Efficient View Maintenance Using Version
Numbers

Eng Koon Sze and Tok Wang Ling

National University of Singapore
3 Science Drive 2, Singapore 117543
{szeek, lingtw}@comp.nus.edu.sg

Abstract. Maintaining a materialized view in an environment of mul-
tiple, distributed, autonomous data sources is a challenging issue. The
results of incremental computation are effected by interfering updates
and compensation is required. In this paper, we improve the incremen-
tal computation proposed in our previous work by making it more effi-
cient through the use of data source and refreshed version numbers. This
is achieved by cutting down unnecessary maintenance queries and thus
their corresponding query results. The number of times of sending sub-
queries to a data source with multiple base relations are also reduced,
as well as avoiding the execution of cartesian products. Updates that
will not affect the view are detected and incremental computation is not
applied on them. We also provide a compensation algorithm that resolve
the anomalies caused by using the view in the incremental computation.

1 Introduction

Providing integrated access to information from different data sources has re-
ceived recent interest from both the industries and research communities. Two
methods to this data integration are the on-demand and the in-advance ap-
proaches.

In the on-demand approach, information is gathered and integrated from the
various data sources only when requested by users. To provide fast access to
the integrated information, the in-advance approach is preferred instead. Infor-
mation is extracted and integrated from the data sources, and then stored in a
central site as a materialized view. Users access this materialized view directly,
and thus queries are answered immediately. Noting that information at the data
sources do get updated as time progresses, this materialized view will have to
be refreshed accordingly to be consistent with the data sources. This refreshing
of the materialized view due to changes at the data sources is called materi-
alized view maintenance. The view can be refreshed either by recomputing the
integrated information from scratch, or through incrementally changing only the
affected portion of the view.

It is inefficient to recompute the view from scratch. The deriving of the
relevant portion of the view and then incrementally changing it is a preferred
approach as a smaller set of data is involved.

In Section 2, we explain the working of materialized view maintenance, and its
associated problems. In Section 3, we briefly discuss the maintenance algorithm
proposed in [7]. The improvements to this algorithm is given in Section 4, and
the changes to the compensation algorithm of [7] are given in Section 5. We
compare related works in Section 6, and conclude our discussion in Section 7.

2 Background

In this section, we explain the view maintenance algorithm and its problems.

2.1 Incremental Computation

We consider the scenario of select-project-join view V', with n numbers of base
relations {R;}1<i<n. Each base relation is housed in one of the data sources,
and there is a separate site for the view. The view definition is given as V =
Hproj_attr Osel_condR1 ™ ... X R,. A count attribute is appended to the view
relation if it does not contain the key of the join relations R; X ... 1 R, to
indicate the number of ways the same view tuple could be derived from the base
relations. There are multiple, distributed, autonomous data sources, each with
one or more base relations. There is communication between the view site and
the data sources, but not between individual data sources. Thus a transaction
can involve one or more base relations of the same data source, but not between
different data sources. The view site does not control the transactions at the
data sources. No assumption is made regarding the reliability of the network,
i.e., messages sent could be lost or could arrive at the destination in a different
order from what was originally sent out.

The data sources send notifications to the view site on the updates that have
occurred. To incrementally refresh the view with respect to an update AR; of
base relation R;, Ry > ... <1 AR; ... ™ R, is to be computed. The result is
then applied to the view relation.

2.2 View Maintenance Anomalies and Compensation

There are three problems in using the incremental approach to maintain the
view.

Interfering Updates If updates are separated from one another by a suf-
ficient large amount of time, incremental computation will not be affected by
interfering updates. However, this is often not the case.

