the left of Ri and left outer-
join for those relations on the right. The idea here is to keep
the incomplete tuples of the view relation temporary for ap-

plying the compensation process in case they are actually
complete tuples of the view, due to the effect of interfering
deletion updates.

Definition 3 At the end of the querying process for �Ri,
the view will have R��s�� �

r ��� �r �Ri �
l ��� �l Rj�sj� �

l

����lRn�sn�, where sj denotes the queried version number
of base relation Rj . The collection of the queried version
numbers is also denoted as � s�� ���� sj � ���� sn �.

The answer of an update after the query processing will
have to be compensated with all the interfering updates first
before they can be applied to the view relation. The identi-
fication of the interfering updates is stated in Lemma 1 and
the method of compensation is described in Figure 1. Since
there is a time lag between the sending out of a query to
a base relation, and the subsequent receiving back of the
results at the view, the maintenance machinery should pro-
ceed to handle other messages (update notification or query
results).

Lemma 1 Given updates�Ri (same version number from
relationRi) with� ��� ���� �j � ���� �n � as its initial version
numbers, and � s�� ���� sj � ���� sn � as its queried version
numbers. There is a need to compensate with all interfering
updates from Rj , where � � j � n and j �� i, with version
numbers from sj down to �j � � if sj � �j .

Proof Considering that the initial version numbers
� ��� ���� �j � ���� �n � as the state of all the base relations
when �Ri occurs, any base relation Rj with queried ver-
sion number sj � �j means that the state of Rj that was
queried on has the interfering effect of updates of version
numbers �j � �� ���� sj .

Figure 1 shows the method of removing the effect of
the interfering insertion, deletion and modification updates.
The compensation starts with all update transactions which
are interfering updates on the relations on both sides of Ri,
i. e., for the left of Ri starting with Ri�� and progressing
down to R�, and for the right starting with Ri�� and pro-
gressing up to Rn. Compensation with the interfering up-
dates of Rj , where � � j � n and j �� i, starts with the
largest version number sj and proceeds down to the lowest
version number �j ��. This order of processing allows the
compensation to work correctly in case any of the interfer-
ing updates are on the same tuple.

How the compensation is carried out depends on the up-
date type (insertion, deletion or modification) of the inter-
fering update to be compensated with. Our algorithm will
split a modification update into a deletion update, followed
by an insertion update, only if the modified attributes in-
volve at least one join attributes. The checking and split-
ting of such modification updates is carried out by the view

maintenance machinery when the update notifications reach
the view. Also if the modified attributes are not on the join
attributes and also do not appear in the view relation, then
this modification update can be ignored.
Compensation Algorithm
INPUT : Group of updates�Ri of version number �i,

initial version numbers � ��� ���� �n �,
uncompensated answer Ai with queried
version numbers� s�� ���� sn �

OUTPUT : Compensated answer Ai

FOR j � i� � TO n DO /* if i �� n */
IF sj � �j THEN

/* Note that as a result of compensating with deletion
updates, some newly added tuples could have a
different queried version number s�j (or initial
version number if the compensated tuples are used
instead of the uncompensated tuples). If s�j � sj , we
will need to apply this algorithm on these tuples to
bring them to the state of version sj first. If s�j � sj ,
we will only apply the compensation algorithm on
those tuples with queried version number s�j when k
reaches s�j in the below FOR loop. */

Let�Rjk be those groups of updates from Rj with
version k, where �j � � � k � sj

FOR k � sj DOWNTO �j � � DO
Let uI , uM and uD be the set of insertion, modification
and deletion updates in�Rjk

Compensation with insertion updates uI :
Ai � Ai � ��Rj��Rj

Ai�
Compensation with modification updates uM :
Let uold denotes one tuple of uM before modification
and unew denotes the corresponding tuple after
modification

Replace all occurrences of unew in Ai with uold

Do the above for all tuples of uM
Compensation with deletion updates uD:
From R��s

�
�� �

r ��� �r Rj���s
�
j����

r

uD �
l Rj���s

�
j��� �

l ��� �l Rn�s
�
n�

of incremental computation of uD, use
uD �

l Rj���s
�
j��� �

l ��� �l Rn�s
�
n� to compute

Ai � Ai�R�� ���� Rj���
�l�Ai�Rj � ���� Rn� ��Rj �

l Rj�� �
l ��� �l Rn�

END-FOR
ELSE do nothing

END-FOR
The above is repeated using a FOR loop for
j � i� � down to � if i �� �

RETURN Ai /* compensated answer Ai */

Figure 1. Compensation algorithm.