Ezxample 1. Consider Ri(A, B) and Ry(B,C), and view V =[] Ri > Ry, with
a count attribute added for the proper working of the incremental computa-
tion. R; contains the single tuple (al,bl) and Ro is empty. Hence the view is
also empty. Insert Ry (a2,bl) occurs. The view receives this notification and the
query Rj(a2,bl) x Ry is sent to Ry. Let insert Rs(bl,cl) occurs just before
the view maintanance query for insert R;(a2,bl) reaches Rs. Thus, the tuple

(b1,c1l) would be returned. The overall result (without projection) is the tuple
(a2,b1,cl). The single projected tuple (c1) is added to the view to give (cl,1).
When the view receives the notification of insert Ra(bl,cl), it formulates an-
other query Ry X Ry(bl,cl) and sends it to R;. The result {(al,bl),(a2,b1)}
is returned to the view site. The overall result is {(al,bl,cl), (a2,bl,cl)} and
this adds 2 more tuples of (c1) to the view. The presence of interfering update
(insert Ra(bl,cl)) in the incremental computation of insert Rj(a2,bl) adds an
extra tuple of (cl) to the view relation, giving it a count value of 3 instead of 2.

Misordering of Messages Compensation is the removal of the effect of
interfering updates from the query results of incremental computation. Most
of the existing compensation algorithms that remove the effect of interfering
updates and thus achieve complete consistency [11] are based on the first-sent-
first-received delivery assumption of the messages over the network, and thus
will not work correctly when messages are misordered. A study carried out by
[3] has shown that one percent of the messages delivered over the network are
misordered.

Loss of Messages The third problem is the loss of messages. Although the
loss of network packets can be detected and resolved at the network layer, the loss
of messages due to the disconnection of the network link (machine reboot, net-
work failure, etc.) has to be resolved by the application itself after re-establishing
the link. As the incremental computation and compensation method of the main-
tenance algorithm is driven by these messages, their lost would cause the view
to be refreshed incorrectly.

3 Version Numbers and Compensation for Interfering
Updates

The following types of version numbers are proposed in [7]. Base relation
version number of a base relation. The base relation version number identifies
the state of a base relation. It is incremented by one when there is an update
transaction on this base relation. Highest processing version number of a
base relation, and this number is stored at the view site. The highest processing
version number is used to provide information to the maintenance algorithm
on the updates of a base relation which have been processed for incremental
computation. It indicates the last update transaction of a base relation which
has been processed for incremental computation. Initial version numbers of
an update. The initial version numbers of an update identify the states of the
base relations where the result of the incremental computation should be based
on. Whenever we pick a update transaction of a base relation for processing,
the current highest processing version numbers of all base relations become the
initial version numbers of this update. At the same time, the highest processing
version number of the base relation of this update is incremented by one, which
is also the same as the base relation version number of the update. Queried

version number of a tuple of the result from a base relation. The queried
version numbers of the result of incremental computation of an update indicate
the states of the base relations where this result is actually generated. Base
relation and highest processing version numbers are associated with the data
source and view site respectively, while initial and queried version numbers are
used only for the purpose of incremental computation and need not be stored
permanently.

The different types of version numbers allow the view site to identify the in-
terfering updates independent of the order of arrival of messages at the view site.
The numbers in between the initial and queried version numbers of the same base
relation are the version numbers of the interfering updates. This result is stated
in Lemma 1, which was given in [7]. Once the interfering updates are identi-
fied, compensation can be carried out to resolve the anomalies. Compensation
undoes the effect on the result of incremental computation caused by interfering
updates. The formal definiton for compensating the interfering updates can be
found in [7].

Lemma 1. Given that a tuple of the query result from R; has queried version
number B3;, and the initial version number of R; for the incremental computation
of AR; is oj. If B > «j, then this tuple requires the compensation with updates
from R; of base relation version numbers B; down to o + 1. These are the
interfering updates on the tuple. Otherwise if B; = o, then compensation on
the query result from R; is not required.

4 Improved Incremental Computation

The view maintenance approach in [7] overcomes the problems caused by the
misordering and loss of messages during transmission. However, efficiency in
the incremental computation is not taken into consideration. Each sub-query
only accesses one base relation, but generally a data source has multiple base
relations. [7] uses the same strategy to incrementally compute the change for all
updates. Since the view contains partial information of the base relations, we
propose in this paper to involve the view in the incremental computation.