Insertion. Suppose we have the answer Ai � R� �
r ��� �r

�Ri �
l ��� �l Rj �

l ��� �l Rn at the end of the incremen-
tal computation for update �Ri. Let �Rj from Rj be an
interfering insertion update that has caused an anomaly to
answer Ai. Since �Rj occurs before the querying of Rj

by the view for update �Ri, it is true that �Rj � Rj ,
therefore �R� �

r ��� �r �Ri �
l ��� �l �Rj �

l ��� �l Rn� �
�R� �

r ��� �r �Ri �
l ��� �l Rj �

l ��� �l Rn�.

Lemma 2 The compensation of the answerAi of�Ri with
an interfering insertion update �Rj can be handled by
deleting those tuples in Ai that contain �Rj , without the
need to issue any new query to the base relations (computed
locally) using:

Ai � Ai � ��Rj��Rj
Ai� (2)

Proof The effect on the view V by update �Ri should
be with respect to the state of base relation Rj without in-
sertion �Rj , i. e., �Rj ��Rj�. Thus, we need to remove
�Rj from Ai if it is in Ai, together with those tuples that
are in Ai due to the inclusion of�Rj .

Modification. For the case of interfering modification up-
date �Rj , we denote the values of the tuple before mod-
ification as �Rold

j , and the values of the tuple after mod-
ification as �Rnew

j . Since a modification update from a
base relation that changes at least one join attributes would
have been separated into a deletion update, followed by an
insertion update by our view maintenance machinery, thus
any modification update�Rj that remains as such satisfiesQ

�V�Rj��C
R� �

r ��� �r �Ri �
l ��� �l�Rold

j �l ��� �l Rn �Q
�V�Rj��C

R��
r ����r�Ri�

l ����l�Rnew
j �l����lRn, where

C is the set of join attributes between Rj and all relations
that it joins with.

Lemma 3 The compensation of the answerAi of�Ri with
an interfering modification update that does not involve the
change of values of its join attributes, with �Rold

j as the
tuples before modification and �Rnew

j as the tuples after
modification, can be computed locally by replacing the tu-
ples in �Rnew

j in the answer Ai with the corresponding
tuples in �Rold

j , keeping the tuples from the other base re-
lations intact.

Proof As in the case of insertion.

Deletion. The situation for interfering deletion update is
more complicated than the other 2 types of updates. The
adding in of interfering deletion update�Rj to Ai (assum-
ing j � i) means that more tuples from the other base rela-
tions might also have to be added because we now have to
consider those tuples in fRj��� ���� Rng that could join with
�Rj on top of the original tuples in Rj (without�Rj).

Lemma 4 The compensation of the answerAi of�Ri with
an interfering deletion update�Rj is computed locally as
(for i � j):

Ai � Ai�R�� ���� Rj���
�l�Ai�Rj � ���� Rn� ��Rj �

l Rj�� �
l ��� �l Rn�

(3)
or (for j � i):

Ai � �R� �
r ��� �r Rj�� �

r �Rj �Ai�R�� ���� Rj ��
�rAi�Rj��� ���� Rn�

(4)
The projection and union operations here do not remove
duplicate tuples, so that the count field in the view relation
can be updated correctly.

Proof The effect on the view V by update�Ri should be
with respect to the state of base relation Rj without dele-
tion�Rj . Thus, we need to add�Rj into Ai (if it can join
with some tuples from Rj�� of Ai assuming i � j), to-
gether with those tuples from Rj��� ���� Rn that could join
with�Rj . Although the term�Rj �

lRj�� �
l ��� �lRn was

not found in Ai, there is no necessity to send new queries
to base relations Rj��� ���� Rn. This is because the update
�Rj itself will cause the view machinery to query the re-
spective base relations during its incremental computation.
In effect, we have the answer Aj due to the query process-
ing for update�Rj :

Aj � R� �
r ��� �r Ri �

r ��� �r �Rj �
l Rj�� �

l ��� �l Rn

Note that the base relations that are seen by deletion update
�Rj during its querying process could be different from
what was seen by update �Ri due to some other interfer-
ing updates that could have taken place, and this will be
indicated by the differences in their queried version num-
bers. The compensation of the answer of �Ri has to take
this into account.

In doing the above interfering deletion update compen-
sation, we can use both the uncompensated or compensated
term�Rj �

lRj���
l ����lRn ofAj . Using the compensated

term would be more efficient since less compensation needs
to be done for the answerAi. In this case, the initial version
numbers of the term added in should be used, instead of the
queried version numbers, for subsequent compensation of
these newly added tuples in Ai of update �Ri. Also since
deletion update �Rj can only be an interfering update for
those updates that are ordered to occur before it, there is no
need to keep the answer Aj of �Rj once it is applied to
the view. This is because those updates that are ordered to
occur after�Rj will never use it for compensation (as men-
tioned earlier, the order of refreshing the view has to follow
the order of picking the updates for processing to achieve
complete consistency).

At the end of the compensation of the answer of an up-
date, the natural join of the individual tuples in the answer is
taken, effectively dropping those dangling tuples of the out-
erjoin operation, before this answer is applied to the view
relation.

Theorem 1
Given an update �Ri with � ��� ���� �j � ���� �n � as its
initial version numbers, let its queried version numbers be
� s�� ���� sj � ���� sn �. The interfering updates are removed
from its answer by first checking for the presence of such
updates in Rj of its answer for j from i � � to � if i �� �,
and then for j from i � � to n if i �� n. For each Rj in the
answer, if sj � �j , then updates of version numbers �j ��
to sj from Rj are the interfering updates (Lemma 1). The
effects of these interfering updates (given that none of them
are lost and have been received by the view) are removed
by first compensating through Lemma 2, 3 or 4 with the up-
dates of version number sj , and progressing down to the
updates of version number �j � �.

Proof Let � ��� ���� �j � ���� �n � be the initial ver-
sion numbers for update �Ri where i �� j, and �

s�� ���� sj � ���� sn � as the corresponding queried version
numbers for its answer Ai. Assuming sj � �j , compen-
sation of Ai with the updates from Rj of version number sj
brings Ai to the state of � s�� ���� sj � �� ���� sn �. Continu-
ing this process of compensation with all interfering updates
will bring Ai to the state as its initial version numbers, i. e.,
� ��� ���� �j � ���� �n �.

We can make the above compensation process more ef-
ficient by combining the interfering updates for the com-
pensation of the answer of an update, i. e., collecting all
interfering updates into 3 sets of insertion, modification and
deletion updates. The version numbers of the interfering
updates allow us to combine the updates correctly if there
are a few updates on the same tuple. For example, a tuple
of value ��� �� with version number 1 that is inserted, and
subsequently modified to ��� �� with version number 2 can
be treated as an interfering insertion update of ��� ��.

So far, our discussion assumes that the next update ver-
sion of a base relation is available (not lost) for incremental
computation or compensation. The detection of potential
lost updates is stated in the next Theorem.

Theorem 2 An update notification of a particular version
number from a base relation which has not been received
by the view is a potential lost notification if the view has
received another update notification with a higher version
number from the same base relation, or the compensation
process of another update requires the compensation with
this version of update notification which has not been re-
ceived by the view.

Whenever such possibility is detected, a timer is set of
which the expiration will trigger the re-send request to be
sent to the base relation concerned. Should this lost update
appeared at the view again at a later time, the maintenance
machinery can detect such duplicate messages since they
would have the same version number.

4.3. Example

We show an example of the working of our compen-
sation algorithm. Consider 3 base relations, R��A�B�,
R��C�D� and R��E�F �. Let R� and R� reside at the
same data source, so that an update transaction can in-
voke both the relations. The view V is defined as V �Q

A�F R� ��B�C R� ��D�E R�. We use� x� y� z � to de-
note the highest processing, initial or queried version num-
bers of x� y and z for R�� R� and R� respectively. Note that
queries issued to the base relations are through the natural
join operation, but the storing of the answer before it is been
applied to the view relation uses the outerjoin operation.