4.1 Querying Multiple Base Relations Together

Since a data source usually has more than one base relation, the sub-queries sent
to it should access multiple base relations. This cuts down the total network
traffic. It also reduces the time required for the incremental computation of an
update, and results in smaller number of interfering updates. Using the join
graph to determine the access path of querying the base relations, instead of
doing a left and a right scans of the relations based on their arrangement in the
relation algebra of the view definition, cuts down the size of the query results
sent through the network by avoiding cartesian products.

Briefly, the incremental computation is handled as follows. Consider the join
graph of the base relations of a view. The view maintenance query starts with

the base relation R;, 1 < i < n, where the update has occurred. A sub-query is
sent to a set of relations S, where S C {R;}1<j<n, the relations in S comes from
the same data source, R; and the relations in S form a connected sub-graph
with R, as the root of this sub-graph. If there are more than one such set of base
relations S, multiple sub-queries can be sent out in parallel. For each sub-query
sent, we marked the relations in S as “queried”. R; is also marked as “queried”.
Whenever a result is returned from a data source, another sub-query is generated
using the similar approach. Let Ry, 1 < k < n, be one of the relations that have
been queried. A sub-query is sent to a set of relations S, where S C {R;}1<j<n,
the relations in S comes from the same data source, none of the relations in S
are marked “queried”, and Ry, and the relations in S form a connected sub-graph
with Ry as the root of this sub-graph. Again, if there are more than one such set
of base relations S, multiple sub-queries can be sent in parallel. The incremantal
computation for this update is completed when all the base relations are marked
“queried”.

4.2 Identifying Irrelevant Updates

If a data source enforces the referential integrity constraint that each tuple in
R; must refer to a tuple in R;, then we know that an insertion update on R; will
not affect the view and thus can be ignored by our view maintenance process.
Similarly, deletion update on R; will not affect the view if the data source further
enforces that no tuple in R; can be dropped when there are still tuples in R;
referencing it.

4.3 Partial Self-Maintenance Using Functional Dependencies

We proposed the involvement of the view relation to improve the efficiency of the
maintenance algorithm by cutting down the need to access the base relations.

Additional Version Numbers We propose the following additions to the
concept of version numbers given in [7]. This enhancement would allow a data
source to have more than one base relation, i.e., update transaction of a data
source can involve any number of the base relations within it, and enable the
maintenance algorithm to utilize the view in its incremental computation.

The two new types of version numbers are as follow. Data source version
number of a data source. Since a data source usually has more than one base
relation, it is not sufficient to determine the exact sequence of two update trans-
actions involving non-overlapping base relations using the base relation version
number alone. The data source version number is used to identify the state of a
data source. It is incremented by one when there is an update transaction on the
data source. Refreshed version number of a base relation, and this number
is stored at the view site. If we want to use the view relation for incremental
computation, we provide the refreshed version numbers to identify the states.
The refreshed version number indicates the state of a base relation the view
relation is currently showing.

The data source version number is used to order the update transactions from
the same data source for incremental computation, and subsequent refreshing
of the view. The base relation version number continues to be used for the
identification of interfering updates. The refreshed version number is assigned
to the queried version number of the tuples of the result when the view is used
for incremental computation.

Accessing View Data for Incremental Computation Lemma 2 uses
functional dependencies to involve the view in the incremental computation.
In the case where the view is not used, all tuples in pR; (the query result of
the incremental computation from R;) need to be used to query the next base
relation R;. When conditions (1) and (2) of Lemma 2 are satisfied, only those
tuples in uR; that cannot be matched with any of the tuples in V[R], S| need
to be used in accessing the base relations.