Initial states for the 3 base relations, and the view with
highest processing version numbers � �� �� � � (the Count
field in V indicates in how many different ways the same
tuple can be derived from the given view definition and the
base relations):

R��A�B� R��C�D� R��E�F �
(1,2) (3,4) (5,6)

(4,4) (6,6)
Version 1 Version 1 Version 1

V �A�F�Count�
(1,6,4)

Update transaction involving deletion of (1,2) from R�,
and deletion of (4,4) from R�:

R��A�B� R��C�D� R��E�F �
(3,4) (5,6)

(6,6)
Version 2 Version 2 Version 1

The view receives the above update transaction notifica-
tion, separates the updates into 2 groups according to the 2
base relations, and formulates the queries (a) ��� �� ��B�C
R� to be sent to R� (for the purpose of discussion, we
call this query Q�a) and its initial version numbers are
� �� �� � �; (b) Query Q�a with R� ��B�C �	� 	� to be
sent to R� and Q�b with �	� 	� ��D�E R� to be sent to R�.
Initial version numbers are � �� �� � �.

The view receives the results (1,2,3,4), queried ver-
sion number 2, from R� for query Q�a. It formulates
another query Q�b of ��� 	� ��D�E R� to be sent to
R�. For Q�b, the view receives (3,4,5,6) and (3,4,6,6),
queried version number 1. Thus the view has A� �
f��� �� �� 	�
� ��� ��� �� �� 	� �� ��g after the completion of
queries Q�a and Q�b, with � �� �� � � as the queried ver-
sion numbers.

Update transaction involving modification of (6,6) to
(6,7), version number 2, on R� occurs:

R��A�B� R��C�D� R��E�F �
(3,4) (5,6)

(6,7)
Version 2 Version 2 Version 2

For query Q�a, the view receives zero tuple from R�

with queried version number 2. For query Q�b, the view
receives (4,4,5,6) and (4,4,6,7) from R� with queried ver-
sion number 2. Putting them together, the view has A� �
f�null� null� 	� 	�
� ��� �null� null� 	� 	� �� ��g (using out-
erjoin), with � �� �� � � as the queried version numbers.

Update transaction involving insertion of (3,2) into R�

occurs with version number 3:
R��A�B� R��C�D� R��E�F �
(3,2) (3,4) (5,6)

(6,7)
Version 3 Version 2 Version 2

The view receives the insertion update notification of
(3,2) from R�. Query Q�a of ��� �� ��B�C R� is sent
to R�. Initial version numbers are stored as � �� �� � �.
The view receives (3,2,3,4), queried version number 2, from
R�. It formulates another query Q�b of ��� 	� ��D�E R�

to be sent to R�. The view receives (3,4,5,6) and (3,4,6,7),
queried version number 2, from R�. Putting the results for
Q�a andQ�b together, the view hasA� � f��� �� �� 	�
� ���
��� �� �� 	� �� ��g, queried version numbers � �� �� � �.

The view receives the modification update notification
from R� and formulates the query Q	a of R� ��D�E
��� �� to be sent to R�. Initial version numbers are �

�� �� � �. For Q	a, the view receives (3,4,6,6), queried
version number 2, from R�. It formulates query Q	b of
R� ��B�C ��� 	� to be sent to R�. The view receives
the tuple (3,2,3,4), queried version number 3, from R� for
query Q	b. Putting the results of Q	a and Q	b together,
we haveA� � f��� �� �� 	� �� ��g with queried version num-
bers � �� �� � �. No compensation is required as its initial
version numbers are also � �� �� � �.

Compensation of answerA� with deletion (4,4) from R�

using A��A�B� �l A��C�D�E� F � gives the additional tu-
ples in number 3 and 4 of the table (QVN denotes queried
version numbers):

Number Tuple QVN
1 ��� �� �� 	�
� �� � �� �� � �
2 ��� �� �� 	� �� �� � �� �� � �
3 ��� �� 	� 	�
� �� � �� �� � �
4 ��� �� 	� 	� �� �� � �� �� � �

Tuple number 3 and 4 require further compensation with
update version number 2 of R�. For this compensation
with modification update of tuple (6,6) to (6,7), the tuple
(1,2,4,4,6,7) (tuple number 4) is changed to (1,2,4,4,6,6),
while tuple number 3 is not affected. Using the compen-
sated answer of A�, 4 tuples of (1,6) need to be removed

from the view V , and the view is now empty.
Compensation of answer A� with the modification up-

date of (6,6) to (6,7) in R� (version 2) changes the tuple
�null� null� 	� 	� �� �� to �null� null� 	� 	� �� ��. The com-
pensated answer of A� are the tuples �null� null� 	� 	�
� ��
and �null� null� 	� 	� �� ��. Since both tuples in A� are dan-
gling tuples, the view need not be refreshed.