Lemma 2. When the incremental computation of an update (insertion, dele-
tion, and modification) needs to query base relation R;, (1) if the key of R; is
found in the view, and (2) if R; functionally determines the rest of the relations
S that are to be queried based on the query result of R; (denoted as pR;), then
the view can be accessed for this incremental computation and the refreshed ver-
sion numbers are taken as the queried version numbers for the result. The view
is first used for the incremental computation using pR;, S = pR; x VIR},S'],
where R;- is the set of attributes of R; in V', S’ is the set of attributes of relations
SV, and pR;,S is the query result for R; and the set of relations S. For the
remaining required tuples are not found in the view, the base relations are next
accessed.

Ezample 2. Consider Ry(A, B,C), R2(C, D, E) and R3(E, F,G), with the view
defined as V =[] B,C.F Ry > Ry <1 R3. The following shows the initial states of
the base and view relations.

Ri(A,B,C)||R2(C, D, E)||R3(E, F,G)||V (B, C, F, count)
al,bl,cl cl,dl,el el fl,gl bl,c1,f1,1
c2,d2,e2 e2,f2,g2

Let R; reside in data source 1, and R, and Rj3 reside in data source 2. The
base relation version numbers of R;, Re and R3 are each 1, and the data source
version numbers of data sources 1 and 2 are also 1. The refreshed version numbers
at the view site are (1,1,1) for Ry, Ry and R3 respectively.

Update transaction with data source version number 2 occurs at data source
1, and the updates involved are insert R;(a2,b2,c¢2) and insert Rj(a3,b3,cl),
which now has its base relation version number changed to 2. The view site
receives this notification and proceed to handle the incremental computation.
The highest processing version number of R; is updated to 2. Thus, the initial
version numbers for the incremental computation of this update are (2,1,1). Ry
and R3 are to be queried. Since the key of Rs, which is C, is in the view, and
R, functionally determines the other base relations to be queried (only Rz in
this case), the view is first accessed for this incremental computation using the

query {(a2,b2,c2),(a3,b3,cl)} x V[R,, Rs] (R, contains attribute C, and R}
contains attribute F)). It is found that the tuple (a3,b3,cl) can join with the
tuple (cl,-,-) from Ry and (-,fl,-) from R3 (C' — F). Note the use of “-” for the
unknown attributes values. The queried version numbers for both tuples are 1,
taken from the refreshed version numbers for Ry and R3. Projecting the overall
result over the view attributes adds one tuple of (b3,c1,f1) to the view. Thus the
tuple (b3,c1,f1,1) is inserted into the view relation. The tuple (a2,b2,c2) that
cannot retrieve any results from the view relation will have to do so by sending
the view maintenance query [[]-{(a2,02,c2)}] x (R2 > R3) to data source 2.
The result returned consists of the tuple (c2,d2,e2) from Ry and (e2,{2,g2) from
R3, each with queried version number 1. Since the queried version numbers here
correspond with the initial version numbers of both R, and Rj3, there is no
interfering update and compensation is not required. The tuple (b2,c2,{2,1) is
inserted into the view.

Maintaining the View Without Querying All Base Relations It is
not necessary to know the complete view tuples before the view can be refreshed
in some cases of modification or deletion updates. In this paper, modification
update that involves the change of any of the view’s join attributes will be
handled as a deletion and an insertion updates because these update will join
with different tuples of the other relations after the modification. Otherwise,
the modification update will be handled as one type of update by our view
maintenance algorithm. Applying Lemma 3 would also serve to reduce the overall
size of queries and results transmitted.

Lemma 3. For a modification or deletion update AR;, if the key of R; is in the
view, then maintenance can be carried out by modifying or deleting the corre-
sponding tuples of AR; in the view through using the key value of AR;, without
the need to compute the complete view tuple.

5 Compensation for Missing Updates

Lemma 1, which was proposed in [7], is used to identify interfering updates in
the case where the base relations is queried for incremental computation. Using
the view relation for incremental computation also creates the similar kind of
problem, in that the view relation might not be refreshed to the required state
when it is accessed. We called them missing updates to differentiate from the
interfering updates.

Lemma 4. Eztending Lemma 1, the following is added. If B; < «;, then this
tuple (taken from the view relation) requires the compensation with updates from
R; of base relation version numbers B;+1 to oj. These are the missing updates
on the tuple.

5.1 Resolving Missing Updates

The compensation of a missing insertion update is to add the tuples of this
insertion into the query result. The compensation with a missing modification
update is simply to update the tuples from the unmodified state to the modified
state. These are given in Lemmas 5, 6 and 7 respectively.

Lemma 5. Let pR; be the query result from R; (retrieved from the view) for the
incremental computation of AR;. To compensate the effect of missing deletion
update AR; for the result of incremental computation of AR;, all tuples of AR;
that are found in uR; are dropped, together with those tuples from the other base
relations that are retrieved due to the original presence of AR; in uR;.

Lemma 6. Let pR; be the query result from R; (retrieved from the view) for
the incremental computation of AR;, and uRy be the query result from Ry.
To compensate the effect of missing insertion update AR; on the result of
incremental computation of AR;, and assuming that uR; is queried using the
result from pRy, all tuples of AR; that can join with uRy are added to pR;,
together with those tuples from the other base relations that should be retrieved
due to the inclusion of AR; in uR;.

Lemma 7. Let uR; be the query result from R; (retrieved from the view) for the
incremental computation of AR;. To compensate the effect of missing mod-
ification update AR, (which does not involve any change to the view’s join
attributes), for the result of incremental computation of AR;, each old tuple (be-
fore the modification) of AR, that occurs in uR; has its values changed to the
corresponding new tuple (after the modification).

Note that for both missing deletion or modification update AR;, if the key
of R; is not in the view, then the relation R) with its key that functionally
determines the attributes of R; will be used in applying Lemmas 5 and 7.

Theorem 1 gives the overall compensation process that is applied to resolve
the maintenance anomalies.

Theorem 1. Given ay,...,a, as the initial version numbers of incremental com-
putation of update AR;, the compensation starts with those relations that are
linked to R; in the join graph, and proceed recursively to the rest of the relations
in the same sequence as they are been queried. The compensation on the query
result from R; proceeds by first compensating with the missing updates of base
relation version number ﬂ;-”i" + 1 to oy, where B;”i" is the minimum queried
version number of the tuples in the result from R;, using Lemmas 5, 6 and 7.
This s followed by the compensation with the interfering updates of base relation
version number 37" down to a; + 1, where B]*** is the mazimum queried ver-
sion number of the tuples in the query result from R;, using the method discussed

in [7].

Theorem 2. To achieve complete consistency, the view will be refreshed with the
results of incremental computation in the same order as they have been queried.

6 Comparison

Related works in this area are the Eager Compensation Algorithm (ECA and
ECAX) [10], the Strobe and C-Strobe Algorithms [11], the work of [2], the
SWEEP and Nested SWEEP Algorithms [1], the work of [3], and the work of [7].
We compare these using a set of criteria, which are grouped into four categories.

The first criterion under the environment category is the number of data
sources. All the approaches, except ECA, ECAX and [2], cater for multiple
data sources. The second criterion is the handling of compensation. ECA and C-
Strobe send compensating queries to the data sources, while the other algorithms
handle compensation locally at the view site. The latter method is preferred as
compensating queries add to the overall traffic.

The first criterion under the correctness category is the correct detection of
interfering updates. The compensation methods of ECA, ECAX and Strobe are
not through the detection of interfering updates, and hence they only achieve
strong consistency [11]. C-Strobe does detect some interfering deletion updates
which turn out to be non-interfering. The rest of the algorithms work by cor-
rectly detecting for the presence of interfering updates when messages are not
misordered or lost. The next criterion is the network communication assumption.
All the approaches, except [7] and the work of this paper, assume that messages
are never lost and misordered. [3] also does not assume that messages are never
misordered.