The compensation of the answer A� is similar to that
of A� and its tuples are ��� �� �� 	�
� �� and ��� �� �� 	� �� ��
after compensation. Thus A� adds 2 tuples of (3,6) to the
view. The answer A� indicates that 1 tuple of (3,6) in the
view should be changed to (3,7). Thus the final view is:

V �A�F�Count�
(3,6,1)
(3,7,1)

4.4. Discussion

Unlike the Strobe algorithm, our compensation algo-
rithm does not require a quiescent state of the system before
the view can be refreshed. Consider an update�Ri on base
relation Ri, with the view definition given in Equation (1).

The initial version numbers of �Ri, together with its
queried version numbers (before the compensation process
begins), give a set of interfering updates for the compensa-
tion of its answer. From Lemma 2 and Lemma 3, it is noted
that the compensation with both interfering insertion and
modification updates does not add new tuples to the answer
of �Ri. Thus the queried version numbers for all tuples
contributed by all relations remain the same.

The case is different for compensation with an interfer-
ing deletion update. New tuples could be added into the
answer of�Ri as shown in Equations (3) and (4), possibly
with a new set of queried version numbers that are larger
than the existing corresponding version numbers, implying
that extra interfering updates have to be included for con-
sideration over the existing ones. However, such increase
will not continue without bound, which would otherwise
require a quiescent state of the system before the view can
be refreshed.

Consider a deletion update �Rj , with j � i. Suppose
the answer of �Ri needs compensation with �Rj . Then
�Rj can only add in new set of updates to be considered
for compensation for the answer of �Ri from base rela-
tions Rj��� ���� Rn. Since after compensating with all up-
dates which are from Rj , the next relation to be considered
is Rj��, any new set of updates added in for compensation
by deletion update �Rj�� will have to come from base
relations Rj��� ���� Rn. Thus when we reach the stage of
compensating with updates from Rn, no new update trans-
actions can be added in for compensation. The situation for
j � i will be similarly bounded when the compensation
process reaches relation R�.

5. Conclusion

In this paper, we developed a compensation algorithm
for resolving the anomalies found in the result of incremen-
tal computation used in refreshing the materialized view de-
rived from multiple distributed autonomous data sources.
This algorithm caters to the situation where no assumption
could be made with regard to the order of arrival of mes-
sages at the view maintenance machinery to that of gener-
ated at the data sources. Neither do we assume the reli-
ability of the communication network that guarantees the
successful delivery of messages. The algorithm does not re-
quire a quiescent state of the system before it can be used in
updating the view relation. The algorithm handles a modifi-
cation update as a deletion update, followed by an insertion
update, only when the modified attributes involve at least
one join attribute, else it is treated as one modification up-
date which is more efficient during the incremental compu-
tation and subsequent updating of the materialized view.

References

[1] D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Effi-
cient view maintenance at data warehouse. In SIGMOD,
May 1997.

[2] R. Chen and W. Meng. Precise detection and proper han-
dling of view maintenance anomalies in a multidatabase en-
vironment. In 2nd IFCIS International Conference on Co-
operative Information Systems, June 1997.

[3] L. Colby, T. Griffin, L. Libkin, I. Mumick, and H. Trickey.
Algorithms for deferred view maintenance. In SIGMOD,
pages 469–480, June 1996.

[4] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. In SIGMOD, pages 328–339, May 1995.

[5] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining
views incrementally. In SIGMOD, pages 157–166, May
1993.

[6] N. Huyn. Efficient view self-maintenance. In Proceedings
of the ACM Workshop on Materialized Views: Techniques
and Applications, pages 17–25, June 1996.

[7] N. Huyn. Exploiting dependencies to enhance view self-
maintainability. Technical report, Stanford University, 1997.

[8] X. Qian and G. Wiederhold. Incremental recomputation of
active relational expressions. IEEE Transactions on Knowl-
edge and Data Engineering, pages 337–341, Sept. 1991.

[9] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making
views self-maintainable for data warehousing. In Proceed-
ings of the Conference on Parallel and Distributed Informa-
tion Systems, Dec. 1996.

[10] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom.
View maintenance in a warehousing environment. In SIG-
MOD, pages 316–327, May 1995.

[11] Y. Zhuge, H. Garcia-Molina, and J. Wiener. Consistency
algorithms for multi-source warehouse view maintenance.
Journal of Distributed and Parallel Databases, pages 7–40,
Jan. 1998.