There are five criteria under the efficiency category. The first criterion is the
number of base relations accessed per sub-query. Most of the approaches can
only work by querying one base relation at a time. ECA and ECAX can query
all base relations of their single data source together. The method proposed in
this paper is able to access multiple base relations within the same data source
via the same query. The second criterion is the parallelism in the incremental
computation of an update. Existing methods base their view maintenance query-
ing on a left and right scan approach, and thus limit their parallelism to the two
scans. In this paper, we use the join graph to guide the accessing of the base
relations, and thus provide more parallelism. The third criterion is the paral-
lelism in the incremental computation between different updates. ECA, ECAK,
Strobe and Nested SWEEP are able to process the incremental computation of
different updates concurrently, but achieving only strong consistency. The rest
of the methods have to process the incremental computation of different updates
sequentially. [7] and the method in this paper can process the incremental compu-
tation concurrently and also achieve complete consistency. The fourth criterion
is the use partial self-maintenance. ECA¥X, Strobe and C-Strobe have a limited
form of partial self-maintenance in that deletion update need not be processed
for incremental computation. [2] can detect updates that will not affect the view.
In this paper, we provide for more opportunity of partial self-maintenance. The
fifth criterion is the handling of modification as one type of update. Only [7] and
the method in this paper consider modification as one type of update.

The criteria under the application requirements category are the flexibility
of the view definition, quiescence requirement and level of consistency achieved.

ECAX, Strobe and C-Strobe require that the key of each base relation be re-
tained in the view. The number of base relations in [2] is limited to two. The
others have no such requirement. C-Strobe, [2], SWEEP, [3], [7] and our ap-
proach achieve complete consistency, and also do not require a quiescent state
before the view can be refreshed. This does not apply to ECA, ECAX, Strobe
and the Nested SWEEP Algorithm.

7 Conclusion

The use of data source and refreshed version numbers in the maintenance al-
gorithm allow for partial self-maintenance, as well as the accessing of multiple
base relations residing at the same data source within a single query. Also, the
accessing of the base relations for incremental computation are based on the
join graph to avoid cartesian products. Using the join graph to determine the
query path also results in more parallelism. Knowledge of referential integrity
constraint imposed by the data source is used to eliminate irrelevant updates.
Overall performance of the maintenance algorithm is improved by reducing the
amount and size of messages sent over the network.

References

1. Agrawal, D., El Abbadi, A., Singh, A., Yurek, T.: Efficient View Maintenance at
Data Warehouses. International Conference on Management of Data (1997) 417-427

2. Chen, R., Meng, W.: Efficient View Maintenance in a Multidatabase Environment.
Database Systems for Advanced Applications (1997) 391-400

3. Chen, R., Meng, W.: Precise Detection and Proper Handling of View Maintenance
Anomalies in a Multidatabase Environment. Conference on Cooperative Information
Systems (1997)

4. Colby, L.S., Griffin, T, Libkin, L., Mumick, I.S., Trickey, H.: Algorithms for Deferred
View Maintenance. International Conference on Management of Data (1996) 469—
480

5. Griffin, T., Libkin, L.: Incremental Maintenance of Views with Duplicates. Interna-
tional Conference on Management of Data (1995) 328-339

6. Griffin, T., Libkin, L., Trickey, H.: An Improved Algorithm for the Incremental
Recomputation of Active Relational Expressions. Knowledge and Data Engineering,
Vol. 9 No. 3 (1997) 508-511

7. Ling, T'W., Sze, E.K.: Materialized View Maintenance Using Version Numbers.
Database Systems for Advanced Applications (1999) 263—-270

8. Qian, X., Wiederhold, G.: Incremental Recomputation of Active Relational Expres-
sions. Knowledge and Data Engineering, Vol. 3 No. 3 (1991) 337-341

9. Quass, D.: Maintenance Expressions for Views with Aggregation. Workshop on Ma-
terialized Views: Techniques and Applications (1996)

10. Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View Maintenance in
a Warehousing Environment. International Conference on Management of Data
(1995) 316-327

11. Zhuge, Y., Garcia-Molina, H., Wiener, J.L.: The Strobe Algorithms for Multi-
Source Warehouse Consistency. Conference on Parallel and Distributed Information
Systems (1996)

